JP2016049502A - Airflow type classifier - Google Patents

Airflow type classifier Download PDF

Info

Publication number
JP2016049502A
JP2016049502A JP2014176866A JP2014176866A JP2016049502A JP 2016049502 A JP2016049502 A JP 2016049502A JP 2014176866 A JP2014176866 A JP 2014176866A JP 2014176866 A JP2014176866 A JP 2014176866A JP 2016049502 A JP2016049502 A JP 2016049502A
Authority
JP
Japan
Prior art keywords
classification
raw material
fine powder
classification chamber
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014176866A
Other languages
Japanese (ja)
Other versions
JP6452997B2 (en
Inventor
幸哉 市南
Yukiya Shinan
幸哉 市南
優 数本
Masaru Kazumoto
優 数本
義博 伊藤
Yoshihiro Ito
義博 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pneumatic Manufacturing Co Ltd
Original Assignee
Nippon Pneumatic Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pneumatic Manufacturing Co Ltd filed Critical Nippon Pneumatic Manufacturing Co Ltd
Priority to JP2014176866A priority Critical patent/JP6452997B2/en
Publication of JP2016049502A publication Critical patent/JP2016049502A/en
Application granted granted Critical
Publication of JP6452997B2 publication Critical patent/JP6452997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an airflow type classifier capable of separating raw material powder in high accuracy classification into fine powder and coarse powder.SOLUTION: A ceiling wall 3 of a classification chamber 6 comprises: an outer ceiling face 20; a step part 21 formed to have a height increased discontinuously toward an inner diameter side from the outer ceiling face 20; and an inner ceiling face 22 formed through the step part 21 on the inner diameter side of the outer ceiling face 20. In the portion which is positioned on the outer diameter side than the diameter of a fine powder exhaust port 9 at the center of a classification plate 2 of the inner ceiling face 22, there is opened an exit 7a of a material powder feed passage 7.SELECTED DRAWING: Figure 1

Description

この発明は、旋回気流を用いて原料粉体を粗粉と微粉に遠心分離する気流式分級機に関する。   The present invention relates to an airflow classifier that centrifuges raw powder into coarse powder and fine powder using a swirling airflow.

一般に、積層セラミックスコンデンサ等の電子部品の原料となるニッケル粒子や、複写機等の画像形成装置に使用されるトナー粒子などの微小粉体を製造する場合、旋回気流を用いて原料粉体を粗粉と微粉に遠心分離する気流式分級機が使用される。   Generally, when manufacturing fine powder such as nickel particles used as raw materials for electronic parts such as multilayer ceramic capacitors and toner particles used in image forming apparatuses such as copying machines, the raw powder is coarsened using a swirling airflow. An air classifier that centrifuges into powder and fine powder is used.

この気流式分級機には、小さい分級点と高い分級精度が要求される。このような要求に応える気流式分級機として、例えば、特許文献1に記載のものが提案されている。特許文献1の気流式分級機は、同文献の図1〜図3のように、ケーシングと、そのケーシングの天井壁の下方に対向して配置された分級板と、その分級板とケーシングの天井壁との間に形成される分級室と、その分級室内にエアを噴射することで分級室内に旋回気流を形成するエアノズルと、分級室内に原料粉体とエアの混合流体を噴射する粉体供給ヘッダと、分級板の中央に開口する微粉排出口と、分級板の外周に沿って開口する粗粉排出口とを有する。微粉排出口には、固気分離装置を介して吸引ブロワが接続される。   This airflow classifier is required to have a small classification point and high classification accuracy. As an airflow classifier that meets such requirements, for example, the one described in Patent Document 1 has been proposed. As shown in FIGS. 1 to 3 of the same document, the airflow classifier of Patent Document 1 includes a casing, a classifying plate arranged to face the lower side of the ceiling wall of the casing, and the classifying plate and the ceiling of the casing. A classification chamber formed between walls, an air nozzle that forms a swirling airflow in the classification chamber by injecting air into the classification chamber, and a powder supply that injects a mixed fluid of raw material powder and air into the classification chamber It has a header, a fine powder outlet opening in the center of the classification plate, and a coarse powder outlet opening along the outer periphery of the classification plate. A suction blower is connected to the fine powder outlet through a solid-gas separator.

この特許文献1の気流式分級機は、エアノズルから分級室内にエアを噴射することによって、分級室内に中心向きの旋回気流を形成し、その旋回気流に、粉体供給ヘッダから噴射される原料粉体とエアの混合流体を合流させ、原料粉体がエアとともに旋回することで作用する外向きの遠心力と中心向きに移動するエアの流れとによって、原料粉体を粗粉と微粉に分離させる。すなわち、粗粉は、エアとともに旋回することによる外向きの遠心力により分級室内を径方向外方に移動して、分級板の外周の粗粉排出口から排出され、微粉は、旋回しながら中心向きに移動するエアの流れにより分級室内を径方向内方に移動して、分級板の中央の微粉排出口から排出される。   The airflow classifier disclosed in Patent Document 1 forms a swirling airflow toward the center in the classification chamber by injecting air from the air nozzle into the classification chamber, and the raw material powder injected from the powder supply header into the swirling airflow. The raw material powder is separated into coarse powder and fine powder by the outward centrifugal force acting as the raw material powder swirls with air and the air flow moving toward the center . That is, the coarse powder moves radially outward in the classification chamber by an outward centrifugal force caused by swirling with air, and is discharged from the coarse powder discharge port on the outer periphery of the classification plate. It moves radially inward in the classification chamber by the air flow moving in the direction, and is discharged from the fine powder discharge port in the center of the classification plate.

