JP2016051758A - Method for forming electrode - Google Patents

Method for forming electrode Download PDF

Info

Publication number
JP2016051758A
JP2016051758A JP2014175244A JP2014175244A JP2016051758A JP 2016051758 A JP2016051758 A JP 2016051758A JP 2014175244 A JP2014175244 A JP 2014175244A JP 2014175244 A JP2014175244 A JP 2014175244A JP 2016051758 A JP2016051758 A JP 2016051758A
Authority
JP
Japan
Prior art keywords
organic semiconductor
electrode
semiconductor layer
gold
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014175244A
Other languages
Japanese (ja)
Other versions
JP6365835B2 (en
Inventor
純一 竹谷
Junichi Takeya
純一 竹谷
伊東 正浩
Masahiro Ito
正浩 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
EEJA Ltd
Original Assignee
Electroplating Engineers of Japan Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electroplating Engineers of Japan Ltd, University of Tokyo NUC filed Critical Electroplating Engineers of Japan Ltd
Priority to JP2014175244A priority Critical patent/JP6365835B2/en
Publication of JP2016051758A publication Critical patent/JP2016051758A/en
Application granted granted Critical
Publication of JP6365835B2 publication Critical patent/JP6365835B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a contact electrode of a noble metal which is arranged so that a contact electrode is formed on an organic semiconductor layer by electroless plating, and which never modifies the surface geometry of the organic semiconductor layer during the electroless plating. and lowers a contact resistance between the organic semiconductor layer and the contact electrode to a resistance as low as that achieved by vacuum deposition.SOLUTION: A method for forming a contact electrode on an organic semiconductor layer comprises: a pre-processing step where noble metal nanoparticles are adsorbed on the organic semiconductor layer; and a step where after that, a plated metal is deposited on the noble metal nanoparticles in an electroless plating bath of pH5-9.SELECTED DRAWING: Figure 1

Description

本発明は、有機半導体基材上に電極パターンを形成する技術に関するものであり、特に有機半導体電界効果型トランジスタ(Organic field effect transistor(OFET))のソース電極およびドレイン電極を形成する技術に関する。 The present invention relates to a technique for forming an electrode pattern on an organic semiconductor substrate, and more particularly to a technique for forming a source electrode and a drain electrode of an organic semiconductor field effect transistor (OFET).

近年、エレクトロニスク業界においては、シリコンなどの無機材料から作られた無機半導体のトランジスタから、有機材料を利用した、いわゆる有機半導体のトランジスタ開発が進められている。この有機材料を利用したOFETは、印刷法、スピンコート法、浸漬法等の手段を用いることで、簡便に電子回路形成が可能になる結果、従来のSi系半導体装置より桁違いに安く製造できる。そして、OFETは、プラスチック上にも形成することができ、軽く薄い上に、柔らかく曲げることができるフレキシブルディスプレイやフレキシブルセンサーなどのデバイスの実現が期待されている。 In recent years, in the electronic industry, so-called organic semiconductor transistors using organic materials have been developed from inorganic semiconductor transistors made of inorganic materials such as silicon. OFETs using this organic material can be easily manufactured electronically by means of printing, spin coating, dipping, etc., and can be manufactured at orders of magnitude less than conventional Si-based semiconductor devices. . OFETs can also be formed on plastics, and it is expected to realize devices such as flexible displays and flexible sensors that can be bent lightly and thinly.

OFETの構造として、ボトムゲート・トップコンタクト型のトランジスタを例に挙げる。
基板に形成されたゲート電極上にゲート絶縁膜が設けられ、その上に有機半導体層が形成される。さらに、このゲート絶縁膜の上の有機半導体層には、キャリア注入用のコンタクト電極(ソース電極、ドレイン電極)が形成される。
As an OFET structure, a bottom-gate / top-contact transistor is taken as an example.
A gate insulating film is provided on the gate electrode formed on the substrate, and an organic semiconductor layer is formed thereon. Further, contact electrodes (source electrode and drain electrode) for carrier injection are formed on the organic semiconductor layer on the gate insulating film.

ゲート絶縁膜の材料としては、例えば、SiO、Alのような酸化物絶縁体や、ポリスチレン、ポリイミド、ポリアミドイミド、ポリビニルフェニレン、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)のようなアクリル系樹脂、ポリテトラフルオロエチレン(PTFE)のようなフッ素系樹脂、ポリビニルフェノールあるいはノボラック樹脂のようなフェノール系樹脂、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリブテンなどのオレフィン系樹脂等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Examples of the material for the gate insulating film include oxide insulators such as SiO 2 and Al 2 O 3 , polystyrene, polyimide, polyamideimide, polyvinylphenylene, polycarbonate (PC), and polymethyl methacrylate (PMMA). Examples include acrylic resins, fluorine resins such as polytetrafluoroethylene (PTFE), phenol resins such as polyvinylphenol or novolac resin, olefin resins such as polyethylene, polypropylene, polyisobutylene, and polybutene. One or two or more of them can be used in combination.

また、有機半導体材料としては、例えば、[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン誘導体、2,9−ジアルキルジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン誘導体、ジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン誘導体、TIPS−ペンタセン、TES−ADT、およびその誘導体、ペリレン誘導体、TCNQ、F4−TCNQ、F4−TCNQ、ルブレン、ペンタセン、p3HT、pBTTT、およびpDA2T−C16のような単分子有機半導体材料や、ポリ−N−ビニルカルバゾール、ポリビニルピレン、ポリビニルアントラセン、ポリチオフェン、ポリヘキシルチオフェン、ポリ(p−フェニレンビニレン)、ポリチニレンビニレン、ポリアリールアミン、ピレンホルムアルデヒド樹脂、エチルカルバゾールホルムアルデヒド樹脂、フルオレン−ビチオフェン共重合体、フルオレン−アリールアミン共重合体またはこれらの誘導体のような高分子の有機半導体材料が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Examples of the organic semiconductor material include [1] benzothieno [3,2-b] [1] benzothiophene derivatives and 2,9-dialkyldinaphtho [2,3-b: 2 ′, 3′-f]. Thieno [3,2-b] thiophene derivatives, dinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thiophene derivatives, TIPS-pentacene, TES-ADT, and derivatives thereof, Monomolecular organic semiconductor materials such as perylene derivatives, TCNQ, F4-TCNQ, F4-TCNQ, rubrene, pentacene, p3HT, pBTTT, and pDA2T-C16, poly-N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, polythiophene, Polyhexylthiophene, poly (p-phenylene vinylene), polytinylene vinylene, polyarylamino High molecular organic semiconductor materials such as pyrene formaldehyde resin, ethylcarbazole formaldehyde resin, fluorene-bithiophene copolymer, fluorene-arylamine copolymer or derivatives thereof, one or two of them A combination of the above can be used.

このような共役系分子材料は、結晶性が高い事から特有な電子雲の広がりが生まれ、キャリアの移動能が高く、低温での形成が可能といった点から、低コストかつ大面積の半導体薄膜をプラスティックフィルム上に形成することが可能であると期待されている。さらに分子構造を変化させることで容易に材料特性を変化させることが可能であるため材料のバリエーションが豊富であり、無機半導体材料ではなし得なかったような機能や素子を実現することが可能である。 Such a conjugated molecular material has a unique electron cloud spread due to its high crystallinity, has high carrier mobility, and can be formed at low temperatures. It is expected that it can be formed on a plastic film. Furthermore, the material properties can be easily changed by changing the molecular structure, so there are a wide variety of materials, and it is possible to realize functions and elements that could not be achieved with inorganic semiconductor materials. .

トランジスタの特性を示すパラメータの一つとして、電流のオンオフ比(Ion/Ioff)が挙げられる。このオン電流を大きくするためには、電界効果移動度を向上させること、コンタクト電極(ソース電極、ドレイン電極)の電極間距離を狭くすること、有機半導体層とコンタクト電極の接触抵抗を低くすること等が有効であることが知られている。 One of the parameters indicating the characteristics of the transistor is a current on / off ratio (I on / I off ). In order to increase the on-current, the field effect mobility is improved, the distance between the contact electrodes (source electrode and drain electrode) is reduced, and the contact resistance between the organic semiconductor layer and the contact electrode is reduced. Etc. are known to be effective.

しかし、有機半導体層は、一般的に耐薬品性、耐熱性のみならず、耐候性、耐水性も劣っており、非常に劣化しやすい欠点を有する。よって、上記のような高キャリア移動度を与える有機半導体材料であっても、有機FETの作製においては、真空蒸着法によりコンタクト電極を形成する方法が主流である。ところが、コンタクト電極形成に真空蒸着法を用いてしまうと、その処理が煩雑であり、コストもかかるため、大気中で形成可能な有機半導体のメリットを大きく損ねてしまうことになる。 However, the organic semiconductor layer generally has not only chemical resistance and heat resistance but also inferior weather resistance and water resistance, and has a defect that it is very easily deteriorated. Therefore, even in the case of an organic semiconductor material that provides high carrier mobility as described above, a method of forming a contact electrode by a vacuum deposition method is the mainstream in the production of an organic FET. However, if the vacuum vapor deposition method is used for forming the contact electrode, the processing is complicated and costly, so that the merit of the organic semiconductor that can be formed in the air is greatly impaired.

