JP2016049008A - Storage battery system, database and recording medium - Google Patents

Storage battery system, database and recording medium Download PDF

Info

Publication number
JP2016049008A
JP2016049008A JP2014173874A JP2014173874A JP2016049008A JP 2016049008 A JP2016049008 A JP 2016049008A JP 2014173874 A JP2014173874 A JP 2014173874A JP 2014173874 A JP2014173874 A JP 2014173874A JP 2016049008 A JP2016049008 A JP 2016049008A
Authority
JP
Japan
Prior art keywords
maintenance
charge
storage battery
success rate
maintenance charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014173874A
Other languages
Japanese (ja)
Inventor
井上 秀樹
Hideki Inoue
秀樹 井上
享 原
Susumu Hara
享 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2014173874A priority Critical patent/JP2016049008A/en
Publication of JP2016049008A publication Critical patent/JP2016049008A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

PROBLEM TO BE SOLVED: To perform maintenance charge on partial storage batteries so as prevent an interruption frequency of a fluctuation mitigating operation from being increased in a storage battery system for the purpose of fluctuation mitigation.SOLUTION: A leveling control part or maintenance charge success rate calculation part 103 includes a function for calculating beforehand a relation between a maintenance charge success rate that is a probability capable of completing the maintenance charge without exceeding an optional limit of remaining storage battery banks when the maintenance charge is to be performed on a part of storage battery banks 101 and mitigation of fluctuation is to be continued by the remaining storage battery banks, and a charge state at a time point in which the maintenance charge is started, and for storing data relating to the relation. The maintenance charge success rate is calculated from wind situation/power generation amount/charge and discharge amount data. When maintenance charge is required, while referring the data relating to the relation, a maintenance charge success rate in such a case is calculated and the maintenance charge success rate is compared with a preset threshold. In the case where a result of the comparison is equal to or smaller than the threshold, it is determined that start of the maintenance charge is reserved.SELECTED DRAWING: Figure 1

Description

本発明は、風力発電等の再生可能エネルギの変動緩和に用いる蓄電池システムに関する。   The present invention relates to a storage battery system used for mitigating fluctuations in renewable energy such as wind power generation.

風力発電等の再生可能エネルギは、気象の影響を受けるため、蓄電池システム等の変動緩和手段を用いる必要がある。   Since renewable energy such as wind power generation is affected by weather, it is necessary to use fluctuation mitigation means such as a storage battery system.

蓄電池システムの充放電においては、充電状態(SOC:State of Charge)等を検知して蓄電池の劣化を防止することが重要である。   In charging / discharging a storage battery system, it is important to prevent deterioration of the storage battery by detecting a state of charge (SOC) or the like.

特許文献1には、風力発電機の出力変動による電力系統の電圧および周波数変動を抑制するために、系統安定化装置に設けた二次電池(変動緩和用途)を周期的に回復充電するに際して、風力発電機の電力変動量または電力量を検出し、周期の経過を検出して、電気設備(風力発電機等)を運転しながら二次電池の回復充電を実行する制御方法が開示されている。この文献の図1(b)に記載されているように、電気設備(風力発電機など)を停止する時間を短くすることができる。   In Patent Document 1, in order to suppress voltage and frequency fluctuations in the power system due to fluctuations in the output of the wind power generator, a secondary battery (for fluctuation mitigation use) provided in the system stabilization device is periodically recovered and charged. A control method is disclosed that detects the amount of power fluctuation or the amount of power of a wind power generator, detects the passage of a cycle, and performs recovery charging of a secondary battery while operating an electric facility (wind power generator or the like). . As described in FIG. 1B of this document, it is possible to shorten the time for stopping the electric equipment (such as a wind power generator).

特開2001−286076号公報JP 2001-286076 A

特許文献1に記載の技術においては、1個の二次電池で風力発電機等の運転・停止に対応する構成となっている。このため、稼働率を100%にすることはできず、変動緩和動作を中断する必要が生じる点で改善の余地があった。   In the technique described in Patent Document 1, a single secondary battery is configured to handle the operation / stop of a wind power generator or the like. For this reason, the operating rate cannot be made 100%, and there is room for improvement in that it is necessary to interrupt the fluctuation relaxation operation.

風力発電等の変動緩和用途の鉛蓄電池等を用いた蓄電池システムでは、複数のセル間でのばらつき防止及び電流積算充電状態(電流積算SOC)のリセットのため、定期的な均等充電が必要である。同様に、リチウムイオン電池では、SOCの測定精度確保のため、必要に応じ開路電圧(OCV)を測定可能な状態にする必要がある。以下、均等充電及びOCV取得のための充放電電流0状態をまとめて「保守充電」と記載する。   In a storage battery system using a lead storage battery or the like for fluctuation mitigation applications such as wind power generation, periodic equal charging is required to prevent variation among multiple cells and reset the current integrated charge state (current integrated SOC). . Similarly, in a lithium ion battery, it is necessary to make the open circuit voltage (OCV) measurable as necessary in order to ensure the measurement accuracy of the SOC. Hereinafter, the charge / discharge current 0 state for equal charge and OCV acquisition is collectively referred to as “maintenance charge”.

上記保守充電を行うにあたり、稼働率を重視し変動緩和動作を止めずに保守充電を行う場合、従来は余分な蓄電池の容量(蓄電池のバンク数の割り増し、バンク毎の容量の割り増し等)を設ける必要があった。一方、昨今の発電所建設コスト低減の観点から、設備コスト中に占める蓄電池の割合を下げる要請がある。上記の場合、発電機出力に対し余剰な蓄電池の容量を備えない構成となるが、この余剰な蓄電池容量をもたない場合でも、変動緩和動作を止めずに保守充電を行える構成とすることで、稼働率を上げ、発電収支を改善することが、競争力確保の面で重要な課題となっている。   In the case of performing the above maintenance charging, if maintenance charging is performed without stopping the fluctuation mitigation operation with emphasis on the operation rate, an extra storage battery capacity (e.g., an increase in the number of banks of the storage battery, an increase in the capacity of each bank, etc.) is conventionally provided. There was a need. On the other hand, from the viewpoint of reducing power plant construction costs in recent years, there is a request to reduce the proportion of storage batteries in the facility cost. In the above case, it becomes a configuration that does not have a surplus storage battery capacity with respect to the generator output, but even if it does not have this surplus storage battery capacity, it is possible to perform maintenance charging without stopping the fluctuation mitigation operation. Increasing the operating rate and improving the power generation balance is an important issue in securing competitiveness.

本発明の目的は、変動緩和用途の複数の蓄電池のバンクを有する蓄電池システムにおいて、変動緩和動作を高い確率で休止しないように、一部の蓄電池のバンクに対し保守充電を行うことにある。   An object of the present invention is to perform maintenance charging on some storage battery banks in a storage battery system having a plurality of storage battery banks for use in fluctuation mitigation so as not to pause fluctuation mitigation operations with high probability.

本発明の蓄電池システムは、発電機からの送電量の変動を緩和するシステムであって、複数個の独立に充放電制御可能な蓄電池バンクと、平準化制御部と、保守充電成功率演算部とを備え、蓄電池バンクは、複数個の蓄電池を含み、平準化制御部は、充電状態算出部と、充放電制御部とを含み、平準化制御部又は保守充電成功率演算部は、蓄電池バンクの一部に対し保守充電を行うとともに残った蓄電池バンクにより変動の緩和を継続する場合に、残った蓄電池バンクの運用限界を超過せずに保守充電を完遂できる確率である保守充電成功率と、保守充電を開始する時点における充電状態との関係をあらかじめ算出し、この関係に関するデータを保存する機能を有し、保守充電成功率は、風況/発電量/充放電量データから演算し、保守充電が必要となった際に上記の関係に関するデータを参照してこの際の保守充電成功率を算出するとともに保守充電成功率と予め設定した閾値とを比較しその結果が閾値以下の場合、保守充電の開始の留保をする判定をすることを特徴とする。   The storage battery system of the present invention is a system that alleviates fluctuations in the amount of power transmitted from a generator, and a plurality of storage battery banks that can be independently charged and discharged, a leveling control unit, a maintenance charge success rate calculation unit, The storage battery bank includes a plurality of storage batteries, the leveling control unit includes a charge state calculation unit and a charge / discharge control unit, and the leveling control unit or the maintenance charge success rate calculation unit is the storage battery bank Maintenance charge success rate that is the probability that maintenance charge can be completed without exceeding the operation limit of the remaining storage battery bank when maintenance charge is continued for some and the fluctuation of the remaining battery bank is continued. It has a function to calculate the relationship with the state of charge at the time of starting charging in advance and save the data related to this relationship. The maintenance charge success rate is calculated from the wind condition / power generation amount / charge / discharge amount data, and maintenance charge is performed. When necessary, the maintenance charge success rate at this time is calculated by referring to the data related to the above relationship, and the maintenance charge success rate is compared with a preset threshold value. It is characterized by making a decision to reserve the start.

