JP6350818B2 - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP6350818B2
JP6350818B2 JP2014195781A JP2014195781A JP6350818B2 JP 6350818 B2 JP6350818 B2 JP 6350818B2 JP 2014195781 A JP2014195781 A JP 2014195781A JP 2014195781 A JP2014195781 A JP 2014195781A JP 6350818 B2 JP6350818 B2 JP 6350818B2
Authority
JP
Japan
Prior art keywords
circuit
capacitor
diode
power transmission
bidirectional switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014195781A
Other languages
Japanese (ja)
Other versions
JP2016059252A (en
Inventor
佐藤 守男
守男 佐藤
Original Assignee
大平電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大平電子株式会社 filed Critical 大平電子株式会社
Priority to JP2014195781A priority Critical patent/JP6350818B2/en
Publication of JP2016059252A publication Critical patent/JP2016059252A/en
Application granted granted Critical
Publication of JP6350818B2 publication Critical patent/JP6350818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)

Description

本発明はスイッチング電源に関し、特に非接触電力伝送装置に関する。  The present invention relates to a switching power supply, and more particularly to a contactless power transmission device.

従来の非接触電力伝送装置の1例として、特許公開2007−312585が提供した方法がある。その実施例として示されている回路図の1つを図8に示す。  As an example of a conventional non-contact power transmission apparatus, there is a method provided by Japanese Patent Publication No. 2007-312585. One of the circuit diagrams shown as the embodiment is shown in FIG.

図8において、111は交流電源、112と113は双方向スイッチ回路を構成するMOSFET、114と115は別の双方向スイッチ回路を構成するMOSFET、116は4つのMOSFETを所定シーケンスでオン・オフさせる発振制御回路である。117、118、119、120はいずれも互いに異なる電位のゲートに信号を送るための絶縁バッファである。121と122は送電コイルと受電コイルで電磁気エネルギを伝送している。123は整流平滑回路で直流電圧に変換している。124は定電圧回路で安定した直流電圧を負荷125に供給している。  In FIG. 8, 111 is an AC power source, 112 and 113 are MOSFETs constituting a bidirectional switch circuit, 114 and 115 are MOSFETs constituting another bidirectional switch circuit, and 116 is for turning on and off four MOSFETs in a predetermined sequence. This is an oscillation control circuit. Reference numerals 117, 118, 119, and 120 denote insulating buffers for sending signals to gates having different potentials. 121 and 122 transmit electromagnetic energy by a power transmission coil and a power reception coil. Reference numeral 123 denotes a rectifying / smoothing circuit which converts it into a DC voltage. A constant voltage circuit 124 supplies a stable DC voltage to the load 125.

送電コイル121と受電コイル122間の伝送は一方通行であるため整流平滑回路123の出力電圧は負荷に流れる電流によって変化する。そのため定電圧回路を必要とするが、変化の幅が大きいため定電圧回路124が担う入力電圧範囲が広い。  Since the transmission between the power transmission coil 121 and the power reception coil 122 is one-way, the output voltage of the rectifying and smoothing circuit 123 varies depending on the current flowing through the load. Therefore, although a constant voltage circuit is required, the input voltage range which the constant voltage circuit 124 bears is wide because of the large change width.

本発明は受電側の整流平滑回路に直流電圧を安定化させる機能を持たせ、これにより受電側に広い入力電圧範囲に対応した定電圧回路を付加する必要のない非接触電力伝送装置を提供することを目的としている。  The present invention provides a non-contact power transmission device in which a rectifying / smoothing circuit on a power receiving side has a function of stabilizing a DC voltage, and thus there is no need to add a constant voltage circuit corresponding to a wide input voltage range on the power receiving side. The purpose is that.