そこで、大気中でのトランジスタ形成を可能にするために、金属ペーストや、金属インクを利用した電極形成技術が提案されている(国際公開2005/122233号、国際公開2007/015364号)。しかしこれらの電極形成技術は次段落に示すような、有機半導体層との接触抵抗が高いという問題や、含有する有機溶剤が有機半導体層を溶かしてしまうといった問題を抱えていた。 Therefore, in order to enable transistor formation in the atmosphere, an electrode forming technique using a metal paste or metal ink has been proposed (International Publication No. 2005/122233, International Publication No. 2007/015364). However, these electrode forming techniques have the problem that the contact resistance with the organic semiconductor layer is high as shown in the next paragraph, and the problem that the organic solvent contained dissolves the organic semiconductor layer.

すなわち、一般的に報告されている金属ペーストや金属インクにより形成されたコンタクト電極と有機半導体層の接触抵抗の値は100〜1000kΩcm程度となっており、これはSi−MOSFETの値と比較して5、6桁以上高くなっている。特に有機半導体層とコンタクト電極の接触抵抗は、その接合界面の状態が大きく影響しており、有機半導体層と接触させる電極の形成方法が重要となる。 That is, the contact resistance value between the contact electrode formed of a metal paste or metal ink that is generally reported and the organic semiconductor layer is about 100 to 1000 kΩcm, which is compared with the value of Si-MOSFET. 5 or 6 digits higher. In particular, the contact resistance between the organic semiconductor layer and the contact electrode is greatly influenced by the state of the junction interface, and a method for forming an electrode in contact with the organic semiconductor layer is important.

しかしながら、導電粒子で構成される金属ペーストや金属インクによりコンタクト電極を形成する場合、用いる導電粒子の微細化に限界があり、数十nm以下の粒径の導電粒子は実用化されていない。このため数百nm程度の導電粒子と有機半導体層との接合界面における接触面積が小さくなり、接触抵抗は高くなる傾向にある。100℃以上での焼結を行い、接触抵抗を低減することも考案されているが、高温処理による有機半導体の劣化が問題となる。また、一般的には、金属ペーストや金属インクは有機溶剤を含有するため、電極形成の際に有機半導体結晶を溶かしてしまうという問題もある。そのため有機半導体層と大気中で形成されたコンタクト電極との接触抵抗は依然として大きな課題となっている。 However, when a contact electrode is formed with a metal paste or metal ink composed of conductive particles, there is a limit to the refinement of the conductive particles used, and conductive particles having a particle size of several tens of nm or less have not been put into practical use. For this reason, the contact area at the bonding interface between the conductive particles of about several hundred nm and the organic semiconductor layer is reduced, and the contact resistance tends to be increased. Although it has been devised to perform the sintering at 100 ° C. or higher to reduce the contact resistance, the deterioration of the organic semiconductor due to the high temperature treatment becomes a problem. In general, since the metal paste and the metal ink contain an organic solvent, there is a problem that the organic semiconductor crystal is dissolved when the electrode is formed. Therefore, the contact resistance between the organic semiconductor layer and the contact electrode formed in the atmosphere remains a big problem.

そこで、上記のような課題を解決するため、これまでも数種類の湿式メッキによる電極形成技術が検討されている。湿式メッキではメッキ液中の金属イオンをメッキ金属として原子レベルで有機半導体表面に析出させることができる。よって、所望の箇所にメッキ金属を密着して形成できれば、有機半導体層とメッキ金属との接触抵抗は低くなるものと考えられた。 Therefore, in order to solve the above-described problems, several types of electrode forming techniques using wet plating have been studied. In wet plating, metal ions in the plating solution can be deposited on the surface of the organic semiconductor at the atomic level as plating metal. Therefore, it was considered that the contact resistance between the organic semiconductor layer and the plated metal would be reduced if the plated metal could be formed in close contact with the desired location.

例えば、国際公開2007/015364号(後述する特許文献1)では有機半導体層上のチャネル部分にフォトリソグラフィーにより保護層を形成した後、「触媒液として塩化パラジウムの塩酸溶液(塩化バラジウム1質量%、塩酸10質量%、イソプロピルアルコール20質量%およびポリビニルアルコール1質量%水溶液)を用い」(165段落)、その後に「無電解金メッキ浴(ジシアノ金カリウム0.1モル/リットル、蓚酸ナトリウム0.1モル/リットルおよび酒石酸ナトリウムカリウム0.1モル/リットルを溶解した均一溶液)に浸漬して、厚み110nmの金からなる金属薄膜M2によりソース電極およびドレイン電極を形成」(166段落)している。 For example, in International Publication No. 2007/015364 (Patent Document 1 described later), after forming a protective layer on the channel portion on the organic semiconductor layer by photolithography, “a hydrochloric acid solution of palladium chloride (1% by mass of barium chloride, Using hydrochloric acid 10% by mass, isopropyl alcohol 20% by mass and polyvinyl alcohol 1% by mass aqueous solution ”(paragraph 165), followed by“ electroless gold plating bath (dicyanogold potassium 0.1 mol / liter, sodium oxalate 0.1 mol) (A uniform solution in which 0.1 mol / liter of sodium potassium tartrate and 0.1 mol / liter of sodium tartrate are dissolved) to form a source electrode and a drain electrode with a metal thin film M2 made of gold having a thickness of 110 nm "(paragraph 166).

しかしながら、特許文献1で用いられている有機半導体材料はチオフェンオリゴマーであり、一般的なキャリア移動度は〜10−2cm/Vs程度である。このため、保護層を形成しない場合は、触媒液としての塩酸溶液(塩酸10質量%)によって有機半導体層がダメージを受けると思われるが、キャリア移動度が低いためソース・ドレイン電極形成工程における有機半導体層へのダメージが相対的に小さくなり、有機半導体層とコンタクト電極との接触抵抗に変化は確認されにくい。また、特許文献1に記載されているメッキ用触媒核の形成方法では、有機半導体膜上に触媒核を含んだ溶液を保持したまま無電解メッキ工程に移行するため、この触媒核サイトで還元された金属原子が置換されて析出物が成長していくと、余分な触媒核や成長した析出物が無電解メッキ浴中に遊離し、メッキ浴の暴走反応を起こすという課題もある。 However, the organic semiconductor material used in Patent Document 1 is a thiophene oligomer, and the general carrier mobility is about 10 −2 cm 2 / Vs. For this reason, when the protective layer is not formed, the organic semiconductor layer seems to be damaged by the hydrochloric acid solution (hydrochloric acid 10% by mass) as the catalyst solution. However, since the carrier mobility is low, The damage to the semiconductor layer becomes relatively small, and it is difficult to confirm a change in the contact resistance between the organic semiconductor layer and the contact electrode. Further, in the method for forming a catalyst nucleus for plating described in Patent Document 1, since the process proceeds to an electroless plating process while holding a solution containing the catalyst nucleus on the organic semiconductor film, it is reduced at this catalyst nucleus site. As the metal atoms are replaced and the deposit grows, there is a problem that excess catalyst nuclei and the grown deposit are released into the electroless plating bath, causing a runaway reaction of the plating bath.

一般的に有機半導体膜は、酸、アルカリ水溶液や有機溶剤に非常に敏感であるため、強酸や強アルカリの前処理液やメッキ液、またはフォトレジスト等に接触すると、有機表面層の変質が起こる。特に1cm/Vsを超えるような高移動を誇る結晶性の高い有機半導体結晶では、大幅な移動度の低下が引き起こされる。 In general, organic semiconductor films are very sensitive to acids, alkaline aqueous solutions, and organic solvents. Therefore, contact with a strong acid or strong alkali pretreatment solution, plating solution, photoresist, or the like causes deterioration of the organic surface layer. . In particular, an organic semiconductor crystal with high crystallinity that boasts high mobility exceeding 1 cm 2 / Vs causes a significant decrease in mobility.

また、特開2008−192752号公報(後述する特許文献2)では無機絶縁層上にシランカップリング反応により自己組織化単分子層を形成し、その上に順次有機層を堆積させて有機半導体層を形成している。さらにその有機半導体層の表面末端をアミノ基に変換することで、次工程でメッキ用Pd触媒となるPdイオンが強固に吸着できるようにしている。その後L−アスコルビン酸を含む無電解金メッキ液によりソース・ドレイン電極を形成している。そして、これにより接触抵抗が低減されたとされている。 In Japanese Patent Application Laid-Open No. 2008-192752 (Patent Document 2 described later), a self-assembled monolayer is formed on an inorganic insulating layer by a silane coupling reaction, and an organic layer is sequentially deposited thereon to form an organic semiconductor layer. Is forming. Furthermore, the surface terminal of the organic semiconductor layer is converted to an amino group, so that Pd ions that become a Pd catalyst for plating can be strongly adsorbed in the next step. Thereafter, source / drain electrodes are formed by an electroless gold plating solution containing L-ascorbic acid. And it is supposed that contact resistance was reduced by this.