本発明によれば、変動緩和用途の蓄電池システムにおいて、変動緩和動作の中断頻度をあげないように、一部の蓄電池バンクに対し保守充電を行うことができる。   According to the present invention, in a storage battery system for fluctuation mitigation use, maintenance charging can be performed on some of the storage battery banks so as not to increase the frequency of interruption of the fluctuation mitigation operation.

蓄電池システムの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of a storage battery system. 保守充電開始時のSOCに対する保守充電成功率曲線の例を示すグラフである。It is a graph which shows the example of the maintenance charge success rate curve with respect to SOC at the time of maintenance charge start. 保守充電成功率曲線の作成工程の例を示すフロー図である。It is a flowchart which shows the example of the preparation process of a maintenance charge success rate curve. 保守充電成功を判定する過程の例を示すグラフである。It is a graph which shows the example of the process which determines maintenance charge success. 保守充電開始決定タスクの例を示すフロー図である。It is a flowchart which shows the example of the maintenance charge start determination task. 保守充電成功率と待ち時間との関係の例を示すグラフである。It is a graph which shows the example of the relationship between a maintenance charge success rate and waiting time. 一定周期の保守充電の平均待ち時間の1/2をオフセットする例を示すグラフである。It is a graph which shows the example which offsets 1/2 of the average waiting time of the maintenance charge of a fixed period. 保守充電成功率マップの作成手順の例を示すフロー図である。It is a flowchart which shows the example of the preparation procedure of a maintenance charge success rate map.

本発明は、気象の影響を受ける風力発電等の再生可能エネルギの変動緩和に用いる蓄電池システムの保守に関する。   The present invention relates to maintenance of a storage battery system used for mitigating fluctuations in renewable energy such as wind power generation that is affected by weather.

本発明の蓄電池システムは、タイマやセル間のバラツキの増加等に基づき保守充電の起動を要求する手段と、独立に充放電制御可能な複数の蓄電池バンクと、蓄電池のバンク数やバンク毎の出力若しくは容量等の諸元を保持する手段と、保守充電の必要な蓄電池バンク数等の諸元を保持する手段と、蓄電池のSOCを算出する手段と、変動緩和動作を継続しつつ複数の蓄電池バンクのうち一部の蓄電池バンクに対し保守充電を行った場合に保守充電を行わない残りの蓄電池バンクにて変動緩和動作を破綻せずに保守充電を完遂できる確率(以下、保守充電成功率と表記)を保守充電開始時のSOC値毎に求めたデータ(以下、保守充電成功率データと記載)と、複数の蓄電池バンクに対して充放電の動作を指令する充放電制御部と、保守充電起動要求を受け現在のSOC値と蓄電池バンク構成等の蓄電池の諸元と保守充電を必要としている蓄電池バンク数及び保守充電成功率データから実際に保守充電を開始するか否かの判定を行う保守充電開始判定部とを有することを特徴とする。   The storage battery system of the present invention includes means for requesting activation of maintenance charging based on an increase in variation between timers and cells, a plurality of storage battery banks that can be independently charged and discharged, the number of storage battery banks, and the output for each bank. Alternatively, means for holding specifications such as capacity, means for holding specifications such as the number of storage battery banks that require maintenance charging, means for calculating the SOC of the storage battery, and a plurality of storage battery banks while continuing the fluctuation mitigation operation Probability that maintenance charging can be completed without breaking the fluctuation mitigation operation in the remaining storage battery banks that do not perform maintenance charging when maintenance charging is performed on some storage battery banks (hereinafter referred to as maintenance charging success rate) ) For each SOC value at the start of maintenance charge (hereinafter referred to as maintenance charge success rate data), a charge / discharge control unit that commands charge / discharge operations to a plurality of storage battery banks, and maintenance charge Maintenance to determine whether or not to actually start maintenance charging based on the current SOC value, storage battery specifications such as storage battery bank configuration, the number of storage battery banks requiring maintenance charging, and maintenance charging success rate data And a charging start determination unit.

尚、保守充電成功率のデータは、バンク総数nバンク中でmバンクに対して保守充電を行う場合等、蓄電池のバンク構成、バンク毎の性能等の諸元、保守充電の様態毎に保持しても良い。   The maintenance charge success rate data is kept for each storage charge bank configuration, specifications such as the performance of each bank, and maintenance charge mode, such as when maintenance charge is performed for m banks out of n banks. May be.

以下、本発明の実施形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、蓄電池システムの全体構成を示したものである。本図においては、再生可能エネルギ源として風力発電機を示しているが、再生可能エネルギ源はこれに限定されるものではない。   FIG. 1 shows the overall configuration of the storage battery system. In this figure, a wind power generator is shown as a renewable energy source, but the renewable energy source is not limited to this.

本図において、風力発電機110は、母線109を介し、適宜変圧器等を介して送電線等の外部系統108に接続されている。風力発電機110により発電した電力は、外部系統108に供給される。図示しないものの、発電機の形式(誘導か同期か)に依存し、例えば同期発電機ではコンバータ−DCバス−インバータのリンクを経て外部系統108に連系する構成のものでも本発明は同様に適用できる。   In this figure, a wind power generator 110 is connected to an external system 108 such as a power transmission line via a bus 109 and a transformer as appropriate. The electric power generated by the wind power generator 110 is supplied to the external system 108. Although not shown, depending on the type of generator (induction or synchronous), for example, in a synchronous generator, the present invention is similarly applied to a configuration that is linked to the external system 108 via a converter-DC bus-inverter link. it can.

風力発電機110は、コンバータ102を介して蓄電池バンク101に接続されている。これは、風力発電機110により発電される電力が時間的に大きく変化することに対応し、この電力が多いときは蓄電池バンク101に充電する一方、電力が少ないときは蓄電池バンク101から放電することにより、外部系統108に送られる電力を平準化するためである。蓄電池バンク101の容量は、例えば、風力発電機の発電量を所定の平滑特性となるよう処理した値を外部系統108に出力する風力発電システムの合成出力とし、左記合成出力に対する過不足を蓄電池への充放電にて補う一般的な変動緩和動作を行った場合に過不足の生じない容量とする。   The wind power generator 110 is connected to the storage battery bank 101 via the converter 102. This corresponds to the fact that the electric power generated by the wind power generator 110 changes greatly with time. When the electric power is large, the battery bank 101 is charged, while when the electric power is low, the electric power is discharged from the battery bank 101. This is because the power sent to the external system 108 is leveled. The capacity of the storage battery bank 101 is, for example, a combined output of the wind power generation system that outputs a value obtained by processing the power generation amount of the wind power generator so as to have a predetermined smoothing characteristic to the external system 108, and excess or deficiency with respect to the combined output described above is transferred to the storage battery. When the general fluctuation mitigation operation compensated by charging / discharging is performed, the capacity does not cause excess or deficiency.

ここで、一般的な変動緩和動作の一例を示す。   Here, an example of a general fluctuation mitigation operation is shown.

