JP2016050337A - High strength high ductility steel sheet - Google Patents

High strength high ductility steel sheet Download PDF

Info

Publication number
JP2016050337A
JP2016050337A JP2014175909A JP2014175909A JP2016050337A JP 2016050337 A JP2016050337 A JP 2016050337A JP 2014175909 A JP2014175909 A JP 2014175909A JP 2014175909 A JP2014175909 A JP 2014175909A JP 2016050337 A JP2016050337 A JP 2016050337A
Authority
JP
Japan
Prior art keywords
steel
steel sheet
strength
bainite
retained austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014175909A
Other languages
Japanese (ja)
Other versions
JP6158769B2 (en
Inventor
村上 俊夫
Toshio Murakami
俊夫 村上
浩和 棗田
Hirokazu Natsumeda
浩和 棗田
みなみ 大槻
Minami Otsuki
みなみ 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Research Institute Inc
Original Assignee
Kobe Steel Ltd
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco Research Institute Inc filed Critical Kobe Steel Ltd
Priority to JP2014175909A priority Critical patent/JP6158769B2/en
Publication of JP2016050337A publication Critical patent/JP2016050337A/en
Application granted granted Critical
Publication of JP6158769B2 publication Critical patent/JP6158769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high strength high ductility steel sheet used for an automobile thin steel sheet excellent in strength-ductility balance, capable of securing elongation of 32% or more with tensile strength of 1180 MPa or more.SOLUTION: There is provided a high strength high ductility steel sheet having a component composition containing, by mass%, C:0.10 to 0.30%, Si:1.0 to 3.0%, Mn:4.0 to 7.0% and the balance iron with inevitable impurities, a steel structure consisting of retained austenite of 40% or more by area percentage, ferrite of 5% or less by area percentage and the balance bainite, martensite, tempered bainite and tempered martensite, a zone having IQ value by EBSD of 5000 or less of 25% or more, the zone having IQ value of 6000 or more of 30% or more by area percentage, and Mn concentration in the retained austenite is 1.5 times or more as Mn content of the whole steel sheet.SELECTED DRAWING: None

Description

本発明は、自動用薄鋼板などとして有用な高強度高延性鋼板に関し、詳しくは、Mnを5質量%程度含有する中Mn鋼からなる鋼板の強度・延性バランス向上技術に関するものである。   The present invention relates to a high-strength and highly ductile steel sheet useful as an automatic thin steel sheet and the like, and more particularly to a technique for improving the strength / ductility balance of a steel sheet made of medium Mn steel containing about 5% by mass of Mn.

例えば自動車の骨格部品などに使用される鋼板には、衝突安全性や車体軽量化による燃費軽減などを目的としてさらなる高強度が求められるとともに、形状の複雑な骨格部品に加工するために優れた成形加工性も要求される。このため、具体的な機械的特性(以下、単に「特性」ともいう。)として、引張強度(TS)が1180MPa以上で、伸び(EL)が32%以上を確保しうる鋼板の開発が要望されている。   For example, steel sheets used in automobile frame parts and the like are required to have higher strength for the purpose of collision safety and fuel efficiency reduction by reducing the weight of the car body, and excellent molding for processing into complex frame parts Workability is also required. For this reason, there is a demand for the development of a steel sheet capable of securing a tensile strength (TS) of 1180 MPa or more and an elongation (EL) of 32% or more as specific mechanical characteristics (hereinafter also simply referred to as “characteristics”). ing.

上記要望に答えるべく、鋼板材料として種々の材料が提案されているが、近年、強度・延性バランスに優れる、Mn含有量が4〜10質量%程度の中Mn鋼が注目されてきている。   Various materials have been proposed as steel plate materials to meet the above-mentioned demands. In recent years, medium Mn steel having an excellent balance between strength and ductility and having a Mn content of about 4 to 10% by mass has attracted attention.

たとえば、特許文献1には、重量%で、Mn:4.0〜7.0%、Al:0.5〜2.0%を含む成分組成の鋼スラブを熱間圧延し、550〜650℃で巻取りした後、冷間圧延し、2相域温度で焼鈍することで得られた、マルテンサイト:40〜50%、残留オーステナイト:20〜40%、残部フェライトからなる鋼組織を有する高強度冷延鋼板が開示されている。この高強度冷延鋼板は、Alを所定量含有させることで、遅れ破壊を防止できるとするものであるが、引張強度1200MPaで伸び30%程度までの特性しか得られておらず、上記要望レベルを満足させるには至っていない。   For example, in Patent Document 1, a steel slab having a component composition containing Mn: 4.0 to 7.0% and Al: 0.5 to 2.0% by weight% is hot-rolled to 550 to 650 ° C. After being rolled up, the steel is cold-rolled and annealed at a two-phase region temperature. The martensite is 40 to 50%, the retained austenite is 20 to 40%, and has a steel structure composed of the remaining ferrite. A cold-rolled steel sheet is disclosed. This high-strength cold-rolled steel sheet can prevent delayed fracture by containing a predetermined amount of Al, but only a property of about 30% elongation at a tensile strength of 1200 MPa has been obtained. Has not yet been satisfied.

また、特許文献2には、Mn:3.5〜10.0質量%を含む成分組成の鋼スラブを熱間圧延し、2相域温度の低温域で巻取りした後、冷間圧延し、2相域温度で焼鈍することで得られた、面積率で、30%以上のフェライトと10%以上の残留オーステナイトを含有する鋼組織を有する高強度鋼板が開示されている。この高強度鋼板は、フェライトと残留オーステナイトを所要量ずつ併存させることで、延性が確保され、所定の強度−延性バランスが得られるとするものであるが、上記要望レベルの強度−延性バランスを満足させるには至っていない。   Moreover, in patent document 2, after hot-rolling the steel slab of the component composition containing Mn: 3.5-10.0 mass%, coiling in the low temperature range of two phase region temperature, it cold-rolling, A high-strength steel sheet having a steel structure containing 30% or more of ferrite and 10% or more of retained austenite obtained by annealing at a two-phase region temperature is disclosed. This high-strength steel sheet is intended to ensure the ductility and obtain a predetermined strength-ductility balance by coexisting ferrite and retained austenite for each required amount. It has not reached.