しかしながら、この手法では工程が複雑なため手間暇がかかり、結晶性が高く高移動度な有機半導体層の形成は難しい。さらに、この手法では積層された有機半導体上の表面末端をアミノ基に変換するコンタクト電極形成方法となるため、現状の高速動作する有機トランジスタの製造方法への適用は困難である。今後、高度な電子デバイスを駆動させる目的で、有機トランジスタを高速に動作させるためには、コンタクト電極(ソース電極、ドレイン電極)の電極間距離を狭くし、さらに有機半導体層とコンタクト電極の接触抵抗を低くすることが必要となると指摘されている。 However, in this method, since the process is complicated, it takes time and it is difficult to form an organic semiconductor layer with high crystallinity and high mobility. Furthermore, this method is a contact electrode forming method in which the surface terminal on the stacked organic semiconductor is converted to an amino group, and therefore, it is difficult to apply the present method to a method for manufacturing an organic transistor that operates at high speed. In the future, in order to drive organic transistors at high speed for the purpose of driving sophisticated electronic devices, the distance between the contact electrodes (source electrode, drain electrode) is reduced, and the contact resistance between the organic semiconductor layer and the contact electrode It is pointed out that it is necessary to lower the value.

他方、既存のSi半導体等に適用される無電解メッキ方法を有機半導体層に応用することも検討される。例えば、特開2009−293082号公報の34段落に、「(S23) つぎに、塩化パラジウム溶液…に基板11を1〜3分浸漬した後、純水で洗浄、乾燥を行い、触媒金属12bとしてPdを有機分子膜12aに触媒付与し、密着層12を形成した。(S24) 基板11をNi−Bの析出が可能な無電解めっき溶液…に浸漬し、密着層12上にNi−Bを析出させた。このとき、金属層13の膜厚は無電解めっき液への浸漬時間によって200nm程度となるように制御した。ついで無電解めっき溶液に浸漬した後、基板11を純水で洗浄し、ついで乾燥Nによって乾燥させ」る方法が記載されており、35段落には、Siの酸化膜除去処理によっても金属層が剥離することのなく、良好な密着性を有することが開示されている。 On the other hand, application of an electroless plating method applied to an existing Si semiconductor or the like to an organic semiconductor layer is also considered. For example, in paragraph 34 of JP-A-2009-293082, “(S23) Next, after the substrate 11 is immersed in a palladium chloride solution for 1 to 3 minutes, it is washed with pure water and dried to obtain the catalyst metal 12b. Pd was applied to the organic molecular film 12a as a catalyst to form the adhesion layer 12. (S24) The substrate 11 was immersed in an electroless plating solution capable of depositing Ni-B, and Ni-B was deposited on the adhesion layer 12. At this time, the film thickness of the metal layer 13 was controlled so as to be about 200 nm depending on the immersion time in the electroless plating solution, and then the substrate 11 was washed with pure water after being immersed in the electroless plating solution. Then, the method of drying with dry N 2 ”is described, and paragraph 35 discloses that the metal layer does not peel off even by the Si oxide film removal treatment and has good adhesion. Yes.

また、特開2005−146400号公報には、「主として有機材料で構成される有機層に接触する電極を形成する電極形成方法であって、前記電極を形成するための金属の金属塩と還元剤とを含みアルカリ金属イオンを実質的に含まないメッキ液を用いて、無電解メッキにより前記電極を形成することを特徴とする電極形成方法」(請求項1)が開示され、その46段落に「触媒としてPdを用いる場合には、Sn−Pd等のPd合金のコロイド液…中に、基板2を浸漬することにより、Pd合金…を基板2の表面に吸着させる。その後、触媒に関与しない元素を除去することにより、Pdを基板2の表面に露出させる。」こと、および、112・113段落に「次に、Sn−Pdコロイド液(25℃)中に、ガラス基板を60秒間浸漬した。これにより、ガラス基板の表面にSn−Pdを吸着させた。その後、水を用いてガラス基板を洗浄した。次に、HBFとブドウ糖とを含む水溶液(25℃)中に、ガラス基板を60秒間浸漬した。これにより、ガラス基板の表面からSnを除去して、Pdをガラス基板の表面に露出させた。その後、水を用いてガラス基板を洗浄した。次に、Niメッキ液(80℃、pH8.5)中に、ガラス基板を60秒間浸漬した。これにより、ガラス基板の表面に、平均厚さ100nmのNiメッキ膜を形成した。」ことが記載されている。 Japanese Patent Application Laid-Open No. 2005-146400 discloses “an electrode forming method for forming an electrode that contacts an organic layer mainly composed of an organic material, and a metal salt of the metal and a reducing agent for forming the electrode. An electrode forming method characterized in that the electrode is formed by electroless plating using a plating solution that contains substantially no alkali metal ions. When Pd is used as a catalyst, the Pd alloy is adsorbed on the surface of the substrate 2 by immersing the substrate 2 in a colloidal solution of a Pd alloy such as Sn—Pd, etc. Thereafter, an element that does not participate in the catalyst. Pd is exposed on the surface of the substrate 2 by removing "and" 112, 113 paragraphs "Next, the glass substrate is immersed in a Sn-Pd colloidal solution (25 ° C) for 60 seconds. . Thus, to allow adsorption of Sn-Pd on the surface of the glass substrate. Then, water was washed glass substrate using a. Then, in an aqueous solution (25 ° C.) containing a HBF 4 and glucose, a glass substrate The glass substrate was immersed for 60 seconds, thereby removing Sn from the surface of the glass substrate to expose Pd on the surface of the glass substrate, and then cleaning the glass substrate with water. The glass substrate was immersed in the glass substrate at 60 ° C. and pH 8.5) for 60 seconds, whereby a Ni plating film having an average thickness of 100 nm was formed on the surface of the glass substrate.

さらに、特開2008−019457号公報の16段落には、「1%−塩化ステアリルトリメチルアンモニウム水溶液を含む暗褐色透明なパラジウムヒドロゾル中にポリエステル板を25℃、1時間浸漬したのち水洗して表面にパラジウムを付与し、つぎに、20mM−塩化金(III)酸水溶液(1ml)と0.5M−過酸化水素水溶液(1ml)を混合して得られる無電解金メッキ液中に、25℃、5分間浸漬して、外観が金色のポリエステル板を得、このポリエステル板が0.7%の金を含み、良好な導電性を示した、旨が記載されている。 Furthermore, paragraph 16 of Japanese Patent Application Laid-Open No. 2008-019457 states that “a polyester plate is immersed in a dark brown transparent palladium hydrosol containing a 1% -stearyltrimethylammonium chloride aqueous solution at 25 ° C. for 1 hour and then washed with water. Palladium is added to the solution, and then, in an electroless gold plating solution obtained by mixing a 20 mM aqueous solution of gold chloride (III) (1 ml) and a 0.5 M aqueous solution of hydrogen peroxide (1 ml) at 25 ° C., 5 ° C. It is described that the polyester plate was immersed for a minute to obtain a gold-colored polyester plate, and the polyester plate contained 0.7% gold and exhibited good conductivity.

しかしながら、高移動を誇る結晶性の高い有機半導体結晶では、酸やアルカリや液温などによって結晶表面が大きく変わり大幅な移動度の低下が引き起こされる。すなわち、一般的な塩化パラジウム溶液では塩酸によって表面が侵される。また、吸着させたSn−PdコロイドからSnを完全に除去する際などに結晶表面が大きく変わってしまう。さらに、過酸化水素水溶液でも発生期の酸素によって表面が侵される。 However, in a highly crystalline organic semiconductor crystal that boasts high mobility, the crystal surface changes greatly due to acid, alkali, liquid temperature, etc., causing a significant decrease in mobility. That is, the surface of a general palladium chloride solution is affected by hydrochloric acid. In addition, the crystal surface changes greatly when Sn is completely removed from the adsorbed Sn-Pd colloid. Furthermore, even in an aqueous hydrogen peroxide solution, the surface is affected by oxygen during the nascent stage.

以上のことから、高キャリア移動を誇る有機半導体層の表面性状を変質させることなく、有機半導体層上に低接触抵抗のコンタクト電極を、真空環境を使用せずに形成する方法がもとめられていた。 From the above, there has been a demand for a method of forming a contact electrode having a low contact resistance on an organic semiconductor layer without using a vacuum environment without altering the surface properties of the organic semiconductor layer boasting high carrier mobility. .

国際公開2007/015364号International Publication No. 2007/015364 特開2008−192752号公報JP 2008-192752 A

本発明は、このような事情を背景になされたものであり、無電解メッキ中に有機半導体層の表面性状を変質させず、有機半導体層とコンタクト電極のあいだの接触抵抗を真空蒸着並みに低くした無電解メッキによる金などの貴金属のコンタクト電極を形成する電極形成方法を提供することを目的とする。 The present invention has been made against the background of the above circumstances, and does not alter the surface properties of the organic semiconductor layer during electroless plating, and the contact resistance between the organic semiconductor layer and the contact electrode is as low as vacuum deposition. An object of the present invention is to provide an electrode forming method for forming a contact electrode of a noble metal such as gold by electroless plating.