請求項1記載の発明は交流電源と、第1のコンデンサと、交流電源に並列に接続された第1と第2の双方向スイッチ回路からなる直列回路と、交流電源に並列に接続された第3と第4の双方向スイッチ回路からなる直列回路と、第1と第4の双方向スイッチ回路の組と第2と第3の双方向スイッチ回路の組を交互にオン・オフさせる発振制御回路と、第1と第2の双方向スイッチ回路の接続点と第3と第4の双方向スイッチ回路の接続点の間に接続された送電コイルと送電コンデンサからなる直列回路と、送電コイルと送電コンデンサからなる直列回路と電磁気的に結合している受電コイルと受電コンデンサからなる直列回路と、受電コイルと受電コンデンサからなる直列回路の一方の端子と第1のコンデンサの一方の端子の間に接続された第1のダイオードと、受電コイルと受電コンデンサからなる直列回路の他方の端子と第1のコンデンサの他方の端子の間に接続された第2のダイオードと、受電コイルと受電コンデンサからなる直列回路と第1のダイオードの接続点と第2のダイオードと第1のコンデンサの接続点の間に接続された第3のダイオードと、受電コイルと受電コンデンサからなる直列回路と第2のダイオードの接続点と第1のダイオードと第1のコンデンサの接続点の間に接続された第4のダイオードからなる非接触電力伝送装置において、第1のダイオードに並列に第5のスイッチ素子を接続し、第2のダイオードに並列に第6のスイッチ素子を接続し、第3のダイオードに並列に第7のスイッチ素子を接続し、第4のダイオードに並列に第8のスイッチ素子を接続し、交流電源の出力電圧が正の半波の間は第1と第4の双方向スイッチ回路の組のオン・オフに同期させて第5と第6のスイッチ素子の組をオン・オフさせ、第2と第3の双方向スイッチ回路の組のオン・オフに同期させて第7と第8のスイッチ素子の組をオン・オフさせ、交流電源の出力電圧が負の半波の間は第1と第4の双方向スイッチ回路の組のオン・オフに同期させて第7と第8のスイッチ素子の組をオン・オフさせ、第2と第3の双方向スイッチ回路の組のオン・オフに同期させて第5と第6のスイッチ素子の組をオン・オフさせる同期駆動回路を付加した。  The invention according to claim 1 is an AC power supply, a first capacitor, a series circuit composed of first and second bidirectional switch circuits connected in parallel to the AC power supply, and a first circuit connected in parallel to the AC power supply. An oscillation control circuit for alternately turning on / off a series circuit composed of 3 and a fourth bidirectional switch circuit, a set of first and fourth bidirectional switch circuits, and a set of second and third bidirectional switch circuits A series circuit including a power transmission coil and a power transmission capacitor connected between a connection point of the first and second bidirectional switch circuits and a connection point of the third and fourth bidirectional switch circuits, and the power transmission coil and the power transmission Connected between one terminal of the first circuit and the first circuit of the series circuit consisting of the receiving coil and the receiving capacitor that are electromagnetically coupled to the series circuit consisting of the capacitor, and the series circuit consisting of the receiving coil and the receiving capacitor Was A first diode, a second diode connected between the other terminal of the series circuit consisting of the receiving coil and the receiving capacitor and the other terminal of the first capacitor, a series circuit consisting of the receiving coil and the receiving capacitor, A connection point of the first diode, a third diode connected between the connection point of the second diode and the first capacitor, a series circuit composed of the receiving coil and the receiving capacitor, and a connection point of the second diode In a non-contact power transmission device including a fourth diode connected between a connection point of one diode and a first capacitor, a fifth switching element is connected in parallel to the first diode, and the second diode The sixth switch element is connected in parallel to the third diode, the seventh switch element is connected in parallel to the third diode, and the eighth switch element is connected in parallel to the fourth diode. When the output voltage of the AC power supply is a positive half wave, the fifth and sixth switch elements are turned on and off in synchronization with the first and fourth bidirectional switch circuit sets. The seventh and eighth switch element sets are turned on / off in synchronization with the on / off of the second and third bidirectional switch circuit sets, and the output voltage of the AC power supply is between the negative half-waves. Synchronizes with the on / off of the first and fourth bidirectional switch circuit sets to turn on / off the seventh and eighth switch element sets, and the second and third bidirectional switch circuit sets. A synchronous drive circuit for turning on / off the set of the fifth and sixth switch elements in synchronization with on / off is added.

請求項2記載の発明は、第1ないし第4の双方向スイッチ回路がいずれも互いに反対向きに直列接続された2つのMOSFETから構成され、交流電源の電圧の正の半波と負の半波の位相にそれぞれ同期した2つの信号を出力する交流位相識別回路を付加し、交流位相識別回路が出力する2つの信号と第1ないし第4の双方向スイッチ回路をオン・オフする発振制御回路の信号をOR回路で合成して4種類の信号を作り、第1ないし第4の双方向スイッチ回路を構成するMOSFETの所定のゲートに加える。  According to a second aspect of the present invention, each of the first to fourth bidirectional switch circuits is composed of two MOSFETs connected in series in opposite directions, and a positive half wave and a negative half wave of the voltage of the AC power supply. Of an oscillation control circuit for turning on / off the two signals output from the AC phase identification circuit and the first to fourth bidirectional switch circuits. The signals are synthesized by an OR circuit to form four types of signals, which are applied to predetermined gates of MOSFETs constituting the first to fourth bidirectional switch circuits.

請求項3記載の発明は、第3の双方向スイッチ回路を第2のコンデンサに置換え、第4の双方向スイッチ回路を第3のコンデンサに置換えた。  In the third aspect of the invention, the third bidirectional switch circuit is replaced with a second capacitor, and the fourth bidirectional switch circuit is replaced with a third capacitor.

請求項4記載の発明は、第4のダイオードと第8のスイッチ素子からなる並列回路を第4のコンデンサに置換え、第2のダイオードと第6のスイッチ素子からなる並列回路を第5のコンデンサに置換えた。  According to a fourth aspect of the present invention, the parallel circuit composed of the fourth diode and the eighth switch element is replaced with the fourth capacitor, and the parallel circuit composed of the second diode and the sixth switch element is replaced with the fifth capacitor. Replaced.