特許第4907655号公報Japanese Patent No. 4907655

ところで、特許文献1に記載の気流式分級機を使用して原料粉体を粗粉と微粉に遠心分離した場合、微粉排出口から回収される微粉に粗粉が混入し、必要な分級精度が得られない場合があることが分かった。特に超微粉領域の分級が必要とされるとき、0.5μm程度またはそれ以上の粒子径をもつ粗粉が、微粉排出口から回収される微粉に混入するのを回避することが難しかった。そこで、本願の発明者が、微粉排出口から回収される微粉に粗粉が混入する原因を検討したところ、粉体供給ヘッダから分級室内に噴射される原料粉体とエアの混合流体が分級室内の旋回気流を乱し、その旋回気流の乱れが原因で、粗粉が微粉排出口に飛び込んでいる可能性があることを見出した。   By the way, when the raw material powder is centrifuged into coarse powder and fine powder using the airflow classifier described in Patent Document 1, the coarse powder is mixed into the fine powder collected from the fine powder discharge port, and the necessary classification accuracy is obtained. It turned out that it may not be obtained. In particular, when classification of the ultrafine powder region is required, it is difficult to prevent the coarse powder having a particle diameter of about 0.5 μm or more from being mixed into the fine powder collected from the fine powder discharge port. Therefore, the inventors of the present application have examined the cause of the coarse powder mixed into the fine powder collected from the fine powder discharge port. As a result, the mixed fluid of the raw material powder and air injected from the powder supply header into the classification chamber is classified into the classification chamber. It was found that there is a possibility that coarse powder has jumped into the fine powder discharge port due to the disturbance of the swirling airflow.

この発明が解決しようとする課題は、高い分級精度で原料粉体を微粉と粗粉に分離することが可能な気流式分級機を提供することである。   The problem to be solved by the present invention is to provide an airflow classifier capable of separating raw powder into fine powder and coarse powder with high classification accuracy.

上記の課題を解決するため、この発明では、以下の構成の気流式分級機を提供する。
天井壁と、その天井壁の外周から下方に延びる周壁とを有するケーシングと、
前記天井壁の下方に対向して配置された分級板と、
その分級板と前記天井壁の間に形成される分級室と、
その分級室内に旋回気流を形成するように前記周壁から分級室内に気体を噴射する気体噴射口と、
前記分級室内に原料粉体を供給する原料粉体供給路と、
前記分級板の中央に開口する微粉排出口と、
前記分級板の外周に沿って開口する粗粉排出口とを有する気流式分級機において、
前記分級室の天井壁が、
前記気体噴射口から噴射される気体で分級室内に形成される旋回気流の外径側部分の上方に位置する環状の外側天井面と、
その外側天井面から内径側に向かって不連続に高さが高くなるように形成された段差部と、
その段差部を介して前記外側天井面の内径側に形成された内側天井面とを有し、
その内側天井面の前記分級板の中央の微粉排出口の直径よりも外径側に位置する部分に前記原料粉体供給路の出口を開口させたことを特徴とする気流式分級機。
In order to solve the above problems, the present invention provides an airflow classifier having the following configuration.
A casing having a ceiling wall and a peripheral wall extending downward from the outer periphery of the ceiling wall;
A classification plate arranged to face the lower side of the ceiling wall;
A classification room formed between the classification plate and the ceiling wall;
A gas injection port for injecting gas from the peripheral wall into the classification chamber so as to form a swirling airflow in the classification chamber;
A raw material powder supply path for supplying the raw material powder into the classification chamber;
A fine powder outlet opening in the center of the classification plate;
In the airflow classifier having a coarse powder outlet opening along the outer periphery of the classification plate,
The ceiling wall of the classification room is
An annular outer ceiling surface located above the outer diameter side portion of the swirling airflow formed in the classification chamber with the gas injected from the gas injection port;
A stepped portion formed so as to discontinuously increase in height from the outer ceiling surface toward the inner diameter side,
An inner ceiling surface formed on the inner diameter side of the outer ceiling surface through the stepped portion,
An airflow classifier characterized in that an outlet of the raw material powder supply path is opened at a portion located on the outer diameter side of the diameter of the fine powder discharge port at the center of the classification plate on the inner ceiling surface.

このようにすると、内側天井面と段差部の内周面とでコーナー領域が形成される。このコーナー領域では、気流の乱れが生じても、その気流の乱れが分級室内の旋回気流に及ぼす影響が小さい。そして、このコーナー領域を形成する内側天井面に、原料粉体供給路の出口が開口しているので、原料粉体供給路から分級室内に原料粉体を供給したときに、分級室内の旋回気流が乱れにくい。そのため、粗粉が微粉排出口に飛び込むのを防止して、高い分級精度で原料粉体を微粉と粗粉に分離することが可能となる。   In this way, a corner area is formed by the inner ceiling surface and the inner peripheral surface of the stepped portion. In this corner area, even if the turbulence occurs, the influence of the turbulence on the swirling airflow in the classification chamber is small. And since the outlet of the raw material powder supply path is open on the inner ceiling surface forming this corner region, when the raw material powder is supplied from the raw material powder supply path into the classification chamber, the swirling airflow in the classification chamber Is not disturbed. Therefore, it is possible to prevent the coarse powder from jumping into the fine powder discharge port and to separate the raw material powder into the fine powder and the coarse powder with high classification accuracy.

前記原料粉体供給路としては、圧縮気体と原料粉体を混合した状態で分級室内に噴射する構成のものを採用することも可能であるが、圧縮気体を用いずに原料粉体を分級室内に落下供給する構成のものを採用すると好ましい。   As the raw material powder supply path, it is possible to adopt a configuration in which the compressed gas and the raw material powder are mixed and injected into the classification chamber. However, the raw material powder is supplied to the classification chamber without using the compressed gas. It is preferable to employ a configuration in which the product is supplied to be dropped.

このようにすると、圧縮気体と原料粉体を混合した状態で分級室内に噴射する構成の原料粉体供給路を採用した場合と比べて、分級室内の旋回気流の乱れをより効果的に防止することが可能となる。   In this way, turbulence of the swirling airflow in the classification chamber can be prevented more effectively than when a raw material powder supply path configured to inject the compressed gas and the raw material powder into the classification chamber is used. It becomes possible.