特に、本発明は、OFETのコンタクト電極と有機半導体との接触抵抗を大幅に低減するコンタクト電極を大気中で形成する方法を提供することを目的とする。また本発明は、有機半導体結晶の特性を劣化させることなく、大気中でコンタクト電極を形成する方法を提供することを目的とする。さらに本発明は、広い表面積の有機半導体層上に均一な厚さのOFET用コンタクト電極を形成する方法を提供することを目的とする。また、本発明は、繰り返して無電解メッキを行っても一定の品質のメッキ電極が安定して量産化できるOFET用コンタクト電極を形成する方法を提供することを目的とする。 In particular, an object of the present invention is to provide a method of forming a contact electrode in the atmosphere that greatly reduces the contact resistance between the contact electrode of the OFET and the organic semiconductor. Another object of the present invention is to provide a method for forming a contact electrode in the atmosphere without deteriorating the characteristics of the organic semiconductor crystal. Another object of the present invention is to provide a method for forming an OFET contact electrode having a uniform thickness on an organic semiconductor layer having a large surface area. It is another object of the present invention to provide a method for forming an OFET contact electrode that can stably mass-produce a certain quality of a plated electrode even when electroless plating is repeatedly performed.

本発明の課題を解決するための電極形成方法は、有機半導体層上のコンタクト電極の形成方法において、有機半導体層上に貴金属ナノ粒子を吸着させる前処工程、およびその後にpH=5〜9の無電解メッキ浴中で当該貴金属ナノ粒子上にメッキ金属を析出させることを特徴とする。 An electrode forming method for solving the problems of the present invention is a method for forming a contact electrode on an organic semiconductor layer, a pretreatment step for adsorbing noble metal nanoparticles on the organic semiconductor layer, and then a pH of 5 to 9 A plating metal is deposited on the noble metal nanoparticles in an electroless plating bath.

本発明の電極形成方法によれば、有機半導体表面を変質させることなく、有機半導体表面形状に追従したメッキ金属膜を得ることができ、低抵抗なコンタクト電極を形成することが可能となる。 According to the electrode forming method of the present invention, a plated metal film that follows the shape of the surface of the organic semiconductor can be obtained without altering the surface of the organic semiconductor, and a low-resistance contact electrode can be formed.

本発明の電極形成方法によれば、無電解メッキ工程でメッキ浴中の金属イオンが還元されてゼロ価の金属原子となり、有機半導体上に電極が形成される。本発明では、この反応が有機半導体層上に吸着させた貴金属ナノ粒子の触媒反応により表面から連鎖的に電極形成が起こり、有機半導体表面形状に追従したメッキ金属膜を得ることができる。 According to the electrode forming method of the present invention, metal ions in the plating bath are reduced to zero-valent metal atoms in the electroless plating step, and an electrode is formed on the organic semiconductor. In the present invention, this reaction causes a catalytic reaction of the noble metal nanoparticles adsorbed on the organic semiconductor layer, so that electrodes are formed in a chain from the surface, and a plated metal film following the surface shape of the organic semiconductor can be obtained.

また、従来の電極の形成方法では、強酸性や強アルカリ中での還元反応を含んでいた結果、有機半導体面の性状が変化し、有機半導体の移動度が大幅に低下する、または有機半導体膜とコンタクト電極とのあいだの接触抵抗が高くなる現象を引き起こしていた。本発明の電極形成方法によれば、前記メッキ浴のpHを5〜9の中性領域とすることにより、変質しやすい有機半導体結晶面を保持することができる。本発明に係る電極形成方法においては、後工程における無電解メッキ液の種類には特に制限はなく、電極を構成する成分を含む無電解メッキ液を採用することができるが、有機半導体面の性状を変化させないためpH=5〜9のメッキ浴とした。 In addition, the conventional method for forming an electrode includes a reduction reaction in a strong acid or strong alkali. As a result, the properties of the organic semiconductor surface change, and the mobility of the organic semiconductor is greatly reduced, or the organic semiconductor film The contact resistance between the contact electrode and the contact electrode is increased. According to the electrode forming method of the present invention, the pH of the plating bath is set to a neutral region of 5 to 9, whereby an organic semiconductor crystal plane that is easily altered can be maintained. In the electrode forming method according to the present invention, the type of electroless plating solution in the subsequent step is not particularly limited, and an electroless plating solution containing components constituting the electrode can be adopted. Therefore, the plating bath was set to pH = 5-9.

本発明の電極回路の形成方法において、好ましい実施態様は、以下のとおりである。
前記有機半導体層が[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン誘導体、2,9−ジアルキルジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン誘導体、ジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン誘導体、ジナフト[2,3−d:2’,3’−d’]ベンゾ[1,2−b:4,5−b’]ジチオフェン誘導体、TIPS−ペンタセン、TES−ADT、およびその誘導体、ペリレン誘導体、TCNQ、F4−TCNQ、F4−TCNQ、ルブレン、ペンタセン、p3HT、pBTTT、およびpDA2T−C16の結晶体であることが好ましい。これらの半導体結晶は、1cm/Vsを超えるような高移動を誇る結晶性の高い有機半導体結晶が得られるからである。
In the method for forming an electrode circuit of the present invention, preferred embodiments are as follows.
The organic semiconductor layer is [1] benzothieno [3,2-b] [1] benzothiophene derivative, 2,9-dialkyldinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2 -B] thiophene derivative, dinaphtho [2,3-b: 2 ', 3'-f] thieno [3,2-b] thiophene derivative, dinaphtho [2,3-d: 2', 3'-d '] Benzo [1,2-b: 4,5-b ′] dithiophene derivatives, TIPS-pentacene, TES-ADT, and derivatives thereof, perylene derivatives, TCNQ, F4-TCNQ, F4-TCNQ, rubrene, pentacene, p3HT, pBTTT , And a crystal of pDA2T-C16. This is because these semiconductor crystals can provide organic semiconductor crystals with high crystallinity that boast high mobility exceeding 1 cm 2 / Vs.

また、貴金属ナノ粒子が金(Au)、白金(Pt)またはパラジウム(Pd)の内のいずれかであることが好ましい。特に、密度の大きな金(Au)または白金(Pt)のナノ粒子が好ましい。 Moreover, it is preferable that a noble metal nanoparticle is either gold | metal | money (Au), platinum (Pt), or palladium (Pd). In particular, gold (Au) or platinum (Pt) nanoparticles having a high density are preferable.

また、前記メッキ液が自己還元型無電解メッキ液であることが好ましい。高移動度の有機半導体結晶表面に還元時に悪影響を及ぼさないからである。具体的には、金(Au)、白金(Pt)、銀(Ag)、パラジウム(Pd)、ニッケル(Ni)、銅(Cu)、鉄(Fe)またはコバルト(Co)の無電解メッキ液であることが好ましい。 The plating solution is preferably a self-reducing electroless plating solution. This is because the high mobility organic semiconductor crystal surface is not adversely affected during the reduction. Specifically, an electroless plating solution of gold (Au), platinum (Pt), silver (Ag), palladium (Pd), nickel (Ni), copper (Cu), iron (Fe) or cobalt (Co). Preferably there is.

また、前記貴金属ナノ粒子の平均粒径が5〜60nmであることが好ましい。また、貴金属ナノ粒子は一般的に金(Au)、白金(Pt)、特に金(Au)が好ましい。金ナノ粒子は化学反応を受けにくく、金属メッキ浴中の有機半導体結晶面で安定的に還元作用をするからである。 The average particle diameter of the noble metal nanoparticles is preferably 5 to 60 nm. The noble metal nanoparticles are generally preferably gold (Au), platinum (Pt), particularly gold (Au). This is because gold nanoparticles are less susceptible to chemical reaction and stably perform a reduction action on the surface of the organic semiconductor crystal in the metal plating bath.

また、前記貴金属ナノ粒子は、メッキ時までの変質を避けるため低分子保護剤によって保護されていることが好ましい。特に、前記貴金属ナノ粒子が糖アルコールによって保護された金(Au)、白金(Pt)またはパラジウム(Pd)の内のいずれかであることが好ましい。糖アルコールを用いることによって、純水中でナノ粒子の球状形状が保持でき、有機半導体結晶面で安定的に還元作用をするからである。また、糖アルコールによって保護された金(Au)、白金(Pt)またはパラジウム(Pd)の微粒子は、強アルカリや強酸中でも安定しており、熱に対しても影響されない性質を有する。 The noble metal nanoparticles are preferably protected with a low molecular weight protective agent in order to avoid alteration before plating. In particular, the noble metal nanoparticles are preferably any one of gold (Au), platinum (Pt), and palladium (Pd) protected by a sugar alcohol. This is because by using sugar alcohol, the spherical shape of the nanoparticles can be maintained in pure water, and the reducing action can be stably performed on the organic semiconductor crystal surface. Further, gold (Au), platinum (Pt) or palladium (Pd) fine particles protected by a sugar alcohol are stable even in strong alkalis or strong acids, and have the property of not being affected by heat.