請求項5記載の発明は、第1のコンデンサの電圧を安定させるために同期駆動回路が発生するパルスの幅を制御するPWM回路を付加した。  In the invention according to claim 5, a PWM circuit for controlling the width of a pulse generated by the synchronous drive circuit is added to stabilize the voltage of the first capacitor.

請求項6記載の発明は、受電コイルと受電コンデンサからなる直列回路を受電コイルと受電コンデンサからなる並列回路に置換えた。  In the invention according to claim 6, the series circuit composed of the power receiving coil and the power receiving capacitor is replaced with a parallel circuit composed of the power receiving coil and the power receiving capacitor.

本発明の非接触電力伝送装置は受電側に定電圧回路がなくても安定した直流電圧を作ることができるので、効率が改善され、受電側の装置内部スペースが空き、コストが下がった。  Since the non-contact power transmission device of the present invention can generate a stable DC voltage without a constant voltage circuit on the power receiving side, the efficiency is improved, the space inside the device on the power receiving side is vacant, and the cost is reduced.

受電側の同期駆動回路が発生するパルス幅を適当に制御することにより送電側の交流電源から供給される交流電流の波形を交流電圧の波形に相似させることができ、これによって力率を改善することができる。  By appropriately controlling the pulse width generated by the synchronous drive circuit on the power receiving side, the waveform of the AC current supplied from the AC power supply on the power transmission side can be made similar to the waveform of the AC voltage, thereby improving the power factor. be able to.

発明を実施するための最良の形態を図面を参照して説明する。  The best mode for carrying out the invention will be described with reference to the drawings.

図1は請求項1記載の発明の実施例を示す回路図である。
図において1は交流電源、3〜6は双方向スイッチ回路、11は発振制御回路、12は送電コイル、13は送電コンデンサ、14は受電コイル、15は受電コンデンサ、16〜19はダイオード、20〜23はスイッチ素子、24は同期駆動回路、101〜108は絶縁バッファである。
発振制御回路11はMとNの2つの出力端子からMがHiのときはNはLo、NがHiのときはMはLoの信号を出力する。MとNが同時にHiの信号を出力することはないが、同時にLoの信号を出力することはある。MとNのいずれもLoの期間をデットタイムと呼んでいる。
FIG. 1 is a circuit diagram showing an embodiment of the present invention.
In the figure, 1 is an AC power source, 3 to 6 are bidirectional switch circuits, 11 is an oscillation control circuit, 12 is a power transmission coil, 13 is a power transmission capacitor, 14 is a power reception coil, 15 is a power reception capacitor, 16 to 19 are diodes, 20 to 20 Reference numeral 23 is a switch element, 24 is a synchronous drive circuit, and 101 to 108 are insulating buffers.
The oscillation control circuit 11 outputs a signal Lo from the two output terminals M and N when M is Hi and M is Lo when N is Hi. M and N do not output a Hi signal at the same time, but may output a Lo signal at the same time. Both M and N call the Lo period the dead time.

MがHiのときは3と6の双方向スイッチ回路が導通し、送電コイル12と送電コンデンサ13の直列回路両端に交流電圧が同じ向きに加わる。続いてNがHiになると4と5の双方向スイッチ回路が導通し、送電コイル12と送電コンデンサ13の直列回路両端に交流電圧が逆の向きに加わる。  When M is Hi, the bidirectional switch circuits 3 and 6 are turned on, and an AC voltage is applied to both ends of the series circuit of the power transmission coil 12 and the power transmission capacitor 13 in the same direction. Subsequently, when N becomes Hi, the bidirectional switch circuits 4 and 5 become conductive, and an AC voltage is applied to the opposite ends of the series circuit of the power transmission coil 12 and the power transmission capacitor 13 in the opposite direction.

同期駆動回路24の動作が停止していれば、16〜19のダイオードが整流して第1のコンデンサ2を充電する。第1のコンデンサ2に負荷が接続されていれば、負荷に直流電力が供給される。負荷が無負荷かまたは軽い負荷のときは第1のコンデンサ2の電圧は送受電間の共振条件によるが上昇し、制御することはできない。  If the operation of the synchronous drive circuit 24 is stopped, the diodes 16 to 19 rectify and charge the first capacitor 2. If a load is connected to the first capacitor 2, DC power is supplied to the load. When the load is no load or light load, the voltage of the first capacitor 2 increases depending on the resonance condition between power transmission and reception, and cannot be controlled.