前記段差部は、段差部の高さが段差部の内径の5〜25%となるように形成すると好ましい。   The step portion is preferably formed such that the height of the step portion is 5 to 25% of the inner diameter of the step portion.

前記段差部の高さを段差部の内径の5%以上とすると、微粉の回収率を高めることができ、前記段差部の高さを段差部の内径の25%以下とすると、粗粉が微粉に混入するのを効果的に防止することができる。   When the height of the stepped portion is 5% or more of the inner diameter of the stepped portion, the fine powder recovery rate can be increased, and when the height of the stepped portion is 25% or less of the inner diameter of the stepped portion, the coarse powder becomes fine powder. Can be effectively prevented.

この発明の気流式分級機は、内側天井面と段差部の内周面とでコーナー領域を形成する。このコーナー領域では、気流の乱れが生じても、その気流の乱れが分級室内の旋回気流に及ぼす影響が小さい。そして、このコーナー領域を形成する内側天井面に、原料粉体供給路の出口が開口しているので、原料粉体供給路から分級室内に原料粉体を供給したときに、分級室内の旋回気流が乱れにくい。そのため、粗粉が微粉排出口に飛び込むのを防止して、高い分級精度で原料粉体を微粉と粗粉に分離することが可能である。   In the airflow classifier of the present invention, a corner region is formed by the inner ceiling surface and the inner peripheral surface of the step portion. In this corner area, even if the turbulence occurs, the influence of the turbulence on the swirling airflow in the classification chamber is small. And since the outlet of the raw material powder supply path is open on the inner ceiling surface forming this corner region, when the raw material powder is supplied from the raw material powder supply path into the classification chamber, the swirling airflow in the classification chamber Is not disturbed. Therefore, it is possible to prevent the coarse powder from jumping into the fine powder discharge port and to separate the raw material powder into the fine powder and the coarse powder with high classification accuracy.

この発明の実施形態の気流式分級機を示す断面図Sectional drawing which shows the airflow classifier of embodiment of this invention 図1の分級機の分級室近傍の拡大断面図Fig. 1 is an enlarged cross-sectional view near the classification chamber of the classifier 図2に示す分級機の比較例を示す断面図Sectional drawing which shows the comparative example of the classifier shown in FIG. 最大粒子径が1.5μm程度のニッケルの原料粒子を分級する試験を行なったときの試験結果を示す図であり、(a)は、この発明の実施形態の気流式分級機で分級した回収された微粉の顕微鏡写真、(b)は、従来の気流式分級機で分級した回収された微粉の顕微鏡写真It is a figure which shows the test result when the test which classifies the raw material particle | grains of nickel whose maximum particle diameter is about 1.5 micrometers is performed, (a) is collect | recovered classified by the airflow classifier of embodiment of this invention. (B) is a micrograph of recovered fine powder classified by a conventional airflow classifier. 最大粒子径が10μm以上のケイ素の原料粒子を分級する試験を行なったときの微粉の粒度分布を示す図The figure which shows the particle size distribution of the fine powder when the test which classifies the raw material particle | grains of silicon whose maximum particle diameter is 10 micrometers or more was done

図1に、この発明の実施形態の気流式分級機を示す。この気流式分級機は、ケーシング1と、ケーシング1に収容された分級板2とを有する。   FIG. 1 shows an airflow classifier according to an embodiment of the present invention. This airflow classifier includes a casing 1 and a classification plate 2 accommodated in the casing 1.

ケーシング1は、天井壁3と、天井壁3の外周から下方に延びる周壁4と、周壁4の下端に設けられた粗粉回収部5とを有する。分級板2は、天井壁3の下方に対向して配置されている。分級板2と天井壁3の間には分級室6が形成されている。天井壁3には、ケーシング1の外部から分級室6内に原料粉体を供給する原料粉体供給路7が設けられている。   The casing 1 includes a ceiling wall 3, a peripheral wall 4 that extends downward from the outer periphery of the ceiling wall 3, and a coarse powder collection unit 5 that is provided at the lower end of the peripheral wall 4. The classification plate 2 is disposed to face the lower side of the ceiling wall 3. A classification chamber 6 is formed between the classification plate 2 and the ceiling wall 3. The ceiling wall 3 is provided with a raw material powder supply path 7 for supplying the raw material powder into the classification chamber 6 from the outside of the casing 1.

分級板2の上面には、中央に向かって次第に高くなる円錐面8が形状されている。円錐面8は、水平面に対して40°以下の傾斜となる形状とされている。分級板2の中央には微粉排出口9が開口しており、この微粉排出口9に、ケーシング1の周壁4を貫通して外部に連通する微粉排出筒10が接続されている。微粉排出筒10には、固気分離装置(図示せず)を介して吸引ブロワ(図示せず)が接続される。固気分離装置は、微粉排出筒10から排出される固気混合流体(微粉とエアが混合したもの)を微粉とエアに分離することで微粉を回収する装置である。吸引ブロワは、分級室6内のエアを吸引して分級室6内の圧力を負圧に保持する。分級板2の外周と周壁4の内周との間には、分級板2の外周に沿って開口する環状の粗粉排出口11が設けられている。粗粉排出口11はケーシング1の下端の粗粉回収部5に連通している。   On the upper surface of the classification plate 2, a conical surface 8 is formed which gradually increases toward the center. The conical surface 8 has a shape that is inclined at 40 ° or less with respect to the horizontal plane. A fine powder discharge port 9 is opened at the center of the classification plate 2, and a fine powder discharge cylinder 10 that passes through the peripheral wall 4 of the casing 1 and communicates with the outside is connected to the fine powder discharge port 9. A suction blower (not shown) is connected to the fine powder discharge cylinder 10 via a solid-gas separator (not shown). The solid-gas separation device is a device that collects fine powder by separating a solid-gas mixed fluid (a mixture of fine powder and air) discharged from the fine powder discharge cylinder 10 into fine powder and air. The suction blower sucks air in the classification chamber 6 and maintains the pressure in the classification chamber 6 at a negative pressure. Between the outer periphery of the classification plate 2 and the inner periphery of the peripheral wall 4, an annular coarse powder outlet 11 that opens along the outer periphery of the classification plate 2 is provided. The coarse powder discharge port 11 communicates with the coarse powder collection unit 5 at the lower end of the casing 1.