また、前記糖アルコールは、トリトール、テトリトール、ペンチトール、ヘキシトール、ヘプチトール、オクチトール、イノシトール、クエルシトール、ペンタエリスリトールのうちの少なくとも1種以上を合計で前処理液中に0.01〜200g/L含有していることが好ましい。適度に球状の貴金属ナノ粒子を有機半導体結晶面上に分散することができるからである。 The sugar alcohol contains 0.01 to 200 g / L of at least one of tritol, tetritol, pentitol, hexitol, heptitol, octitol, inositol, quercitol, and pentaerythritol in total in the pretreatment liquid. It is preferable. This is because moderately spherical noble metal nanoparticles can be dispersed on the surface of the organic semiconductor crystal.

また、本発明に係る電極形成方法において、p型有機半導体上に電極形成する場合には、特に金メッキ浴が好ましい。またn型有機半導体上に電極形成する場合には、特に銀メッキ浴が好ましい。 In the electrode forming method according to the present invention, a gold plating bath is particularly preferable when forming an electrode on a p-type organic semiconductor. In addition, when an electrode is formed on an n-type organic semiconductor, a silver plating bath is particularly preferable.

本発明によれば、有機半導体層上に金属メッキ法を用いて安定して電極を形成することができる。しかも、無電解メッキ中に有機半導体層の表面性状を変質させず、有機半導体の移動度を低下させず、かつ有機半導体層とコンタクト電極のあいだの接触抵抗を真空蒸着並みに低くすることができる。また、本発明の電極の形成方法によれば、真空プロセスを用いずにコンタクト電極を大気中で形成することができ、コンタクト電極の作製費用を大幅に削減することができる。さらに本発明の電極の形成方法によれば、広い表面積の有機半導体層上に均一なナノレベルの厚さのOFET用コンタクト電極を形成することができる。また、本発明は、繰り返して無電解メッキを行っても一定の品質のメッキ電極が安定して量産化できる。また、本発明の電極回路の形成方法によれば、有機半導体層とソース・ドレイン電極がナノ粒子を介して金属メッキされているため、接触抵抗が低く安定した長寿命のデバイスを得ることができる。 According to the present invention, an electrode can be stably formed on an organic semiconductor layer using a metal plating method. Moreover, the surface property of the organic semiconductor layer is not altered during electroless plating, the mobility of the organic semiconductor is not lowered, and the contact resistance between the organic semiconductor layer and the contact electrode can be reduced to the same level as vacuum deposition. . Further, according to the electrode forming method of the present invention, the contact electrode can be formed in the atmosphere without using a vacuum process, and the manufacturing cost of the contact electrode can be greatly reduced. Furthermore, according to the method for forming an electrode of the present invention, a contact electrode for OFET having a uniform nano-level thickness can be formed on an organic semiconductor layer having a large surface area. Further, according to the present invention, a plating electrode having a certain quality can be stably mass-produced even when electroless plating is repeatedly performed. Further, according to the method for forming an electrode circuit of the present invention, since the organic semiconductor layer and the source / drain electrodes are metal-plated via nanoparticles, a device having a low contact resistance and a stable long life can be obtained. .

以下、本発明を実施例により更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

〔実施例1〕
図1に示すようなボトムゲート・トップコンタクトタイプのOFETを作製した。
基板は熱酸化により厚さ200nmの酸化シリコン(SiO)が形成されたシリコン(Si)基板を用い、シリコン(Si)をゲート電極、酸化シリコン(SiO)を絶縁層とした。この基板をアセトンに浸漬し超音波洗浄により脱脂した後、紫外線(UV)照射とオゾン処理を行い清浄な表面を得た。
[Example 1]
A bottom gate / top contact type OFET as shown in FIG. 1 was fabricated.
As the substrate, a silicon (Si) substrate on which silicon oxide (SiO 2 ) having a thickness of 200 nm was formed by thermal oxidation was used, and silicon (Si) was used as a gate electrode and silicon oxide (SiO 2 ) was used as an insulating layer. This substrate was immersed in acetone and degreased by ultrasonic cleaning, and then subjected to ultraviolet (UV) irradiation and ozone treatment to obtain a clean surface.

次に真空蒸着法により有機半導体層を堆積した。有機半導体材料は2,9−ジデシル−ジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン用い、平均厚さ30nmの有機半導体層を得た。 Next, an organic semiconductor layer was deposited by vacuum evaporation. As the organic semiconductor material, 2,9-didecyl-dinaphtho [2,3-b: 2 ', 3'-f] thieno [3,2-b] thiophene was used to obtain an organic semiconductor layer having an average thickness of 30 nm.

次に、金(Au)ナノ粒子を調整した。具体的には、まず、テトラクロロ金(III)酸ナトリウム・四水和物を金(Au)換算濃度で0.1g/Lおよび10.0g/Lのグリセリンを90℃の水酸化ナトリウム水溶液(pH=12)に溶解した。その後、クエン酸ナトリウム・二水和物で還元してコロイド状金(Au)ナノ粒子水溶液を得た。この金(Au)ナノ粒子の平均粒径は30nmで95%以上が20〜40nmの範囲(d=30±10nm)に入っていた。 Next, gold (Au) nanoparticles were prepared. Specifically, first, sodium tetrachloroaurate (III) tetrahydrate was converted to gold (Au) equivalent concentration of 0.1 g / L and 10.0 g / L glycerin at 90 ° C. sodium hydroxide aqueous solution ( Dissolved in pH = 12). Thereafter, reduction with sodium citrate dihydrate gave an aqueous colloidal gold (Au) nanoparticle solution. The average particle diameter of the gold (Au) nanoparticles was 30 nm, and 95% or more was in the range of 20 to 40 nm (d = 30 ± 10 nm).

次に、金(Au)ナノ粒子の有機半導体上への吸着処理を行った。
有機半導体層まで形成された基板を0.1%塩化トリメチルステアリルアンモニウム水溶液に30秒浸漬し、5分間流水にて純水洗浄を行った。さらに上記の金(Au)ナノ粒子を含んだ水溶液に5分間浸漬した後、5分間流水にて純水洗浄を行った。
Next, adsorption processing of gold (Au) nanoparticles onto an organic semiconductor was performed.
The substrate formed up to the organic semiconductor layer was immersed in an aqueous 0.1% trimethylstearylammonium chloride solution for 30 seconds and washed with pure water for 5 minutes. Furthermore, after being immersed in the aqueous solution containing the above gold (Au) nanoparticles for 5 minutes, pure water was washed with running water for 5 minutes.

次に、日本エレクトロプレイティング・エンジニヤース株式会社製の非シアン系自己還元型無電解金メッキ浴(商品名プレシャスファブACG 3000WX、金(Au)濃度(2g/L)、pH=7.5)に65℃で5分間浸漬し、平均膜厚50nmの金(Au)層を得た。 Next, a non-cyan self-reducing electroless gold plating bath (trade name: Precious Fab ACG 3000WX, gold (Au) concentration (2 g / L), pH = 7.5) manufactured by Nippon Electroplating Engineers Co., Ltd. Immersion was performed at 65 ° C. for 5 minutes to obtain a gold (Au) layer having an average film thickness of 50 nm.

次に、フォトリソグラフィーにより金(Au)層上に電極パターンを形成した。その後ヨウ素系金エッチング液(関東化学株式会社製の商品名:オーラム)により不要部分の金を除去し、電極パターンを形成した。その結果、図2に示すような、チャネル幅1000μm、チャネル長5、10、20、50、100μmの金(Au)のコンタクト電極を持つ、OFETを得た。 Next, an electrode pattern was formed on the gold (Au) layer by photolithography. Thereafter, unnecessary portions of gold were removed with an iodine-based gold etching solution (trade name: Aurum manufactured by Kanto Chemical Co., Ltd.) to form an electrode pattern. As a result, an OFET having gold (Au) contact electrodes with a channel width of 1000 μm and channel lengths of 5, 10, 20, 50, and 100 μm as shown in FIG. 2 was obtained.

作製した素子の評価として、トランジスタとしてのキャリア移動度を測定したところ、約2.0cm/Vsであった。またコンタクト電極の接触抵抗の評価としてTML法(Transfer Line Method)により接触抵抗を見積もったところ、0.8kΩcmであった。 As an evaluation of the manufactured element, the carrier mobility as a transistor was measured and found to be about 2.0 cm 2 / Vs. Further, as an evaluation of the contact resistance of the contact electrode, the contact resistance was estimated by the TML method (Transfer Line Method) and found to be 0.8 kΩcm.

〔基準例〕
実施例1での金(Au)層形成にメッキ法の代わりに、真空蒸着法を用いた。金(Au)層形成後に実施例1と同様の処理を行い、OFETを得た。作製した素子の評価としてトランジスタとしてのキャリア移動を測定したところ、約2.1 cm/Vsであった。またコンタクト電極の接触抵抗は、0.5kΩcmであった。
[Standard example]
A vacuum deposition method was used instead of the plating method for forming the gold (Au) layer in Example 1. After the gold (Au) layer was formed, the same process as in Example 1 was performed to obtain an OFET. As a result of measuring the carrier movement as a transistor as an evaluation of the manufactured element, it was about 2.1 cm 2 / Vs. The contact resistance of the contact electrode was 0.5 kΩcm.