発電機出力電流をI、外部系統108に出力する電流をIとすると、蓄電池の充放電電流Iは、下記数式(1)で表される。 When the generator output current is I G and the current output to the external system 108 is I O , the charge / discharge current I B of the storage battery is expressed by the following formula (1).

Figure 2016049008
Figure 2016049008

尚、ここでは簡略化のため、電圧がおよそ一定と仮定し、電流の変化分のみで示す。また、電流の符号は、正が蓄電池からみて放電、負が蓄電池からみて充電とする。また、外部系統108に出力する電流Iは、発電機出力電流Iを平滑した値であり、一例としては下記数式(2)で表される。 Here, for simplification, it is assumed that the voltage is approximately constant, and only the change in current is shown. Further, the sign of the current is positive when discharging is viewed from the storage battery, and negative is charging when viewed from the storage battery. The current I O to be output to the external system 108 is a smoothing value of the generator output current I G, as an example is represented by the following equation (2).

Figure 2016049008
Figure 2016049008

ここで、Fl1stoは、一次遅れによる平滑演算で、簡易的な例として、下記数式(3)で表される演算が挙げられる。 Here, F 11st is a smoothing calculation based on a first-order lag, and a simple example includes a calculation represented by the following mathematical formula (3).

Figure 2016049008
Figure 2016049008

式中、Tconstは、平滑化の時定数である。Fl1sto(t−1)は、一時刻前の平滑値である。尚、上記数式(3)は、単位時間のサンプリング間隔の場合(例1[s]など)を示している。 In the equation, T const is a smoothing time constant. F l1sto (t−1) is a smooth value one hour before. The above mathematical formula (3) shows the case of a sampling interval of unit time (example 1 [s], etc.).

平滑特性の例としては、例えば風力発電システムの合成出力の変動幅を、任意の時刻断面より開始する20分間につき風力発電所定格出力の10%以下とする特性が挙げられる。平滑アルゴリズムの例としては、一次遅れ演算以外に移動平均や、積和演算を用いたローパスフィルタ演算があるが、時定数を適切に定めることで、本実施例の用途においては、どのフィルタもほぼ同様に使用することができる。変動緩和の方式としては、上記以外にも、所定の時間、風力発電システムの合成出力を一定値に保つ方式もある。電力系統の安定化に寄与する目的で今後新たな平滑化の基準や方式が設定された場合はその都度、後述する保守充電成功率演算部114に対して、その平滑化方式を追加することで、本発明の一連の処理を同様に適用することができる。   As an example of the smoothing characteristic, for example, there is a characteristic in which the fluctuation range of the combined output of the wind power generation system is 10% or less of the predetermined output of wind power generation for 20 minutes starting from an arbitrary time section. As an example of the smoothing algorithm, there is a low-pass filter operation using a moving average or a product-sum operation in addition to the first-order lag operation. However, by appropriately determining the time constant, almost all filters are used in the application of this embodiment. It can be used as well. In addition to the above, the fluctuation mitigation method includes a method of keeping the combined output of the wind power generation system at a constant value for a predetermined time. Each time a new smoothing standard or method is set for the purpose of contributing to the stabilization of the power system, the smoothing method is added to the maintenance charge success rate calculation unit 114 to be described later. The series of processes of the present invention can be similarly applied.

蓄電池バンク101は、風力発電機110にて発電した変動を伴う発電量に対し概ね逆位相となる充放電を行うことにより、風力発電機110からの電力の変動を緩和し、外部系統108に連系する。蓄電池バンク101は、本発明では2つ以上で変動緩和動作に使用すると仮定する。蓄電池バンクはそれぞれ、1つ以上の蓄電池で構成されている。一例として、風力発電機の出力電圧と概ね一致する程度の電圧である場合、200〜300個程度の直列接続である。蓄電池バンクはそれぞれ、独立のコンバータ102で独立に充放電制御することが可能となっている。   The storage battery bank 101 relieves fluctuations in the electric power from the wind power generator 110 by connecting and discharging to the external system 108 by performing charging / discharging that is substantially opposite in phase to the power generation accompanying fluctuations generated by the wind power generator 110. To go. In the present invention, two or more storage battery banks 101 are assumed to be used for fluctuation mitigation operation. Each storage battery bank is composed of one or more storage batteries. As an example, when the voltage is approximately the same as the output voltage of the wind power generator, there are approximately 200 to 300 series connections. Each storage battery bank can be independently charged and discharged by an independent converter 102.

蓄電池バンク101を含む蓄電池システムは、平準化制御部103と、保守充電成功率演算部114と、風況/発電量/充放電量データ保持部115とを備えている。尚、保守充電成功率のデータを保守充電成功率データ保持部113に格納後に更新しない場合は、保守充電成功率演算部114と、風況/発電量/充放電量データ保持部115は、設計時のみに使用し、必ずしも平準化制御部103と連結させておく必要はない。   The storage battery system including the storage battery bank 101 includes a leveling control unit 103, a maintenance charge success rate calculation unit 114, and a wind condition / power generation amount / charge / discharge amount data holding unit 115. If the maintenance charge success rate data is not updated after being stored in the maintenance charge success rate data holding unit 113, the maintenance charge success rate calculating unit 114 and the wind condition / power generation amount / charge / discharge amount data holding unit 115 are designed. It is used only for the time and does not necessarily have to be connected to the leveling control unit 103.

平準化制御部103は、充電状態(SOC)を算出するSOC算出部104(充電状態算出部)と、充放電制御部105と、保守充電要求起動部106と、保守充電開始判定部107と、保守充電必要バンク情報保持部111と、蓄電池諸元保持部112と、保守充電成功率データ保持部113と、保守充電猶予時間保持部116とを含む。   The leveling control unit 103 includes an SOC calculation unit 104 (charge state calculation unit) that calculates a state of charge (SOC), a charge / discharge control unit 105, a maintenance charge request activation unit 106, a maintenance charge start determination unit 107, A maintenance charge necessary bank information holding unit 111, a storage battery specification holding unit 112, a maintenance charge success rate data holding unit 113, and a maintenance charge postponement time holding unit 116 are included.

平準化制御部103は、ある時間における風況の変動に対応して、外部系統108に供給する電力の変動幅を所定の範囲内とする機能を有する。例えば、風速変化を伴う20分間の風に対し、風力発電所が外部系統108に出力する電力の変動幅を風力発電所の定格出力の10%以内とするといった制御である。   The leveling control unit 103 has a function of setting a fluctuation range of electric power supplied to the external system 108 within a predetermined range in response to fluctuations in wind conditions at a certain time. For example, the control is such that the fluctuation range of the electric power output from the wind power plant to the external system 108 is within 10% of the rated output of the wind power plant with respect to 20 minutes of wind accompanied by a change in wind speed.

SOC算出部104は、蓄電池バンク101の電流、電圧、温度、電流の積算値、開回路電圧(OCV:Open Circuit Voltage)等の各種計測データからSOCを算出する。   The SOC calculation unit 104 calculates the SOC from various measurement data such as the current, voltage, temperature, integrated current value, open circuit voltage (OCV) of the storage battery bank 101.

保守充電要求起動部106は、鉛蓄電池の運用における均等充電やリチウムイオン蓄電池のOCV取得動作(両者を含め、保守充電)の開始要求を起動する。保守充電要求の起動としては、定期的(例えば2週間毎)、鉛蓄電池のセル間のバラツキが所定値を超過した場合や、電流積算値から算出するSOCと他の指標から算出するSOCとの乖離が所定値を超過した場合、操作員の手動操作による起動、より多くのシステムを統合的に制御している上位系等からの遠隔による起動などがある。   The maintenance charge request activation unit 106 activates a start request for equal charge in the operation of the lead storage battery or an OCV acquisition operation (maintenance charge including both) of the lithium ion storage battery. As the start of the maintenance charge request, periodically (for example, every two weeks), when the variation between the cells of the lead storage battery exceeds a predetermined value, or the SOC calculated from the current integrated value and the SOC calculated from another index When the deviation exceeds a predetermined value, there are activation by an operator's manual operation, remote activation from a host system or the like that integrally controls more systems.

