JP2016050833A - Infrared sensor device - Google Patents

Infrared sensor device Download PDF

Info

Publication number
JP2016050833A
JP2016050833A JP2014175781A JP2014175781A JP2016050833A JP 2016050833 A JP2016050833 A JP 2016050833A JP 2014175781 A JP2014175781 A JP 2014175781A JP 2014175781 A JP2014175781 A JP 2014175781A JP 2016050833 A JP2016050833 A JP 2016050833A
Authority
JP
Japan
Prior art keywords
light receiving
compound semiconductor
sensor device
infrared sensor
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014175781A
Other languages
Japanese (ja)
Other versions
JP6466668B2 (en
Inventor
エジソン ゴメス カマルゴ
Gomes Camargo Edson
エジソン ゴメス カマルゴ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2014175781A priority Critical patent/JP6466668B2/en
Publication of JP2016050833A publication Critical patent/JP2016050833A/en
Application granted granted Critical
Publication of JP6466668B2 publication Critical patent/JP6466668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To downsize an infrared sensor device with which it is possible to detect light from a plurality of different fields of vision separately.SOLUTION: Light-receiving parts 50a, 50b equipped with a light-receiving element having a mesh-shaped compound semiconductor laminate part 20 that includes a PN-junction part or a photodiode structure such as the PN-junction part, etc., and an infrared shielding part 30 covering a portion of the compound semiconductor laminate part 20 are provided on the same board 10, and the side faces 40a, 40b as the principal incident surfaces of the light-receiving parts 50a, 50b are formed so as to be non-parallel between the light-receiving parts 50a and 50b. As the fields of vision of the light-receiving parts 50a, 50b that are determined by the side faces 40a, 40b as the principal incident surfaces are different, infrared rays from different fields of vision can be detected separately. Since external components, etc., do not need to be provided, the infrared sensor device with which it is possible to detect light from a plurality of different fields of vision separately can be downsized.SELECTED DRAWING: Figure 2

Description

本発明は、赤外線センサ装置に関し、特に視野の異なる複数の受光部を備えた赤外線センサ装置に関する。   The present invention relates to an infrared sensor device, and more particularly to an infrared sensor device including a plurality of light receiving units having different fields of view.

一般に、人体の体温は36度付近であり、皮膚から放射される輻射が2μm以上30μm以下という広い範囲のスペクトラムの赤外線を人体は放出する。この光を検出することによって、人体の位置又は動きを検出することができる。
上記の2μm以上30μm以下の波長帯で動作するセンサの一例として、焦電センサやサーモパイルが挙げられる。これらのセンサを高感度化するためには、受光部と光の入射窓部との間に中空領域を設ける必要があり、そのためこれらセンサの小型化が困難となっている。
In general, the body temperature of the human body is around 36 degrees, and the human body emits infrared rays in a wide range of radiation from 2 μm to 30 μm. By detecting this light, the position or movement of the human body can be detected.
A pyroelectric sensor and a thermopile are mentioned as an example of the sensor which operate | moves in said wavelength range of 2 micrometers or more and 30 micrometers or less. In order to increase the sensitivity of these sensors, it is necessary to provide a hollow region between the light receiving portion and the light incident window portion, which makes it difficult to reduce the size of these sensors.

2μm以上30μm以下の波長帯で動作する他のセンサとして、量子型(光起電力型)赤外線センサが期待されている。量子型赤外線センサは、多数キャリアが電子であるn型半導体と多数キャリアがホールであるp型半導体とが接合されて構成されるPN接合又はp型半導体とn型半導体との間に真正半導体(i型半導体、π型半導体、あるいはν型半導体とも称される)を有するPIN接合のフォトダイオード構造を有している。   As another sensor that operates in a wavelength band of 2 μm or more and 30 μm or less, a quantum type (photovoltaic type) infrared sensor is expected. The quantum infrared sensor is a PN junction formed by joining an n-type semiconductor whose majority carrier is an electron and a p-type semiconductor whose majority carrier is a hole, or a genuine semiconductor between a p-type semiconductor and an n-type semiconductor ( It has a PIN junction photodiode structure having an i-type semiconductor, a π-type semiconductor, or a ν-type semiconductor.

量子型赤外線センサでは、赤外線の光子によりPN接合又はPIN接合に存在する空乏層内で発生した電子ホール対が価電子帯及び導電帯の傾斜に従って空間的に分離蓄積された結果、p型半導体はプラス側に帯電し、n型半導体はマイナス側に帯電して、その間に起電力が生ずる(例えば、特許文献1参照)。
この起電力は開放電圧と呼ばれ、PN接合又はPIN接合部の抵抗より大きな外部抵抗(高入力インピーダンスの回路やアンプでもよい)を使用することにより電圧として読み出すことも、また量子型赤外線センサ外部で短絡することにより電流として読み出すことも可能である。
In a quantum infrared sensor, electron hole pairs generated in a depletion layer present in a PN junction or PIN junction by infrared photons are spatially separated and accumulated according to the valence band and conduction band inclinations. The n-type semiconductor is charged on the plus side and the n-type semiconductor is charged on the minus side, and an electromotive force is generated between them (for example, see Patent Document 1).
This electromotive force is called an open-circuit voltage, and can be read out as a voltage by using an external resistance (which may be a high input impedance circuit or amplifier) larger than the resistance of the PN junction or PIN junction, It is also possible to read out the current as a short circuit.

ところで、このような赤外線センサを人感センサとして用いる際には、異なる複数の視野からの光を分離して検出するため、例えば特許文献2に示されるような複雑なレンズを用いた光学系を設けた装置となってしまう。   By the way, when such an infrared sensor is used as a human sensor, an optical system using a complicated lens as shown in Patent Document 2, for example, is used to separate and detect light from a plurality of different fields of view. It becomes the provided device.

国際公開第2005−27228号パンフレットInternational Publication No. 2005-27228 Pamphlet 特開2013−231667号公報JP2013-231667A

このような複雑な光学系を設けた赤外線センサ装置では、赤外線センサ装置に対する外付けの部品数が増えるため、装置全体が大型化してしまうという問題がある。
また、外付けする分、組み立て工程における製造バラツキが大きくなってしまうという問題もある。
本発明はこの点に着目してなされたものであって、製造バラツキの増加を伴うことなく、小型化を図ることのできる、異なる複数の視野からの光を分離して検出することの可能な赤外線センサ装置を提供することを目的としている。
In an infrared sensor device provided with such a complicated optical system, the number of external components for the infrared sensor device increases, and there is a problem that the entire device is increased in size.
In addition, there is a problem that manufacturing variation in the assembly process increases due to external attachment.
The present invention has been made paying attention to this point, and can reduce the size without increasing the manufacturing variation, and can separately detect light from a plurality of different fields of view. An object of the present invention is to provide an infrared sensor device.

本願発明の一態様による赤外線センサ装置は、フォトダイオード構造を含む多面体形状の化合物半導体積層部を有する受光素子と前記化合物半導体積層部の一部を覆う赤外線遮蔽部とを備えた受光部を、同一基板上に複数有し、前記受光部の主入射面が、前記複数の受光部間で非平行であることを特徴とする。   An infrared sensor device according to an aspect of the present invention includes a light receiving element including a light receiving element having a polyhedral compound semiconductor stacked portion including a photodiode structure and an infrared shielding portion covering a part of the compound semiconductor stacked portion. A plurality of light receiving portions are provided on the substrate, and a main incident surface of the light receiving portion is non-parallel between the plurality of light receiving portions.

本願発明の赤外線センサ装置によれば、外付けの部品等を用いることなく、異なる複数の視野からの光を分離し検出することができ、すなわち赤外線センサ装置の小型化を図ることができる。   According to the infrared sensor device of the present invention, light from a plurality of different fields of view can be separated and detected without using external parts or the like, that is, the infrared sensor device can be miniaturized.

本発明の赤外線センサ装置における受光部の一例を示す模式図の断面図である。It is sectional drawing of the schematic diagram which shows an example of the light-receiving part in the infrared sensor apparatus of this invention. 本発明の第1実施形態における赤外線センサの一例を示す模式図である。It is a schematic diagram which shows an example of the infrared sensor in 1st Embodiment of this invention. 本発明の第2実施形態における赤外線センサの一例を示す模式図である。It is a schematic diagram which shows an example of the infrared sensor in 2nd Embodiment of this invention. 第2実施形態における赤外線センサの動作説明に供する等価回路である。It is an equivalent circuit with which it uses for operation | movement description of the infrared sensor in 2nd Embodiment. 本発明の第3実施形態における赤外線センサの一例を示す模式図である。It is a schematic diagram which shows an example of the infrared sensor in 3rd Embodiment of this invention. 本発明の第4実施形態における赤外線センサの一例を示す模式図である。It is a schematic diagram which shows an example of the infrared sensor in 4th Embodiment of this invention. 本発明の赤外線センサ装置における受光部の出力特性の一例を示す特性図である。It is a characteristic view which shows an example of the output characteristic of the light-receiving part in the infrared sensor apparatus of this invention.

以下、本発明を実施するための形態(以下、本実施形態と称する)を説明する。
本実施形態に係る赤外線センサ装置は、PN接合部又はPIN接合部等を有するフォトダイオード構造を含む、メサ形状(錐台形状)等の多面体形状の化合物半導体積層部を有する受光素子と化合物半導体積層部の一部を覆う赤外線遮蔽部とを備えた受光部を、同一基板上に複数有し、受光部の主入射面が、複数の受光部間で非平行である赤外線センサ装置である。
Hereinafter, a mode for carrying out the present invention (hereinafter referred to as this embodiment) will be described.
An infrared sensor device according to the present embodiment includes a photodiode structure having a PN junction or a PIN junction or the like, a light receiving element having a polyhedral compound semiconductor multilayer such as a mesa shape (frustum shape), and a compound semiconductor multilayer The infrared sensor device includes a plurality of light receiving units including an infrared shielding unit that covers a part of the unit on the same substrate, and a main incident surface of the light receiving unit is non-parallel between the plurality of light receiving units.

主入射面が複数の受光部間で非平行であることにより、主入射面の向きにより決定される視野が複数の受光部間で異なるため、各受光部がそれぞれ異なる視野からの光を分離し検出することと同等となる。その結果、外付け部品等を設けることなく各受光部が異なる視野からの光を分離し検出することができる。
ここで、受光部が受光素子を1つ備える場合には、この受光素子が含む化合物半導体積層部の各平面のうち、赤外線遮蔽部により覆われていない領域が最大となる一の平面が「主入射面」となる。
Since the main incident surface is non-parallel between the plurality of light receiving parts, the field of view determined by the orientation of the main incident surface differs between the plurality of light receiving parts, so that each light receiving part separates light from different fields of view. Equivalent to detecting. As a result, each light-receiving unit can separate and detect light from different fields of view without providing external components or the like.
Here, when the light receiving unit includes one light receiving element, among the planes of the compound semiconductor stacked portion included in the light receiving element, the one plane in which the region not covered by the infrared shielding unit is the largest is “main”. It becomes the “incident surface”.