また、特許文献3には、Mn:3.5〜10質量%を含む成分組成での鋼スラブを熱間圧延し、500〜600℃で巻取りした後、冷間圧延し、300〜600℃までの1次加熱を平均昇温速度1〜50℃/sと急速加熱し、600℃から焼鈍温度までの2次加熱を平均昇温速度0.1〜10℃/sとして、焼鈍温度:650〜750℃まで加熱することで、体積率で、30〜70%のフェライト相と10%以上の残留オーステナイト相を含み、該残留オーステナイト相の平均間隔が1.5μm以下である組織を有する高強度薄鋼板が開示されている。この高強度薄鋼板は、衝突エネルギー吸収能に優れるとするものの、フェライトが相当量含まれるために強度−延性バランスが不十分であると想定される。   In Patent Document 3, a steel slab having a composition containing Mn: 3.5 to 10% by mass is hot-rolled and wound at 500 to 600 ° C., and then cold-rolled and 300 to 600 ° C. The primary heating up to is rapidly heated to an average temperature rising rate of 1 to 50 ° C./s, and the secondary heating from 600 ° C. to the annealing temperature is set to an average heating rate of 0.1 to 10 ° C./s, and the annealing temperature: 650 By heating up to 750 ° C., high strength having a structure containing 30 to 70% ferrite phase and 10% or more retained austenite phase by volume ratio, and the average interval between the retained austenite phases is 1.5 μm or less A thin steel sheet is disclosed. Although this high-strength thin steel sheet is excellent in the impact energy absorption capability, it is assumed that the strength-ductility balance is insufficient because a considerable amount of ferrite is contained.

特開2011−523442号公報JP 2011-523442 A 特開2013−076162号公報JP 2013-0761162 A 特開2012−251239号公報JP 2012-251239 A

そこで本発明の目的は、引張強度が1180MPa以上で、伸びが32%以上を確保しうる、強度−延性バランスに優れた高強度高延性鋼板を提供することにある。   Accordingly, an object of the present invention is to provide a high-strength and high-ductility steel sheet having an excellent strength-ductility balance that can ensure a tensile strength of 1180 MPa or more and an elongation of 32% or more.

本発明の第1発明に係る高強度高延性鋼板は、
成分組成が、質量%で、
C:0.10〜0.30%、
Si:1.0〜3.0%、
Mn:4.0〜7.0%
であり、残部が鉄および不可避的不純物からなり、
鋼組織が、
残留オーステナイトが面積率で40%以上、
フェライトが面積率で5%以下
であり、残部がベイナイト、マルテンサイト、焼戻しベイナイト、および焼戻しマルテンサイトからなるとともに、
EBSDによるIQ値が5000以下の領域が面積率で25%以上、
同IQ値が6000以上の領域が面積率で30%以上であり、
さらに、前記残留オーステナイト中のMn濃度が鋼板全体のMn含有量の1.5倍以上である
ことを特徴とする。
The high strength and high ductility steel sheet according to the first invention of the present invention is
Ingredient composition is mass%,
C: 0.10 to 0.30%,
Si: 1.0-3.0%,
Mn: 4.0 to 7.0%
The balance consists of iron and inevitable impurities,
Steel structure
Residual austenite is 40% or more in area ratio,
Ferrite is 5% or less in area ratio, and the balance consists of bainite, martensite, tempered bainite, and tempered martensite,
The area where IQ value by EBSD is 5000 or less is 25% or more in area ratio,
The area where the IQ value is 6000 or more is 30% or more in area ratio,
Furthermore, the Mn concentration in the retained austenite is not less than 1.5 times the Mn content of the entire steel sheet.

本発明によれば、中Mn鋼からなる鋼板において、EBSDによるIQ値の低い領域と高い領域の各割合を制御することで、鋼組織中にベイナイト(焼戻しベイナイトを含む)とマルテンサイト(焼戻しマルテンサイトを含む)を混合して導入しつつ、残留オーステナイト中へのMnの濃化度を高めることで、引張強度が1180MPa以上で、伸びが32%以上を確保しうる、強度−延性バランスに優れた高強度高延性鋼板を提供できるようになった。   According to the present invention, in a steel plate made of medium Mn steel, bainite (including tempered bainite) and martensite (tempered martensite) are contained in the steel structure by controlling the proportions of the low and high IQ value regions by EBSD. It is excellent in the strength-ductility balance that can ensure the tensile strength is 1180 MPa or more and the elongation is 32% or more by increasing the concentration degree of Mn in the retained austenite High strength and high ductility steel sheets can be provided.

本発明者らは、上記課題を解決するために、中Mn鋼からなる鋼板において、その機械的特性として、引張強度が1180MPa以上で、伸びが32%以上を確保しうる方策について種々検討を重ねてきた。その結果、以下の思考研究により、上記所望の特性を確保しうることに想到した。   In order to solve the above-mentioned problems, the present inventors have made various studies on measures that can secure a tensile strength of 1180 MPa or more and an elongation of 32% or more as a mechanical property of a steel plate made of medium Mn steel. I came. As a result, the inventors have thought that the desired characteristics can be secured by the following thought research.

すなわち、鋼はMn含有量を増加させることで、焼鈍時に2相域加熱を行うことにより組織中に残留オーステナイトを多量に確保できることは周知の技術的事項である。   That is, it is a well-known technical matter that a large amount of retained austenite can be secured in the structure by increasing the Mn content of steel and performing two-phase region heating during annealing.

一方、母相(マトリックス)の組織制御としては、上記背景技術で挙げた従来技術のように、フェライト相の導入が主体となっているが、フェライト相を導入すると、延性は向上するものの鋼板の強度が低下し、強度−延性バランスを向上させることが難しい。また、焼鈍前の組織をマルテンサイト単相として、これを2相域加熱した場合も、中Mn鋼では、焼鈍温度を低くせざるを得ないため、母相のマルテンサイトの焼戻しによる延性改善効果が期待できず、鋼板の延性が十分に確保できない。   On the other hand, as the control of the matrix (matrix) structure, the ferrite phase is mainly introduced as in the prior art mentioned in the background art above. Strength decreases and it is difficult to improve the strength-ductility balance. In addition, even if the structure before annealing is a martensite single phase and this is heated in a two-phase region, since the annealing temperature must be lowered in the medium Mn steel, the effect of improving the ductility by tempering the martensite in the parent phase Cannot be expected, and sufficient ductility of the steel sheet cannot be secured.

そのため、強度を十分に確保しつつ、延性を向上させるためには、母相の延性を高めつつ、残留オーステナイトの延性を十分に高めることが有効であると考えられる。そして、強度を確保しつつ延性を高める手段としては、母相にラス状の硬質組織を導入しつつ、強度の高いマルテンサイトと、マルテンサイトより強度はやや低いが延性の高いベイナイトを混合して導入することが有効である。   Therefore, in order to improve the ductility while ensuring sufficient strength, it is considered effective to sufficiently increase the ductility of the retained austenite while increasing the ductility of the parent phase. And, as a means to increase the ductility while ensuring the strength, while introducing a lath-like hard structure in the matrix phase, mixing martensite with high strength and bainite with high strength but slightly lower strength than martensite It is effective to introduce.

ただし、ベイナイトとマルテンサイトは、焼戻し後のものも含めて、それらの組織はいずれもラス状であるため、顕微鏡観察での判別が難しい。   However, bainite and martensite, including those after tempering, have a lath structure, and are difficult to distinguish by microscopic observation.