図2に示すように、周壁4には、周方向に等間隔となるように複数のエア噴射口12が設けられている。各エア噴射口12は、分級室6を囲むように周壁4に設けられた環状の圧縮エア供給路13に連通しており、この圧縮エア供給路13から供給されるエアを分級室6内に噴射する。各エア噴射口12は、分級室6内に旋回気流を形成するように、半径方向に対して傾斜した方向にエアを噴射するように形成されている。各エア噴射口12は、分級板2の中央の最も高い部分(すなわち微粉排出口9の周縁部)よりも高い位置に配置されている。   As shown in FIG. 2, the peripheral wall 4 is provided with a plurality of air injection ports 12 at equal intervals in the circumferential direction. Each air injection port 12 communicates with an annular compressed air supply passage 13 provided on the peripheral wall 4 so as to surround the classification chamber 6, and the air supplied from the compressed air supply passage 13 is passed into the classification chamber 6. Spray. Each air injection port 12 is formed to inject air in a direction inclined with respect to the radial direction so as to form a swirling airflow in the classification chamber 6. Each air injection port 12 is arranged at a position higher than the highest portion in the center of the classification plate 2 (that is, the peripheral edge portion of the fine powder discharge port 9).

また、周壁4のエア噴射口12よりも下側の部分には、周方向に間隔をおいて複数のガイドベーン14が設けられている。隣り合うガイドベーン14の間にエア流入路15が形成され、微粉排出筒10を介して吸引ブロワで負圧とされる分級室6と、ケーシング1の外部との圧力差により、ケーシング1の外部のエアが、エア流入路15を通って分級室6に導入されるようになっている。隣り合うガイドベーン14の間のエア流入路15は、半径方向に対してエア噴射口12と同じ方向に傾斜している。各ガイドベーン14は、分級板2の中央の最も高い部分(すなわち微粉排出口9の周縁部)よりも低い位置に配置されている。このガイドベーン14を設けることで、分級室6内の旋回気流で遠心分離される粗粉中に含まれる微粉を再度分級室6内の旋回気流に戻すことができ、微粉の回収率を向上させることができる。   A plurality of guide vanes 14 are provided at intervals in the circumferential direction at a portion of the peripheral wall 4 below the air injection port 12. An air inflow passage 15 is formed between adjacent guide vanes 14, and the outside of the casing 1 is caused by a pressure difference between the classification chamber 6, which is made negative by a suction blower via the fine powder discharge cylinder 10, and the outside of the casing 1. The air is introduced into the classification chamber 6 through the air inflow passage 15. The air inflow path 15 between the adjacent guide vanes 14 is inclined in the same direction as the air injection port 12 with respect to the radial direction. Each guide vane 14 is disposed at a position lower than the highest portion in the center of the classification plate 2 (that is, the peripheral edge portion of the fine powder discharge port 9). By providing this guide vane 14, the fine powder contained in the coarse powder centrifuged by the swirling airflow in the classification chamber 6 can be returned again to the swirling airflow in the classification chamber 6, thereby improving the recovery rate of the fine powder. be able to.

分級室6の天井壁3は、外側天井面20と段差部21と内側天井面22とを有する。外側天井面20は、周壁4の上端から径方向内方に張り出した環状の部分の下面であり、周壁4の内周のエア噴射口12から噴射されるエアで分級室6内に旋回気流が形成されたときに、その旋回気流の外径側部分の上方に位置する天井面である。外側天井面20は、外径側から内径側に向かって次第に高くなる円錐状に形成されている。ここで、外側天井面20は、水平方向に対して10〜35°の範囲の傾斜をもつ円錐状とされている。また、エア噴射口12は、周壁4の上部に配置され、具体的には、外側天井面20の外径端の位置とエア噴射口12の中心位置との間の高さ方向の差が、段差部21の内径の1〜10%の範囲の大きさとなるようにエア噴射口12が配置されている。   The ceiling wall 3 of the classification room 6 has an outer ceiling surface 20, a stepped portion 21, and an inner ceiling surface 22. The outer ceiling surface 20 is a lower surface of an annular portion projecting radially inward from the upper end of the peripheral wall 4, and swirling airflow is generated in the classification chamber 6 by the air injected from the air injection port 12 on the inner periphery of the peripheral wall 4. When formed, it is a ceiling surface located above the outer diameter side portion of the whirling airflow. The outer ceiling surface 20 is formed in a conical shape that gradually increases from the outer diameter side toward the inner diameter side. Here, the outer ceiling surface 20 has a conical shape having an inclination in a range of 10 to 35 ° with respect to the horizontal direction. Moreover, the air injection port 12 is arrange | positioned at the upper part of the surrounding wall 4, Specifically, the difference of the height direction between the position of the outer-diameter end of the outer side ceiling surface 20 and the center position of the air injection port 12 is the following. The air injection port 12 is disposed so as to have a size in the range of 1 to 10% of the inner diameter of the stepped portion 21.