同期駆動回路24が動作するときを図7を用いて説明する。図7は図1の回路の波形図を示したもので(a)は交流電圧が正の半波の間、(b)は交流電圧が負の半波の間の各部の波形である。上から第1と第4の双方向スイッチ回路3と6のゲート電圧、第2と第3の双方向スイッチ回路4と5のゲート電圧、受電コイル14と受電コンデンサ15の直列回路両端の電圧、第5と第6のスイッチ素子20と21のゲート電圧、第7と第8のスイッチ素子22と23のゲート電圧の波形を示している。Ton1とTd1は発振制御回路11に設定するパルス幅とデットタイムであり、Ton2とTd2は同期駆動回路11が設定するパルス幅と遅延時間である。  The operation of the synchronous drive circuit 24 will be described with reference to FIG. FIG. 7 shows a waveform diagram of the circuit of FIG. 1, wherein (a) shows the waveform of each part during the positive half wave of the AC voltage and (b) shows the waveform of each part during the half wave of the AC voltage negative. From the top, the gate voltage of the first and fourth bidirectional switch circuits 3 and 6, the gate voltage of the second and third bidirectional switch circuits 4 and 5, the voltage across the series circuit of the receiving coil 14 and the receiving capacitor 15, The waveforms of the gate voltages of the fifth and sixth switch elements 20 and 21 and the gate voltages of the seventh and eighth switch elements 22 and 23 are shown. Ton1 and Td1 are the pulse width and dead time set in the oscillation control circuit 11, and Ton2 and Td2 are the pulse width and delay time set by the synchronous drive circuit 11.

受電コイル14と受電コンデンサ15の直列回路の電圧は送電側の第1ないし第4の双方向スイッチ回路のいずれか一方の組がオン状態からオフに切替わるときに変わるが、図7(a)では第2と第3の双方向スイッチ回路がオフに切替わるときに負から正に切替わっている。図7(b)では第2と第3の双方向スイッチ回路がオフに切替るときに正から負に切替っている。  Although the voltage of the series circuit of the power receiving coil 14 and the power receiving capacitor 15 changes when any one of the first to fourth bidirectional switch circuits on the power transmission side is switched from the on state to the off state, FIG. Then, when the second and third bidirectional switch circuits are switched off, they are switched from negative to positive. In FIG. 7B, the second and third bidirectional switch circuits are switched from positive to negative when switched off.

図7(a)において同期駆動回路24は、受電コイル14と受電コンデンサ15の直列回路両端の電圧が負から正に変わる時はTd2遅れた幅がTon2のパルスを発生して第5と第6のスイッチ素子20と21のゲートを駆動する。受電コイル14と受電コンデンサ15の直列回路両端の電圧が正から負に変わる時はTd2遅れた幅がTon2のパルスを発生して第7と第8のスイッチ素子18と19のゲートを駆動する。このように同期駆動回路24がパルスを出力すれば、送電側の双方向スイッチ回路と受電側のスイッチ素子のオン・オフが同期する。図7ではTd2はTd1と同じ値、Ton2はTon1より小さい値が設定されている。  In FIG. 7A, when the voltage across the series circuit of the power receiving coil 14 and the power receiving capacitor 15 changes from negative to positive, the synchronous drive circuit 24 generates a pulse with a width Td2 delayed by Ton2, and outputs the fifth and sixth pulses. The gates of the switch elements 20 and 21 are driven. When the voltage across the series circuit of the power receiving coil 14 and the power receiving capacitor 15 changes from positive to negative, a pulse with a width delayed by Td2 is generated to drive the gates of the seventh and eighth switch elements 18 and 19. If the synchronous drive circuit 24 outputs a pulse in this way, the on / off of the bidirectional switch circuit on the power transmission side and the switch element on the power reception side are synchronized. In FIG. 7, Td2 is set to the same value as Td1, and Ton2 is set to a value smaller than Ton1.

図7の波形に示されているように、交流電圧の位相が正から負に変われば、送電側のオンになる組に対する受電側のオンになる組は入れ替る。  As shown in the waveform of FIG. 7, when the phase of the AC voltage changes from positive to negative, the set on the power receiving side is switched to the set on on the power transmission side.

送電側でオン状態になっている双方向スイッチ回路と、そのときに導通しているダイオードに並列接続されているスイッチ素子が同期してオン状態になるので、第1のコンデンサ2の電圧が高ければそのエネルギは受電側から送電側に回生される。  Since the bidirectional switch circuit that is turned on on the power transmission side and the switch element that is connected in parallel with the diode that is conducting at that time are turned on in synchronization, the voltage of the first capacitor 2 can be increased. For example, the energy is regenerated from the power receiving side to the power transmitting side.

図2は請求項2記載の発明の実施例を示す回路図である。
図1と共通する部品は図1の符号をそのまま用いている。図において、25は交流位相識別回路で、交流電源1の電圧が正であれば端子PがHi、端子SがLoになり、負であれば端子PがLo、端子SがHiになる。
FIG. 2 is a circuit diagram showing an embodiment of the second aspect of the present invention.
Components common to those in FIG. 1 are the same as those in FIG. In the figure, reference numeral 25 denotes an AC phase identification circuit. If the voltage of the AC power supply 1 is positive, the terminal P is Hi, the terminal S is Lo, and if it is negative, the terminal P is Lo and the terminal S is Hi.