保守充電要求起動部106は、外部入力117からの信号(発信源は操作卓あるいは近接/遠隔に設置された装置内でのSCADA等のソフトウェア)を受けるようになっている。保守充電開始判定部107は、外部出力118を介して操作卓(あるいは近接/遠隔に設置された装置内でのSCADA等のソフトウェア)に信号を送ることができるようになっている。尚、117、118とも操作卓の入力装置や出力装置に限らず、遠隔との通信を含む汎用の入出力であり、平準化制御部103における全般的な外部との信号の送受を担うものとする。   The maintenance charge request activation unit 106 receives a signal from the external input 117 (a transmission source is software such as SCADA in a console or a device installed near / remotely). The maintenance charging start determination unit 107 can send a signal to an operation console (or software such as SCADA in a nearby / remote device) via an external output 118. In addition, 117 and 118 are not limited to input devices and output devices on the console, but are general-purpose input / output including remote communication, and are responsible for general signal transmission / reception in the leveling control unit 103. To do.

保守充電必要バンク情報保持部111は、ある時点において保守充電が必要な蓄電池バンク101がどの程度あるか、といった情報を保持する。保持する情報の例としては、6バンク構成のうち2つのバンクでばらつきが所定値を超過し保守充電が必要になっている等の情報である。蓄電池諸元保持部112は、蓄電池バンク101の各々の容量、最大充放電電流値等、変動緩和動作に関係する各種諸元を保持する。   The maintenance charging necessary bank information holding unit 111 holds information such as how many storage battery banks 101 need maintenance charging at a certain point in time. An example of the information to be held is information such that the variation exceeds a predetermined value in two banks out of the six-bank configuration and maintenance charging is necessary. The storage battery specification holding unit 112 holds various specifications related to the fluctuation mitigation operation, such as the capacity of each storage battery bank 101 and the maximum charge / discharge current value.

保守充電成功率データ保持部113は、複数ある蓄電池バンクのうち全バンク数より少なくかつ1つ以上の蓄電池バンクに対し、保守充電を行う。そして、保守充電成功率データ保持部113は、保守充電を行わない蓄電池バンク(残余バンク)のみにて変動緩和動作を継続した場合、該残余バンクの動作条件を超過せずに保守充電を完遂できる確率を、保守充電を開始するSOC値毎に求める。尚、ここで、保守充電を開始するSOC値とは、保守充電を開始する直前の変動緩和動作中のSOC値を意味する。   The maintenance charge success rate data holding unit 113 performs maintenance charge on one or more storage battery banks that are smaller than the total number of the storage battery banks. Then, the maintenance charge success rate data holding unit 113 can complete the maintenance charge without exceeding the operation conditions of the remaining bank when the fluctuation mitigation operation is continued only in the storage battery bank (residual bank) that does not perform the maintenance charge. The probability is obtained for each SOC value at which maintenance charging is started. Here, the SOC value at which maintenance charging is started means the SOC value during fluctuation mitigation operation immediately before starting maintenance charging.

全てのバンクの蓄電池容量を合計した容量が、前述の如く、風力発電機出力の平滑値が合成出力となるよう蓄電池にて充放電を行う変動緩和動作のために過不足無い容量の場合、蓄電池の全バンクが連動して同じSOC値を保ちながら推移する方式とすると、理想状態でSOCの範囲超過等の破綻が生じないほか、内部の状態量の相対関係が一意に決定できる。   In the case where the capacity obtained by adding up the storage battery capacities of all banks is a capacity that is not excessive or insufficient for fluctuation mitigation operation in which charging / discharging is performed in the storage battery so that the smoothed value of the wind power generator output becomes the combined output as described above, the storage battery In the ideal state, the bank does not fail such as exceeding the SOC range, and the relative relationship between the internal state quantities can be uniquely determined.

本発明の計算例では、上記理想的な条件での計算例を示した。一方、一定の破綻率を許容し、SOCをある値に追従させる等の制御を入れた場合でも、追加した制御の係数毎にパラメトリックに保守充電成功率を求めることで、本発明は同様に適用できる。ここで、破綻率とは、変動緩和動作を継続しつつ複数の蓄電池バンクのうち一部の蓄電池バンクに対し保守充電を行った場合に保守充電を行わない残りの蓄電池バンクにて変動緩和動作が破綻する確率をいう。保守充電成功率データ保持部113にて使用する保守充電の成功率は、風力発電機の設置サイトの建設に先立ち観測した風況データ、又は、隣接する風力発電所の発電量データ等の運用開始前に取得したデータ、若しくはその風力発電所の運用開始後に変動緩和動作を実施しつつ取得したデータに基づいて作成される。   In the calculation example of the present invention, the calculation example under the ideal condition is shown. On the other hand, the present invention is similarly applied by obtaining a maintenance charge success rate parametrically for each added control coefficient even when control such as allowing a certain failure rate and causing the SOC to follow a certain value is included. it can. Here, the failure rate is the fluctuation mitigation operation in the remaining storage battery banks that do not perform maintenance charging when maintenance charging is performed on some of the plurality of storage battery banks while continuing the fluctuation mitigation operation. The probability of bankruptcy. The maintenance charge success rate used in the maintenance charge success rate data holding unit 113 is the start of operation of the wind condition data observed prior to the construction of the installation site of the wind power generator or the power generation amount data of the adjacent wind power plant It is created based on previously acquired data or data acquired while performing fluctuation mitigation operation after the start of operation of the wind power plant.

保守充電成功率データは、同データの作成時の条件にあわせ、条件毎に複数の保守充電成功率曲線を備えても良い。日本付近の風の状況は、季節毎に大きく異なることが知られており、一般に冬季の方が季節風の影響を大きく受け、風力が大きい傾向をもつことが知られている。   The maintenance charge success rate data may include a plurality of maintenance charge success rate curves for each condition according to the conditions at the time of creation of the data. The wind conditions around Japan are known to vary greatly from season to season, and it is generally known that the winter is more affected by seasonal winds and the wind tends to be larger.

例えば、分析に用いる風力発電機の発電量が、冬季のデータの場合、冬季の保守充電成功率曲線の算出に用いられる。風力発電所の運用開始後、実際に保守充電を行う際、季節毎に保持した保守充電成功率曲線は、外部入力117や平準化制御部103の保持する図示しないRTC(リアルタイムクロック、カレンダー、時刻等を保持する手段)等から取得した季節に関する情報に応じ、切り換えられる。上記の保守充電成功率データ作成時の条件に応じた、複数の保守充電成功率曲線の選択は、保守充電成功率作成時と、運用開始後に実際に保守充電を行う際の保守充電成功率曲線選択時の条件が(およそ)一致する方式とすれば、季節以外の他の条件に関しても拡張可能である。   For example, when the power generation amount of the wind power generator used for the analysis is winter data, it is used to calculate a winter maintenance charge success rate curve. When actually performing maintenance charging after the start of the operation of the wind power plant, the maintenance charging success rate curve held for each season is an RTC (real time clock, calendar, time) (not shown) held by the external input 117 or the leveling control unit 103. Etc.) is switched according to the information on the season acquired from the Selection of multiple maintenance charge success rate curves according to the conditions at the time of creating the maintenance charge success rate data above is the maintenance charge success rate curve when the maintenance charge success rate is created and when actual maintenance charge is performed after the start of operation. If a method in which the conditions at the time of selection are (approximately) matched, it is possible to extend other conditions other than the season.