また、受光部が直列接続された複数の受光素子を有し、一の受光素子が含む化合物半導体積層部の各平面のうち、赤外線遮蔽部により覆われていない領域が最大となる一の平面が受光素子全ての間で平行である場合には、複数の受光素子のうちのいずれかの受光素子の一の平面が「主入射面」となる。
また、受光部が直列接続された複数の前記受光素子を有し、一の受光素子が含む化合物半導体積層部の各平面のうち、赤外線遮蔽部により覆われていない領域が最大となる一の平面が受光素子いずれかの間で非平行である場合、すなわち受光素子間で平行でない場合には、受光部の中心から等距離の球面上で強度一定の光源を移動させたときに受光部の出力が最大となるときの光源の中心位置と受光部の中心とを結ぶ直線に垂直な面を「主入射面」とする。
In addition, among the flat surfaces of the compound semiconductor stacked portion included in one light receiving element, the light receiving portion has a plurality of light receiving elements connected in series, and one flat surface in which the region not covered by the infrared shielding portion is maximized When the light receiving elements are parallel to each other, one plane of the light receiving elements of the plurality of light receiving elements becomes the “main incident surface”.
In addition, among the flat surfaces of the compound semiconductor stacked portion included in one light receiving element, the light receiving portion includes a plurality of the light receiving elements connected in series, and the one surface that is not covered by the infrared shielding portion is the largest. Is non-parallel between any of the light receiving elements, that is, not parallel between the light receiving elements, the output of the light receiving part when a light source having a constant intensity is moved on a spherical surface equidistant from the center of the light receiving part. A surface perpendicular to a straight line connecting the center position of the light source and the center of the light receiving unit when the maximum value is defined as a “main incident surface”.

なお、受光部の中心とは、外部からの光がある一点に収束する場合を考えたとき、受光部の出力信号が最大となるその一点の位置を表す。
図1は、本発明を適用した赤外線センサ装置に用いられる受光部50の一例を示す模式図の断面図である。
図1に示すように、受光部50は、基板10上に形成されたn型化合物半導体層21と光吸収層(i型半導体層)22とバリア層24とp型化合物半導体層23とがこの順に積層された化合物半導体積層部20と、赤外線遮蔽部30と、絶縁層60と、を備えている。
Note that the center of the light receiving unit represents the position of the point where the output signal of the light receiving unit becomes maximum when considering the case where light from the outside converges to a certain point.
FIG. 1 is a cross-sectional view of a schematic diagram showing an example of a light receiving unit 50 used in an infrared sensor device to which the present invention is applied.
As shown in FIG. 1, the light receiving unit 50 includes an n-type compound semiconductor layer 21, a light absorption layer (i-type semiconductor layer) 22, a barrier layer 24, and a p-type compound semiconductor layer 23 formed on the substrate 10. The compound semiconductor laminated part 20, the infrared shielding part 30, and the insulating layer 60 laminated | stacked in order are provided.

受光素子としての化合物半導体積層部20はメサ形状に形成され、化合物半導体積層部20に含まれるPIN接合部を含む第1のメサ部201と、第1のメサ部201の下層に形成され化合物半導体積層部20に含まれるn型化合物半導体層21を含む第2のメサ部202とを備える。
赤外線遮蔽部30は金属材料からなり、化合物半導体積層部20の側面40は覆わずに、上面及び他の3つの側面を覆うように配置される。図1の場合には、赤外線遮蔽部30は、第1のメサ部201において、上面及び側面40を除く3つの側面を覆うように絶縁層60を介して配置される。また、側面40側を含む第2のメサ部202にも赤外線遮蔽部30が絶縁層60を介して配置される。この側面40側の第2のメサ部202に形成される赤外線遮蔽部30は電極、つまり出力端子31としても機能する。基板10が半絶縁性基板である場合、図1中に示される2箇所の赤外線遮蔽部30は化合物半導体積層部20の内部領域により電気的に接続される。すなわち、第2のメサ部202が素子分離の機能を果たしている。
次に本実施形態における赤外線センサ装置の各構成要件について説明する。各々の説明は本実施形態(後述のより具体的な実施形態を含む)においてそれぞれ独立または組み合わせて適用が可能である。
The compound semiconductor stacked unit 20 as a light receiving element is formed in a mesa shape, and is formed in a first mesa unit 201 including a PIN junction included in the compound semiconductor stacked unit 20 and a lower layer of the first mesa unit 201. And a second mesa unit 202 including the n-type compound semiconductor layer 21 included in the stacked unit 20.
The infrared shielding unit 30 is made of a metal material, and is disposed so as to cover the upper surface and the other three side surfaces without covering the side surface 40 of the compound semiconductor stacked unit 20. In the case of FIG. 1, the infrared shielding unit 30 is arranged via the insulating layer 60 so as to cover the three side surfaces except the upper surface and the side surface 40 in the first mesa unit 201. In addition, the infrared shielding portion 30 is also disposed on the second mesa portion 202 including the side surface 40 via the insulating layer 60. The infrared shielding portion 30 formed in the second mesa portion 202 on the side surface 40 side also functions as an electrode, that is, an output terminal 31. When the substrate 10 is a semi-insulating substrate, the two infrared shielding portions 30 shown in FIG. 1 are electrically connected by the internal region of the compound semiconductor stacked portion 20. That is, the second mesa unit 202 performs the element isolation function.
Next, each component of the infrared sensor device in the present embodiment will be described. Each description can be applied independently or in combination in the present embodiment (including more specific embodiments described later).

<基板>
本実施形態の赤外線センサ装置において、基板10は受光素子を形成するための土台となる。各々の受光素子を電気的に独立させる観点から、基板10は絶縁性または半絶縁性の基板であることが好ましい。基板10の具体的な材料の例としてはSi、GaAs、サファイヤ、InP、InAs、Ge等が挙げられるがこの限りではない。
<Board>
In the infrared sensor device of the present embodiment, the substrate 10 serves as a base for forming a light receiving element. From the viewpoint of making each light receiving element electrically independent, the substrate 10 is preferably an insulating or semi-insulating substrate. Specific examples of the material of the substrate 10 include Si, GaAs, sapphire, InP, InAs, and Ge, but are not limited thereto.

半絶縁性基板が作成可能であり、大口径化が可能である観点から、好ましい基板の材料としてGaAsが挙げられる。
また、基板上に形成される化合物半導体積層部20を高品質に形成する観点から、基板10の格子定数は化合物半導体積層部20、特に直接基板と接する層の格子定数と近いことが好ましい。赤外線検知が可能な化合物半導体積層部20の材料であるインジウム(In)とアンチモン(Sb)を含む層を高品質に形成しやすい観点から、好ましい基板の材料としてGaAsが挙げられる。
From the viewpoint that a semi-insulating substrate can be produced and that the diameter can be increased, GaAs is a preferable material for the substrate.
Further, from the viewpoint of forming the compound semiconductor stacked unit 20 formed on the substrate with high quality, the lattice constant of the substrate 10 is preferably close to the lattice constant of the compound semiconductor stacked unit 20, particularly a layer in direct contact with the substrate. From the viewpoint of easily forming a layer containing indium (In) and antimony (Sb), which is a material of the compound semiconductor stacked portion 20 capable of detecting infrared rays, with high quality, GaAs is a preferable substrate material.

本実施形態の赤外線センサ装置は、基板10の、化合物半導体積層部20が形成された第1の主面10a側から赤外線を受光素子に取り込む形態となるため、基板10の第1の主面10aと逆側の面である第2の主面10b側には赤外線を吸収する部材や、反射する部材を有していることが好ましい。赤外線透過性の低い基板材料を用いる場合は、第2の主面10b側には赤外線を吸収する部材や、赤外線を反射する部材を設けなくてもよい。   Since the infrared sensor device of the present embodiment is configured to take infrared rays into the light receiving element from the first main surface 10a side of the substrate 10 on which the compound semiconductor stacked portion 20 is formed, the first main surface 10a of the substrate 10 is used. It is preferable to have a member that absorbs infrared rays or a member that reflects on the second main surface 10b side that is the opposite side of the surface. In the case of using a substrate material having low infrared transparency, it is not necessary to provide a member that absorbs infrared rays or a member that reflects infrared rays on the second main surface 10b side.

赤外線を反射する部材に利用される材料は、光を効率よく反射する材料であれば、なんでも良いが、製造プロセスのし易さの観点と反射率が良いという観点から、AlやAuやCrを含む合金や積層膜が挙げられる。また、この赤外線を反射する部材は金属材料でなくても良く、基板よりも屈折率の低い材料でもよい。例えば、GaAsやSi基板を用いた場合、SiやSiOやTiOなどが挙げられる。これらの非金属層の屈折率が基板より小さいため、反射効果は発揮されながら、基板の裏面の電気的絶縁も実現できるため、導電性の基板を利用される場合好ましい場合がある。 The material used for the member that reflects infrared rays may be any material as long as it reflects light efficiently, but from the viewpoint of ease of manufacturing process and good reflectivity, Al, Au, and Cr are used. Examples include alloys and laminated films. The member that reflects infrared rays may not be a metal material, and may be a material having a refractive index lower than that of the substrate. For example, when a GaAs or Si substrate is used, Si 3 N 4 , SiO 2 , TiO 2 or the like can be used. Since the refractive index of these non-metal layers is smaller than that of the substrate, it is preferable to use a conductive substrate because the back surface of the substrate can be electrically insulated while exhibiting a reflection effect.

また、本実施形態の赤外線センサは、検出対象物の出力する赤外線の波長および外乱要因となる赤外線の波長に応じて、特定の波長帯域を選択的に透過することが可能な光学フィルタを更に有してもよい。例えば検出対象物が人体の場合、外乱光との識別性を高めるために、波長5μm以上の波長の赤外線を選択的に透過するフィルタを用いることが好ましい。   In addition, the infrared sensor of the present embodiment further includes an optical filter that can selectively transmit a specific wavelength band according to the wavelength of the infrared ray output from the detection target and the wavelength of the infrared ray that causes disturbance. May be. For example, when the object to be detected is a human body, it is preferable to use a filter that selectively transmits infrared light having a wavelength of 5 μm or more in order to improve discrimination from ambient light.

<受光部>
本実施形態の赤外線センサ装置において、受光部50は受光素子としての化合物半導体積層部20と赤外線遮蔽部30とを有する。
受光素子は単独であってもよいし、複数の受光素子を直列または並列に接続した形態であってもよい。すなわち、各受光部50は、単独の受光素子を用いてもよいし、複数の受光素子を接続したものを用いてもよい。各受光部50が2つ以上の受光素子で構成される場合において、光起電力を電流として読み出す場合は直列接続されていることが好ましい。電圧出力の場合、電圧を大きくする必要があるため、同様に直列に接続すると良い。
<Light receiver>
In the infrared sensor device of the present embodiment, the light receiving unit 50 includes a compound semiconductor stacked unit 20 and an infrared shielding unit 30 as light receiving elements.
The light receiving element may be a single light receiving element or a plurality of light receiving elements connected in series or in parallel. That is, each light receiving unit 50 may use a single light receiving element, or may be one in which a plurality of light receiving elements are connected. In the case where each light receiving unit 50 is constituted by two or more light receiving elements, it is preferable that the light receiving portions 50 are connected in series when the photovoltaic power is read as a current. In the case of voltage output, it is necessary to increase the voltage.