交流位相識別回路の出力信号と発振制御回路11の出力信号は26〜29のOR回路によって4種類の信号に合成されて、双方向スイッチ回路3〜6を構成するMOSFETのゲートに供給される。交流位相回路の端子PからHiの信号が出ていれば、3b、4b、5b、6bのMOSFETは発振制御回路11の信号に関係なくオン状態になる。端子SからHiの信号が出ていれば、3a,4a、5a、6aのMOSFETが発振制御回路11の信号に関係なくオン状態になる。  The output signal of the AC phase identification circuit and the output signal of the oscillation control circuit 11 are combined into four types of signals by the OR circuits 26 to 29 and supplied to the gates of the MOSFETs constituting the bidirectional switch circuits 3 to 6. If a Hi signal is output from the terminal P of the AC phase circuit, the MOSFETs 3b, 4b, 5b, and 6b are turned on regardless of the signal of the oscillation control circuit 11. If a Hi signal is output from the terminal S, the MOSFETs 3a, 4a, 5a and 6a are turned on regardless of the signal of the oscillation control circuit 11.

発振制御回路11の端子MとNがいずれもLoのとき、すなわちデッドタイムのときは、送電コイル12と送電コンデンサ13の直列回路に蓄積されているエネルギはオン状態になっているいずれかのMOSFETとそれと直列接続されているMOSFETの寄生ダイオードを通って交流電源1に回生される。  When the terminals M and N of the oscillation control circuit 11 are both Lo, that is, when the dead time is reached, any of the MOSFETs in which the energy accumulated in the series circuit of the power transmission coil 12 and the power transmission capacitor 13 is on And is regenerated to the AC power supply 1 through a parasitic diode of a MOSFET connected in series with the MOSFET.

第1のコンデンサ2の電圧が高いときに送電側に回生されるメカニズムは図1のそれと同じ。  The mechanism regenerated on the power transmission side when the voltage of the first capacitor 2 is high is the same as that in FIG.

図3は請求項3記載の発明の実施例を示す回路図である。図2と共通する部品は図2の符号をそのまま用いている。図において、第2のコンデンサ31と第3のコンデンサ32は交流電源1の電圧を2等分している。両コンデンサは送電コンデンサ13の容量より大きい値が選ばれているので回路の共振周期に影響を与えない。
図2の回路構成がフルブリッジと呼ばれるのに対して、図3の回路構成はハーフブリッジと呼ばれている。
FIG. 3 is a circuit diagram showing an embodiment of the third aspect of the present invention. Components common to those in FIG. 2 are the same as those in FIG. In the figure, a second capacitor 31 and a third capacitor 32 divide the voltage of the AC power supply 1 into two equal parts. Since both capacitors are selected to be larger than the capacity of the power transmission capacitor 13, they do not affect the resonance period of the circuit.
The circuit configuration of FIG. 2 is called a full bridge, whereas the circuit configuration of FIG. 3 is called a half bridge.

図4は請求項4記載の発明の実施例を示す回路図である。図2と共通する部品は図2の符号をそのまま用いている。図において、第1のダイオード16が導通したときコンデンサ33が充電され、第3のダイオード18が導通したときにコンデンサ34が充電される。第1のコンデンサ2には両コンデンサの合成された電圧が充電される。  FIG. 4 is a circuit diagram showing an embodiment of the invention as set forth in claim 4. Components common to those in FIG. 2 are the same as those in FIG. In the figure, the capacitor 33 is charged when the first diode 16 is turned on, and the capacitor 34 is charged when the third diode 18 is turned on. The first capacitor 2 is charged with the combined voltage of both capacitors.

図5は請求項5記載の発明の実施例を示す回路図である。図2と共通する部品は図2の符号をそのまま用いている。図において、30はPWM回路で第1のコンデンサ2の電圧が基準電圧を越えると同期駆動回路24が発生するパルスを広げる。スイッチ素子20とスイッチ素子22のオン期間が長くなれば受電側から送電側に戻る電力が増え第1のコンデンサ2の電圧は下がる。これにより、第1のコンデンサ2の電圧の安定さは増す。  FIG. 5 is a circuit diagram showing an embodiment of the invention as set forth in claim 5. Components common to those in FIG. 2 are the same as those in FIG. In the figure, reference numeral 30 denotes a PWM circuit, which widens the pulse generated by the synchronous drive circuit 24 when the voltage of the first capacitor 2 exceeds the reference voltage. If the ON period of the switch element 20 and the switch element 22 becomes longer, the electric power returning from the power receiving side to the power transmission side increases and the voltage of the first capacitor 2 decreases. Thereby, the stability of the voltage of the first capacitor 2 is increased.