段差部21は、外側天井面20から内径側に向かって不連続に高さが高くなるように形成された部分である。すなわち、外側天井面20の高さと内側天井面22の高さとが、段差部21の位置で不連続に変化している。段差部21は、分級板2の中心と同心の円筒状の内周面を有する。段差部21の高さ(外側天井面20の内径端の位置と、内側天井面22の外径端の位置との間の高さ方向の差)は、段差部21の内径の10〜25%(好ましくは15〜20%)の範囲に設定されている。段差部21の高さを段差部21の内径の10%以上(好ましくは15%以上)とすると、微粉の回収率を高めることができ、段差部21の高さを段差部21の内径の25%以下(好ましくは20%以下)とすると、粗粉が微粉に混入するのを効果的に防止することができる。   The step portion 21 is a portion formed so as to discontinuously increase in height from the outer ceiling surface 20 toward the inner diameter side. That is, the height of the outer ceiling surface 20 and the height of the inner ceiling surface 22 change discontinuously at the position of the step portion 21. The step portion 21 has a cylindrical inner peripheral surface concentric with the center of the classification plate 2. The height of the step portion 21 (the difference in the height direction between the position of the inner diameter end of the outer ceiling surface 20 and the position of the outer diameter end of the inner ceiling surface 22) is 10 to 25% of the inner diameter of the step portion 21. (Preferably 15 to 20%) is set. When the height of the stepped portion 21 is 10% or more (preferably 15% or more) of the inner diameter of the stepped portion 21, the fine powder recovery rate can be increased, and the height of the stepped portion 21 is set to 25 of the inner diameter of the stepped portion 21. When the content is less than or equal to% (preferably less than or equal to 20%), it is possible to effectively prevent the coarse powder from being mixed into the fine powder.

内側天井面22は、段差部21を介して外側天井面20の内径側に形成された部分である。ここで内側天井面22は、水平な平面である。内側天井面22には、原料粉体供給路7の出口7aが開口している。原料粉体供給路7の出口7aは、分級板2の中央の微粉排出口9の直径よりも外径側に位置する部分に配置されている。   The inner ceiling surface 22 is a portion formed on the inner diameter side of the outer ceiling surface 20 via the step portion 21. Here, the inner ceiling surface 22 is a horizontal plane. In the inner ceiling surface 22, an outlet 7 a of the raw material powder supply path 7 is opened. The outlet 7 a of the raw material powder supply path 7 is disposed at a portion located on the outer diameter side of the diameter of the fine powder discharge port 9 at the center of the classification plate 2.

図1に示すように、原料粉体供給路7は、外部から原料粉体を受け入れるホッパ23と、ホッパ23から下方に延びる鉛直通路24とを有する。ホッパ23は、上方に向けて拡径する漏斗状に形成されている。ホッパ23の上方には図示しない定量供給装置が設けられ、この定量供給装置からホッパ23内に原料粉体が連続的に定量供給される。上方からホッパ23に供給された原料粉体は、鉛直通路24を通って分級室6内に落下供給される。このとき、鉛直通路24内の原料粉体は、分級室6内の旋回気流によるエジェクタ効果により分級室6内に引き込まれる。   As shown in FIG. 1, the raw material powder supply path 7 includes a hopper 23 that receives the raw material powder from the outside, and a vertical passage 24 that extends downward from the hopper 23. The hopper 23 is formed in a funnel shape whose diameter is increased upward. Above the hopper 23, a fixed quantity supply device (not shown) is provided, and the raw material powder is continuously supplied in a fixed quantity from the fixed quantity supply device into the hopper 23. The raw material powder supplied to the hopper 23 from above is dropped and supplied into the classification chamber 6 through the vertical passage 24. At this time, the raw material powder in the vertical passage 24 is drawn into the classification chamber 6 due to the ejector effect caused by the swirling airflow in the classification chamber 6.

次に、上記の気流式分級機の使用例を説明する。   Next, the usage example of said airflow type classifier is demonstrated.

微粉排出筒10に接続した吸引ブロワを作動させた状態で、各エア噴射口12から分級室6内にエアを噴射する。このとき、各エア噴射口12のエアの噴射方向が半径方向に対して傾斜しているので、分級室6内には一定方向に回転する旋回気流が形成される。また、エア噴射口12が外側天井面20の外径端の近傍に配置されているので、エア噴射口12が噴射するエアにより形成される旋回気流は、天井壁3に沿って旋回しながら次第に中心に移動する(すなわち旋回径が小さくなる)中心向きの旋回気流となり、分級室6の中心付近で下向きの旋回気流となり、微粉排出口9から排出される。ここで、内側天井面22と段差部21の内周面とで形成されるコーナー領域25では、外径側から内径側に向かって流れの断面積が急激に変化するため、気流の乱れが生じている。また、分級室6内には、天井壁3に沿って旋回しながら中心に向かう上記の旋回気流のほか、エア自体が受ける遠心力によって、周壁4の内周に沿って旋回しながら下降する気流も発生する。   In a state where the suction blower connected to the fine powder discharge cylinder 10 is operated, air is injected into the classification chamber 6 from each air injection port 12. At this time, since the air injection direction of each air injection port 12 is inclined with respect to the radial direction, a swirling airflow rotating in a certain direction is formed in the classification chamber 6. Further, since the air injection port 12 is disposed in the vicinity of the outer diameter end of the outer ceiling surface 20, the swirling airflow formed by the air injected by the air injection port 12 gradually turns along the ceiling wall 3. A swirling airflow that moves toward the center (that is, the swirling diameter becomes smaller) is directed to the center, and a downward swirling airflow is generated near the center of the classification chamber 6, and is discharged from the fine powder discharge port 9. Here, in the corner region 25 formed by the inner ceiling surface 22 and the inner peripheral surface of the stepped portion 21, the cross-sectional area of the flow changes abruptly from the outer diameter side toward the inner diameter side. ing. Further, in the classifying chamber 6, in addition to the above-described swirling airflow turning toward the center while turning along the ceiling wall 3, the airflow descending while turning along the inner periphery of the peripheral wall 4 due to the centrifugal force received by the air itself. Also occurs.