電流出力の場合、信号源の抵抗値及び電流値を高くするとS/N比が向上し、また、電圧出力の場合、信号源の抵抗値を低く、電圧値を大きくするとS/N比が向上する。接続される受光素子の大きさおよび個数は、PN接合の面積当たりの縦方向(基板表面に垂直方向)の抵抗値、アンプの電圧入力換算ノイズ及び製造上の制限(プロセスルールなど)を考慮して、最適なS/N比を実現するために最適化すると良い。無論、受光部50の全体のサイズを大きくすればするほど、信号源の抵抗値及び電流値又は電圧値を調整することにより、最適化されたS/N比が大きくなるので良い。受光部(画素)数や各受光部のサイズは、システムの光学系と合わせて最適化な形状に設計すると良い。   In the case of current output, the S / N ratio is improved by increasing the resistance value and current value of the signal source. In the case of voltage output, the S / N ratio is improved by decreasing the resistance value of the signal source and increasing the voltage value. To do. The size and number of light receiving elements to be connected take into account the resistance value in the vertical direction (perpendicular to the substrate surface) per area of the PN junction, the voltage input conversion noise of the amplifier, and manufacturing restrictions (such as process rules). Thus, the optimization may be performed in order to realize the optimum S / N ratio. Of course, as the overall size of the light receiving unit 50 is increased, the optimized S / N ratio may be increased by adjusting the resistance value and current value or voltage value of the signal source. The number of light receiving parts (pixels) and the size of each light receiving part may be designed to be optimized in accordance with the optical system of the system.

<受光素子>
受光素子は、PN接合部またはPIN接合部を有するメサ形状の化合物半導体積層部20を含む。化合物半導体積層部20の材料としては、測定対象物の赤外線を検知することが可能な材料から選択して用いることができる。III−V族系の化合物半導体が好ましく、インジウム(In)、アルミニウム(Al)、ガリウム(Ga)からなる群より選択される少なくとも1つのIII族原子と、アンチモン(Sb)、ヒ素(As)からなる群より選択される少なくとも1つのV族原子と、の化合物半導体であることがより好ましい。具体的には、InSb系材料、InGaSb系材料、InAlSb系材料、InAsSb系材料等が挙げられ、測定対象物の赤外線を検知することが可能な材料から選択して用いることができる。
<Light receiving element>
The light receiving element includes a mesa-shaped compound semiconductor stacked unit 20 having a PN junction or a PIN junction. As a material of the compound semiconductor laminated part 20, it can select and use from the material which can detect the infrared rays of a measuring object. A III-V group compound semiconductor is preferable, and includes at least one group III atom selected from the group consisting of indium (In), aluminum (Al), and gallium (Ga), antimony (Sb), and arsenic (As). More preferably, it is a compound semiconductor of at least one group V atom selected from the group consisting of Specific examples include InSb-based materials, InGaSb-based materials, InAlSb-based materials, InAsSb-based materials, and the like, which can be selected from materials that can detect infrared rays of a measurement object.

InSb系材料で構成された受光素子の場合、1μm以上7μm以下の波長を検知することができる。InGaSb又はInAlSb系材料で構成された受光素子の場合、検知範囲を、1μm以上5μm以下の波長帯に絞ることができる。また、InAsSb系材料で構成された受光素子の場合、1μm以上12μm以下の波長帯を検知することができる。
メサ形状の化合物半導体積層部20を形成する方法としては公知の方法を採用することができる。例えば基板上に化合物半導体積層部を構成する各層を形成し、次いでマスクパターン越しに所望の領域をエッチングすることでメサ形状の化合物半導体積層部20を形成することができる。
In the case of a light receiving element composed of an InSb-based material, a wavelength of 1 μm or more and 7 μm or less can be detected. In the case of a light receiving element composed of an InGaSb or InAlSb-based material, the detection range can be narrowed down to a wavelength band of 1 μm or more and 5 μm or less. In the case of a light receiving element made of an InAsSb-based material, a wavelength band of 1 μm to 12 μm can be detected.
As a method for forming the mesa-shaped compound semiconductor laminated portion 20, a known method can be employed. For example, the mesa-shaped compound semiconductor stacked portion 20 can be formed by forming each layer constituting the compound semiconductor stacked portion on the substrate and then etching a desired region through the mask pattern.

本実施形態の赤外線センサ装置の化合物半導体積層部20は、少なくとも1つのメサ形状が形成されていれば良いが、必要に応じて複数のメサ形状、すなわち多段的なメサ形状であってもよい。例えば、図1に示すように、基板上にn型半導体層/i型半導体層/p型半導体層の順で化合物半導体を積層した後に、n型化合物半導体層に接続される出力端子や電極(配線用のものも含む)を形成するための化合物半導体積層部の一部をn型化合物半導体層が表面に露出するまでエッチングし、第1のメサ部201を形成した後にさらに第1のメサ部201を囲む領域を基板が表面に露出するまでエッチングして第2のメサ部202を形成してもよい。この場合、赤外線遮蔽部30は少なくとも第1のメサ部201の一部を覆っていればよい。図1の場合、メサ形状(錐台形状)の化合物半導体積層部20の第1のメサ部(PN接合部またはPIN接合部を含むメサ部)201の側面のうち、赤外線遮蔽部30で覆われていない比率が最も大きい側面を意味する。   The compound semiconductor stacked portion 20 of the infrared sensor device of the present embodiment is only required to be formed with at least one mesa shape, but may be a plurality of mesa shapes, that is, a multistage mesa shape as necessary. For example, as shown in FIG. 1, after compound semiconductors are stacked on a substrate in the order of n-type semiconductor layer / i-type semiconductor layer / p-type semiconductor layer, output terminals and electrodes ( The first mesa portion is further formed after the first mesa portion 201 is formed by etching a part of the compound semiconductor stacked portion for forming the first mesa portion 201 (including those for wiring) until the n-type compound semiconductor layer is exposed on the surface. The region surrounding 201 may be etched until the substrate is exposed on the surface to form the second mesa portion 202. In this case, the infrared shielding unit 30 only needs to cover at least a part of the first mesa unit 201. In the case of FIG. 1, the side surface of the first mesa portion (mesa portion including a PN junction portion or a PIN junction portion) 201 of the mesa-shaped (frustum-shaped) compound semiconductor stacked portion 20 is covered with the infrared shielding portion 30. It means the side with the highest ratio.

本実施形態の赤外線センサ装置の各受光部50の視野は、化合物半導体積層部20の側面の角度に影響を受けるため、エッチング条件等により所望の視野となるメサ角度を適宜形成すればよい。
以下、基板上にn型半導体層/光吸収層(i型半導体層)/p型半導体層が順に積層されたPIN接合のフォトダイオード構造の受光素子を例に、説明する。
Since the field of view of each light receiving unit 50 of the infrared sensor device of the present embodiment is affected by the angle of the side surface of the compound semiconductor stacked unit 20, a mesa angle that provides a desired field of view may be appropriately formed depending on etching conditions and the like.
Hereinafter, a light receiving element having a PIN junction photodiode structure in which an n-type semiconductor layer / light absorption layer (i-type semiconductor layer) / p-type semiconductor layer are sequentially stacked on a substrate will be described as an example.

被検出光としての赤外線が、フォトダイオード構造部に入射すると、フォトダイオード構造部に存在する空乏層内で発生した電子ホール対が価電子帯と導電帯との電界傾斜に従って空間的に分離蓄積される。その結果、n型化合物半導体層はマイナス側に帯電し、p型化合物半導体層はプラス側に帯電することにより、その間に起電力が生ずる。この起電力は開放電圧と呼ばれ、高入力インピーダンスの信号処理回路(アンプなど)に接続した場合、電圧として読み出すことができ、また赤外線センサ外部で短絡して電流として読み出すことも可能である。   When infrared light as light to be detected enters the photodiode structure, electron hole pairs generated in the depletion layer existing in the photodiode structure are spatially separated and accumulated according to the electric field gradient between the valence band and the conduction band. The As a result, the n-type compound semiconductor layer is charged on the negative side and the p-type compound semiconductor layer is charged on the positive side, thereby generating an electromotive force therebetween. This electromotive force is called an open-circuit voltage, and can be read as a voltage when connected to a signal processing circuit (such as an amplifier) having a high input impedance, or can be read as a current by short-circuiting outside the infrared sensor.

n型化合物半導体層は、高濃度のn型ドーピングを行うことで、バーシュタインモスシフトと呼ばれる効果により、n型化合物半導体層の赤外線吸収波長がより短波長側にシフトする。そのため、長波長の赤外線が吸収されなくなり、赤外線を効率よく透過させることができるようになる。
光吸収層は、赤外線を吸収して光電流Ipを発生させるための光吸収層である。従って、n型化合物半導体層と光吸収層とが接する面積が赤外線の入射される受光面積となる。一般的に、受光素子の光電流Ipは、受光面積に比例して大きくなるため、n型化合物半導体層と光吸収層とが接する面積は大きい方が好ましい。また、光吸収層の体積が大きいほど吸収できる赤外線量は大きくなるので、光吸収層の体積は大きい方が好ましい。光吸収層の膜厚は、赤外線の吸収により発生した電子及び正孔のキャリアが拡散できる程度の膜厚に設定することが好ましい。
By performing high-concentration n-type doping, the n-type compound semiconductor layer shifts the infrared absorption wavelength of the n-type compound semiconductor layer to a shorter wavelength side due to an effect called a Barstein moss shift. Therefore, long-wavelength infrared rays are not absorbed, and infrared rays can be transmitted efficiently.
The light absorption layer is a light absorption layer for absorbing infrared rays and generating a photocurrent Ip. Therefore, the area where the n-type compound semiconductor layer and the light absorption layer are in contact with each other is the light receiving area on which infrared rays are incident. Generally, since the photocurrent Ip of the light receiving element increases in proportion to the light receiving area, it is preferable that the area where the n-type compound semiconductor layer and the light absorbing layer are in contact with each other is large. Moreover, since the amount of infrared rays that can be absorbed increases as the volume of the light absorption layer increases, the volume of the light absorption layer is preferably larger. The film thickness of the light absorption layer is preferably set to such a film thickness that electrons and hole carriers generated by infrared absorption can be diffused.

一方、光吸収層で使用されるような、赤外線を吸収する半導体は、一般にバンドギャップの小さい半導体であり、このような半導体は、電子の移動度が正孔の移動度よりも非常に大きい。例えばInSbの場合、電子の移動度が約80,000cm/Vsであるのに対して、正孔の移動度は数百cm/Vsである。従って、素子抵抗は電子の流れ易さによる影響が大きい。 On the other hand, a semiconductor that absorbs infrared rays as used in the light absorption layer is generally a semiconductor having a small band gap, and such a semiconductor has a mobility of electrons much higher than a mobility of holes. For example, in the case of InSb, while the electron mobility is about 80,000cm 2 / Vs, the mobility of holes is several hundred cm 2 / Vs. Therefore, the element resistance is greatly influenced by the ease of electron flow.

光吸収層で赤外線吸収によって発生した電子は、PN又はPIN接合のフォトダイオード構造の部分で形成された電位差によって、光吸収層からn型化合物半導体層側へと拡散し、光電流として取り出される。上述のように、バンドギャップの小さい半導体では正孔の移動度が非常に小さいことから、通常、n型ドーピング層よりもp型ドーピング層の電気抵抗が高くなる。また、電気抵抗は、電流が流れる部分の面積に反比例する。従って、光吸収層とp型化合物半導体層とが接する面積の大きさによって素子抵抗が決まり、素子抵抗が大きくなるためには面積が小さい方が好ましい。   Electrons generated by infrared absorption in the light absorption layer are diffused from the light absorption layer to the n-type compound semiconductor layer side due to the potential difference formed in the PN or PIN junction photodiode structure portion, and are taken out as a photocurrent. As described above, since a hole mobility is very small in a semiconductor having a small band gap, the electric resistance of the p-type doping layer is usually higher than that of the n-type doping layer. Further, the electrical resistance is inversely proportional to the area of the portion where the current flows. Therefore, the element resistance is determined by the size of the area where the light absorption layer and the p-type compound semiconductor layer are in contact, and it is preferable that the area is small in order to increase the element resistance.