図6は請求項6記載の発明の実施例を示す回路図である。図2と共通する部品は図2の符号をそのまま用いている。図において、受電側の受電コンデンサ15を受電コイル14に並列に接続した。  FIG. 6 is a circuit diagram showing an embodiment of the invention as set forth in claim 6. Components common to those in FIG. 2 are the same as those in FIG. In the figure, the power receiving capacitor 15 on the power receiving side is connected to the power receiving coil 14 in parallel.

図1ないし図6において、第5ないし第8のスイッチ素子としてMOSFETを選んだので、第1ないし第4のダイオードを、MOSFETの寄生ダイオードで代用させることにより省略することもできる。  In FIG. 1 to FIG. 6, MOSFETs are selected as the fifth to eighth switch elements, so that the first to fourth diodes can be omitted by substituting the parasitic diodes of the MOSFETs.

産業上の利用の可能性Industrial applicability

従来の非接触電力伝送装置がかかえていた1つの課題である負荷に加える電圧の安定化に関して新しい手段が提供できる。また、交流を直接スイッチングして送電されるエネルギを受電する整流回路によって力率が改善されるので、送電側にも受電側にも力率改善回路を挿入する必要がなく、コストを減ずることができる。受電側のスペースも縮小できる。  It is possible to provide a new means for stabilizing the voltage applied to the load, which is one of the problems of the conventional non-contact power transmission apparatus. In addition, since the power factor is improved by the rectifier circuit that receives the transmitted energy by directly switching the alternating current, it is not necessary to insert a power factor improving circuit on both the power transmission side and the power receiving side, thereby reducing the cost. it can. The space on the power receiving side can also be reduced.

本発明の1つの実施例を示す回路図である。It is a circuit diagram which shows one Example of this invention. 本発明の1つの実施例を示す回路図である。It is a circuit diagram which shows one Example of this invention. 本発明の1つの実施例を示す回路図である。It is a circuit diagram which shows one Example of this invention. 本発明の1つの実施例を示す回路図である。It is a circuit diagram which shows one Example of this invention. 本発明の1つの実施例を示す回路図である。It is a circuit diagram which shows one Example of this invention. 本発明の1つの実施例を示す回路図である。It is a circuit diagram which shows one Example of this invention. 図1の回路図の波形図である。It is a wave form diagram of the circuit diagram of FIG. 従来方式の1例を示す回路図である。It is a circuit diagram which shows an example of a conventional system.

符号の簡単な説明Brief description of symbols

1 交流電源
2 第1のコンデンサ
3〜6 第1〜第4の双方向スイッチ回路
11 発振制御回路
12 送電コイル
13 送電コンデンサ
14 受電コイル
15 受電コンデンサ
16〜19 第1〜第4のダイオード
20〜23 第5〜第8のスイッチ素子
24 同期駆動回路
25 交流位相識別回路
26〜29 OR回路
30 PWM回路
31〜34 コンデンサ
101〜108 絶縁バッファ
111 交流電源
112〜115 MOSFET
116 発振制御回路
117〜120 絶縁バッファ
121 送電コイル
122 受電コイル
123 整流平滑回路
124 定電圧回路
125 負荷
126、127 コンデンサ
DESCRIPTION OF SYMBOLS 1 AC power supply 2 1st capacitor 3-6 1st-4th bidirectional switch circuit 11 Oscillation control circuit 12 Power transmission coil 13 Power transmission capacitor 14 Power reception coil 15 Power reception capacitor 16-19 First to fourth diodes 20-23 Fifth to eighth switch elements 24 Synchronous drive circuit 25 AC phase identification circuits 26 to 29 OR circuit 30 PWM circuits 31 to 34 Capacitors 101 to 108 Insulation buffer 111 AC power supply 112 to 115 MOSFET
116 Oscillation control circuits 117 to 120 Insulation buffer 121 Power transmission coil 122 Power reception coil 123 Rectification smoothing circuit 124 Constant voltage circuit 125 Load 126, 127 Capacitor

Claims (6)