上記のように分級室6内に旋回気流を形成した状態で、原料粉体供給路7から分級室6内のコーナー領域25に原料粉体を供給する。このとき、原料粉体供給路7から分級室6内に投入された原料粉体は、コーナー領域25の気流によって分散された後、分級室6内の旋回気流に乗って旋回する。そして、原料粉体は、エアとともに旋回することで作用する外向きの遠心力と中心向きに移動するエアの流れとによって、粗粉と微粉に分離する。すなわち、粗粉は、エアとともに旋回することによる外向きの遠心力により分級室6内を径方向外方に移動して、分級板2の外周の粗粉排出口11から排出され、微粉は、旋回しながら中心向きに移動するエアの流れにより分級室6内を径方向内方に移動して、分級板2の中央の微粉排出口9から排出される。このとき、分級室6内には、周壁4の内周に沿って旋回しながら下降する気流が存在するので、分級室6内を径方向外方に移動した粗粉は、分級室6内に滞留することなく、円滑に粗粉排出口11に排出される。   In the state where the swirling airflow is formed in the classification chamber 6 as described above, the raw material powder is supplied from the raw material powder supply path 7 to the corner region 25 in the classification chamber 6. At this time, the raw material powder introduced into the classification chamber 6 from the raw material powder supply path 7 is dispersed by the air current in the corner region 25 and then swirls on the swirling air current in the classification chamber 6. The raw material powder is separated into coarse powder and fine powder by the outward centrifugal force acting by swirling with air and the flow of air moving toward the center. That is, the coarse powder is moved radially outward in the classification chamber 6 by the outward centrifugal force by swirling with air, and is discharged from the coarse powder discharge port 11 on the outer periphery of the classification plate 2, and the fine powder is The inside of the classification chamber 6 moves radially inward by the flow of air that moves toward the center while turning, and is discharged from the fine powder discharge port 9 at the center of the classification plate 2. At this time, in the classification chamber 6, there is an air flow descending while swirling along the inner periphery of the peripheral wall 4, so the coarse powder that has moved radially outward in the classification chamber 6 enters the classification chamber 6. Without staying, it is smoothly discharged to the coarse powder outlet 11.

この気流式分級機は、内側天井面22と段差部21の内周面とでコーナー領域25を形成する。このコーナー領域25では、気流の乱れが生じても、その気流の乱れが分級室6内の旋回気流に及ぼす影響が小さい。そして、このコーナー領域25を形成する内側天井面22に、原料粉体供給路7の出口7aが開口しているので、原料粉体供給路7から分級室6内に原料粉体を供給したときに、分級室6内の旋回気流が乱れにくい。そのため、粗粉が微粉排出口9に飛び込むのを防止して、高い分級精度で原料粉体を微粉と粗粉に分離することが可能である。特に超微粉領域の分級が必要とされるとき、0.5μm程度またはそれ以上の粒子径をもつ粗粉が、微粉排出口9から回収される微粉に混入するのを防止することができ、高い分級精度を得ることができる。   In this airflow classifier, a corner region 25 is formed by the inner ceiling surface 22 and the inner peripheral surface of the step portion 21. In this corner region 25, even if the turbulence of the airflow occurs, the influence of the turbulence of the airflow on the swirling airflow in the classification chamber 6 is small. And since the exit 7a of the raw material powder supply path 7 is opened in the inner ceiling surface 22 that forms this corner region 25, when the raw material powder is supplied into the classification chamber 6 from the raw material powder supply path 7 In addition, the swirling airflow in the classification chamber 6 is not easily disturbed. Therefore, it is possible to prevent the coarse powder from jumping into the fine powder discharge port 9 and to separate the raw material powder into the fine powder and the coarse powder with high classification accuracy. In particular, when classification of the ultrafine powder region is required, it is possible to prevent the coarse powder having a particle size of about 0.5 μm or more from being mixed into the fine powder collected from the fine powder discharge port 9. Classification accuracy can be obtained.

また、この気流式分級機は、エア噴射口12が周壁4の上部に配置されているので、分級室6内に、周壁4の内周に沿って旋回しながら下降する気流も発生する。そのため、周壁4の内面に原料粉体の付着が生じにくい。   Further, in this airflow classifier, since the air injection port 12 is disposed at the upper part of the peripheral wall 4, an airflow descending while turning along the inner periphery of the peripheral wall 4 is also generated in the classification chamber 6. For this reason, the raw material powder hardly adheres to the inner surface of the peripheral wall 4.

原料粉体供給路7としては、圧縮エアと原料粉体を混合した状態で分級室6内に噴射する構成のものを採用することも可能であるが、上記実施形態のように、圧縮エアを用いずに原料粉体を分級室6内に落下供給する構成のものを採用すると好ましい。このようにすると、圧縮エアと原料粉体を混合した状態で分級室6内に噴射する構成の原料粉体供給路7を採用した場合と比べて、分級室6内の旋回気流の乱れをより効果的に防止することが可能である。   As the raw material powder supply path 7, it is possible to adopt a configuration in which compressed air and raw material powder are mixed and injected into the classification chamber 6, but compressed air is used as in the above embodiment. It is preferable to employ a configuration in which the raw material powder is dropped and supplied into the classification chamber 6 without being used. In this case, the turbulence of the swirling airflow in the classification chamber 6 is further reduced as compared with the case where the raw material powder supply path 7 configured to inject the compressed air and the raw material powder into the classification chamber 6 is used. It can be effectively prevented.

分級室6の天井壁3に段差部21を設けることによって分級精度が向上することを確認するため、図2に示すように、分級室6の天井壁3に段差部21を設けた実施品の分級機と、図3に示すように、分級室6の天井壁3に段差部21が存在しない比較品の分級機とを試作し、それぞれの分級機で炭酸カルシウムの原料粒子を分級する試験を行なった。この試験結果を以下に示す。
ここで、微粉のD50径は、微粉排出口9から微粉として排出された粒子の粒度分布において、粒度の小さい側からの個数累計が全体の50%となるときの粒度(いわゆるメジアン径)である。
In order to confirm that the classification accuracy is improved by providing the step portion 21 on the ceiling wall 3 of the classification chamber 6, as shown in FIG. 2, the product of the embodiment in which the step portion 21 is provided on the ceiling wall 3 of the classification chamber 6 is used. As shown in FIG. 3, a classifier and a comparative classifier that does not have a stepped portion 21 on the ceiling wall 3 of the classification chamber 6 are prototyped, and a test for classifying calcium carbonate raw material particles in each classifier is performed. I did it. The test results are shown below.
Here, the D50 diameter of the fine powder is a particle size (so-called median diameter) when the cumulative number from the small particle size side becomes 50% of the total particle size distribution of the particles discharged as fine powder from the fine powder outlet 9. .