また、波長が5μm以上の赤外線を吸収できる半導体のバンドギャップは0.25eV以下と小さい。このようなバンドギャップの小さな半導体(光吸収層の材料のバンドギャップが0.1eV以上0.25eV以下の半導体)では、p型化合物半導体層側に、電子による拡散電流を抑制するため、バンドギャップが光吸収層よりも大きなバリア層を形成すると、暗電流のような素子の漏れ電流が小さくなり、素子抵抗を大きくすることができるため好ましい。
バリア層は、光吸収層及びp型化合物半導体層よりもバンドギャップが大きくなるように構成される。バリア層を構成する材料としては、例えば、AlInSbが挙げられる。このバリア層を設けることによって、受光部の抵抗は大きくなるため、電流−電圧変換アンプで信号の増幅をすると、高いS/N比が実現できるので、望ましい。
The band gap of a semiconductor that can absorb infrared rays having a wavelength of 5 μm or more is as small as 0.25 eV or less. In such a semiconductor with a small band gap (semiconductor whose light absorption layer material has a band gap of 0.1 eV or more and 0.25 eV or less), the band gap is suppressed on the p-type compound semiconductor layer side in order to suppress diffusion current due to electrons. However, it is preferable to form a barrier layer larger than the light absorption layer because the leakage current of the element such as dark current is reduced and the element resistance can be increased.
The barrier layer is configured to have a larger band gap than the light absorption layer and the p-type compound semiconductor layer. Examples of the material constituting the barrier layer include AlInSb. By providing this barrier layer, the resistance of the light receiving portion increases, and therefore, when a signal is amplified by a current-voltage conversion amplifier, a high S / N ratio can be realized.

<赤外線遮蔽部>
赤外線遮蔽部30は、各々の受光素子の化合物半導体積層部20の一部を覆い、メサ形状の化合物半導体積層部20のいずれかの側面に赤外線遮蔽部30で覆われていない側面40を形成する。この側面40が主入射面となる。
赤外線遮蔽部30は、赤外線透過率の低い材料で構成されていれば特に制限されない。具体的には、赤外線センサ装置の感度が最も高くなる波長の赤外線の透過率が50%以下であることが好ましく、30%以下であることがより好ましい。
具体的な材料としては、Al、Au、Pt、Tiなどの材料やそれらの積層物や、それらの合金が挙げられる。
製造容易性の観点から、受光素子からの信号を取り出すための出力端子や電極(各受光素子を電気的に接続するための配線を含む)を赤外線遮蔽部30として用いることが好ましい。
<Infrared shielding part>
The infrared shielding part 30 covers a part of the compound semiconductor multilayer part 20 of each light receiving element, and forms a side surface 40 that is not covered with the infrared shielding part 30 on any side face of the mesa-shaped compound semiconductor multilayer part 20. . This side surface 40 becomes the main incident surface.
The infrared shielding part 30 will not be restrict | limited especially if comprised with the material with low infrared transmittance. Specifically, the transmittance of infrared light having a wavelength at which the sensitivity of the infrared sensor device is highest is preferably 50% or less, and more preferably 30% or less.
Specific materials include materials such as Al, Au, Pt, and Ti, laminates thereof, and alloys thereof.
From the viewpoint of manufacturability, it is preferable to use an output terminal or an electrode (including a wiring for electrically connecting each light receiving element) for taking out a signal from the light receiving element as the infrared shielding unit 30.

<その他の構成>
受光部50は、図1に示すように、化合物半導体積層部20以外に、配線部や出力端子、電極部を備えていてもよい。複数の受光素子を直列または並列に接続するための配線部を設ける場合、配線部と化合物半導体積層部20の側面に絶縁層60を備えていていることが好ましい。絶縁層60の材料としては酸化シリコンや窒化シリコン等が挙げられるが、絶縁性の材料であれば何れの材料であってもよい。また、接続端子やパッド以外に受光部全体を覆うように保護層を設けてもよい。保護層を設ける場合、赤外線透過率の高い材料を用いることが好ましく例えば酸化シリコン、窒化シリコン、酸化チタンや窒化チタン等が挙げられる。
<Other configurations>
As shown in FIG. 1, the light receiving unit 50 may include a wiring unit, an output terminal, and an electrode unit in addition to the compound semiconductor stacked unit 20. When providing the wiring part for connecting a some light receiving element in series or in parallel, it is preferable to provide the insulating layer 60 on the side surface of the wiring part and the compound semiconductor laminated part 20. Examples of the material of the insulating layer 60 include silicon oxide and silicon nitride, but any material may be used as long as it is an insulating material. Moreover, you may provide a protective layer so that the whole light-receiving part may be covered besides a connection terminal and a pad. In the case of providing the protective layer, it is preferable to use a material having a high infrared transmittance. Examples thereof include silicon oxide, silicon nitride, titanium oxide, and titanium nitride.

<赤外線センサ装置の実施形態>
次に、図1で説明した受光部50を用いた赤外線センサ装置の具体的な実施形態を、図面を参酌しながら説明する。なお、受光部50a、50bの具体的な構成は図1を用いて説明した通りであり、受光部50a、50bの詳細な説明(例えば化合物半導体積層部20の詳細構造、絶縁層60、第2のメサ部202等)は省略する。
<Embodiment of Infrared Sensor Device>
Next, a specific embodiment of an infrared sensor device using the light receiving unit 50 described in FIG. 1 will be described with reference to the drawings. The specific configuration of the light receiving portions 50a and 50b is as described with reference to FIG. 1, and the detailed description of the light receiving portions 50a and 50b (for example, the detailed structure of the compound semiconductor stacked portion 20, the insulating layer 60, the second layer). The mesa unit 202 and the like are omitted.

<第1実施形態>
図2は本発明の第1実施形態にかかる赤外線センサ装置の模式図である。
図2(a)は平面模式図であり、図2(b)は図2(a)のA−A′断面図である。図2(a)中、赤外線遮蔽部30a、30b、および出力端子31a、31bはエッジ部のみを点線で示している。
第1実施形態における赤外線センサ装置は、同一基板10上に形成された、2つの受光部50a及び50bを備える。
<First Embodiment>
FIG. 2 is a schematic diagram of the infrared sensor device according to the first embodiment of the present invention.
2A is a schematic plan view, and FIG. 2B is a cross-sectional view taken along the line AA ′ of FIG. In FIG. 2A, only the edge portions of the infrared shielding portions 30a and 30b and the output terminals 31a and 31b are indicated by dotted lines.
The infrared sensor device according to the first embodiment includes two light receiving portions 50a and 50b formed on the same substrate 10.

受光部50aは、例えば、PN接合部またはPIN接合部を有するメサ形状の化合物半導体積層部20aを備えた受光素子と、化合物半導体積層部20aの一部を覆う赤外線遮蔽部30aと、出力端子31aと、を有する。同様に、受光部50bは、PN接合部またはPIN接合部を有するメサ形状の化合物半導体積層部20bを含む受光素子と、化合物半導体積層部20bの一部を覆う赤外線遮蔽部30bと、出力端子31bと、を有する。そして、これら各部は、図2に示すように、出力端子31a、化合物半導体積層部20a、化合物半導体積層部20b、出力端子31bの順に基板10上に、直線上に並べて配置される。   The light receiving unit 50a includes, for example, a light receiving element including a mesa-shaped compound semiconductor stacked unit 20a having a PN junction or a PIN junction, an infrared shielding unit 30a covering a part of the compound semiconductor stacked unit 20a, and an output terminal 31a. And having. Similarly, the light receiving unit 50b includes a light receiving element including a mesa-shaped compound semiconductor stacked unit 20b having a PN junction or a PIN junction, an infrared shielding unit 30b covering a part of the compound semiconductor stacked unit 20b, and an output terminal 31b. And having. Then, as shown in FIG. 2, these parts are arranged on the substrate 10 in a straight line in the order of the output terminal 31a, the compound semiconductor stacked unit 20a, the compound semiconductor stacked unit 20b, and the output terminal 31b.

受光部50a、50bの化合物半導体積層部20a、20bは、略同一のメサ形状に形成され、メサ形状を形成する4つの側面は、化合物半導体積層部20a、20bにおいてそれぞれ対応する側面どうしが平行となるように形成される。
赤外線遮蔽部30aは、受光部50aの化合物半導体積層部20aの一部を覆い、化合物半導体積層部20aの側面に赤外線遮蔽部30aで覆われていない側面を形成する。図2の場合には、赤外線遮蔽部30aは、メサ形状の化合物半導体積層部20aの上面全面と、化合物半導体積層部20aの、化合物半導体積層部20b側の面全体を含む3つの側面を覆うように配置される。
The compound semiconductor stacked portions 20a and 20b of the light receiving portions 50a and 50b are formed in substantially the same mesa shape, and the four side surfaces forming the mesa shape are parallel to the corresponding side surfaces in the compound semiconductor stacked portions 20a and 20b. Formed to be.
The infrared shielding part 30a covers a part of the compound semiconductor multilayer part 20a of the light receiving part 50a, and forms a side surface not covered with the infrared shielding part 30a on the side surface of the compound semiconductor multilayer part 20a. In the case of FIG. 2, the infrared shielding portion 30a covers the entire upper surface of the mesa-shaped compound semiconductor stacked portion 20a and the three side surfaces including the entire surface of the compound semiconductor stacked portion 20a on the compound semiconductor stacked portion 20b side. Placed in.

これにより、赤外線遮蔽部30aは、化合物半導体積層部20aの4つの側面のうち、化合物半導体積層部20bとは逆側の側面である図2において右側の側面40aは覆わず、上面全面と、4つの側面のうち化合物半導体積層部20b側の側面全面とを覆い、且つ側面40aの左右に隣接する2つの側面の、側面40aと逆側の部分のみを覆うように配
置される。受光部50aにおいて受光素子に含まれる化合物半導体積層部20aの4つの側面のうち、赤外線遮蔽部30aにより覆われていない領域の比率が最大となる面は、側面40aであることから、この側面40aが主入射面となる。
Thereby, the infrared shielding part 30a does not cover the right side surface 40a in FIG. 2 which is the side surface opposite to the compound semiconductor stacked portion 20b among the four side surfaces of the compound semiconductor stacked portion 20a, The two side surfaces are arranged so as to cover the entire side surface on the compound semiconductor stacked portion 20b side of the two side surfaces, and to cover only the portion opposite to the side surface 40a of the two side surfaces adjacent to the left and right sides of the side surface 40a. Of the four side surfaces of the compound semiconductor stacked unit 20a included in the light receiving element in the light receiving unit 50a, the surface having the largest ratio of the region not covered by the infrared shielding unit 30a is the side surface 40a. Becomes the main incident surface.

同様に、赤外線遮蔽部30bは、受光部50bの化合物半導体積層部20bの一部を覆い、化合物半導体積層部20bの側面に赤外線遮蔽部30bで覆われていない側面を形成する。図2の場合には、赤外線遮蔽部30bは、メサ形状の化合物半導体積層部20bの上面全面と、化合物半導体積層部20bの、化合物半導体積層部20a側の面全体を含む3つの側面を覆うように配置される。   Similarly, the infrared shielding unit 30b covers a part of the compound semiconductor stacked unit 20b of the light receiving unit 50b, and forms a side surface that is not covered with the infrared shielding unit 30b on the side surface of the compound semiconductor stacked unit 20b. In the case of FIG. 2, the infrared shielding portion 30b covers the entire upper surface of the mesa-shaped compound semiconductor stacked portion 20b and the three side surfaces including the entire surface of the compound semiconductor stacked portion 20b on the compound semiconductor stacked portion 20a side. Placed in.