例えば、時刻によって変わる(海陸風のような)風速の傾向、若しくは天候による風速の傾向、風向による風速の傾向(周囲の地形、隣接風力発電機との相互の影響など)、気象データ若しくは気象予測データの値に依存した風速の傾向など、風速の状況と相関を生じうる条件で、かつ保守充電成功率曲線の算出時と、運用開始後に実際に保守充電開始判定時に対応する保守充電成功率曲線の選択に用いるデータを外部入力117や平準化制御部103内部の情報源から入力できるものであれば、種類は問わない。   For example, wind speed trends (such as ocean and land winds) that change with time, wind speed trends due to weather, wind speed trends due to wind direction (neighboring topography, mutual influence with adjacent wind generators, etc.), weather data or weather forecasts Maintenance charge success rate curve that corresponds to the condition of wind speed, such as the wind speed trend depending on the data value, and that corresponds to the maintenance charge success rate curve when calculating the maintenance charge success rate curve and after the start of operation. Any kind of data can be used as long as it can be input from an external input 117 or an information source inside the leveling control unit 103.

風況/発電量/充放電量データ保持部115は、保守充電成功率を算出するための各種データを保持する。いずれも年単位、月単位など長期のデータが望ましい。また、サイトの運用開始後に測定したデータを用いても良く、更に前述の運用開始前のデータ及び運用開始後のデータの双方を用い、保守充電成功率データを継続的に更新しても良い。   The wind condition / power generation / charge / discharge amount data holding unit 115 holds various data for calculating the maintenance charge success rate. In both cases, long-term data such as annual and monthly data is desirable. Further, data measured after the start of operation of the site may be used, and maintenance charge success rate data may be continuously updated using both the data before the start of operation and the data after the start of operation.

保守充電成功率演算部114は、風況/発電量/充放電量データ115に保持したデータを用い、一部バンクに対し保守充電を開始したと仮定し、保守充電を完遂するまで、保守充電を行わない残余バンクのみで残余バンクの容量を超過せず変動緩和動作を継続できる確率を、保守充電開始時のSOC毎に求める。上記計算によれば、バンク構成等の諸条件を変えた複数のケースに対し行うことで、例えば蓄電池の全5バンク中の3バンクで変動緩和動作を継続しつつ、2バンクに対し保守充電を行う場合に保守充電を完遂できる確率を事前に知ることができる。   The maintenance charge success rate calculation unit 114 uses the data held in the wind condition / power generation amount / charge / discharge amount data 115 and assumes that maintenance charge has started for some banks, and performs maintenance charge until the maintenance charge is completed. The probability that the fluctuation mitigation operation can be continued without exceeding the capacity of the remaining bank with only the remaining bank that is not performed is obtained for each SOC at the start of maintenance charging. According to the above calculation, maintenance charge is performed for 2 banks while continuing fluctuation mitigation operation in 3 banks out of all 5 banks of storage batteries, for example, by performing for multiple cases with various conditions such as bank configuration. When performing, it is possible to know in advance the probability that maintenance charging can be completed.

保守充電成功率は、保守充電を開始するSOCの値に依存し大きく変化するため、より成功率の高いSOCから保守充電を開始することで、風力サイトの稼働率を向上できる。保守充電開始判定部107は、保守充電要求起動部106により保守充電の要求を受けた場合に、SOC算出部104からの蓄電池のSOCの値、保守充電必要バンク情報保持部111からの保守充電が必要となっているバンクの数の情報、当該保守充電の必要な蓄電池バンク及び変動緩和動作を継続する蓄電池バンクの最大充放電電流値や容量等の蓄電池諸元(蓄電池諸元保持部112からの情報)に基づいて、保守充電の開始を判定する。   Since the maintenance charging success rate greatly varies depending on the SOC value at which maintenance charging is started, the operation rate of the wind power site can be improved by starting maintenance charging from an SOC with a higher success rate. When the maintenance charge request determination unit 107 receives a maintenance charge request from the maintenance charge request activation unit 106, the maintenance charge start determination unit 107 receives the SOC value of the storage battery from the SOC calculation unit 104 and the maintenance charge from the maintenance charge necessary bank information holding unit 111. Information on the number of necessary banks, storage battery banks that require maintenance charging, and storage battery specifications such as maximum charge / discharge current values and capacities of storage battery banks that continue fluctuation mitigation operations (from storage battery specification holding unit 112 Based on the information, the start of maintenance charging is determined.

充放電制御部105は、保守充電開始の指令を受けた場合、例えば1つの蓄電池バンクで変動緩和動作を継続しつつ他方の蓄電池バンクに対して所定の手順で保守充電を行う。   When the charge / discharge control unit 105 receives a maintenance charge start command, for example, the charge / discharge control unit 105 performs maintenance charge on the other storage battery bank in a predetermined procedure while continuing the fluctuation mitigation operation in one storage battery bank.

保守充電開始判定部107は、保守充電要求起動部106からの保守充電要求を受信した際、もし、現状のSOC値、保守充電必要蓄電池バンク数等の情報に基づいた保守充電成功率が所定値より低い場合は、保守充電要求の受信後直ちに保守充電の開始指令を出力せず、保守充電成功率がより高い状態に移行するまで、一時的に保守充電の開始指令を保留する。例えば、蓄電池バンクが2つの場合で、SOCが50%前後の場合、一方の蓄電池に対し保守充電を開始した場合の成功率はほとんど0%であるが、十数時間の経過で保守充電成功率は35%以上に向上する。これは、後述の図6のとおりである。   When the maintenance charge start determination unit 107 receives the maintenance charge request from the maintenance charge request activation unit 106, the maintenance charge success rate based on information such as the current SOC value and the number of storage battery banks required for maintenance charge is a predetermined value. If lower, the maintenance charge start command is not output immediately after receiving the maintenance charge request, and the maintenance charge start command is temporarily suspended until the maintenance charge success rate shifts to a higher state. For example, when there are two storage battery banks and the SOC is around 50%, the success rate when maintenance charge is started for one of the storage batteries is almost 0%, but the maintenance charge success rate after 10 or more hours Improves to over 35%. This is as shown in FIG.

保守充電の開始を保留できるのは、多くの場合で、保守充電を開始するまでの猶予時間が比較的長いためである。例えば、従来、鉛蓄電池の保守充電(均等充電)は、二週間の一定間隔で行う場合があるが、この二週間の間隔が十数時間延びた場合の影響は軽微と考えられる。   The start of maintenance charging can be suspended because, in many cases, the grace time until maintenance charging starts is relatively long. For example, conventionally, maintenance charging (equal charging) of a lead storage battery may be performed at a constant interval of two weeks, but the effect when the interval of two weeks is extended by more than ten hours is considered to be slight.

しかし、一方で、リチウムイオン電池のSOCの指示値の誤差が明らかに大きく、直ちに保守充電(休止による正確なOCVの取得)を行わなければ運用に支障をきたす等、猶予時間が比較的短いケースも存在しうる。そこで、保守充電猶予時間保持部116にて、保守充電開始判定部107が保守充電の開始を保留できる最大の猶予時間を保持し、当該時間の経過で、現状の保守充電成功率の如何によらず保守充電開始判定部107が、保守充電の開始指令を出力するようにしても良い。或いは、外部出力118経由で操作卓にメッセージを表示し、運転員の指示を仰ぐようにしても良い。尚、保守充電猶予時間保持部116に格納する猶予時間は、必ずしも固定ではなく、保守充電の切迫の度合い(例えばセル間のばらつきの大きさ、SOC誤差の拡大の程度等)に応じ、可変としても良い。   However, on the other hand, there are cases where the error in the SOC indication value of the lithium ion battery is clearly large, and if the maintenance charge (accurate OCV acquisition due to suspension) is not performed immediately, the operation will be hindered. Can also exist. Therefore, the maintenance charge grace time holding unit 116 holds the maximum grace time during which the maintenance charge start determination unit 107 can hold the start of maintenance charge, and the maintenance charge success rate depends on the current maintenance charge success rate. First, the maintenance charging start determination unit 107 may output a maintenance charging start command. Alternatively, a message may be displayed on the console via the external output 118 to ask for instructions from the operator. Note that the grace time stored in the maintenance charge grace time holding unit 116 is not necessarily fixed, and can be varied depending on the degree of urgency of maintenance charge (for example, the degree of variation between cells, the degree of increase in SOC error, etc.). Also good.