この試験結果によれば、分級室6の天井壁3に段差部21を設けた実施品の方が、分級室6の天井壁3に段差部21を設けない比較品よりも、微粉の回収率が高く、かつ、微粉のD50径が小さいことが分かる。すなわち、分級室6の天井壁3に段差部21を設けた構成を採用することにより、分級点が小さくなるだけでなく、同時に分級精度も向上していることを確認することができる。   According to this test result, the recovery rate of the fine powder is higher in the product in which the stepped portion 21 is provided in the ceiling wall 3 of the classification chamber 6 than in the comparative product in which the stepped portion 21 is not provided in the ceiling wall 3 of the classification chamber 6. Is high and the D50 diameter of the fine powder is small. That is, by adopting a configuration in which the stepped portion 21 is provided on the ceiling wall 3 of the classification chamber 6, it can be confirmed that not only the classification point is reduced, but also the classification accuracy is improved at the same time.

また、図1、図2に示す実施品の分級機と、特許第4907655号公報の図4に示される従来の分級機とで、最大粒子径が1.5μm程度のニッケルの原料粒子を分級する試験を行なった。この試験結果を図4(a)、(b)に示す。   1 and 2 and the conventional classifier shown in FIG. 4 of Japanese Patent No. 4907655 classify nickel raw material particles having a maximum particle size of about 1.5 μm. A test was conducted. The test results are shown in FIGS. 4 (a) and 4 (b).

図1、図2に示す実施品の分級機で分級を行なった場合、図4(a)に示すように、回収された微粉には、0.5μm以上の粗粉がほとんど存在せず、最大粒子径が0.3〜0.5μm程度の極めて小さい微粉を得ることができた。これに対し、特許第4907655号公報の図4に示される従来品の分級機で分級を行なった場合、図4(b)に示すように、回収された微粉に、0.5μmを超える粗粉が多数存在している。このように、上記実施形態の気流式分級機を使用すると、超微粉領域の分級を行なったときに、0.5μm以上の粒子径をもつ粗粉が微粉に混入するのを防止可能であることを確認することができる。   When classification is performed with the classifier of the product shown in FIG. 1 and FIG. 2, as shown in FIG. 4 (a), the recovered fine powder has almost no coarse powder of 0.5 μm or more, and the maximum An extremely small fine powder having a particle size of about 0.3 to 0.5 μm could be obtained. On the other hand, when the classification is performed by the conventional classifier shown in FIG. 4 of Japanese Patent No. 4907655, as shown in FIG. 4B, the recovered fine powder is coarse powder exceeding 0.5 μm. There are many. As described above, when the airflow classifier of the above embodiment is used, it is possible to prevent the coarse powder having a particle diameter of 0.5 μm or more from being mixed into the fine powder when the ultra fine powder region is classified. Can be confirmed.

また、図1、図2に示す実施品の分級機と、特許第4907655号公報の図4に示される従来の分級機とで、最大粒子径が10μm以上のケイ素の原料粒子を分級する試験を行なった。この試験結果を図5に示す。   Moreover, the test which classifies the raw material particle | grains of the silicon | silicone whose maximum particle diameter is 10 micrometers or more with the classifier of the implementation goods shown in FIG. 1, FIG. 2 and the conventional classifier shown in FIG. 4 of patent 4907655 gazette. I did it. The test results are shown in FIG.

図1、図2に示す実施品の分級機で分級を行なった場合、図5の実線に示すように、微粉として回収された粒子の最大粒子径が3μmと極めて小さいのに対し、特許第4907655号公報の図4に示される従来品の分級機で分級を行なった場合、図5の破線に示すように、微粉として回収された粒子の最大粒子径が10μm以上と大きい。また、図5の実線に示す粒度分布と破線に示す粒度分布を比較すると、実線に示す粒度分布の方が、破線に示す粒度分布よりも、微粉として回収された全粒子に占める1μm以下の粒子の割合が多い。このように、上記実施形態の気流式分級機を使用すると、極めて小さい分級点とシャープな粒度分布をもつ分級が可能であることを確認することができる。   When classification is performed with the classifier of the embodiment shown in FIGS. 1 and 2, the maximum particle size of the particles recovered as fine powder is as very small as 3 μm, as shown by the solid line in FIG. When classification is performed with the conventional classifier shown in FIG. 4 of the publication, the maximum particle diameter of the particles recovered as fine powder is as large as 10 μm or more as shown by the broken line in FIG. In addition, when comparing the particle size distribution shown by the solid line in FIG. 5 with the particle size distribution shown by the broken line, the particle size distribution shown by the solid line is less than 1 μm in the total particles recovered as fine powder than the particle size distribution shown by the broken line There are many ratios. As described above, when the airflow classifier of the above embodiment is used, it can be confirmed that classification having an extremely small classification point and a sharp particle size distribution is possible.

1 ケーシング
2 分級板
3 天井壁
4 周壁
6 分級室
7 原料粉体供給路
7a 出口
9 微粉排出口
11 粗粉排出口
12 エア噴射口
20 外側天井面
21 段差部
22 内側天井面
DESCRIPTION OF SYMBOLS 1 Casing 2 Classification board 3 Ceiling wall 4 Perimeter wall 6 Classification chamber 7 Raw material powder supply path 7a Outlet 9 Fine powder discharge port 11 Coarse powder discharge port 12 Air injection port 20 Outer ceiling surface 21 Step part 22 Inner ceiling surface

Claims (3)