そこで、ベイナイトおよび焼戻しベイナイトは、マルテンサイトおよび焼戻しマルテンサイトに比べ、転位の含有量が少ないので、それらの判別手段として、EBSD−IQ法を用いることとした。そして、低IQ値の領域をマルテンサイトまたは焼戻しマルテンサイトとみなす一方、高IQ値の領域をベイナイトまたは焼戻しベイナイトとみなし、それら低IQ値の領域と高IQ値の領域の各割合がそれぞれ一定値以上必要とした。   Therefore, since bainite and tempered bainite have a lower dislocation content than martensite and tempered martensite, the EBSD-IQ method is used as a means for discriminating them. The low IQ value region is regarded as martensite or tempered martensite, while the high IQ value region is regarded as bainite or tempered bainite, and the respective ratios of the low IQ value region and the high IQ value region are constant values. I needed more.

また、残留オーステナイトの延性向上効果を発揮させるためには、残留オーステナイトの安定性向上が有効であることから、残留オーステナイト中へのMnの濃化度を高めることで残留オーステナイトを安定化させ、その延性向上効果を高めることとした。   Moreover, in order to exert the effect of improving the ductility of retained austenite, it is effective to improve the stability of retained austenite. Therefore, by increasing the concentration of Mn in retained austenite, the retained austenite is stabilized. It was decided to increase the effect of improving ductility.

本発明者らは、上記知見に基づいてさらに検討を進めた結果、本発明を完成するに至った。   As a result of further investigation based on the above findings, the present inventors have completed the present invention.

以下、まず、本発明に係る高強度高延性鋼板(以下、「本発明鋼板」ともいう。)を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。また、各成分の「含有量」を単に「量」と記載することもある。   Hereinafter, the component composition which comprises the high intensity | strength highly ductile steel plate (henceforth "the steel plate of this invention") based on this invention is demonstrated first. Hereinafter, all the units of chemical components are mass%. In addition, “content” of each component may be simply referred to as “amount”.

〔本発明鋼板の成分組成〕
C:0.10〜0.30%
Cは、残留オーステナイトの量に寄与することで、強度と延性を確保するために必須の元素である。またCは、熱間圧延後の巻取り温度での保持中におけるベイナイト変態に寄与し、低IQ領域の面積率と高IQ領域の面積率を上昇させることで、延性に寄与する。このような作用を有効に発揮させるためには、Cを0.10%以上、好ましくは0.12%以上、さらに好ましくは0.14%以上含有させる必要がある。ただし、C量が過剰になると、ベイナイト変態の速度が大幅に低下し、焼鈍前にベイナイト量を十分に確保できなくなり、延性を劣化させるので、C量は0.30%以下、好ましくは0.28%以下、さらに好ましくは0.26%以下とする。
[Component composition of the steel sheet of the present invention]
C: 0.10 to 0.30%
C contributes to the amount of retained austenite and is an essential element for ensuring strength and ductility. C contributes to bainite transformation during holding at the coiling temperature after hot rolling, and contributes to ductility by increasing the area ratio of the low IQ region and the area ratio of the high IQ region. In order to effectively exhibit such an action, it is necessary to contain C by 0.10% or more, preferably 0.12% or more, more preferably 0.14% or more. However, if the amount of C is excessive, the rate of bainite transformation is significantly reduced, and the amount of bainite cannot be sufficiently secured before annealing, and the ductility is deteriorated. Therefore, the amount of C is 0.30% or less, preferably 0.8. 28% or less, more preferably 0.26% or less.

Si:1.0〜3.0%
Siは、固溶強化により強度上昇に寄与するとともに、残留オーステナイトの分解を抑制することで残留オーステナイト量を確保できるようにして延性の向上に寄与する必須の元素である。これらの作用を有効に発揮させるためには、Siを1.0%以上、好ましくは1.2%以上、さらに好ましくは1.4%以上含有させる必要がある。ただし、Si量が過剰になると、母相の延性が劣化して鋼板の延性が却って劣化するので、Si量は3.0%以下、好ましくは2.8%以下、さらに好ましくは2.6%以下とする。
Si: 1.0-3.0%
Si contributes to an increase in strength by solid solution strengthening and is an essential element that contributes to improving ductility by ensuring the amount of retained austenite by suppressing the decomposition of retained austenite. In order to effectively exhibit these functions, it is necessary to contain Si by 1.0% or more, preferably 1.2% or more, and more preferably 1.4% or more. However, if the amount of Si is excessive, the ductility of the parent phase is deteriorated and the ductility of the steel sheet is deteriorated. Therefore, the amount of Si is 3.0% or less, preferably 2.8% or less, more preferably 2.6%. The following.

Mn:4.0〜7.0%
Mnは、残留オーステナイトを多量に確保するために、非常に有効であるとともに、残留オーステナイトに濃化して残留オーステナイトの安定度を高めることができ、その結果延性向上に寄与する必須の元素である。またMnは、熱間圧延後の巻取り温度での保持中におけるベイナイト変態に寄与し、低IQ領域の面積率と高IQ領域の面積率を上昇させることで、延性に寄与する。これらの作用を有効に発揮させるためには、Mnを4.0%以上、好ましくは4.3%以上、さらに好ましくは4.6%以上含有させる必要がある。ただし、Mn量が過剰になると、ベイナイト変態が大幅に遅延し、焼鈍前の段階でベイナイトを十分に形成させることができなくなり、特性を確保できなくなるので、Mn量は7.0%以下、好ましくは6.7%以下、さらに好ましくは6.4%以下とする。
Mn: 4.0 to 7.0%
Mn is very effective for securing a large amount of retained austenite and can be concentrated in the retained austenite to increase the stability of the retained austenite. As a result, Mn is an essential element that contributes to improving ductility. Mn also contributes to bainite transformation during holding at the coiling temperature after hot rolling, and contributes to ductility by increasing the area ratio of the low IQ region and the area ratio of the high IQ region. In order to effectively exhibit these actions, it is necessary to contain Mn at 4.0% or more, preferably 4.3% or more, and more preferably 4.6% or more. However, if the amount of Mn is excessive, the bainite transformation is significantly delayed, and bainite cannot be sufficiently formed in the stage before annealing, and the characteristics cannot be secured. Therefore, the amount of Mn is 7.0% or less, preferably Is 6.7% or less, more preferably 6.4% or less.

本発明の鋼は上記元素を必須の成分として含有し、残部は鉄および不可避的不純物(P、S、Al、N、O等)であるが、その他、本発明の作用を損なわない範囲で、許容成分(Cr、Mo、B、Cu、Ni、Nb、Ti、V、Ca、Mg等)を含有させることができる。   The steel of the present invention contains the above-described elements as essential components, and the balance is iron and inevitable impurities (P, S, Al, N, O, etc.), but in the range not impairing the action of the present invention, Allowable components (Cr, Mo, B, Cu, Ni, Nb, Ti, V, Ca, Mg, etc.) can be contained.

つぎに、本発明鋼板を特徴づける組織について説明する。   Next, the structure characterizing the steel sheet of the present invention will be described.