交流電源と第1のコンデンサと前記交流電源に並列に接続された第1と第2の双方向スイッチ回路からなる直列回路と前記交流電源に並列に接続された第3と第4の双方向スイッチ回路からなる直列回路と前記第1と前記第4の双方向スイッチ回路の組と前記第2と前記第3の双方向スイッチ回路の組を交互にオン・オフさせる発振制御回路と前記第1と前記第2の双方向スイッチ回路の接続点と前記第3と前記第4の双方向スイッチ回路の接続点の間に接続された送電コイルと送電コンデンサからなる直列回路と前記送電コイルと送電コンデンサからなる直列回路と電磁気的に結合している受電コイルと受電コンデンサからなる直列回路と前記受電コイルと受電コンデンサからなる直列回路の一方の端子と前記第1のコンデンサの一方の端子の間に接続された第1のダイオードと前記受電コイルと受電コンデンサからなる直列回路の他方の端子と前記第1のコンデンサの他方の端子の間に接続された第2のダイオードと前記受電コイルと受電コンデンサからなる直列回路と前記第1のダイオードの接続点と前記第2のダイオードと前記第1のコンデンサの接続点の間に接続された第3のダイオードと前記受電コイルと受電コンデンサからなる直列回路と前記第2のダイオードの接続点と前記第1のダイオードと第1のコンデンサの接続点の間に接続された第4のダイオードからなる非接触電力伝送装置において、前記第1のダイオードに並列に第5のスイッチ素子を接続し、前記第2のダイオードに並列に第6のスイッチ素子を接続し、前記第3のダイオードに第7のスイッチ素子を接続し、前記第4のダイオードに第8のスイッチ素子を接続し、前記交流電源の出力電圧が正の半波の間は前記第1と前記第4の双方向スイッチ回路の組のオン・オフに同期させて前記第5と前記第6のスイッチ素子の組をオン・オフさせ前記第2と前記第3の双方向スイッチ回路の組のオン・オフに同期させて前記第7と前記第8のスイッチ素子の組をオン・オフさせ、かつ前記交流電源の出力電圧が負の半波の間は前記第1と前記第4の双方向スイッチ回路の組のオン・オフに同期させて前記第7と前記第8のスイッチ素子の組をオン・オフさせ前記第2と前記第3の双方向スイッチ回路の組のオン・オフに同期させて前記第5と前記第6のスイッチ素子の組をオン・オフさせる同期駆動回路を付加したことを特徴とする非接触電力伝送装置。  A series circuit composed of an AC power source, a first capacitor, and first and second bidirectional switch circuits connected in parallel to the AC power source, and third and fourth bidirectional switches connected in parallel to the AC power source An oscillation control circuit for alternately turning on and off a series circuit composed of a circuit, a set of the first and fourth bidirectional switch circuits, and a set of the second and third bidirectional switch circuits; From a series circuit including a power transmission coil and a power transmission capacitor connected between a connection point of the second bidirectional switch circuit and a connection point of the third and fourth bidirectional switch circuits, and from the power transmission coil and the power transmission capacitor A series circuit comprising a receiving coil and a receiving capacitor electromagnetically coupled to the series circuit comprising: one terminal of the series circuit comprising the receiving coil and the receiving capacitor; and one end of the first capacitor. And a second diode connected between the other terminal of the first capacitor and the other terminal of the first capacitor, and the receiving coil. A series circuit composed of a power receiving capacitor, a connection point of the first diode, a third diode connected between the connection point of the second diode and the first capacitor, the power receiving coil, and the power receiving capacitor. In a non-contact power transmission device comprising a fourth diode connected between a connection point of a circuit and the second diode and a connection point of the first diode and the first capacitor, the contactless power transmission device is parallel to the first diode. A fifth switch element is connected to the second diode, a sixth switch element is connected in parallel to the second diode, and a seventh switch element is connected to the third diode. And an eighth switch element is connected to the fourth diode. When the output voltage of the AC power source is a positive half-wave, the set of the first and fourth bidirectional switch circuits is turned on / off. The fifth and sixth switch element sets are turned on / off in synchronization with the off state, and the seventh and sixth switch elements are synchronized with the on / off state of the second and third bidirectional switch circuit sets. The switch element group of 8 is turned on / off, and the first and fourth bidirectional switch circuit groups are synchronized with the on / off state of the AC power supply during a negative half-wave output voltage. The set of the fifth and sixth switch elements is synchronized with the on / off of the set of the second and third bidirectional switch circuits by turning on and off the set of the seventh and eighth switch elements. Non-contact power transfer characterized by the addition of a synchronous drive circuit that turns on and off Feeding device. 前記第1ないし第4の双方向スイッチ回路はいずれも互いに反対向きに直列接続された2つのMOSFETから構成され、前記交流電源の電圧の正の半波と負の半波の位相にそれぞれ同期した2つの信号を出力する交流位相識別回路を付加し、前記交流位相識別回路が出力する2つの信号と前記第1ないし第4の双方向スイッチ回路をオン・オフする前記発振制御回路の信号をOR回路で合成して4種類の信号を作り前記第1ないし第4の双方向スイッチ回路を構成するMOSFETの所定のゲートに加えることを特徴とする請求項1記載の非接触電力伝送装置。  Each of the first to fourth bidirectional switch circuits is composed of two MOSFETs connected in series in opposite directions, and is synchronized with the phases of the positive half wave and the negative half wave of the voltage of the AC power supply, respectively. An AC phase identification circuit that outputs two signals is added, and the two signals output by the AC phase identification circuit and the signal of the oscillation control circuit that turns on and off the first to fourth bidirectional switch circuits are ORed. 2. The non-contact power transmission apparatus according to claim 1, wherein four types of signals are synthesized by a circuit and applied to predetermined gates of MOSFETs constituting the first to fourth bidirectional switch circuits. 前記第3の双方向スイッチ回路を第2のコンデンサに置き換え、前記第4の双方向スイッチ回路を第3のコンデンサに置換えた請求項1または請求項2記載の非接触電力伝送装置。  The non-contact power transmission apparatus according to claim 1 or 2, wherein the third bidirectional switch circuit is replaced with a second capacitor, and the fourth bidirectional switch circuit is replaced with a third capacitor. 前記第4のダイオードと前記第8のスイッチ素子からなる並列回路を第4のコンデンサに置換え、前記第2のダイオードと前記第6のスイッチ素子からなる並列回路を第5のコンデンサに置換えた請求項1ないし請求項3のいずれかに記載の非接触電力伝送装置。  The parallel circuit composed of the fourth diode and the eighth switch element is replaced with a fourth capacitor, and the parallel circuit composed of the second diode and the sixth switch element is replaced with a fifth capacitor. The non-contact power transmission device according to any one of claims 1 to 3. 前記第1のコンデンサの電圧を安定させるために前記同期駆動回路が発生するパルスの幅を制御するPWM回路を付加した請求項1ないし請求項4のいずれかに記載の非接触電力伝送装置。  5. The non-contact power transmission apparatus according to claim 1, further comprising: a PWM circuit that controls a width of a pulse generated by the synchronous drive circuit in order to stabilize the voltage of the first capacitor. 前記受電コイルと受電コンデンサからなる直列回路を前記受電コイルと受電コンデンサからなる並列回路に置換えた請求項1ないし請求項5のいずれかに記載の非接触電力伝送装置。  The non-contact power transmission device according to any one of claims 1 to 5, wherein a series circuit including the power receiving coil and the power receiving capacitor is replaced with a parallel circuit including the power receiving coil and the power receiving capacitor.
JP2014195781A 2014-09-05 2014-09-05 Non-contact power transmission device Active JP6350818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014195781A JP6350818B2 (en) 2014-09-05 2014-09-05 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014195781A JP6350818B2 (en) 2014-09-05 2014-09-05 Non-contact power transmission device