すなわち、湿式法で作製した実施例1での金(Au)層のキャリア移動度約2.0cm/Vsは真空蒸着法のキャリア移動約2.1 cm/Vsとそん色はなく、また、コンタクト電極の接触抵抗も0.5kΩcmに対し0.8kΩcmとほぼ同等であることがわかる。 That is, the carrier mobility of about 2.0 cm 2 / Vs of the gold (Au) layer in Example 1 manufactured by the wet method is not comparable to the carrier mobility of about 2.1 cm 2 / Vs of the vacuum deposition method. It can be seen that the contact resistance of the contact electrode is approximately equal to 0.8 kΩcm with respect to 0.5 kΩcm.

〔実施例2〕
図3に示すようなボトムゲート・トップコンタクトタイプのOFETを作製した。基板はPEN(テオネックス125Q65HA TEIJIN(株)製)を使用した。この基板に真空蒸着法を用いCr/Au/Cr=3/5/3nmのゲート電極層を形成した。次にALD法を用いアルミナ絶縁層(100nm)を形成した。次に真空蒸着法により有機半導体層を堆積した。有機半導体材料は3,10−ジデシル−ジナフト[2,3−d:2’,3’−d’]ベンゾ[1,2−b:4,5−b’]ジチオフェン用い、平均厚さ30nmの有機半導体層を得た。
[Example 2]
A bottom gate / top contact type OFET as shown in FIG. 3 was fabricated. PEN (Theonex 125Q65HA TEIJIN Co., Ltd.) was used as the substrate. A gate electrode layer of Cr / Au / Cr = 3/5/3 nm was formed on this substrate by vacuum evaporation. Next, an alumina insulating layer (100 nm) was formed using the ALD method. Next, an organic semiconductor layer was deposited by vacuum evaporation. The organic semiconductor material uses 3,10-didecyl-dinaphtho [2,3-d: 2 ′, 3′-d ′] benzo [1,2-b: 4,5-b ′] dithiophene, and has an average thickness of 30 nm. An organic semiconductor layer was obtained.

次に、金(Au)ナノ粒子を調整した。具体的には、まず、テトラクロロ金(III)酸ナトリウム・四水和物を金(Au)換算濃度で0.1g/Lおよびキシリトール:1.0g/Lを90℃の水酸化ナトリウム水溶液(pH=12)に溶解し、クエン酸ナトリウム・二水和物で還元してコロイド状金(Au)ナノ粒子水溶液を得た。この金(Au)ナノ粒子の平均粒径は19nmで90%以上が14〜24nmの範囲(d=19±5nm)に入っていた。 Next, gold (Au) nanoparticles were prepared. Specifically, first, sodium tetrachloroaurate (III) tetrahydrate was added at a gold (Au) equivalent concentration of 0.1 g / L and xylitol: 1.0 g / L at 90 ° C. sodium hydroxide aqueous solution ( It was dissolved in pH = 12) and reduced with sodium citrate dihydrate to obtain a colloidal gold (Au) nanoparticle aqueous solution. The average particle diameter of the gold (Au) nanoparticles was 19 nm, and 90% or more was in the range of 14 to 24 nm (d = 19 ± 5 nm).

次に、金(Au)ナノ粒子の有機半導体上への吸着処理を行った。
すなわち、有機半導体層まで形成された基板を0.1%塩化トリメチルステアリルアンモニウム水溶液に30秒浸漬し、5分間流水にて純水洗浄を行った。さらに上記の金(Au)ナノ粒子を含んだ水溶液に5分間浸漬した後、5分間流水にて純水洗浄を行った。次に、日本エレクトロプレイティング・エンジニヤース株式会社製の非シアン系自己還元型無電解金メッキ浴(商品名プレシャスファブACG 3000WX、金(Au)濃度(2g/L)、pH=7.5)に65℃で5分間浸漬し、平均膜厚50nmの金(Au)層を得た。
Next, adsorption processing of gold (Au) nanoparticles onto an organic semiconductor was performed.
That is, the substrate formed up to the organic semiconductor layer was immersed in a 0.1% trimethylstearylammonium chloride aqueous solution for 30 seconds and washed with pure water for 5 minutes. Furthermore, after being immersed in the aqueous solution containing the above gold (Au) nanoparticles for 5 minutes, pure water was washed with running water for 5 minutes. Next, a non-cyan self-reducing electroless gold plating bath (trade name: Precious Fab ACG 3000WX, gold (Au) concentration (2 g / L), pH = 7.5) manufactured by Nippon Electroplating Engineers Co., Ltd. Immersion was performed at 65 ° C. for 5 minutes to obtain a gold (Au) layer having an average film thickness of 50 nm.

次に、フォトリソグラフィーにより金(Au)層上に電極パターンを形成した。その後ヨウ素系金エッチング液(オーラム 関東化学薬品製)により不要部分の金を除去し、電極パターンを形成した。その結果、図2に示すような、チャネル幅1000μm、チャネル長5、10、20、50、100μmの金(Au)のコンタクト電極を持つ、OFETを得た。 Next, an electrode pattern was formed on the gold (Au) layer by photolithography. Thereafter, unnecessary portions of gold were removed with an iodine-based gold etching solution (Aurum Kanto Chemical Co., Ltd.) to form an electrode pattern. As a result, an OFET having gold (Au) contact electrodes with a channel width of 1000 μm and channel lengths of 5, 10, 20, 50, and 100 μm as shown in FIG. 2 was obtained.

作製した素子の評価として、トランジスタとしてのキャリア移動度を測定したところ、約2.0cm/Vsであった。またコンタクト電極の接触抵抗の評価としてTML法により接触抵抗を見積もったところ、0.7kΩcmであった。 As an evaluation of the manufactured element, the carrier mobility as a transistor was measured and found to be about 2.0 cm 2 / Vs. The contact resistance of the contact electrode was estimated by the TML method to be 0.7 kΩcm.

〔実施例3〕
実施例1と同様に図1に示すようなボトムゲート・トップコンタクトタイプのOFETを作製した。
基板は熱酸化によりSiO(200nm)が形成されたSi基板を用い、Siをゲート電極、SiOを絶縁層とした。基板をアセトンに浸漬し超音波洗浄により脱脂した後、UVオゾン処理を行い清浄な表面を得た。次に真空蒸着法により有機半導体層を堆積した。有機半導体材料は2,9−ジデシル−ジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン用い、平均厚さ30nmの有機半導体層を得た。
Example 3
Similar to Example 1, a bottom gate / top contact type OFET as shown in FIG.
As the substrate, a Si substrate on which SiO 2 (200 nm) was formed by thermal oxidation was used, Si being a gate electrode, and SiO 2 being an insulating layer. After the substrate was immersed in acetone and degreased by ultrasonic cleaning, UV ozone treatment was performed to obtain a clean surface. Next, an organic semiconductor layer was deposited by vacuum evaporation. As the organic semiconductor material, 2,9-didecyl-dinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thiophene was used to obtain an organic semiconductor layer having an average thickness of 30 nm.

次に、白金(Pt)ナノ粒子を調整した。具体的には、まず、ヘキサヒドロキソ白金(IV)を白金(Pt)換算濃度で0.3g/Lおよびマンニトール:3.0g/Lを90℃の水酸化ナトリウム水溶液(pH=12)に溶解し、ヒドラジンで還元して白金(Pt)コロイド溶液を得た。この白金(Pt)ナノ粒子の平均粒径は35nm(d=35±20nm)であった。 Next, platinum (Pt) nanoparticles were prepared. Specifically, first, hexahydroxoplatinum (IV) was dissolved in a platinum (Pt) equivalent concentration of 0.3 g / L and mannitol: 3.0 g / L in a 90 ° C. aqueous sodium hydroxide solution (pH = 12). Reduction with hydrazine gave a platinum (Pt) colloidal solution. The average particle diameter of the platinum (Pt) nanoparticles was 35 nm (d = 35 ± 20 nm).

次に、白金(Pt)ナノ粒子の有機半導体上への吸着処理を行った。
有機半導体層まで形成された基板を上記の白金(Pt)ナノ粒子を含んだ水溶液に5分間浸漬した後、5分間流水にて純水洗浄を行った。次に、ヘキサヒドロキソ白金(IV)を白金(Pt)換算濃度で1.0g/L、硫酸アンモニウム50.0g/Lおよびホウ酸5.0g/Lおよびヒドラジン0.15g/Lを含有する無電解白金(Pt)メッキ液(pH=8.0)に25℃で3分間浸漬し、平均膜厚50nmの白金(Pt)膜を得た。
Next, adsorption treatment of platinum (Pt) nanoparticles on the organic semiconductor was performed.
The substrate formed up to the organic semiconductor layer was immersed in the aqueous solution containing the platinum (Pt) nanoparticles for 5 minutes, and then washed with pure water for 5 minutes. Next, electroless platinum containing 1.0 g / L of hexahydroxoplatinum (IV) in terms of platinum (Pt), 50.0 g / L of ammonium sulfate, 5.0 g / L of boric acid, and 0.15 g / L of hydrazine It was immersed in a (Pt) plating solution (pH = 8.0) at 25 ° C. for 3 minutes to obtain a platinum (Pt) film having an average film thickness of 50 nm.