〔本発明鋼板の組織〕
上述したとおり、本発明鋼板は、原則フェライトを含まず、所定量の残留オーステナイトと、残部実質的にベイナイトおよびマルテンサイト(これらの焼戻しされたものを含む)からなる組織に制御する点で、上記従来技術と異なっている。
[Structure of the steel sheet of the present invention]
As described above, the steel sheet of the present invention does not contain ferrite in principle, and is controlled in a structure composed of a predetermined amount of retained austenite and the balance substantially consisting of bainite and martensite (including those tempered). It is different from the prior art.

<残留オーステナイト:面積率で40%以上>
残留オーステナイトは、変形中に加工誘起変態することで、材料を加工硬化させ、高強度化・高延性化に寄与する有用な組織である。このような作用を有効に発揮させるため、残留オーステナイトは面積率で40%以上、好ましくは41%以上、さらに好ましくは42%以上必要である。上記観点からは残留オーステナイトは多ければ多いほど好ましいが、この成分系の鋼では面積率で50%程度が上限である。
<Residual austenite: 40% or more in area ratio>
Residual austenite is a useful structure that contributes to higher strength and higher ductility by work-hardening the material by deformation-induced transformation during deformation. In order to effectively exhibit such an action, the retained austenite is required to be 40% or more, preferably 41% or more, and more preferably 42% or more in terms of area ratio. From the above viewpoint, the more retained austenite is preferable, but the upper limit is about 50% in terms of area ratio in this component steel.

<フェライト:面積率で5%以下>
鋼板の強度を確保するためには、母相を高強度組織にする必要があるので、フェライトのような軟質組織はできるだけ含まないことが好ましいが、面積率で5%までの混入は許容される。
<Ferrite: 5% or less in area ratio>
In order to ensure the strength of the steel sheet, it is necessary to make the matrix phase a high-strength structure. Therefore, it is preferable not to include a soft structure such as ferrite as much as possible, but mixing up to 5% in area ratio is allowed. .

<残部:ベイナイト、マルテンサイト、焼戻しベイナイト、および焼戻しマルテンサイト>
上述のとおり、鋼板の強度を確保するためには、母相を高強度組織にする必要があることから、残部組織は、硬質組織である、ベイナイトおよびマルテンサイトならびにこれらの焼戻し組織の混合組織とする。
<Balance: bainite, martensite, tempered bainite, and tempered martensite>
As described above, in order to ensure the strength of the steel sheet, it is necessary to make the parent phase a high-strength structure, so the remaining structure is a hard structure, bainite and martensite, and a mixed structure of these tempered structures. To do.

<EBSDによるIQ値が5000以下の領域:面積率で25%以上、同IQ値が6000以上の領域:面積率で30%以上>
EBSDによるIQ値は、強度の高い組織と、延性の高い組織の含有割合を示すパラメータとして導入したものである。ここで、EBSD(Electron Back Scatter Diffraction)とは、試験片表面に電子線を入射させたときに発生する反射電子から得られる菊池パターンを解析する手法である。また、IQ値は、EBSDにより得られた菊池パターンの強度に関する値で、測定部位における結晶の完全性をパラメータ化した数値である。結晶の完全性が高ければIQ値は高く、完全性が低ければIQ値は低くなる。そして、IQ値が5000以下の領域は、変態時に多くの転位等の格子欠陥が導入された、結晶の完全性が低いマルテンサイト相(焼戻しマルテンサイト相を含む)に相当する領域とみなすとともに、IQ値が6000以上の領域は、マルテンサイト相よりは欠陥の少ない、結晶の完全性が高いベイナイト相(焼戻しベイナイト相を含む)に相当する領域とみなした。そして、強度の高い組織であるマルテンサイト相に相当する、IQ値が5000以下の領域と、延性の高い組織であるベイナイト相に相当する、IQ値が6000以上の領域の各割合を制御することで、高強度でかつ高延性を実現することが可能となる。このような作用を有効に発揮させるため、IQ値が5000以下の領域は、面積率で25%以上、好ましくは28%以上、さらに好ましくは30%以上とし、IQ値が6000以上の領域は、面積率で30%以上、好ましくは32%以上、さらに好ましくは35%以上とする。
<Region where IQ value by EBSD is 5000 or less: Area ratio is 25% or more, and IQ value is 6000 or more: Area ratio is 30% or more>
The IQ value obtained by EBSD is introduced as a parameter indicating the content ratio of a structure having a high strength and a structure having a high ductility. Here, EBSD (Electron Back Scatter Diffraction) is a technique for analyzing a Kikuchi pattern obtained from reflected electrons generated when an electron beam is incident on the surface of a test piece. The IQ value is a value related to the strength of the Kikuchi pattern obtained by EBSD, and is a numerical value obtained by parameterizing the completeness of the crystal at the measurement site. The IQ value is high when the integrity of the crystal is high, and the IQ value is low when the integrity is low. A region having an IQ value of 5000 or less is regarded as a region corresponding to a martensite phase (including a tempered martensite phase) having low crystal integrity, in which many lattice defects such as dislocations are introduced during transformation. A region having an IQ value of 6000 or more was regarded as a region corresponding to a bainite phase (including a tempered bainite phase) having fewer defects than the martensite phase and high crystal integrity. And each ratio of the area | region whose IQ value is 5000 or less corresponding to the martensite phase which is a high intensity | strength structure | tissue, and the area | region whose IQ value is 6000 or more corresponding to the bainite phase which is a highly ductile structure | tissue is controlled. Thus, high strength and high ductility can be realized. In order to effectively exhibit such an action, the area where the IQ value is 5000 or less is 25% or more in area ratio, preferably 28% or more, more preferably 30% or more, and the area where the IQ value is 6000 or more is The area ratio is 30% or more, preferably 32% or more, and more preferably 35% or more.

<前記残留オーステナイト中のMn濃度:鋼板全体のMn含有量の1.5倍以上>
残留オーステナイト中にMnを濃化することで、残留オーステナイトが安定化し、より高いひずみ領域で加工誘起変態できるようになり、高ひずみ領域での加工硬化度合が高まるため、延性が向上する。このような作用を有効に発揮させるためには、前記残留オーステナイト中のMn濃度:鋼板全体のMn含有量の1.5倍以上、好ましくは1.6倍以上、さらに好ましくは1.7倍以上とする。
<Mn concentration in the retained austenite: 1.5 times or more the Mn content of the entire steel sheet>
By concentrating Mn in the retained austenite, the retained austenite is stabilized, work-induced transformation can be performed in a higher strain region, and the work hardening degree in the high strain region is increased, so that ductility is improved. In order to effectively exhibit such an action, the Mn concentration in the retained austenite: 1.5 times or more, preferably 1.6 times or more, more preferably 1.7 times or more of the Mn content of the whole steel sheet. And

〔各相の面積率および残留γ中のMn濃度の各測定方法〕
ここで、各相の面積率および残留オーステナイト中のMn濃度の各測定方法について説明する。
[Each measurement method of area ratio of each phase and Mn concentration in residual γ]
Here, each measuring method of the area ratio of each phase and the Mn concentration in the retained austenite will be described.