これにより、赤外線遮蔽部30bは、4つの側面のうち、化合物半導体積層部20aとは逆側の側面である図2において左側の側面40bは覆わず、上面全面と4つの側面のうち側面40bと向かい合う側面全面とを覆い、且つ側面40bの左右に隣接する2つの側面の側面40bと逆側の部分のみを覆う。受光部50bにおいて受光素子に含まれる化合物半導体積層部20bの4つの側面のうち、赤外線遮蔽部30bにより覆われていない領域の比率が最大となる面は、側面40bであることから、この側面40bが主入射面となる。   Thereby, the infrared shielding portion 30b does not cover the left side surface 40b in FIG. 2 which is the side surface opposite to the compound semiconductor stacked portion 20a among the four side surfaces, and the side surface 40b among the entire upper surface and the four side surfaces. The entire side surfaces facing each other are covered, and only the portion opposite to the side surface 40b of the two side surfaces adjacent to the left and right of the side surface 40b is covered. Of the four side surfaces of the compound semiconductor stacked unit 20b included in the light receiving element in the light receiving unit 50b, the surface where the ratio of the region not covered by the infrared shielding unit 30b is maximized is the side surface 40b. Becomes the main incident surface.

つまり、図2(a)に示すように、2つの受光部50a、50bのうち、一方の受光部50aの受光素子の化合物半導体積層部20aの赤外線遮蔽部30aで覆われていない主入射面としての側面40aと、他方の受光部50bの受光素子の主入射面としての側面40bとが平行とならないように、メサ形状に形成された化合物半導体積層部20a、20bの4つの側面の中から主入射面となる側面40a、40bが選定される。   That is, as shown in FIG. 2A, the main incident surface that is not covered by the infrared shielding portion 30a of the compound semiconductor stacked portion 20a of the light receiving element of one of the light receiving portions 50a as shown in FIG. The four side surfaces of the compound semiconductor stacked portions 20a and 20b formed in a mesa shape so that the side surface 40a of the other light receiving portion 50b and the side surface 40b as the main incident surface of the light receiving element of the other light receiving portion 50b are not parallel to each other. The side surfaces 40a and 40b to be the incident surfaces are selected.

メサ形状の化合物半導体積層部20a、20bにおいて互いに平行とならない側面40a、40bを主入射面とすることによって、図2に示すように、一方の受光部50aの視野FOVaと、他方の受光部50bの視野FOVbとは異なる。つまり、化合物半導体積層部20a、20bにおいて互いに平行となる側面を主入射面とした場合、受光部50a、50bの視野は同一方向となる。受光部50a、50bの視野が異なる方向となるようにするため、化合物半導体積層部20a、20bにおいて互いに平行とならない側面、例えば側面40a、40bが主入射面となるようにしている。   By making the side surfaces 40a and 40b that are not parallel to each other in the mesa-shaped compound semiconductor stacked portions 20a and 20b as the main incident surfaces, as shown in FIG. 2, the field of view FOVa of one light receiving portion 50a and the other light receiving portion 50b Is different from the field of view FOVb. That is, when the side surfaces which are parallel to each other in the compound semiconductor stacked portions 20a and 20b are the main incident surfaces, the fields of the light receiving portions 50a and 50b are in the same direction. In order to make the visual fields of the light receiving portions 50a and 50b be in different directions, the side surfaces that are not parallel to each other, for example, the side surfaces 40a and 40b, in the compound semiconductor stacked portions 20a and 20b are the main incident surfaces.

赤外線遮蔽部30a、30bを金属材料で形成することにより、赤外線遮蔽部30aおよび出力端子31aからの出力と、赤外線遮蔽部30bおよび出力端子31bからの出力とに基づいて、検出対象物が各視野内に存在するか否か、或いは、検出対象物の動作を検知することが可能になる。
例えば、この赤外線センサ装置を利用者の在席検知装置として用いた場合、一方の受光部50aの視野FOVaを人体が存在する可能性の低い領域(例えば天井等)に設定し、他方の受光部50bの視野FOVbを人体が存在する可能性の高い領域(例えばモニタの正面等)に設定した場合、両受光部50a、50bの出力の差分が閾値よりも小さければ離席中と検知でき、両受光部50a、50bの出力の差分が閾値よりも大きければ在席中であることを検知できる。例えば、図2に示すように、受光部50a、50bの出力端子31a、31bの出力を演算回路80に入力し、演算回路80において、受光部50aと受光部50bとで出力の差分を演算し、この差分と予め設定した差分の閾値とを比較することにより、座席中であるか否かを判定し、その結果を例えば表示装置などに表示することにより、在席検知結果を通知するようにすればよい。
By forming the infrared shielding portions 30a and 30b from a metal material, the object to be detected is displayed on each field of view based on the outputs from the infrared shielding portion 30a and the output terminal 31a and the outputs from the infrared shielding portion 30b and the output terminal 31b. It is possible to detect whether or not the object exists in the inside or the operation of the detection object.
For example, when this infrared sensor device is used as a user presence detection device, the field of view FOVa of one light receiving unit 50a is set to an area where the human body is unlikely to exist (for example, the ceiling), and the other light receiving unit When the visual field FOVb of 50b is set in an area where there is a high possibility that a human body exists (for example, the front of the monitor), if the difference between the outputs of both the light receiving units 50a and 50b is smaller than the threshold, it can be detected that the user is away from the seat. If the difference between the outputs of the light receiving parts 50a and 50b is larger than the threshold value, it can be detected that the user is present. For example, as shown in FIG. 2, the outputs of the output terminals 31a and 31b of the light receiving units 50a and 50b are input to the arithmetic circuit 80, and the arithmetic circuit 80 calculates the output difference between the light receiving unit 50a and the light receiving unit 50b. By comparing this difference with a preset difference threshold, it is determined whether the user is in the seat, and the result is displayed on a display device, for example, so that the presence detection result is notified. do it.

<第2実施形態>
図3は本発明の第2実施形態にかかる赤外線センサ装置の模式図である。
図3(a)は平面模式図であり、図3(b)は図3(a)のA−A′断面図である。図3(a)中、赤外線遮蔽部30および出力端子としての電極31a、31bはエッジ部のみを点線で示した。
第2実施形態にかかる赤外線センサ装置は、第1実施形態にかかる赤外線センサ装置と比較して、一体の赤外線遮蔽部30によって、両受光部50a、50bの化合物半導体積層部20a、20bの一部を覆っている点、つまり、赤外線遮蔽部30が共通している点で異なる。
Second Embodiment
FIG. 3 is a schematic view of an infrared sensor device according to the second embodiment of the present invention.
3A is a schematic plan view, and FIG. 3B is a cross-sectional view taken along the line AA ′ of FIG. In FIG. 3A, the infrared shielding part 30 and the electrodes 31a and 31b as output terminals are indicated by dotted lines only at the edge part.
Compared with the infrared sensor device according to the first embodiment, the infrared sensor device according to the second embodiment includes a part of the compound semiconductor stacked portions 20a and 20b of both the light receiving portions 50a and 50b by the integral infrared shielding portion 30. Is different in that the infrared shielding part 30 is shared.

図3に示すように、赤外線遮蔽部30は、受光部50aの化合物半導体積層部20aの上面から受光部50bの化合物半導体積層部20部の上面にかけて配置される。その結果、赤外線遮蔽部30により、受光部50aの、図3において右側の側面40aは覆われず、上面全面と側面40aと向かい合う側面全面と側面40aの左右に隣接する2つの側面の、側面40aと逆側の部分のみとが覆われ、受光部50bの、図3において左側の側面40bは覆わず、上面全面と側面40bと向かい合う側面全面と側面40bの左右に隣接する2つの側面の側面40bと逆側の部分のみとが覆われ、さらに、受光部50aと受光部50bとの間が覆われる。   As shown in FIG. 3, the infrared shielding part 30 is arranged from the upper surface of the compound semiconductor multilayer part 20a of the light receiving part 50a to the upper surface of the compound semiconductor multilayer part 20 part of the light receiving part 50b. As a result, the infrared shielding portion 30 does not cover the right side surface 40a of the light receiving portion 50a in FIG. 3, and the side surface 40a of the entire upper surface, the entire side surface facing the side surface 40a, and the two side surfaces adjacent to the left and right of the side surface 40a. 3 is covered, and the left side surface 40b of the light receiving portion 50b in FIG. 3 is not covered, and the entire upper surface, the entire side surface facing the side surface 40b, and the two side surfaces 40b adjacent to the left and right of the side surface 40b. Only the opposite side portion is covered, and further, the space between the light receiving portion 50a and the light receiving portion 50b is covered.

つまり、第2実施形態においても、受光部50a、50bのメサ形状の化合物半導体積層部20a、20bの4つの側面のうち、互いに平行とならない側面40aと40bとが主入射面となる。
次に、第2実施形態の赤外線センサ装置の動作について図4を用いて説明する。図4(a)は図3において2つの受光素子つまり化合物半導体積層部20a及び20bが直列接続されてなる受光部50a及び50bそれぞれを一つのダイオードとしてみたときの等価回路図であり、図4(b)は該ダイオードを回路で示した等価回路図である。
That is, also in the second embodiment, of the four side surfaces of the mesa-shaped compound semiconductor multilayer portions 20a and 20b of the light receiving portions 50a and 50b, the side surfaces 40a and 40b that are not parallel to each other are the main incident surfaces.
Next, the operation of the infrared sensor device of the second embodiment will be described with reference to FIG. FIG. 4A is an equivalent circuit diagram when each of the light receiving portions 50a and 50b in which the two light receiving elements, that is, the compound semiconductor stacked portions 20a and 20b are connected in series in FIG. b) is an equivalent circuit diagram showing the diode as a circuit.

受光部50a及び50bのそれぞれでは、検出対象の光が化合物半導体積層部20a、20bの光吸収層に侵入すると、電子・ホール対が発生し、外部からのバイアスが印可されていない場合、電子がn層側へ拡散し、ホールがp層側へ拡散してn層とp層との間に光起電力IpA及びIpBが生成される。
図4(b)において出力端子31a,31b間で生じた信号について説明する。
In each of the light receiving parts 50a and 50b, when the light to be detected enters the light absorption layer of the compound semiconductor stacked parts 20a and 20b, an electron-hole pair is generated, and when no external bias is applied, Diffusion to the n-layer side and holes diffuse to the p-layer side, and photovoltaics IpA and IpB are generated between the n-layer and the p-layer.
A signal generated between the output terminals 31a and 31b in FIG. 4B will be described.

受光部50a及び50bはそれぞれ内部抵抗としてR0A及びR0Bを有しているため、出力端子31a及び31b間に流れる電流Ipは次式(1)で表される。
Ip=(IpA×R0A−IpB×R0B)/(R0A+R0B) ……(1)
また、内部抵抗R0A及びR0Bが同一であれば、Ipは次式(2)で表される。
Ip=(1/2)×(IpA−IpB) ……(2)
つまり、出力端子31a、31b間の信号によって、受光部50a、50bで生じた信号の差分を出力可能であることがわかる。つまり、第2実施形態の場合、受光部50a、50bで生じた信号の差分を演算しなくてすむため、その分、演算回路80での処理負荷を軽減することができる。
Since the light receiving portions 50a and 50b have R 0A and R 0B as internal resistances, the current Ip flowing between the output terminals 31a and 31b is expressed by the following equation (1).
Ip = (IpA × R 0A −IpB × R 0B ) / (R 0A + R 0B ) (1)
If the internal resistances R 0A and R 0B are the same, Ip is expressed by the following equation (2).
Ip = (1/2) × (IpA−IpB) (2)
That is, it can be seen that a signal difference between the light receiving portions 50a and 50b can be output by a signal between the output terminals 31a and 31b. That is, in the case of the second embodiment, it is not necessary to calculate the difference between the signals generated in the light receiving units 50a and 50b, so that the processing load on the calculation circuit 80 can be reduced accordingly.