次に、レーザーアブレーションにより不要部分の白金を除去し、電極パターンを形成したところ、チャネル幅2000μm、チャネル長50、100、200、5000μmの白金(Pt)のコンタクト電極を持つ、OFETを得た。 Next, unnecessary portions of platinum were removed by laser ablation, and an electrode pattern was formed. As a result, an OFET having a platinum (Pt) contact electrode with a channel width of 2000 μm and a channel length of 50, 100, 200, 5000 μm was obtained.

作製した素子の評価として、トランジスタとしてのキャリア移動度を測定したところ、約0.9cm/Vsであった。またコンタクト電極の接触抵抗を見積もったところ、2.0kΩcmであった。 As an evaluation of the manufactured element, the carrier mobility as a transistor was measured and found to be about 0.9 cm 2 / Vs. The contact resistance of the contact electrode was estimated to be 2.0 kΩcm.

〔比較例1〕
実施例1の金(Au)ナノ粒子と無電解金メッキ液を変更した以外は、実施例1と同様の試験を行った。
具体的には、まず、テトラクロロ金(III)酸ナトリウム・四水和物を金(Au)換算濃度で0.1g/L、クエン酸ナトリウム・二水和物:0.6g/Lおよび水素化ホウ素ナトリウム:0.1g/Lを含有した水溶液を90℃で30分間加熱し、コロイド状金(Au)ナノ粒子水溶液を得た。この金(Au)ナノ粒子の平均粒径は3±2nmであった。次に、金(Au)ナノ粒子の有機半導体上への吸着処理を行った。有機半導体層まで形成された基板を0.1%塩化トリメチルステアリルアンモニウム水溶液に30秒浸漬し、5分間流水にて純水洗浄を行った。さらに上記の金(Au)ナノ粒子を含んだ水溶液に5分間浸漬した後、5分間流水にて純水洗浄を行った。次に強酸性の無電解金(Au)メッキ液を調整した。テトラクロロ金(III)酸ナトリウム・四水和物を10mMおよび過酸化水素水20mMを含有した無電解金メッキ(pH=1)に25℃で2分間浸漬し、平均膜厚50nmの金(Au)層を得た。その後実施例1と同様の処理を行い、OFETを得た。
[Comparative Example 1]
The same test as in Example 1 was performed except that the gold (Au) nanoparticles and the electroless gold plating solution in Example 1 were changed.
Specifically, first, sodium tetrachloroaurate (III) tetrahydrate is 0.1 g / L in terms of gold (Au), sodium citrate dihydrate: 0.6 g / L and hydrogen. An aqueous solution containing sodium borohydride: 0.1 g / L was heated at 90 ° C. for 30 minutes to obtain a colloidal gold (Au) nanoparticle aqueous solution. The average particle diameter of the gold (Au) nanoparticles was 3 ± 2 nm. Next, adsorption processing of gold (Au) nanoparticles onto an organic semiconductor was performed. The substrate formed up to the organic semiconductor layer was immersed in an aqueous 0.1% trimethylstearylammonium chloride solution for 30 seconds and washed with pure water for 5 minutes. Furthermore, after being immersed in the aqueous solution containing the above gold (Au) nanoparticles for 5 minutes, pure water was washed with running water for 5 minutes. Next, a strongly acidic electroless gold (Au) plating solution was prepared. Gold (Au) with an average film thickness of 50 nm is immersed in electroless gold plating (pH = 1) containing 10 mM sodium tetrachlorogold (III) tetrahydrate and 20 mM hydrogen peroxide at 25 ° C. for 2 minutes. A layer was obtained. Thereafter, the same treatment as in Example 1 was performed to obtain an OFET.

作製した素子の評価としてトランジスタとしてのキャリア移動を測定したところ、約0.4cm/Vsであった。またコンタクト電極の接触抵抗は、8.0kΩcmであった。これは真空蒸着により電極を形成した基準例と比較すると、キャリア移動度が1桁小さくなり、接触抵抗は10倍以上の大きさであった。 As a result of measuring the carrier movement as a transistor as an evaluation of the manufactured element, it was about 0.4 cm 2 / Vs. The contact resistance of the contact electrode was 8.0 kΩcm. Compared with the reference example in which the electrode was formed by vacuum deposition, the carrier mobility was reduced by an order of magnitude, and the contact resistance was 10 times or more.

〔比較例2〕
実施例3の無電解白金メッキ液を、強アルカリ性の無電解金メッキ液に変更した以外は、実施例3と同様の試験を行った。すなわち、ヘキサヒドロキソ白金(IV)を白金(Pt)換算濃度で1.0g/L、アンモニア水20ml/Lおよびヒドラジン0.15g/Lを含有する無電解白金(Pt)メッキ液(pH=13.0)に50℃で4分間浸漬し、平均膜厚50nmの白金(Pt)膜を得た。
[Comparative Example 2]
The same test as in Example 3 was performed except that the electroless platinum plating solution of Example 3 was changed to a strong alkaline electroless gold plating solution. That is, an electroless platinum (Pt) plating solution containing 1.0 g / L of hexahydroxoplatinum (IV) in terms of platinum (Pt), 20 ml / L of aqueous ammonia and 0.15 g / L of hydrazine (pH = 13. 0) for 4 minutes at 50 ° C. to obtain a platinum (Pt) film having an average film thickness of 50 nm.

作製した素子の評価としてトランジスタとしての特性を評価したところ、トランジスタとしての特性は示さず、有機半導体結晶へ深刻なダメージがあったことが分かった。 When the characteristics of the transistor were evaluated as an evaluation of the manufactured element, the characteristics as a transistor were not shown, and it was found that the organic semiconductor crystal was seriously damaged.

本発明によれば、無電解メッキにより目的の金属による電極を、有機半導体表面に、確実にかつ安定的に形成することが可能となるので、有機半導体電界効果型トランジスタの生産効率を向上することが可能となる。 According to the present invention, an electrode made of a target metal can be reliably and stably formed on the surface of an organic semiconductor by electroless plating, thereby improving the production efficiency of an organic semiconductor field effect transistor. Is possible.

本発明の有機トランジスタの実施例を示す概略図である。It is the schematic which shows the Example of the organic transistor of this invention. 本発明の有機トランジスタの接触抵抗の測定方法を示す概略図である。It is the schematic which shows the measuring method of the contact resistance of the organic transistor of this invention. 本発明の有機トランジスタの他の実施例を示す概略図である。It is the schematic which shows the other Example of the organic transistor of this invention.

1:Siウェハー
2:SiO絶縁層
3:有機半導体層
4:ソース・ドレイン電極
5:PEN基板
6:Cr/Au/Crゲート電極
7:アルミナ絶縁層

1: Si wafer 2: SiO 2 insulating layer 3: Organic semiconductor layer
4: Source / drain electrode 5: PEN substrate 6: Cr / Au / Cr gate electrode 7: Alumina insulating layer

Claims (8)