まず、鋼板をナイタール腐食し、光学顕微鏡(倍率400倍)で観察して残留オーステナイト以外の各相を同定し、画像解析により各相の面積率を測定した。   First, the steel plate was subjected to nital corrosion, observed with an optical microscope (magnification 400 times) to identify each phase other than retained austenite, and the area ratio of each phase was measured by image analysis.

次いで、残留オーステナイトの面積率は、鋼板の1/4の厚さまで研削した後、化学研磨してからX線回折法により測定した(ISIJ Int.Vol.33,(1933),No.7,p.776)。   Next, the area ratio of retained austenite was measured by X-ray diffraction after grinding to a thickness of 1/4 of the steel sheet and then chemical polishing (ISIJ Int. Vol. 33, (1933), No. 7, p. . 776).

残留オーステナイト中のMn濃度については、薄膜の試料をFIB(FEI製 Nova200)を用いて作製し、これを球面収差補正機能付き透過型電子顕微鏡(日本電子社製 JEM−ARM200F)で像を観察しながら付属のEDS分析装置(日本電子製 JED−2300T)を用いてMn濃度を測定した。   Regarding the Mn concentration in the retained austenite, a thin film sample was prepared using FIB (Nova 200 manufactured by FEI), and this was observed with a transmission electron microscope with a spherical aberration correction function (JEM-ARM200F manufactured by JEOL Ltd.). However, the Mn concentration was measured using the attached EDS analyzer (JED-2300T manufactured by JEOL Ltd.).

〔EBSDによるIQ値の測定方法〕
EBSDによるIQ値の測定は、「日本電子社製 電界放出型走査電子顕微鏡 JSM−6500F」を用いて、50μm×50μmの領域を0.125μmの測定ステップで像を観察し、解析ソフトウェア、「EDAX−TSL社製 OIM」を用いて解析を行った。そして、IQ値の分布より、IQ値が5000以下の領域と6000以上の領域の各面積率を算出した。
[Measurement method of IQ value by EBSD]
The IQ value is measured by EBSD, using a “field emission scanning electron microscope JSM-6500F manufactured by JEOL Ltd.”, observing an image of a 50 μm × 50 μm region with a 0.125 μm measurement step, and analyzing software “EDAX” Analysis was performed using “TSM OIM”. Then, from the distribution of the IQ value, the area ratios of the region having the IQ value of 5000 or less and the region having the IQ value of 6000 or more were calculated.

次に、上記本発明鋼板を得るための好ましい製造条件を以下に説明する。   Next, preferable production conditions for obtaining the steel sheet of the present invention will be described below.

〔本発明鋼板の好ましい製造方法〕
まず、上記成分組成を有する鋼を溶製し、造塊または連続鋳造によりスラブ(鋼材)としてから熱間圧延を行い、巻取り温度を400℃未満として、30〜120min保持し、その後、常温まで冷却して熱延材とする。次いでこの熱延材を、酸洗等によりスケールを除去した後、冷間圧延を行うことなく、または、冷間圧延を行うとしても20%以下程度の低圧下率に留めた後、焼鈍温度:(Ae1+Ae3)/2±20℃で、保持時間:3000s以上の条件で焼鈍を施すことにより高強度高延性鋼板を得ることができる。
[Preferred production method of the steel sheet of the present invention]
First, steel having the above component composition is melted and hot rolled after being made into a slab (steel material) by ingot forming or continuous casting, the coiling temperature is kept below 400 ° C., and held for 30 to 120 minutes, and then to room temperature Cool to hot rolled material. Next, after removing the scale by pickling or the like after this hot-rolled material, after performing cold rolling, or even if performing cold rolling, the hot rolling material is kept at a low pressure reduction rate of about 20% or less, and then the annealing temperature: A high-strength and highly ductile steel sheet can be obtained by annealing at (Ae1 + Ae3) / 2 ± 20 ° C. under the condition of holding time: 3000 s or more.

<巻取り温度:400℃未満、保持時間:30〜120min>
組織の一部または全部をベイナイトとするためである。この成分系の鋼では、巻取り温度を400℃以上にするとベイナイトが形成されにくくなるので、長時間保持してもベイナイト量が確保できず、さらに巻取り温度を500℃以上とするとフェライトが形成され始める。巻取り温度の下限は、特に限定されないが、巻取り温度を低くしすぎると巻き取りにくくなるので、300℃程度である。
また、ベイナイト変態を適正に進行させるためには保持時間を適正に制御する必要がある。保持時間が短すぎるとベイナイト変態が不十分となり、低IQ領域の面積率が低下するので、保持時間は30min以上、好ましくは40min以上、さらに好ましくは50min以上とする。一方、保持時間が長すぎるとベイナイト変態が進行しすぎて、高IQ領域の面積率が低下するので、保持時間は120min以下、好ましくは100min以下、さらに好ましくは80min以下とする。
<Winding temperature: less than 400 ° C., holding time: 30 to 120 min>
This is because part or all of the tissue is bainite. In this component steel, bainite is difficult to be formed when the coiling temperature is set to 400 ° C. or higher. Therefore, the amount of bainite cannot be secured even if the coil is held for a long time. Further, when the coiling temperature is set to 500 ° C. or higher, ferrite is formed. Start to be. Although the minimum of coiling temperature is not specifically limited, Since it will become difficult to wind up if coiling temperature is made too low, it is about 300 degreeC.
Moreover, in order to make the bainite transformation proceed appropriately, it is necessary to appropriately control the holding time. If the holding time is too short, the bainite transformation becomes insufficient and the area ratio of the low IQ region decreases, so the holding time is 30 min or longer, preferably 40 min or longer, more preferably 50 min or longer. On the other hand, if the holding time is too long, the bainite transformation proceeds too much and the area ratio of the high IQ region decreases, so the holding time is 120 min or less, preferably 100 min or less, more preferably 80 min or less.

<冷間圧延を行うことなく、または、冷間圧延を行うとしても20%以下程度の低圧下率に留める>
熱延時の巻取りの際に形成された、マルテンサイトやベイナイト等のラス状組織をできる限りそのまま確保するためである。
<Cold rolling is performed or, even if cold rolling is performed, a low pressure reduction rate of about 20% or less is maintained>
This is because the lath-like structure such as martensite and bainite formed during the hot rolling is ensured as much as possible.