天井壁(3)と、その天井壁(3)の外周から下方に延びる周壁(4)とを有するケーシング(1)と、
前記天井壁(3)の下方に対向して配置された分級板(2)と、
その分級板(2)と前記天井壁(3)の間に形成される分級室(6)と、
その分級室(6)内に旋回気流を形成するように前記周壁(4)から分級室(6)内に気体を噴射する気体噴射口(12)と、
前記分級室(6)内に原料粉体を供給する原料粉体供給路(7)と、
前記分級板(2)の中央に開口する微粉排出口(9)と、
前記分級板(2)の外周に沿って開口する粗粉排出口(11)とを有する気流式分級機において、
前記分級室(6)の天井壁(3)が、
前記気体噴射口(12)から噴射される気体で分級室(6)内に形成される旋回気流の外径側部分の上方に位置する環状の外側天井面(20)と、
その外側天井面(20)から内径側に向かって不連続に高さが高くなるように形成された段差部(21)と、
その段差部(21)を介して前記外側天井面(20)の内径側に形成された内側天井面(22)とを有し、
その内側天井面(22)の前記分級板(2)の中央の微粉排出口(9)の直径よりも外径側に位置する部分に前記原料粉体供給路(7)の出口(7a)を開口させたことを特徴とする気流式分級機。
A casing (1) having a ceiling wall (3) and a peripheral wall (4) extending downward from the outer periphery of the ceiling wall (3);
A classification plate (2) arranged to face the lower side of the ceiling wall (3);
A classification chamber (6) formed between the classification plate (2) and the ceiling wall (3);
A gas injection port (12) for injecting gas from the peripheral wall (4) into the classification chamber (6) so as to form a swirling airflow in the classification chamber (6);
A raw material powder supply path (7) for supplying the raw material powder into the classification chamber (6);
A fine powder outlet (9) opening in the center of the classification plate (2);
In the airflow classifier having a coarse powder outlet (11) opening along the outer periphery of the classification plate (2),
The ceiling wall (3) of the classification room (6)
An annular outer ceiling surface (20) located above the outer diameter side portion of the swirling airflow formed in the classification chamber (6) with the gas injected from the gas injection port (12);
A step portion (21) formed so as to discontinuously increase in height from the outer ceiling surface (20) toward the inner diameter side;
An inner ceiling surface (22) formed on the inner diameter side of the outer ceiling surface (20) via the stepped portion (21),
An outlet (7a) of the raw material powder supply path (7) is provided at a portion located on the outer diameter side of the diameter of the fine powder discharge port (9) at the center of the classification plate (2) on the inner ceiling surface (22). Airflow classifier characterized by opening.
前記原料粉体供給路(7)は、前記原料粉体を分級室(6)内に落下供給するように構成されている請求項1に記載の気流式分級機。   The airflow classifier according to claim 1, wherein the raw material powder supply path (7) is configured to drop and supply the raw material powder into the classification chamber (6). 前記段差部(21)は、段差部(21)の高さが段差部(21)の内径の5〜25%となるように形成されている請求項1または2のいずれかに記載の気流式分級機。   The airflow type according to claim 1 or 2, wherein the stepped portion (21) is formed such that the height of the stepped portion (21) is 5 to 25% of the inner diameter of the stepped portion (21). Classifier.
JP2014176866A 2014-09-01 2014-09-01 Airflow classifier Active JP6452997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014176866A JP6452997B2 (en) 2014-09-01 2014-09-01 Airflow classifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014176866A JP6452997B2 (en) 2014-09-01 2014-09-01 Airflow classifier

Publications (2)

Publication Number Publication Date
JP2016049502A true JP2016049502A (en) 2016-04-11
JP6452997B2 JP6452997B2 (en) 2019-01-16

Family

ID=55657451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014176866A Active JP6452997B2 (en) 2014-09-01 2014-09-01 Airflow classifier

Country Status (1)

Country Link
JP (1) JP6452997B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090934A (en) * 1996-09-11 1998-04-10 Canon Inc Manufacture of toner
JP2003033726A (en) * 2001-07-19 2003-02-04 Seishin Enterprise Co Ltd Pneumatic classifier
JP2005152801A (en) * 2003-11-26 2005-06-16 Ricoh Co Ltd Classifier and method for producing developer
JP2009207980A (en) * 2008-03-03 2009-09-17 Hiroshima Univ Pneumatic sorter
JP2011045819A (en) * 2009-08-26 2011-03-10 Nisshin Seifun Group Inc Powder classifying apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090934A (en) * 1996-09-11 1998-04-10 Canon Inc Manufacture of toner
JP2003033726A (en) * 2001-07-19 2003-02-04 Seishin Enterprise Co Ltd Pneumatic classifier
JP2005152801A (en) * 2003-11-26 2005-06-16 Ricoh Co Ltd Classifier and method for producing developer
JP2009207980A (en) * 2008-03-03 2009-09-17 Hiroshima Univ Pneumatic sorter
JP2011045819A (en) * 2009-08-26 2011-03-10 Nisshin Seifun Group Inc Powder classifying apparatus

Also Published As

Publication number Publication date
JP6452997B2 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
US2252581A (en) Selector
KR101655132B1 (en) Cyclone device
JP4818807B2 (en) Airflow classifier and classification plant
JP4907655B2 (en) Airflow classifier and classification plant
JP2014155901A (en) Cyclone classifier
JP2010149090A (en) Air flow classifier
US9597712B2 (en) Powder classifying apparatus
JP2006346538A (en) Cyclone type solid-gas separator
JP6452997B2 (en) Airflow classifier
JP2011045819A (en) Powder classifying apparatus
JP4747130B2 (en) Powder classifier
TW201145371A (en) Fine powder removal apparatus
JP7137378B2 (en) Air classifier
JP2022053004A (en) Airflow type classifier
JP2011224423A (en) Classifier
JPH11138103A (en) Pneumatic classifier
JP2016083638A (en) Vertical roller mill
JP6349222B2 (en) Cyclone equipment
JP2003175343A (en) Apparatus and method for classification
RU2414969C1 (en) Air two-product classifier
RU2430793C1 (en) Three-product air separator
RU2389561C1 (en) Air-bypass classifier
JP2012135730A (en) Classifier using inertial force
JP6646524B2 (en) Cyclone equipment
JP5075584B2 (en) Crusher

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181212

R150 Certificate of patent or registration of utility model

Ref document number: 6452997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250