以上説明したように、第1及び第2実施形態の受光デバイス、すなわち赤外線センサ装置は、アンプや演算素子等といった他の手段を介さずに、且つ、外部ノイズの影響を受けずに、高いS/N比で実現することができ、微弱の輻射光源の位置・移動を検出するのに好適である。
また、出力端子31a及び31bが接続される演算回路80をさらに備えることにより、第1および第2の受光部50a、50bで生じた信号の差分、また、差分と閾値との比較結果を容易に得ることが可能になる。演算回路80の具体的な様態については特に制限されないが、例えばオペアンプと抵抗を用いた演算回路80等を用いることができる。このオペアンプの具体的な例としては、トランスインピーダンスアンプ(Transimpedanceアンプ)が挙げられる。トランスインピーダンスアンプは、出力端子の出力電流を電圧信号に変換する。このようなオペアンプを2つの受光部50a、50bの出力端子31a、31bに接続すると、出力端子31a、31bが低いインピーダンスによって短絡(Virtual Short)され、差分の短絡電流が出力される(式(2))。また、オペアンプの出力にはこの差分電流に比例した電圧信号が得られる。
As described above, the light receiving device of the first and second embodiments, that is, the infrared sensor device, has a high S without passing through other means such as an amplifier and an arithmetic element and without being affected by external noise. / N ratio, which is suitable for detecting the position and movement of a weak radiation light source.
Further, by further including an arithmetic circuit 80 to which the output terminals 31a and 31b are connected, the difference between the signals generated in the first and second light receiving portions 50a and 50b, and the comparison result between the difference and the threshold value can be easily obtained. It becomes possible to obtain. Although a specific mode of the arithmetic circuit 80 is not particularly limited, for example, an arithmetic circuit 80 using an operational amplifier and a resistor can be used. A specific example of this operational amplifier is a transimpedance amplifier. The transimpedance amplifier converts the output current of the output terminal into a voltage signal. When such an operational amplifier is connected to the output terminals 31a and 31b of the two light receiving sections 50a and 50b, the output terminals 31a and 31b are short-circuited by a low impedance (Virtual Short), and a differential short-circuit current is output (formula (2) )). Further, a voltage signal proportional to the differential current is obtained at the output of the operational amplifier.

なお、ここでは、出力端子から得られる電流を示したが、高入力インピーダンスのアンプを利用すると開放電圧の取り出しが可能となる。従って、受光部50aと受光部50bのそれぞれの開放電圧の差が得られる。用途によって開放電圧を出力しても良いが、多くの場合、特にナローギャップの半導体(InSb、InAsSb、等)で形成された受光部の場合、受光部の内部抵抗の温度特性の影響を受けにくくするには、上記の説明のように、短絡電流を出力した方が好ましい。   Although the current obtained from the output terminal is shown here, the open-circuit voltage can be extracted by using a high input impedance amplifier. Accordingly, a difference in open circuit voltage between the light receiving unit 50a and the light receiving unit 50b is obtained. The open-circuit voltage may be output depending on the application, but in many cases, particularly in the case of a light receiving part formed of a narrow gap semiconductor (InSb, InAsSb, etc.), it is difficult to be affected by the temperature characteristics of the internal resistance of the light receiving part. For this purpose, it is preferable to output a short-circuit current as described above.

<第3実施形態>
図5は本発明の第3実施形態にかかる赤外線センサ装置の模式図である。
図5(a)は平面模式図であり、図5(b)は図5(a)のA−A′断面図である。図5(a)中、赤外線遮蔽部30a、30bおよび出力端子としての電極31a、31bはエッジ部のみを点線で示した。
第3実施形態の赤外線センサ装置は、受光部50a、50bが、それぞれ複数の受光素子が直列接続されている点で、第1実施形態と異なる。図5では受光部50a、50bともそれぞれ3個の受光素子が直列接続されている。
<Third Embodiment>
FIG. 5 is a schematic diagram of an infrared sensor device according to a third embodiment of the present invention.
FIG. 5A is a schematic plan view, and FIG. 5B is a cross-sectional view taken along line AA ′ of FIG. In FIG. 5A, only the edge portions of the infrared shielding portions 30a and 30b and the electrodes 31a and 31b as output terminals are indicated by dotted lines.
The infrared sensor device of the third embodiment is different from that of the first embodiment in that the light receiving units 50a and 50b each have a plurality of light receiving elements connected in series. In FIG. 5, three light receiving elements are connected in series with each of the light receiving portions 50a and 50b.

なお、受光部50aの受光素子の化合物半導体積層部20aの赤外線遮蔽部30aで覆われていない側面40aは、直列接続された受光素子全ての間で平行であり、受光部50bの受光素子の化合物半導体積層部20bの赤外線遮蔽部30bで覆われていない側面40bも直列接続された受光素子全ての間で平行である。
複数の受光素子が直列接続されていることにより、第1実施形態の赤外線センサ装置よりもより高感度な赤外線センサ装置となる点で好ましい。
In addition, the side surface 40a not covered with the infrared shielding part 30a of the compound semiconductor laminated part 20a of the light receiving element of the light receiving part 50a is parallel between all the light receiving elements connected in series, and is a compound of the light receiving element of the light receiving part 50b. The side surface 40b of the semiconductor laminated portion 20b that is not covered with the infrared shielding portion 30b is also parallel between all the light receiving elements connected in series.
A plurality of light receiving elements connected in series is preferable in that the infrared sensor device is more sensitive than the infrared sensor device of the first embodiment.

図5に示した第3実施形態の赤外線センサ装置は、各受光部50a、50bのそれぞれにおいて、受光素子としての化合物半導体積層部20a、20bの赤外線遮蔽部30a、30bで覆われていない側面40aどうし、40bどうしが平行である。つまり、各受光素子において化合物半導体積層部の、赤外線遮蔽部により覆われていない領域の比率が最大となる側面、つまり40a、40bがそれぞれ直列に接続された受光素子全ての間で平行であるため、いずれかの受光素子の側面40a、40bが主入射面となる。
図5の場合、受光部50aにおける主側面である40aと、受光部50bにおける主側面である40bとは平行ではないため、側面40a、40bを主側面とすることによって、視野の異なる2つの受光部50a、50bを備えた赤外線センサ装置を実現することができる。
In the infrared sensor device of the third embodiment shown in FIG. 5, in each of the light receiving portions 50a and 50b, the side surface 40a that is not covered with the infrared shielding portions 30a and 30b of the compound semiconductor stacked portions 20a and 20b as the light receiving elements. 40b is parallel to each other. In other words, in each light receiving element, the side surface in which the ratio of the region not covered by the infrared shielding portion of the compound semiconductor laminated portion is the maximum, that is, 40a and 40b are parallel to all the light receiving elements connected in series. The side surfaces 40a and 40b of any one of the light receiving elements are main incident surfaces.
In the case of FIG. 5, since 40a which is the main side surface in the light receiving unit 50a and 40b which is the main side surface in the light receiving unit 50b are not parallel, the two side surfaces 40a and 40b are used as the main side surfaces. An infrared sensor device including the units 50a and 50b can be realized.

なお、図5において、例えば、受光部50aの各受光素子の化合物半導体積層部の、赤外線遮蔽部により覆われていない領域の比率が最大となる側面40aがそれぞれ直列に接続されたいずれかの受光素子間で非平行である場合には、受光部50aの中心から等距離の球面上で同じ強度の光源を移動させたとき受光部50aの出力が最も大きくなるときの光源中心位置と受光部50aの中心とを結んだ直線に垂直な面を主入射面とする。そして、このようにして設定される受光部50aの主入射面と、受光部50bの主入射面とが平行とならないように、受光部50a、50bの各受光素子において、赤外線遮蔽部30a、30bにより覆う化合物半導体積層部20a、20bの面を決定すればよい。
そして、図5に示すように、複数の受光素子を有する受光部を用いた場合も、出力端子31a、31bの出力の差分を、演算回路80により演算し、閾値と比較することにより、検出対象物が各視野内に存在するか否か、或いは、検出対象物の動作を容易に検知することができる。
In FIG. 5, for example, any one of the light receiving elements in which the side surfaces 40 a in which the ratio of the region not covered by the infrared shielding part of the compound semiconductor stacked part of each light receiving element of the light receiving part 50 a is maximized are connected in series. When the elements are non-parallel, the light source center position and the light receiving unit 50a when the output of the light receiving unit 50a becomes maximum when the light source having the same intensity is moved on a spherical surface equidistant from the center of the light receiving unit 50a. A plane perpendicular to a straight line connecting the centers of the two is defined as a main incident surface. In addition, in the respective light receiving elements of the light receiving portions 50a and 50b, the infrared shielding portions 30a and 30b are set so that the main incident surface of the light receiving portion 50a set in this way and the main incident surface of the light receiving portion 50b are not parallel. What is necessary is just to determine the surface of the compound semiconductor lamination | stacking part 20a, 20b covered by.
As shown in FIG. 5, even when a light receiving unit having a plurality of light receiving elements is used, a difference between outputs of the output terminals 31 a and 31 b is calculated by the arithmetic circuit 80 and compared with a threshold value. It is possible to easily detect whether or not an object exists in each field of view or the operation of the detection object.

<第4実施形態>
図6は本発明の第4実施形態にかかる赤外線センサ装置の模式図である。
図6に示すように、第2実施形態における赤外線センサ装置100を、光学窓501が設置されたパッケージケース500内に配置し、赤外線センサ装置100の2つの出力端子(図示せず)とパッケージケース500内の配線(図示せず)とをワイヤ502で接続している。パッケージケース500内の配線を介して、赤外線センサ装置100の出力信号を外部に取り出して、第2実施形態における赤外線センサと同様に演算回路80で演算してもよい。或いは、パッケージケース500内に信号処理部を設置し、パッケージケース500内の配線からの出力信号を該信号処理部に入力し、信号処理部での演算処理により得た所望の出力信号を外部に取り出すようにしてもよい。
第4実施形態の赤外線センサ装置において、パッケージケース500を、実質的に赤外線を遮蔽する部材で構成すれば、赤外線センサ装置100の基板の第2の主面側、すなわち化合物半導体積層部が形成されない側に赤外線遮蔽部を更に備える必要はなく、所望の異なる視野を複数有する赤外線センサ装置を実現できる。
<Fourth embodiment>
FIG. 6 is a schematic diagram of an infrared sensor device according to a fourth embodiment of the present invention.
As shown in FIG. 6, the infrared sensor device 100 according to the second embodiment is arranged in a package case 500 in which an optical window 501 is installed, and two output terminals (not shown) of the infrared sensor device 100 and a package case. A wiring (not shown) in 500 is connected by a wire 502. The output signal of the infrared sensor device 100 may be taken out via the wiring in the package case 500 and calculated by the arithmetic circuit 80 in the same manner as the infrared sensor in the second embodiment. Alternatively, a signal processing unit is installed in the package case 500, an output signal from the wiring in the package case 500 is input to the signal processing unit, and a desired output signal obtained by arithmetic processing in the signal processing unit is externally provided. You may make it take out.
In the infrared sensor device of the fourth embodiment, if the package case 500 is formed of a member that substantially shields infrared rays, the second main surface side of the substrate of the infrared sensor device 100, that is, the compound semiconductor stacked portion is not formed. There is no need to further include an infrared shielding part on the side, and an infrared sensor device having a plurality of desired different fields of view can be realized.