<焼鈍温度:(Ae1+Ae3)/2±20℃で、保持時間:50min以上>
2相域温度で所定時間加熱保持することで、Mnを拡散させてフェライト/オーステナイト間に分配させることによりオーステナイト中へのMnの濃化度を確保するとともに、熱延時の巻取りの際に導入されたベイナイト中に、焼鈍時の加熱の際に炭化物が形成されるが、その炭化物を十分に溶解するためである。保持時間が不足すると、ベイナイト中に炭化物が残存して破壊の起点になりやすく、強度・延性が劣化する原因となるので、保持時間は50min以上、好ましくは70min以上、さらに好ましくは90min以上とする。保持時間の上限は特に限定されないが、保持時間が長すぎると生産性が低下するので、保持時間は300min以下、さらには280min以下とするのが望ましい。
なお、Ae1(℃)およびAe3(℃)は、熱力学計算ソフト(Thermo−Calc Software、AB社製Termo−Calc)にて熱力学データベースとしてTCFE7を用い、C、Mn、Si、Alの含有量(質量%)から各温度におけるFCC、BCC、セメンタイト各相の相分率を求め、BCC−セメンタイトの2相状態からFCC−BCC−セメンタイトの3相状態に遷移する温度をAe1(℃)、FCC−BCCの2相状態からFCCの単相に遷移する温度をAe3(℃)と定義して求めた。
<Annealing temperature: (Ae1 + Ae3) / 2 ± 20 ° C., holding time: 50 min or more>
By heating and holding at a two-phase temperature for a predetermined time, Mn is diffused and distributed between ferrite and austenite to ensure the concentration of Mn in austenite and to be introduced during winding during hot rolling This is because, in the bainite, carbides are formed during heating during annealing, but the carbides are sufficiently dissolved. If the holding time is insufficient, carbides remain in the bainite and easily become a starting point of fracture, which causes deterioration of strength and ductility. Therefore, the holding time is 50 min or more, preferably 70 min or more, more preferably 90 min or more. . The upper limit of the holding time is not particularly limited, but if the holding time is too long, the productivity is lowered. Therefore, the holding time is preferably 300 min or less, more preferably 280 min or less.
Ae1 (° C.) and Ae3 (° C.) are obtained from thermodynamic calculation software (Thermo-Calc Software, Thermo-Calc manufactured by AB) using TCFE7 as a thermodynamic database, and the contents of C, Mn, Si, and Al (Mass%), the phase fraction of each phase of FCC, BCC, and cementite at each temperature is obtained, and the temperature at which transition from the two-phase state of BCC-cementite to the three-phase state of FCC-BCC-cementite is performed is Ae1 (° C) -The temperature at which the transition from the two-phase state of BCC to the single phase of FCC was defined as Ae3 (° C).

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することももちろん可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示す成分の鋼材を熱間圧延した後、下記表2に示す温度および保持時間の条件で巻取りして板厚3.0mmの熱延板を作製した。そして、この熱延板を酸洗した後、同表2に示す温度および保持時間の条件で焼鈍を施して熱延鋼板を作製した。   The steel materials having the components shown in Table 1 below were hot-rolled and then wound up under the conditions of temperature and holding time shown in Table 2 below to produce hot rolled sheets having a thickness of 3.0 mm. And after pickling this hot-rolled sheet, it annealed on the conditions of the temperature and holding time which are shown in the same table 2, and produced the hot-rolled steel sheet.

上記各熱延鋼板について、上記[発明を実施するための形態]の項で説明した測定方法により、各相の面積率およびそのMn濃度、ならびに、EBSDによるIQ値が5000以下の領域および6000以上の領域の各面積率を測定した。
なお、本実施例において使用した実験サンプルは全て、フェライト相、残留オーステナイト相以外の残部はベイナイト相、マルテンサイト相、焼戻しベイナイト相、および焼戻しマルテンサイトからなるものであったので、下記表3にては、各相の面積率は、残留オーステナイト相およびフェライト相の面積率のみを記載している。
For each hot-rolled steel sheet, the area ratio of each phase and its Mn concentration, as well as the region where the IQ value by EBSD is 5000 or less, and 6000 or more are measured by the measurement method described in the above-mentioned section [Mode for Carrying Out the Invention]. Each area ratio of the region was measured.
In addition, since all the experimental samples used in this example consisted of a bainite phase, a martensite phase, a tempered bainite phase, and a tempered martensite other than the ferrite phase and the retained austenite phase, the following Table 3 As for the area ratio of each phase, only the area ratios of the retained austenite phase and the ferrite phase are described.

また、上記各熱延鋼板について、強度−延性バランスを評価するために、引張試験により、引張強度TSおよび伸び(全伸び)ELを測定した。なお、引張試験は、圧延方向と平行になるように、サンプルを採取し、JIS 14B号試験片(t=2mm、w=7mm、GL=20mm)を用いて、JIS Z 2241に従って実施した。   Moreover, in order to evaluate a strength-ductility balance about each said hot-rolled steel plate, tensile strength TS and elongation (total elongation) EL were measured by the tension test. The tensile test was carried out in accordance with JIS Z 2241 using a JIS 14B test piece (t = 2 mm, w = 7 mm, GL = 20 mm) so as to be parallel to the rolling direction.

測定結果を下記表3に示す。同表において、熱延鋼板の特性が、引張強度TS:1180MPa以上でかつ伸びEL:32%以上のものを合格(○)とし、それ以外のものを不合格(×)とした。   The measurement results are shown in Table 3 below. In the same table, the properties of the hot-rolled steel sheet were determined to be acceptable (◯) when the tensile strength TS was 1180 MPa or higher and the elongation EL was 32% or higher, and was rejected (X).

上記表3に示すように、発明鋼(評価が○のもの)である鋼No.1は、本発明の成分規定の要件を満足する鋼種を用い、推奨の製造条件で製造した結果、本発明の組織規定の要件を充足する発明鋼であり、特性が合格基準を満たしており、強度−延性バランスに優れた高強度強延性鋼板が得られることを確認できた。   As shown in Table 3 above, the steel No., which is an inventive steel (evaluation is ○). 1 is an invention steel that satisfies the requirements of the structure provision of the present invention as a result of being manufactured under the recommended production conditions using a steel type that satisfies the requirements of the composition provision of the present invention, the characteristics satisfy the acceptance criteria, It was confirmed that a high-strength and ductile steel plate excellent in strength-ductility balance was obtained.

これに対して、比較鋼(評価が×のもの)である鋼No.2〜12は、本発明の成分規定および組織規定の要件の少なくともいずれかを充足せず、特性が合格基準を満たしていない。   On the other hand, steel No. which is a comparative steel (evaluation of x). Nos. 2 to 12 do not satisfy at least one of the requirements of the component specification and the organization specification of the present invention, and the characteristics do not satisfy the acceptance criteria.

すなわち、鋼No.2〜7は、本発明の成分規定の要件を満足する鋼種を用いているものの、推奨の製造条件を一部外れる条件で製造しているため、組織規定の要件を充足せず、特性が劣っている。   That is, Steel No. Nos. 2 to 7 use steel types that satisfy the requirements of the component provisions of the present invention, but are manufactured under conditions that partially deviate from the recommended production conditions. ing.