なお、平準化制御部103、保守充電成功率演算部114及び風況/発電量/充放電量データ保持部115の配置、構成等は、上述の例に限定されるものではなく、これらの機能を発揮する構成であればどのようなものであってもよい。また、保守充電成功率演算部114は、平準化制御部103に含まれていてもよく、保守充電成功率の演算を平準化制御部103にて行ってもよい。   The arrangement, configuration, and the like of the leveling control unit 103, the maintenance charge success rate calculation unit 114, and the wind condition / power generation amount / charge / discharge amount data holding unit 115 are not limited to the above-described examples. Any configuration may be used as long as it exhibits the above. The maintenance charge success rate calculation unit 114 may be included in the leveling control unit 103, and the maintenance charge success rate may be calculated by the leveling control unit 103.

(図2の説明)
図2は、保守充電開始時のSOCに対する保守充電成功率曲線の例を示したものである。横軸は保守充電開始時のSOCであり、縦軸は保守充電成功率である。尚、蓄電池容量は必要最低限の構成であり、全バンクのSOCが連動して変動緩和していると仮定している。縦軸の保守充電成功率は、一部の蓄電池バンクに対し保守充電を行う場合に、変動緩和動作を継続する蓄電池バンクの容量を超過せず、保守充電を完遂できる確率である。
(Description of FIG. 2)
FIG. 2 shows an example of a maintenance charge success rate curve with respect to the SOC at the start of maintenance charge. The horizontal axis is the SOC at the start of maintenance charging, and the vertical axis is the maintenance charging success rate. Note that the storage battery capacity is the minimum necessary configuration, and it is assumed that the SOCs of all banks are linked and relaxed. The maintenance charge success rate on the vertical axis is the probability that maintenance charge can be completed without exceeding the capacity of the storage battery bank that continues the fluctuation mitigation operation when maintenance charge is performed on some storage battery banks.

本図において、曲線130は、同一電流容量、同一Ah容量の蓄電池バンクを2個設けた構成の変動緩和システムにおいて、1個の蓄電池バンクにより変動緩和動作を継続しながら他の1個の蓄電池バンクに保守充電を行う場合の成功率を示したものである。同様に、曲線131は、同一電流容量、同一Ah容量の蓄電池バンクを6個設けた構成において、5個の蓄電池バンクにより変動緩和動作を継続しながら1個の蓄電池バンクに保守充電を行う場合の成功率を示したものである。さらに、曲線132は、電流容量の比及びAh容量の比をともに2:1とした2個の蓄電池バンクで構成した変動緩和システム(容量の比を図中のバンクを表す長方形の面積で表現している。)において、容量が小さいほうの1個の蓄電池バンクにより変動緩和動作を継続しながら容量の大きいほうの1個の蓄電池バンクに保守充電を行う場合の成功率を示したものである。   In this figure, a curve 130 shows another storage battery bank while continuing the fluctuation relaxation operation by one storage battery bank in a fluctuation relaxation system having two storage battery banks having the same current capacity and the same Ah capacity. Shows the success rate when performing maintenance charging. Similarly, the curve 131 shows a case where six storage battery banks having the same current capacity and the same Ah capacity are provided, and maintenance charging is performed on one storage battery bank while continuing the fluctuation mitigation operation with the five storage battery banks. It shows the success rate. Furthermore, the curve 132 is a fluctuation mitigation system (two capacity battery ratios, both of which are the current capacity ratio and the Ah capacity ratio 2: 1) (the capacity ratio is expressed as a rectangular area representing the bank in the figure). The success rate in the case where maintenance charging is performed on one storage battery bank having a larger capacity while continuing the fluctuation mitigation operation by one storage battery bank having a smaller capacity.

尚、保守充電の時間は10時間とした。また、曲線130は、例えば同一容量の2個の蓄電池バンクのうち1個の蓄電池バンクに対して保守充電を行うケース以外に、例えば同一容量の6個の蓄電池バンクで3個の蓄電池バンクに対して同時に保守充電を行う場合にも適用できる。同様に、曲線132は、例えば同一容量の3個の蓄電池バンクで2個の蓄電池バンクに対して同時に保守充電を行う場合にも適用できる。   The maintenance charging time was 10 hours. In addition, the curve 130 indicates, for example, six storage battery banks having the same capacity for three storage battery banks, in addition to a case where maintenance charging is performed for one storage battery bank of two storage battery banks having the same capacity. It can also be applied to maintenance charging at the same time. Similarly, the curve 132 can be applied to the case where, for example, three storage battery banks having the same capacity are simultaneously subjected to maintenance charging for two storage battery banks.

以下、適宜、電流容量や充放電容量の比が同一或いは近似する他のケースにも同様に適用できる。バンク構成単位でなく、容量の比を整数比以外に拡大し、パラメトリックに本図の曲線を求めれば、より一般のケースに対して対応可能となり、多種多様な蓄電池の組み合わせに対し、同一の手順を適用できるようになる。   Hereinafter, the present invention can be similarly applied to other cases where the ratios of current capacity and charge / discharge capacity are the same or similar. By expanding the capacity ratio to a non-integer ratio instead of the bank composition unit and finding the curve in this figure parametrically, it becomes possible to deal with more general cases, and the same procedure for a wide variety of storage battery combinations Can be applied.

本図の曲線からわかるように、保守充電を開始するSOCの値及び全バンクにおける保守充電を行うバンクの割合に応じ、変動緩和動作中に一部のバンクに対して保守充電を行う場合の成功率は大きく変動する。したがって、この特性を有効に活用することで、保守充電成功率の高い、より有利な条件下で保守充電を開始することが可能となり、発電所の稼働率を向上できる。   As can be seen from the curve in this figure, success in performing maintenance charging for some banks during fluctuation mitigation operation according to the SOC value for starting maintenance charging and the ratio of banks performing maintenance charging in all banks The rate varies greatly. Therefore, by effectively utilizing this characteristic, it is possible to start maintenance charging under a more advantageous condition with a high maintenance charging success rate, and the operating rate of the power plant can be improved.

ここでは、例として、変動緩和用の蓄電池が同一容量の蓄電池バンク2個の構成の場合に、SOCが55%のときに保守充電要求起動部106から保守充電開始判定部107へ保守充電要求がなされたと考える。   Here, as an example, when the storage battery for fluctuation mitigation has two storage battery banks having the same capacity, when the SOC is 55%, a maintenance charge request is sent from the maintenance charge request activation unit 106 to the maintenance charge start determination unit 107. I think it was made.

同一容量の蓄電池バンク2個の構成の場合の保守充電の曲線は、図2の曲線130に相当する。本図からわかるように、曲線130の横軸のSOC55%に対応する保守充電成功率は、ほぼ0%である。したがって、保守充電開始判定部107は、保守充電が直ちに必要な切迫した状況以外の場合、充放電制御部105への保守充電開始の指令の出力を留保する。   The maintenance charging curve in the case of two storage battery banks having the same capacity corresponds to the curve 130 in FIG. As can be seen from this figure, the maintenance charge success rate corresponding to SOC 55% on the horizontal axis of the curve 130 is almost 0%. Accordingly, the maintenance charge start determination unit 107 reserves the output of the maintenance charge start command to the charge / discharge control unit 105 in cases other than an imminent situation where maintenance charge is immediately required.

その後、時間の経過とともに、より高い保守充電成功率に対応するSOCに移行したことを見計らって、保守充電開始判定部107が充放電制御部105へ保守充電開始の指令を出力する。   Thereafter, with the passage of time, the maintenance charge start determination unit 107 outputs a maintenance charge start command to the charge / discharge control unit 105 in anticipation of the transition to the SOC corresponding to a higher maintenance charge success rate.

次に、保守充電成功率曲線の作成手順を説明する。   Next, a procedure for creating a maintenance charge success rate curve will be described.

図3は、保守充電成功率曲線の作成工程の例を示すフロー図である。   FIG. 3 is a flowchart showing an example of a process for creating a maintenance charge success rate curve.