有機半導体層上のコンタクト電極の形成方法において、有機半導体層上に貴金属ナノ粒子を吸着させる前処工程、およびその後にpH=5〜9の無電解メッキ浴中で当該貴金属ナノ粒子上にメッキ金属を析出させることを特徴とする電極形成方法。 In the method for forming a contact electrode on an organic semiconductor layer, a pretreatment step for adsorbing noble metal nanoparticles on the organic semiconductor layer, and then plating metal on the noble metal nanoparticles in an electroless plating bath at pH = 5-9 The electrode forming method characterized by depositing. 前記有機半導体層が[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン誘導体、2,9−ジアルキルジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン誘導体、ジナフト[2,3−b:2’,3’−f]チエノ[3,2−b] チオフェン誘導体、ジナフト[2,3−d:2’,3’−d’]ベンゾ[1,2−b:4,5−b’]ジチオフェン誘導体、TIPS−ペンタセン、TES−ADT、およびその誘導体、ペリレン誘導体、TCNQ、F4−TCNQ、F4−TCNQ、ルブレン、ペンタセン、p3HT、pBTTT、およびpDA2T−C16の結晶体であることを特徴とする請求項1に記載の電極形成方法。 The organic semiconductor layer is [1] benzothieno [3,2-b] [1] benzothiophene derivative, 2,9-dialkyldinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2 -B] thiophene derivative, dinaphtho [2,3-b: 2 ', 3'-f] thieno [3,2-b] thiophene derivative, dinaphtho [2,3-d: 2', 3'-d '] Benzo [1,2-b: 4,5-b ′] dithiophene derivatives, TIPS-pentacene, TES-ADT, and derivatives thereof, perylene derivatives, TCNQ, F4-TCNQ, F4-TCNQ, rubrene, pentacene, p3HT, pBTT The electrode forming method according to claim 1, wherein the electrode is a crystal of pDA2T-C16. 前記貴金属ナノ粒子が金(Au)、白金(Pt)またはパラジウム(Pd)の内のいずれかであることを特徴とする請求項1または請求項2に記載の電極形成方法。 3. The electrode forming method according to claim 1, wherein the noble metal nanoparticles are any one of gold (Au), platinum (Pt), and palladium (Pd). 前記メッキ浴が自己還元型無電解メッキ液からなり、金(Au)、白金(Pt)、銀(Ag)、パラジウム(Pd)、ニッケル(Ni)、銅(Cu)、鉄(Fe)またはコバルト(Co)の無電解メッキ液であることを特徴とする請求項1〜請求項3のいずれか1項に記載の電極形成方法。 The plating bath is made of a self-reducing electroless plating solution, and is composed of gold (Au), platinum (Pt), silver (Ag), palladium (Pd), nickel (Ni), copper (Cu), iron (Fe) or cobalt. The electrode forming method according to claim 1, wherein the electrode is an electroless plating solution of (Co). 前記貴金属ナノ粒子の平均粒径が5〜60nmであることを特徴とする請求項1〜請求項4のいずれか1項に記載の電極形成方法。 The electrode forming method according to any one of claims 1 to 4, wherein the noble metal nanoparticles have an average particle diameter of 5 to 60 nm. 前記貴金属ナノ粒子が低分子保護剤によって保護されていることを特徴とする請求項1〜請求項5のいずれか1項に記載の電極形成方法。 The electrode forming method according to any one of claims 1 to 5, wherein the noble metal nanoparticles are protected by a low molecular protective agent. 前記貴金属ナノ粒子が糖アルコールによって保護された金(Au)、白金(Pt)、またはパラジウム(Pd)の内のいずれかであることを特徴とする請求項1〜請求項6のいずれか1項に記載の電極形成方法。 The said noble metal nanoparticle is either gold | metal | money (Au) protected by sugar alcohol, platinum (Pt), or palladium (Pd), Any one of Claims 1-6 characterized by the above-mentioned. The electrode formation method as described in. 前記糖アルコールがトリトール、テトリトール、ペンチトール、ヘキシトール、ヘプチトール、オクチトール、イノシトール、クエルシトール、ペンタエリスリトールのうちの少なくとも1種以上を合計で前処理液中に0.01〜200g/L含有していることを特徴とする請求項7に記載の電極形成方法。 The sugar alcohol contains 0.01 to 200 g / L of the total amount of at least one of tritol, tetritol, pentitol, hexitol, heptitol, octitol, inositol, quercitol, and pentaerythritol in the pretreatment liquid. The electrode forming method according to claim 7.
JP2014175244A 2014-08-29 2014-08-29 Electrode formation method Active JP6365835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014175244A JP6365835B2 (en) 2014-08-29 2014-08-29 Electrode formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014175244A JP6365835B2 (en) 2014-08-29 2014-08-29 Electrode formation method

Publications (2)

Publication Number Publication Date
JP2016051758A true JP2016051758A (en) 2016-04-11
JP6365835B2 JP6365835B2 (en) 2018-08-01

Family

ID=55659070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014175244A Active JP6365835B2 (en) 2014-08-29 2014-08-29 Electrode formation method

Country Status (1)

Country Link
JP (1) JP6365835B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009232A (en) * 2016-07-15 2018-01-18 日本エレクトロプレイテイング・エンジニヤース株式会社 Pretreatment liquid for electroless plating
WO2021044705A1 (en) * 2019-09-03 2021-03-11 国立大学法人東京大学 Source/drain electrode for organic semiconductor device, organic semiconductor device using same, and production method for source/drain electrode and semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235473A (en) * 1986-04-04 1987-10-15 Nippon Mining Co Ltd Alkali type catalytic solution for electroless plating
JP2004158805A (en) * 2002-11-08 2004-06-03 Asahi Kasei Corp Process for fabricating organic semiconductor element and organic semiconductor element
JP2005146400A (en) * 2003-11-19 2005-06-09 Seiko Epson Corp Electrode forming method, thin film transistor, thin film transistor circuit, electronic device, and electronic apparatus
WO2007015364A1 (en) * 2005-08-03 2007-02-08 Konica Minolta Holdings, Inc. Method for manufacturing thin film transistor
JP2007084850A (en) * 2005-09-20 2007-04-05 Daiwa Fine Chemicals Co Ltd (Laboratory) Method for forming pattern of circuit
US20070243658A1 (en) * 2006-04-14 2007-10-18 Katsura Hirai Production method of crystalline organic semiconductor thin film, organic semiconductor thin film, electronic device, and thin film transistor
JP2013047385A (en) * 2011-08-17 2013-03-07 Rohm & Haas Electronic Materials Llc Stable catalyst for electroless metallization
JP2013174011A (en) * 2012-02-24 2013-09-05 Xerox Corp Process for producing palladium nanoparticle ink
JP2016023323A (en) * 2014-07-17 2016-02-08 日本エレクトロプレイテイング・エンジニヤース株式会社 Pretreatment liquid for electroless plating, and electroless plating method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235473A (en) * 1986-04-04 1987-10-15 Nippon Mining Co Ltd Alkali type catalytic solution for electroless plating
JP2004158805A (en) * 2002-11-08 2004-06-03 Asahi Kasei Corp Process for fabricating organic semiconductor element and organic semiconductor element
JP2005146400A (en) * 2003-11-19 2005-06-09 Seiko Epson Corp Electrode forming method, thin film transistor, thin film transistor circuit, electronic device, and electronic apparatus
WO2007015364A1 (en) * 2005-08-03 2007-02-08 Konica Minolta Holdings, Inc. Method for manufacturing thin film transistor
US20100105161A1 (en) * 2005-08-03 2010-04-29 Katsura Hirai Method for Manufacturing Thin Film Transistor
JP2007084850A (en) * 2005-09-20 2007-04-05 Daiwa Fine Chemicals Co Ltd (Laboratory) Method for forming pattern of circuit
US20070243658A1 (en) * 2006-04-14 2007-10-18 Katsura Hirai Production method of crystalline organic semiconductor thin film, organic semiconductor thin film, electronic device, and thin film transistor
WO2007119703A1 (en) * 2006-04-14 2007-10-25 Konica Minolta Holdings, Inc. Method for producing crystalline organic semiconductor thin film, organic semiconductor thin film, electronic device, and thin film transistor
JP2013047385A (en) * 2011-08-17 2013-03-07 Rohm & Haas Electronic Materials Llc Stable catalyst for electroless metallization
US20130230657A1 (en) * 2011-08-17 2013-09-05 Rohm And Haas Electronic Materials Llc Stable catalysts for electroless metallization
JP2013174011A (en) * 2012-02-24 2013-09-05 Xerox Corp Process for producing palladium nanoparticle ink
JP2016023323A (en) * 2014-07-17 2016-02-08 日本エレクトロプレイテイング・エンジニヤース株式会社 Pretreatment liquid for electroless plating, and electroless plating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009232A (en) * 2016-07-15 2018-01-18 日本エレクトロプレイテイング・エンジニヤース株式会社 Pretreatment liquid for electroless plating
WO2021044705A1 (en) * 2019-09-03 2021-03-11 国立大学法人東京大学 Source/drain electrode for organic semiconductor device, organic semiconductor device using same, and production method for source/drain electrode and semiconductor device

Also Published As

Publication number Publication date
JP6365835B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP5992845B2 (en) Process for producing palladium nanoparticle ink
JP2013508989A (en) Manufacturing method of organic device
EP1541524A2 (en) Nanoparticle deposition process
TW201203654A (en) Process for modifying electrodes in an organic electronic device
JP2014143430A (en) Surface treated substrates for top gate organic thin film transistors
Qi et al. All-brush-painted top-gate organic thin-film transistors
TWI628719B (en) Transistor manufacturing method and transistor
TWI524565B (en) Production method of transistor and transistor
TW201139266A (en) Deposition of nanoparticles
JP2004288836A (en) Organic thin film transistor and manufacturing method therefor
TW200835010A (en) Organic thin film transistor with dual layer electrodes
CN102420288A (en) Organic field effect transistor with dielectric modification layer and preparation method thereof
Keil et al. Development of the field-effect mobility in thin films of F16PcCu characterized by electrical in situ measurements during device preparation
Kim et al. High-performance n-channel organic thin-film transistor for CMOS circuits using electron-donating self-assembled layer
JP2010219530A (en) Organic thin-film transistor, method of manufacturing the same, and gate-insulating layer used for it
JP6365835B2 (en) Electrode formation method
TW201006021A (en) An organic field effect transistor and its manufacturing method
JP2010219114A (en) Carbon electrode, method for manufacturing the same, organic transistor and method for manufacturing the same
JP2012174805A (en) Organic transistor, display device, and method of manufacturing organic transistor
WO2011148699A1 (en) Organic semiconductor device, and process for production thereof
WO2019063967A1 (en) Ofet-based ethylene gas sensor
CN104332559A (en) Low operation voltage organic field effect transistor and preparation method thereof
Duan et al. Patterning 2D Organic Crystalline Semiconductors via Thermally Induced Self‐Assembly
JP2010056484A (en) Organic transistor, and method of manufacturing organic transistor
WO2014047647A1 (en) Organic thin film transistors and methods of making the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6365835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350