Publications (2)

Publication Number Publication Date
JP2016059252A JP2016059252A (en) 2016-04-21
JP6350818B2 true JP6350818B2 (en) 2018-07-04

Family

ID=55759177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014195781A Active JP6350818B2 (en) 2014-09-05 2014-09-05 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP6350818B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7044505B2 (en) * 2017-09-14 2022-03-30 マクセル株式会社 Contactless power transmission device, power transmission device, and power receiving device
EP3855597A4 (en) * 2018-11-02 2022-09-28 Nichicon Corporation Wireless electrical power supply device
EP4191827A4 (en) * 2020-07-29 2024-05-01 Samsung Electronics Co., Ltd. Electronic device for receiving wireless power

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029438A1 (en) * 2005-09-01 2007-03-15 National University Corporation Saitama University Noncontact power feeder
JP4835985B2 (en) * 2006-05-15 2011-12-14 大平電子株式会社 Non-contact power electrical equipment
JP5928865B2 (en) * 2010-11-18 2016-06-01 富士電機株式会社 Control method of non-contact power feeding device
JP5978905B2 (en) * 2012-10-11 2016-08-24 Tdk株式会社 Non-contact power receiving apparatus and non-contact power transmission system
GB2526444C (en) * 2013-02-15 2020-09-23 Murata Manufacturing Co Wireless power supply apparatus

Also Published As

Publication number Publication date
JP2016059252A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
US10097012B2 (en) Power supplying device and wireless power-supplying system
US10897210B2 (en) DC/DC converter for reducing switching loss in a case where zero voltage switching is not achieved
EP2566027A1 (en) Bidirectional dc/dc converter
JP6519574B2 (en) Wireless power receiving device, wireless power transmission device using the same, and rectifier
WO2013136755A1 (en) Power feed device of inductive charging device
JP2013252000A (en) Bidirectional dcdc converter
JPWO2013121665A1 (en) DC / DC converter
KR20130114694A (en) Power transmission system
KR20130044647A (en) Power conversion device for resonance wireless power transfer system
TW201310848A (en) Wireless power receiving and supplying apparatus, wireless power supply system and auto-adjusting assistant circuit
US9318971B2 (en) Switching power supply apparatus
JP2014079107A (en) Non-contact power reception apparatus and non-contact power transmission system
JP4835985B2 (en) Non-contact power electrical equipment
CN111095730B (en) Contactless power transmission device, and power reception device
JP6350818B2 (en) Non-contact power transmission device
US9178435B2 (en) Switching power supply
US20140362606A1 (en) Dc-dc conversion device
CN112448484A (en) Non-contact power supply device
JP3346543B2 (en) Switching power supply
CN112448482B (en) Non-contact power supply device and power transmission device
JP6425183B2 (en) Non-contact power feeding device and non-contact power feeding system
JP2002044946A (en) Switching power unit
JP2015204636A (en) Driving circuit and semiconductor device using the same
JP2017005841A (en) Power transmission apparatus
KR102269005B1 (en) Generator system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170823

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180522

R150 Certificate of patent or registration of utility model

Ref document number: 6350818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250