保守充電成功率曲線の作成は、図1の保守充電成功率演算部114で行う。まず、保守充電成功率算出の基礎となる測定データを風況/発電量/充放電量データ保持部115から入手する(S501)。これは、例えば風力発電の場合、建設に先立ち、建設予定地の風況を相当期間(1年以上など)にわたり、測定をしている場合がある。また、近隣で既に稼働中の風力発電所がある場合は、その発電量データなどを可能な限り入手する。後者の場合、同一形式の風力発電機の発電量の時系列データであれば更に好ましい。   The maintenance charge success rate curve is created by the maintenance charge success rate calculation unit 114 shown in FIG. First, measurement data serving as a basis for calculating the maintenance charge success rate is obtained from the wind condition / power generation / charge / discharge amount data holding unit 115 (S501). For example, in the case of wind power generation, the wind condition of the planned construction site may be measured over a considerable period (such as one year or more) prior to construction. If there is a wind power plant already in operation in the vicinity, obtain as much power generation data as possible. In the latter case, it is more preferable if it is time-series data of the power generation amount of the same type of wind power generator.

入手した測定データは、その形式により、例えば風速データであれば、発電量の風速の三乗則など公知の手法で発電量の時系列データに変換する。本実施例では、風力発電所の運用開始前の事前データに基づく保守充電成功率曲線作成の例を示したが、運用開始後の実測データに基づいても、同様に保守充電成功率曲線を作成/或いは事前データと合算し累積的に更新することができる。運用開始後のデータを用いた場合、事前シミュレーションの場合と比較し、各種仮定による誤差が生じない点が有利である。一方、データの蓄積量が、特に運用開始直後では少ないため、運用開始前の事前データあるいはワイブル係数を用いた統計的な風況データを加えることで統計的偏りが回避される。   If the obtained measurement data is, for example, wind speed data, it is converted into power generation time-series data by a known method such as a third law of the wind speed of the power generation. In this example, an example of creating a maintenance charge success rate curve based on prior data before the start of operation of the wind power plant was shown, but a maintenance charge success rate curve is similarly created based on actual measurement data after the start of operation. It is possible to add and / or update the data in advance. When using data after the start of operation, there is an advantage that no error due to various assumptions occurs compared to the case of pre-simulation. On the other hand, since the amount of accumulated data is small immediately after the start of operation, statistical bias is avoided by adding prior data before the start of operation or statistical wind condition data using a Weibull coefficient.

つぎに、S502にて、発電量の一次遅れによる平滑値を出力の追従目標とする等の、一般的な公知の変動緩和アルゴリズムにて蓄電池に対し充放電を行った場合の挙動を分析する。変動緩和の例は、上記数式(1)〜(3)に示すものを用いることができる。また分析の方法は、後述の図4にて詳細に説明する。分析結果に基づいて保守充電成功率マップを作成する。   Next, in S502, the behavior when the storage battery is charged / discharged by a general known fluctuation mitigation algorithm, such as setting a smooth value due to the first-order delay of the power generation amount as an output follow-up target, is analyzed. As examples of fluctuation relaxation, those shown in the above mathematical formulas (1) to (3) can be used. The analysis method will be described in detail with reference to FIG. A maintenance charge success rate map is created based on the analysis result.

得られた分析結果のデータは、図1の平準化制御部103の保守充電成功率データ保持部113に格納する(S503)。   The obtained analysis result data is stored in the maintenance charge success rate data holding unit 113 of the leveling control unit 103 in FIG. 1 (S503).

その後、上記のデータを用いて保守充電開始決定タスクを開始する(S504)。これについては図5を用いて後述する。   Thereafter, a maintenance charge start determination task is started using the above data (S504). This will be described later with reference to FIG.

以下、分析の方法について図4を用いて説明する。   Hereinafter, the analysis method will be described with reference to FIG.

図4は、保守充電成功を判定する過程の例を示すグラフである。   FIG. 4 is a graph illustrating an example of a process for determining success in maintenance charging.

図中、右上のグラフは、風力発電機により発生した電流の経時変化を示したものである。ここで、電流として示した値は、風力発電機により発生した電力を所定の電圧に調整し、必要に応じ規格化した場合の電流の値である。   In the figure, the upper right graph shows the change over time of the current generated by the wind power generator. Here, the value shown as the current is the value of the current when the electric power generated by the wind power generator is adjusted to a predetermined voltage and normalized as necessary.

右下のグラフは、変動緩和システムを構成する複数個の蓄電池バンクのうちの1個について充電状態(SOC)の経時変化を示したものである。保守充電の時間は10時間としている。   The lower right graph shows a change with time in the state of charge (SOC) of one of a plurality of storage battery banks constituting the fluctuation mitigation system. The maintenance charging time is 10 hours.

同図左側のグラフは、ある充電状態(SOC)において保守充電が成功する確率を示したものである。これは、図2と同じものである。   The graph on the left side of the figure shows the probability of successful maintenance charging in a certain state of charge (SOC). This is the same as FIG.

分析は、変動緩和動作を継続する保守充電を行わない側の蓄電池バンクの電流制限値及びSOC範囲の双方の超過の有無について、全ての開始時刻から保守充電を開始したと仮定して行う。ここで、保守充電は、簡略化のため、変動緩和対象の風力発電機以外の別電源を用いるとする。   The analysis is performed on the assumption that maintenance charging has been started from all start times with respect to whether or not both the current limit value and the SOC range of the storage battery bank that does not perform maintenance charging that continues the fluctuation mitigation operation are exceeded. Here, for the sake of simplification, it is assumed that the maintenance charging uses another power source other than the wind power generator subject to fluctuation mitigation.

図4の右上及び右下のグラフは、例として、図2の曲線130に示す、同一電流容量、同一Ah容量の蓄電池バンクを2個設けた構成の変動緩和システムにおいて、1個の蓄電池バンクにより変動緩和動作を継続しながら他の1個の蓄電池バンクに保守充電を行う場合である。図4のグラフにおいて、時刻t1から保守充電を開始し、他方のバンクで変動緩和動作を継続すると仮定する。この場合、変動緩和システムを構成する蓄電池の容量が半分となるため、充放電電流の制限値は、図中のIdmaxからIdmax/2(放電)、IcmaxからIcmax/2(充電)と半分になる。   The graphs in the upper right and lower right of FIG. 4 show, as an example, in a fluctuation mitigation system having two storage battery banks having the same current capacity and the same Ah capacity shown by the curve 130 in FIG. This is a case where maintenance charging is performed on another storage battery bank while continuing the fluctuation mitigation operation. In the graph of FIG. 4, it is assumed that maintenance charging is started from time t1, and that the fluctuation mitigation operation is continued in the other bank. In this case, since the capacity of the storage battery constituting the fluctuation mitigation system is halved, the limit value of the charge / discharge current is halved from Idmax to Idmax / 2 (discharge) and Icmax to Icmax / 2 (charge) in the figure. .

この条件において、保守充電を継続する10時間の間に上記制限値を超えずに経過すれば、電流制限値に関する超過はないもの(符号143)と判定する。   Under this condition, if the above limit value is not exceeded for 10 hours during which maintenance charging is continued, it is determined that there is no excess regarding the current limit value (symbol 143).

同様に、変動緩和動作を継続する蓄電池バンクのSOCは、他方のバンクが保守充電をしている場合、右下のグラフ中の点線で示すように従来の2倍の傾きで変化するが、この場合でも、保守充電の継続時間中にSOCが制限範囲内で推移すれば、SOCに関する超過はないもの(符号142)と判定する。   Similarly, the SOC of the storage battery bank that continues the fluctuation mitigation operation changes with a slope twice that of the conventional one as shown by the dotted line in the lower right graph when the other bank is performing maintenance charging. Even in this case, if the SOC changes within the limit range during the duration of the maintenance charge, it is determined that there is no excess regarding the SOC (reference numeral 142).