例えば、鋼No.2は、巻取り時に温度保持を行っていない場合であるが、残留オーステナイトが少なくなるとともに、低IQ領域の面積率が低くなり、TSが劣っている。   For example, steel no. 2 is a case where the temperature is not maintained at the time of winding, but the retained austenite is decreased, the area ratio of the low IQ region is decreased, and TS is inferior.

また、鋼No.3は、同じく巻取り時に温度保持を行っていない場合であるが、その後の焼鈍時の保持時間を十分に長くして残留オーステナイト量を確保しても低IQ領域の面積率が低くなり、ELが劣っている。   Steel No. 3 is the case where the temperature is not maintained during winding, but the area ratio of the low IQ region is lowered even if the retention time during the subsequent annealing is sufficiently lengthened to secure the amount of retained austenite. Is inferior.

また、鋼No.4は、巻取り温度が高すぎるため、ベイナイト変態が進行せず、低IQ領域の面積率が低くなり、ELが劣っている。   Steel No. In No. 4, since the winding temperature is too high, the bainite transformation does not proceed, the area ratio of the low IQ region is low, and the EL is inferior.

また、鋼No.5は、焼鈍時の保持時間が短すぎるため、残留オーステナイトの量およびMn濃化度合いがともに不足し、TS、ELともに劣っている。   Steel No. In No. 5, since the holding time during annealing is too short, both the amount of retained austenite and the degree of Mn concentration are insufficient, and both TS and EL are inferior.

また、鋼No.6は、焼鈍温度が低すぎるため、焼鈍時に逆変態で形成される残留オーステナイト量が確保できなくなり、TS、ELともに劣っている。   Steel No. In No. 6, since the annealing temperature is too low, the amount of retained austenite formed by reverse transformation during annealing cannot be secured, and both TS and EL are inferior.

また、鋼No.7は、逆に焼鈍温度が高すぎるため、焼鈍時に逆変態で形成される残留オーステナイト量が多くなりすぎ、その後の冷却時にマルテンサイト化して残留オーステナイト量を確保できなくなり、ELが劣っている。   Steel No. On the other hand, since the annealing temperature of No. 7 is too high, the amount of retained austenite formed by reverse transformation at the time of annealing is too large, and the subsequent austenite cannot be ensured by martensite during cooling, resulting in poor EL.

一方、鋼No.8〜12は、推奨の製造条件で製造しているものの、本発明の成分規定の要件を一部外れる鋼種を用いているため、組織規定の要件を充足せず、特性が劣っている。   On the other hand, Steel No. Although Nos. 8 to 12 are manufactured under recommended manufacturing conditions, steel types that partially deviate from the requirements of the component provisions of the present invention are used, so the requirements of the structure provisions are not satisfied and the characteristics are inferior.

例えば、鋼No.8(鋼種b)は、Si量が少なすぎるため、残留オーステナイトが分解してその量が不足し、ELが劣っている。   For example, steel no. Since 8 (steel type b) has too little Si, residual austenite is decomposed and the amount thereof is insufficient, and EL is inferior.

また、鋼No.9(鋼種c)は、逆にSi量が多すぎるため、高IQ領域の面積率が不足して組織が脆化し、ELが劣っている。   Steel No. 9 (steel type c), on the contrary, has too much Si, so that the area ratio of the high IQ region is insufficient, the structure becomes brittle, and the EL is inferior.

また、鋼No.10(鋼種d)は、Mn量が少なすぎるため、高IQ領域の面積率が低下するとともに、残留オーステナイト量も不足し、TS、ELともに劣っている。   Steel No. 10 (steel type d) has an excessively small amount of Mn, so that the area ratio of the high IQ region is lowered and the amount of retained austenite is also insufficient, and both TS and EL are inferior.

また、鋼No.11(鋼種e)は、C量が少なすぎるため、フェライトが多く形成されるとともに、IQ値が低下して高IQ領域の面積率が減少し、さらに残留オーステナイト量も不足し、TS、ELともに劣っている。   Steel No. No. 11 (steel type e) has too little C, so a large amount of ferrite is formed, the IQ value decreases, the area ratio of the high IQ region decreases, the amount of retained austenite is also insufficient, and both TS and EL Inferior.

また、鋼No.12(鋼種f)は、逆にC量が多すぎるため、熱間圧延時におけるベイナイト変態が抑制され、IQ値が全体的に高くなって低IQ領域の面積率が減少し、ELが劣っている。   Steel No. 12 (steel type f), on the contrary, has too much C content, so that the bainite transformation during hot rolling is suppressed, the IQ value increases as a whole, the area ratio of the low IQ region decreases, and the EL is inferior. Yes.

Claims (1)

成分組成が、質量%で、
C:0.10〜0.30%、
Si:1.0〜3.0%、
Mn:4.0〜7.0%
であり、残部が鉄および不可避的不純物からなり、
鋼組織が、
残留オーステナイトが面積率で40%以上、
フェライトが面積率で5%以下
であり、残部がベイナイト、マルテンサイト、焼戻しベイナイト、および焼戻しマルテンサイトからなるとともに、
EBSDによるIQ値が5000以下の領域が面積率で25%以上、
同IQ値が6000以上の領域が面積率で30%以上であり、
さらに、前記残留オーステナイト中のMn濃度が鋼板全体のMn含有量の1.5倍以上である
ことを特徴とする高強度高延性鋼板。
Ingredient composition is mass%,
C: 0.10 to 0.30%,
Si: 1.0-3.0%,
Mn: 4.0 to 7.0%
The balance consists of iron and inevitable impurities,
Steel structure
Residual austenite is 40% or more in area ratio,
Ferrite is 5% or less in area ratio, and the balance consists of bainite, martensite, tempered bainite, and tempered martensite,
The area where IQ value by EBSD is 5000 or less is 25% or more in area ratio,
The area where the IQ value is 6000 or more is 30% or more in area ratio,
Furthermore, the Mn density | concentration in the said retained austenite is 1.5 times or more of Mn content of the whole steel plate. The high intensity | strength high ductility steel plate characterized by the above-mentioned.
JP2014175909A 2014-08-29 2014-08-29 High strength high ductility steel sheet Active JP6158769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014175909A JP6158769B2 (en) 2014-08-29 2014-08-29 High strength high ductility steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014175909A JP6158769B2 (en) 2014-08-29 2014-08-29 High strength high ductility steel sheet

Publications (2)

Publication Number Publication Date
JP2016050337A true JP2016050337A (en) 2016-04-11
JP6158769B2 JP6158769B2 (en) 2017-07-05

Family

ID=55658070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014175909A Active JP6158769B2 (en) 2014-08-29 2014-08-29 High strength high ductility steel sheet

Country Status (1)