<実施形態の効果>
このように、本実施形態では、2つの受光部それぞれのメサ形状の化合物半導体積層部の側面のうち、互いに平行とならない側面を赤外線遮蔽部で覆われていない主入射面とするため、主入射面の向きに応じて決定される視野が、2つの受光部において異なることになる。したがって、外付けの部品等を設けることなく、視野の異なる2つの受光部を有する赤外線センサ装置を実現することができ、赤外線センサ装置の小型化を図ることができる。
<Effect of embodiment>
As described above, in this embodiment, since the side surfaces that are not parallel to each other among the side surfaces of the mesa-shaped compound semiconductor stacked portion of each of the two light receiving portions are the main incident surfaces that are not covered with the infrared shielding portion, The field of view determined according to the orientation of the surface is different between the two light receiving units. Therefore, an infrared sensor device having two light receiving portions with different fields of view can be realized without providing external parts and the like, and the infrared sensor device can be downsized.

以下、本実施形態の赤外線センサ装置に用いる受光部50の一例を説明する。
GaAs基板上に、厚さ1μmのn型InSb層、厚さ2μmのπ型InSb層、厚さ0.02μmのAlInSbのバリア層、及び厚さ0.5μmのp型のInSb層をこの順に積層し、PIN接合のフォトダイオード構造を形成した。
その後、フォトレジストマスクを利用して、2段階のウェットエッチングを施し、図1に示した様な第1のメサ部201と第2のメサ部202とを有する受光素子を形成した。第1のメサ部201の高さは2.82μm、第2のメサ部202の高さは0.7μmであった。第1のメサ部201の底面つまり第2のメサ部202と接している面は90μm×90μmの正方形状とした。第1のメサ部201の斜面と基板10の表面とのなす角度は45度であった。
Hereinafter, an example of the light receiving unit 50 used in the infrared sensor device of the present embodiment will be described.
A 1 μm thick n-type InSb layer, a 2 μm thick π-type InSb layer, a 0.02 μm thick AlInSb barrier layer, and a 0.5 μm thick p-type InSb layer are stacked in this order on a GaAs substrate. Then, a PIN junction photodiode structure was formed.
Thereafter, two-stage wet etching was performed using a photoresist mask to form a light receiving element having a first mesa portion 201 and a second mesa portion 202 as shown in FIG. The height of the first mesa unit 201 was 2.82 μm, and the height of the second mesa unit 202 was 0.7 μm. The bottom surface of the first mesa unit 201, that is, the surface in contact with the second mesa unit 202, has a square shape of 90 μm × 90 μm. The angle formed by the slope of the first mesa 201 and the surface of the substrate 10 was 45 degrees.

第1および第2のメサ部201、202を形成後、窒化シリコンからなる絶縁層60を形成し、第1のメサ部201の頂部(pコンタクト部)201aと第2のメサ部202の頂部(nコンタクト部)202aの一部の窒化シリコンを除去し、コンタクトホールを形成した。
次いで、フォトレジストマスクを利用してAu/Pt/Tiの積層配線構造からなる赤外線遮蔽部30をリフトオフ法により形成し、第1のメサ部201の一の側面を除く第1のメサ部201及び第2のメサ部202、基板10を含む部分に、赤外線遮蔽部30を形成した。これにより、第1のメサ部201の一部の側面に、赤外線遮蔽部30で覆われていない側面40を形成し、受光部50を作製した。
After forming the first and second mesas 201 and 202, an insulating layer 60 made of silicon nitride is formed, and the top (p contact part) 201a of the first mesa 201 and the top of the second mesa 202 ( A part of silicon nitride of the (n contact portion) 202a was removed to form a contact hole.
Next, an infrared shielding part 30 having a laminated wiring structure of Au / Pt / Ti is formed by a lift-off method using a photoresist mask, and the first mesa part 201 excluding one side surface of the first mesa part 201 and The infrared shielding part 30 was formed in a part including the second mesa part 202 and the substrate 10. Thereby, the side surface 40 not covered with the infrared shielding unit 30 was formed on a part of the side surface of the first mesa unit 201, and the light receiving unit 50 was manufactured.

この受光部50を用いて、温度500Kの黒体炉輻射に対する出力信号を測定した。
測定方法として、黒体炉の出射口(径φ22mm)から10cmの距離に受光部50を置き、受光部50の側面40への水平面を基準とする入射角度を変化させながら、受光部50の出力信号を測定した。外乱の影響を除去できるように、黒体炉輻射のチョッピングによる変調及びロックインアンプを利用した復調を利用した。
Using this light receiving unit 50, an output signal with respect to a black body furnace radiation at a temperature of 500K was measured.
As a measuring method, the light receiving unit 50 is placed at a distance of 10 cm from the exit of the blackbody furnace (diameter φ22 mm), and the output of the light receiving unit 50 is changed while changing the incident angle with respect to the horizontal plane to the side surface 40 of the light receiving unit 50. The signal was measured. In order to eliminate the influence of disturbance, modulation by chopping of blackbody furnace radiation and demodulation using a lock-in amplifier were used.

図7はその測定結果を示したものであり、横軸は入射角度、縦軸は受光部50の出力信号である。
その結果、図1において、受光部50の中心部Mを通る水平面を零度として右周りに角度が大きくなるものとすると、図1に破線で示すように、受光部50への入射角が135度(基板垂直に対して45度)付近で最も高い出力が得られることが分かる。受光部50への入射角が0〜45度の場合、つまり、図1において、化合物半導体積層部20の主入射面である側面40に向かい合う側面に赤外線が入射される場合には、幾何学的には黒体炉から出力された赤外線が直接光吸収層22に入射されることはないが、受光部50の出力として、入射角135度の場合の半分程度の出力が確認された。これは第2のメサ部202の赤外線遮蔽部30で覆われていない領域から赤外線が基板10内に入射し、基板10の第2の主面10bで反射し、間接的に光吸収層22に赤外線が入射したためと考えられる。いずれにせよ、本実施例より、本実施形態の赤外線センサ装置によれば、受光部の受光素子の化合物半導体積層部に赤外線遮蔽部で覆われていない主入射面としての側面を設け、このような受光部50を同一基板10上に複数設け且つ受光部50間で主入射面が非平行となるように受光部50を形成し、対象の赤外線を、いずれかの主入射面から入射させることにより、レンズや複雑な光学系、視野制限部などの外付け部品を用いることなく、異なる視野からの光を分離・選択して検出することが可能な赤外線センサ装置を実現できることが確認できた。
FIG. 7 shows the measurement results. The horizontal axis represents the incident angle, and the vertical axis represents the output signal of the light receiving unit 50.
As a result, in FIG. 1, assuming that the horizontal plane passing through the center M of the light receiving unit 50 is zero degrees and the angle increases clockwise, the incident angle to the light receiving unit 50 is 135 degrees as shown by the broken line in FIG. It can be seen that the highest output is obtained in the vicinity of (45 degrees with respect to the substrate vertical). When the incident angle to the light receiving unit 50 is 0 to 45 degrees, that is, when infrared rays are incident on the side surface facing the side surface 40 which is the main incident surface of the compound semiconductor stacked unit 20 in FIG. In this case, the infrared ray output from the blackbody furnace is not directly incident on the light absorption layer 22, but the output of the light receiving unit 50 was confirmed to be about half that of the incident angle of 135 degrees. This is because infrared rays are incident on the substrate 10 from a region not covered by the infrared shielding portion 30 of the second mesa portion 202, reflected by the second main surface 10 b of the substrate 10, and indirectly to the light absorption layer 22. This is thought to be due to the incidence of infrared rays. In any case, from this example, according to the infrared sensor device of the present embodiment, the compound semiconductor stack of the light receiving element of the light receiving unit is provided with a side surface as a main incident surface that is not covered with the infrared shielding unit. A plurality of light receiving portions 50 are provided on the same substrate 10 and the light receiving portions 50 are formed so that the main incident surfaces are not parallel between the light receiving portions 50, and target infrared rays are incident from any of the main incident surfaces. Thus, it was confirmed that an infrared sensor device capable of separating and selecting light from different fields of view can be realized without using external components such as a lens, a complicated optical system, and a field-of-view restriction unit.

<その他>
なお、上記実施形態においては、化合物半導体積層部20をメサ形状に形成した場合について説明したがこれに限るものではなく、多面体形状であってもよい。
また、面の面積は化合物半導体積層部20内において同一でなくてもよい。同様に、複数の受光素子を備えた受光部の場合、複数の受光素子間で、化合物半導体積層部20の各面の面積が異なっていてもよい。
<Others>
In addition, in the said embodiment, although the case where the compound semiconductor laminated part 20 was formed in the mesa shape was demonstrated, it is not restricted to this, A polyhedral shape may be sufficient.
Further, the area of the surface may not be the same in the compound semiconductor stacked unit 20. Similarly, in the case of a light receiving unit including a plurality of light receiving elements, the area of each surface of the compound semiconductor stacked unit 20 may be different between the plurality of light receiving elements.

また、上記実施形態においては、メサ形状の化合物半導体積層部20の4つの側面のうちの一の側面を、赤外線遮蔽部30で覆わないようにした場合について説明したが、一の側面全面を赤外線遮蔽部30で覆わないようにしてもよく、入射される赤外線に応じた出力特性を発揮できる程度の赤外線遮蔽部30で覆われていない領域が残っていればよい。
また、上記実施形態においては、複数の受光部が共に、受光素子を1つのみ有する場合、或いは複数の受光素子を有する場合について説明したがこれに限るものではない。各々の受光部を構成する受光素子の数が異なっても良く、また、一の受光部は主入射面が平行な複数の受光素子を有し、他の受光部は主入射面が非平行な複数の受光素子を有する構成であってもよい。
In the above embodiment, the case where one of the four side surfaces of the mesa-shaped compound semiconductor stacked unit 20 is not covered with the infrared shielding unit 30 has been described. It may not be covered with the shielding part 30, and the area | region which is not covered with the infrared shielding part 30 of the grade which can exhibit the output characteristic according to the incident infrared rays should just remain.
In the above-described embodiment, the case where each of the plurality of light receiving units has only one light receiving element or a plurality of light receiving elements has been described, but the present invention is not limited to this. The number of light receiving elements constituting each light receiving unit may be different, and one light receiving unit has a plurality of light receiving elements whose main incident surfaces are parallel, and the other light receiving unit has a non-parallel main incident surface. A configuration having a plurality of light receiving elements may also be used.

また、各受光部の共通接続点に接続される出力端子を設けても良い。
また、上記実施形態においては、赤外線センサ装置が2つの受光部を備える場合について説明したがこれに限るものではなく、3つ以上の受光部を備える場合であっても適用することができ、3つ以上の受光部を設けることによって、異なる3方向以上の方向からの赤外線を分離し、検出することができる。
Moreover, you may provide the output terminal connected to the common connection point of each light-receiving part.
In the above embodiment, the case where the infrared sensor device includes two light receiving units has been described. However, the present invention is not limited to this, and the present invention can also be applied to a case where three or more light receiving units are provided. By providing two or more light receiving portions, infrared rays from three or more different directions can be separated and detected.