Country Link
JP (1) JP6158769B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6123966B1 (en) * 2016-09-21 2017-05-10 新日鐵住金株式会社 steel sheet
WO2020138343A1 (en) * 2018-12-27 2020-07-02 日本製鉄株式会社 Steel sheet
WO2020189530A1 (en) * 2019-03-15 2020-09-24 日本製鉄株式会社 Steel sheet
CN114667362A (en) * 2019-12-19 2022-06-24 安赛乐米塔尔公司 Cold-rolled and heat-treated steel sheet and method for producing same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130251A (en) * 1982-01-29 1983-08-03 Sumitomo Metal Ind Ltd Low carbon superhigh tensile steel
JPS6217125A (en) * 1985-07-15 1987-01-26 Nippon Steel Corp Manufacture of high strength and ductility steel material
JPH01259120A (en) * 1988-04-11 1989-10-16 Nisshin Steel Co Ltd Manufacture of ultrahigh strength steel stock having superior ductility
JPH01259121A (en) * 1988-04-11 1989-10-16 Nisshin Steel Co Ltd Manufacture of ultrahigh strength steel stock excellent in ductility
JPH04297526A (en) * 1991-03-26 1992-10-21 Nippon Steel Corp Production of high strength hot rolled steel plate well balanced between strength and ductility
JPH04333526A (en) * 1991-05-08 1992-11-20 Sumitomo Metal Ind Ltd Hot rolled high tensile strength steel plate having high ductility and its production
JPH05311323A (en) * 1992-05-13 1993-11-22 Sumitomo Metal Ind Ltd Dual-phase steel plate having high strength and high workability and production thereof
JPH073326A (en) * 1993-06-18 1995-01-06 Sumitomo Metal Ind Ltd Production of high strength hot rolled steel sheet excellent in processability
US20060162824A1 (en) * 2005-01-27 2006-07-27 United States Steel Corporation Method for producing high strength, high ductility steel strip
JP2013076162A (en) * 2011-09-16 2013-04-25 Jfe Steel Corp High strength steel sheet excellent in workability and method for producing the same
JP2014025091A (en) * 2012-07-25 2014-02-06 Nippon Steel & Sumitomo Metal Steel material and manufacturing method therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130251A (en) * 1982-01-29 1983-08-03 Sumitomo Metal Ind Ltd Low carbon superhigh tensile steel
JPS6217125A (en) * 1985-07-15 1987-01-26 Nippon Steel Corp Manufacture of high strength and ductility steel material
JPH01259120A (en) * 1988-04-11 1989-10-16 Nisshin Steel Co Ltd Manufacture of ultrahigh strength steel stock having superior ductility
JPH01259121A (en) * 1988-04-11 1989-10-16 Nisshin Steel Co Ltd Manufacture of ultrahigh strength steel stock excellent in ductility
JPH04297526A (en) * 1991-03-26 1992-10-21 Nippon Steel Corp Production of high strength hot rolled steel plate well balanced between strength and ductility
JPH04333526A (en) * 1991-05-08 1992-11-20 Sumitomo Metal Ind Ltd Hot rolled high tensile strength steel plate having high ductility and its production
JPH05311323A (en) * 1992-05-13 1993-11-22 Sumitomo Metal Ind Ltd Dual-phase steel plate having high strength and high workability and production thereof
JPH073326A (en) * 1993-06-18 1995-01-06 Sumitomo Metal Ind Ltd Production of high strength hot rolled steel sheet excellent in processability
US20060162824A1 (en) * 2005-01-27 2006-07-27 United States Steel Corporation Method for producing high strength, high ductility steel strip
JP2013076162A (en) * 2011-09-16 2013-04-25 Jfe Steel Corp High strength steel sheet excellent in workability and method for producing the same
JP2014025091A (en) * 2012-07-25 2014-02-06 Nippon Steel & Sumitomo Metal Steel material and manufacturing method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6123966B1 (en) * 2016-09-21 2017-05-10 新日鐵住金株式会社 steel sheet
WO2018055687A1 (en) * 2016-09-21 2018-03-29 新日鐵住金株式会社 Steel plate
WO2020138343A1 (en) * 2018-12-27 2020-07-02 日本製鉄株式会社 Steel sheet
JP6744003B1 (en) * 2018-12-27 2020-08-19 日本製鉄株式会社 Steel plate
CN112714800A (en) * 2018-12-27 2021-04-27 日本制铁株式会社 Steel plate
CN112714800B (en) * 2018-12-27 2022-10-04 日本制铁株式会社 Steel plate
WO2020189530A1 (en) * 2019-03-15 2020-09-24 日本製鉄株式会社 Steel sheet
JPWO2020189530A1 (en) * 2019-03-15 2021-10-21 日本製鉄株式会社 Steel plate
JP7036274B2 (en) 2019-03-15 2022-03-15 日本製鉄株式会社 Steel plate
CN114667362A (en) * 2019-12-19 2022-06-24 安赛乐米塔尔公司 Cold-rolled and heat-treated steel sheet and method for producing same

Also Published As

Publication number Publication date
JP6158769B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
CA2849285E (en) High-strength hot-dip galvanized steel sheet and process for producing the same
KR101926244B1 (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
WO2013129049A1 (en) High-strength steel sheet with excellent warm formability and process for manufacturing same
JP5667471B2 (en) High-strength steel plate with excellent deep drawability in warm and its warm working method
KR101831094B1 (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
WO2013047760A1 (en) High-strength hot-dip galvanized steel sheet having excellent delayed fracture resistance, and method for producing same
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP5466552B2 (en) High-strength cold-rolled steel sheet that combines elongation, stretch flangeability and weldability
KR101740843B1 (en) High-strength steel sheet and method for producing the same
JP6614397B1 (en) High strength steel plate and manufacturing method thereof
JP6137434B1 (en) Austenitic stainless steel
JP2004308002A (en) Ultrahigh strength steel sheet having excellent elongation and hydrogen embrittlement resistance, its production method, and method of manufacturing ultrahigh strength press-formed component using the ultrahigh strength steel sheet
JP5829977B2 (en) High-strength cold-rolled steel sheet excellent in yield strength and formability and method for producing the same
JPWO2013089156A1 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
US20130259734A1 (en) Highly formable high-strength steel sheet, warm working method, and warm-worked automobile part
JP2009215571A (en) High strength cold rolled steel sheet having excellent stretch-flange formability
JP6158769B2 (en) High strength high ductility steel sheet
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP5729829B2 (en) High-strength steel sheet for warm forming excellent in ductility and deep drawability in warm and its manufacturing method
JP6252709B2 (en) High-strength steel sheet for warm working and manufacturing method thereof
JP6835294B2 (en) Hot-rolled steel sheet and its manufacturing method
JP2013231216A (en) High strength cold rolled steel sheet having excellent chemical conversion property and method for producing the same
JP6699711B2 (en) High-strength steel strip manufacturing method
JP5530209B2 (en) High-strength cold-rolled steel sheet with excellent balance between elongation and stretch flangeability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160822

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170608

R150 Certificate of patent or registration of utility model

Ref document number: 6158769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150