また、本発明の範囲は、図示され記載された例示的な実施形態や実施例に限定されるものではない。当業者の知識に基づいて各実施形態や実施例に設計の変更等を加えてもよく、また、各実施形態や実施例を任意に組み合わせてもよく、本発明が目的とするものと均等な効果をもたらす、すべての実施形態をも含む。さらに、本発明の範囲は、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。   In addition, the scope of the present invention is not limited to the exemplary embodiments and examples shown and described. Based on the knowledge of those skilled in the art, design changes or the like may be added to each embodiment or example, and each embodiment or example may be arbitrarily combined, and is equivalent to the purpose of the present invention. Also includes all embodiments that provide an effect. Further, the scope of the invention can be defined by any desired combination of particular features among all the disclosed features.

本発明は、人感センサ等に応用される、複数の受光部を備えた赤外線センサ装置として好適である。   The present invention is suitable as an infrared sensor device including a plurality of light receiving units, which is applied to a human sensor or the like.

10 基板
20、20a、20b 化合物半導体積層部
21 n型化合物半導体層
22 光吸収層(i型化合物半導体層)
23 p型化合物半導体層
24 バリア層
201 第1のメサ部
202 第2のメサ部
30、30a、30b 赤外線遮蔽部
31a、31b 出力端子
40、40a、40b 赤外線遮蔽部で覆われていない側面
50、50a、50b 受光部
60 絶縁層
100 赤外線センサ装置
500 パッケージケース
501 光学窓
502 ワイヤ
DESCRIPTION OF SYMBOLS 10 Board | substrate 20, 20a, 20b Compound semiconductor laminated part 21 N-type compound semiconductor layer 22 Light absorption layer (i-type compound semiconductor layer)
23 p-type compound semiconductor layer 24 barrier layer 201 first mesa part 202 second mesa part 30, 30a, 30b infrared shielding part 31a, 31b output terminal 40, 40a, 40b side face not covered with infrared shielding part 50, 50a, 50b Light receiving portion 60 Insulating layer 100 Infrared sensor device 500 Package case 501 Optical window 502 Wire

Claims (6)

フォトダイオード構造を含む多面体形状の化合物半導体積層部を有する受光素子と前記化合物半導体積層部の一部を覆う赤外線遮蔽部とを備えた受光部を、同一基板上に複数有し、
前記受光部の主入射面が、前記複数の受光部間で非平行である赤外線センサ装置。
A plurality of light receiving parts on the same substrate, each including a light receiving element having a polyhedral compound semiconductor laminated part including a photodiode structure and an infrared shielding part covering a part of the compound semiconductor laminated part;
An infrared sensor device in which a main incident surface of the light receiving unit is non-parallel between the plurality of light receiving units.
複数の前記受光部は、前記受光素子を1つのみ備える第1の受光部を含み、
当該第1の受光部の前記受光素子が含む前記化合物半導体積層部の各平面のうち、前記赤外線遮蔽部により覆われていない領域が最大となる一の平面を、前記主入射面とする請求項1に記載の赤外線センサ装置。
The plurality of light receiving units include a first light receiving unit including only one light receiving element,
The one plane in which the area not covered by the infrared shielding portion is the largest among the planes of the compound semiconductor stacked unit included in the light receiving element of the first light receiving unit is the main incident surface. The infrared sensor device according to 1.
複数の前記受光部は、直列接続された複数の前記受光素子を有する第2の受光部を含み、
前記第2の受光部において、一の前記受光素子が含む前記化合物半導体積層部の各平面のうち、前記赤外線遮蔽部により覆われていない領域が最大となる一の平面が前記受光素子全ての間で平行であり、
前記複数の受光素子のうちのいずれかの受光素子の前記一の平面を、前記主入射面とする請求項1又は請求項2に記載の赤外線センサ装置。
The plurality of light receiving units includes a second light receiving unit having the plurality of light receiving elements connected in series,
In the second light receiving portion, one of the flat surfaces of the compound semiconductor stacked portion included in one light receiving element has a maximum area not covered by the infrared shielding portion between all the light receiving elements. In parallel,
The infrared sensor device according to claim 1, wherein the one plane of any one of the plurality of light receiving elements is the main incident surface.
複数の前記受光部は、直列接続された複数の前記受光素子を有する第3の受光部を含み、
前記第3の受光部において、一の前記受光素子が含む前記化合物半導体積層部の各平面のうち、前記赤外線遮蔽部により覆われていない領域が最大となる一の平面が前記受光素子いずれかの間で非平行であり、
前記受光部の中心から等距離の球面上で強度一定の光源を移動させたときに前記受光部の出力が最大となるときの前記光源の中心位置と前記受光部の中心とを結ぶ直線に垂直な平面を前記主入射面とする請求項1から請求項3のいずれか1項に記載の赤外線センサ装置。
The plurality of light receiving units includes a third light receiving unit having the plurality of light receiving elements connected in series,
In the third light receiving portion, one of the planes of the compound semiconductor stacked portion included in one of the light receiving elements is one of the light receiving elements where the area that is not covered by the infrared shielding portion is maximum. Non-parallel between,
Perpendicular to a straight line connecting the center position of the light source and the center of the light receiving unit when the output of the light receiving unit becomes maximum when a light source having a constant intensity is moved on a spherical surface equidistant from the center of the light receiving unit The infrared sensor device according to any one of claims 1 to 3, wherein a flat surface is the main incident surface.
前記フォトダイオード構造は、PN接合部又はPIN接合部を含む請求項1から請求項4のいずれか1項に記載の赤外線センサ装置。   The infrared sensor device according to claim 1, wherein the photodiode structure includes a PN junction or a PIN junction. 前記化合物半導体積層部は4つの側面を有するメサ形状である請求項1から請求項5のいずれか1項に記載の赤外線センサ装置。   The infrared sensor device according to any one of claims 1 to 5, wherein the compound semiconductor stacked portion has a mesa shape having four side surfaces.
JP2014175781A 2014-08-29 2014-08-29 Infrared sensor device Active JP6466668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014175781A JP6466668B2 (en) 2014-08-29 2014-08-29 Infrared sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014175781A JP6466668B2 (en) 2014-08-29 2014-08-29 Infrared sensor device

Publications (2)

Publication Number Publication Date
JP2016050833A true JP2016050833A (en) 2016-04-11
JP6466668B2 JP6466668B2 (en) 2019-02-06

Family

ID=55658443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014175781A Active JP6466668B2 (en) 2014-08-29 2014-08-29 Infrared sensor device

Country Status (1)

Country Link
JP (1) JP6466668B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228628A (en) * 2016-06-22 2017-12-28 旭化成エレクトロニクス株式会社 Infrared device
JP2018204922A (en) * 2017-06-09 2018-12-27 アズビル株式会社 Human detection device and method
KR20230106189A (en) * 2022-01-05 2023-07-13 (주)파트론 Photo diode module and manufacturing method of photo diode module

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711998A (en) * 1985-12-05 1987-12-08 Santa Barbara Research Center Direction finder system with mirror array
WO1997027449A1 (en) * 1996-01-23 1997-07-31 Science Application International Corporation Radiant energy transducing apparatus with constructive occlusion
JP2002005738A (en) * 2000-06-23 2002-01-09 Matsushita Electric Works Ltd Illuminance sensor
JP2002048643A (en) * 2000-07-31 2002-02-15 Matsushita Electric Works Ltd Brightness sensor and illuminating device with the same
JP2002100796A (en) * 2000-07-18 2002-04-05 Nippon Sheet Glass Co Ltd Photodetection element array
JP2008066583A (en) * 2006-09-08 2008-03-21 Asahi Kasei Electronics Co Ltd Photosensor
WO2008088018A1 (en) * 2007-01-18 2008-07-24 Nec Corporation Semiconductor light-receiving device
US20110248151A1 (en) * 2010-04-13 2011-10-13 Holcombe Wayne T System and Circuit Including Multiple Photo Detectors
JP2013210322A (en) * 2012-03-30 2013-10-10 Asahi Kasei Electronics Co Ltd Light reception intensity computing device and position detecting device
JP2013210277A (en) * 2012-03-30 2013-10-10 Asahi Kasei Electronics Co Ltd Light reception intensity computing device and position detecting device
JP2014145610A (en) * 2013-01-28 2014-08-14 Panasonic Corp Infrared sensor unit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711998A (en) * 1985-12-05 1987-12-08 Santa Barbara Research Center Direction finder system with mirror array
WO1997027449A1 (en) * 1996-01-23 1997-07-31 Science Application International Corporation Radiant energy transducing apparatus with constructive occlusion
JP2002005738A (en) * 2000-06-23 2002-01-09 Matsushita Electric Works Ltd Illuminance sensor
JP2002100796A (en) * 2000-07-18 2002-04-05 Nippon Sheet Glass Co Ltd Photodetection element array
JP2002048643A (en) * 2000-07-31 2002-02-15 Matsushita Electric Works Ltd Brightness sensor and illuminating device with the same
JP2008066583A (en) * 2006-09-08 2008-03-21 Asahi Kasei Electronics Co Ltd Photosensor
WO2008088018A1 (en) * 2007-01-18 2008-07-24 Nec Corporation Semiconductor light-receiving device
US20110248151A1 (en) * 2010-04-13 2011-10-13 Holcombe Wayne T System and Circuit Including Multiple Photo Detectors
JP2013210322A (en) * 2012-03-30 2013-10-10 Asahi Kasei Electronics Co Ltd Light reception intensity computing device and position detecting device
JP2013210277A (en) * 2012-03-30 2013-10-10 Asahi Kasei Electronics Co Ltd Light reception intensity computing device and position detecting device
JP2014145610A (en) * 2013-01-28 2014-08-14 Panasonic Corp Infrared sensor unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228628A (en) * 2016-06-22 2017-12-28 旭化成エレクトロニクス株式会社 Infrared device
JP2018204922A (en) * 2017-06-09 2018-12-27 アズビル株式会社 Human detection device and method
KR20230106189A (en) * 2022-01-05 2023-07-13 (주)파트론 Photo diode module and manufacturing method of photo diode module
KR102640525B1 (en) * 2022-01-05 2024-02-28 (주)파트론 Photo diode module

Also Published As

Publication number Publication date
JP6466668B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP4086875B2 (en) Infrared sensor IC, infrared sensor and manufacturing method thereof
US11888016B2 (en) Image sensor for high photoelectric conversion efficiency and low dark current
JP2016062996A (en) Photodetector
US10115764B2 (en) Multi-band position sensitive imaging arrays
US9046410B2 (en) Light receiving device
RU2641620C1 (en) Avalanche photodetector
US11676976B2 (en) PIN photodetector
US10411049B2 (en) Optical sensor having two taps for photon-generated electrons of visible and IR light
JP2007081225A (en) Infrared sensor, and manufacturing method thereof
US20170199078A1 (en) Plasmonic avalanche photodetection
US10128386B2 (en) Semiconductor structure comprising an absorbing area placed in a focusing cavity
JP6466668B2 (en) Infrared sensor device
US11329184B2 (en) Photodetector and lidar device comprising a detector having a PN junction connected to an optically transmissive quench resistor
US20070075224A1 (en) Two coluor photon detector
JP2008078651A (en) Avalanche photodiode
JP2008103742A (en) Infrared sensor ic
JP5859364B2 (en) Received light intensity calculation device and position detection device
JP5917233B2 (en) Received light intensity calculation device and position detection device
JP2017190994A (en) Photodetector and lidar device
WO2019045652A2 (en) Photodetector
JP4138853B2 (en) Infrared sensor IC
JP5503380B2 (en) Infrared sensor
JP2012119490A (en) Semiconductor light-receiving element and light-receiving device having the same
JP5766145B2 (en) Infrared sensor array
US20220399466A1 (en) Graphene photodetector and photodetector array using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190110

R150 Certificate of patent or registration of utility model

Ref document number: 6466668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150