この場合、符号143及び142から、電流及びSOCの双方の超過がないと判定されているため、保守充電開始の時刻t1に対応するSOC1に対して、保守充電成功率の「成功」の累積度数に1が加算される。   In this case, since it is determined from reference numerals 143 and 142 that neither the current nor the SOC is exceeded, the cumulative frequency of “successful” maintenance charge success rates for the SOC1 corresponding to the maintenance charge start time t1. 1 is added to.

尚、ヒストグラムとして集計する関係上、実際にはSOC1を含むある幅をもった階級範囲に関し、度数を累積する。階級範囲の幅の一例としてSOCの5%が挙げられるが、統計処理するデータが多い場合は、より狭い幅を採用しても統計上有意な度数まで集計することができる。逆に処理すべきデータが少ない場合は、階級範囲を広めにとり累積される度数を統計的に有意とみなせる量まで確保する。度数が有意か否かの判断基準の一例として、ヒストグラムが滑らかに変化するかどうかがある。処理すべきデータが少ないにもかかわらず階級範囲を狭くした場合、隣接する階級の度数の変動が大きくなる。また、前記SOC1に対する成否のカウントを、ヒストグラム処理せず、そのまま保持することで異なる階級範囲の幅に対するヒストグラムの変化を確認してもよい。同様にヒストグラム処理しない上記SOC1に対する成否カウントを、後に追加の統計処理にて得られた成否カウントとあわせてヒストグラム処理する目的で保存しても良い。   It should be noted that the frequency is accumulated for the class range having a certain width including SOC1 because of the aggregation as a histogram. An example of the width of the class range is 5% of the SOC. However, when there is a lot of data to be statistically processed, even if a narrower width is adopted, the statistically significant frequency can be tabulated. Conversely, when there is little data to be processed, the class range is widened and the accumulated frequency is secured to an amount that can be regarded as statistically significant. An example of a criterion for determining whether the frequency is significant is whether the histogram changes smoothly. When the class range is narrowed despite the fact that there is little data to be processed, the variation in the frequency of adjacent classes becomes large. Alternatively, the success / failure count for the SOC1 may be retained as it is without being subjected to the histogram processing, thereby confirming a change in the histogram with respect to the width of different class ranges. Similarly, the success / failure count for the SOC 1 that is not subjected to histogram processing may be stored for the purpose of histogram processing together with the success / failure count obtained in the additional statistical processing later.

同様に、時刻t2から保守充電を開始した場合には、SOCが下限を下回るため(符号146)、対応するSOC2は、保守充電成功率の「失敗」の累積度数に1が加算される。   Similarly, when maintenance charging is started from time t2, since the SOC is lower than the lower limit (reference numeral 146), 1 is added to the cumulative frequency of “failure” of the maintenance charging success rate for the corresponding SOC2.

さらに、t3からの保守充電開始の場合、最大放電電流値超過(符号149)のため、対応するSOC3は、保守充電成功率の「失敗」の累積度数に1が加算される。   Further, when maintenance charging is started from t3, because the maximum discharge current value is exceeded (reference numeral 149), 1 is added to the cumulative frequency of “failure” of the maintenance charging success rate for the corresponding SOC3.

時刻t2から保守充電を開始した場合のように、SOCの超過に関しては、たとえ電流制限値の超過が無い場合でも、SOCの超過が起こる可能性がある。   As in the case where maintenance charging is started from time t2, regarding the excess of the SOC, even if the current limit value is not exceeded, the SOC may be exceeded.

例えば、保守充電を行わず2つのバンクで変動緩和動作を行っていた場合にSOCが50%から80%に増加(30%増)する局面に対応したタイミングで、1つのバンクの保守充電を行った場合、変動緩和動作を継続する他方のバンクは、50%から110%(60%増)となり、明らかにSOCの制限範囲を超過する。SOC運用範囲のうち、中間のSOCから開始した場合、SOCの変化幅の観点から、変動緩和動作を継続する側の蓄電池バンクでのSOCの超過が生じやすい。   For example, when fluctuation mitigation operation is performed in two banks without performing maintenance charging, maintenance charging for one bank is performed at the timing corresponding to the situation where the SOC increases from 50% to 80% (30% increase). In this case, the other bank that continues the fluctuation mitigation operation changes from 50% to 110% (up 60%), clearly exceeding the SOC limit range. When starting from an intermediate SOC in the SOC operation range, the SOC of the storage battery bank on the side where the fluctuation mitigation operation is continued tends to occur from the viewpoint of the change width of the SOC.

加えて、風の強弱分布の基本的性質から、発電機出力の一次遅れによる平滑値を出力の追従目標とする等の、一般的な公知の変動緩和アルゴリズムを適用すると、中間のSOCでの滞留時間は、比較的短く、長い時間の経過を待たずして、どちらかのSOC(特に、低い方のSOC)に移行する性質もある。したがって、変動緩和動作に保守充電を行う場合、中間のSOCから開始することは、非常に不利となる。   In addition, if a general well-known fluctuation mitigation algorithm such as a smoothing value due to the first-order lag of the generator output is used as the output follow-up target due to the basic nature of the wind intensity distribution, stagnation at an intermediate SOC The time is relatively short, and there is also a property of shifting to one of the SOCs (especially, the lower SOC) without waiting for a long time. Therefore, when performing maintenance charging for the fluctuation mitigation operation, it is very disadvantageous to start from an intermediate SOC.

以上の手順は、図3のS502にて行う保守充電成功率の計算を示したものであるが、この場合、種々のバンク構成、バンク毎の電流制限値、容量、保守充電時間(例えばOCV状態に保つ時間や均等充電時の押し込み充電時間等、設定に任意性をもつ時間)、蓄電池の種類、季節毎の風況の変化、発電機毎の特性の違い、複数発電機のうち休止する発電機が存在する場合の違いなど、統計処理をするに十分にデータがある場合には、種々の条件下での保守充電成功率を算出すると、運用時の状態により合致させた保守充電成功率を作成することができる。   The above procedure shows the calculation of the maintenance charge success rate performed in S502 of FIG. 3. In this case, various bank configurations, current limit values for each bank, capacity, maintenance charge time (for example, OCV state) The time required to set the time, the push-in charge time for equal charge, etc., with optional settings), the type of storage battery, changes in the wind conditions for each season, differences in characteristics for each generator, and power generation that pauses among multiple generators When there is enough data to perform statistical processing, such as when there is a machine, calculating the maintenance charge success rate under various conditions will yield a maintenance charge success rate that matches the state during operation. Can be created.

次に、図3のS503で算出結果を、保守充電成功率データ保持部113に格納する。この格納作業は、風力発電所建設前の風況データを元にする場合、風力発電所運用開始前に一度だけ行っても良い。運用開始後の実績データに基づき、実際に用いる風力発電機に関する測定データを用い、随時更新しても良い。したがって、風況/発電量/充放電量データ保持部115及び保守充電成功率演算部114は、運用開始前のみの段階で用いても、運用開始後に引き続き用いても良い。保守充電成功率データを格納した後、実際に保守充電成功率データに基づいた変動緩和動作中の保守充電の適用を開始する。もちろん、変動緩和動作中の保守充電を、発電所運用開始時には適用せず、実績データを十分に蓄積した後に、適用を開始しても良い。   Next, the calculation result is stored in the maintenance charge success rate data holding unit 113 in S503 of FIG. This storage operation may be performed only once before starting the operation of the wind power plant when it is based on the wind condition data before construction of the wind power plant. Based on the actual data after the start of operation, measurement data relating to the wind generator actually used may be used and updated as needed. Therefore, the wind condition / power generation amount / charge / discharge amount data holding unit 115 and the maintenance charge success rate calculation unit 114 may be used only before the operation is started or may be continuously used after the operation is started. After the maintenance charge success rate data is stored, application of maintenance charge during the fluctuation mitigation operation based on the maintenance charge success rate data is actually started. Of course, the maintenance charge during the fluctuation mitigation operation may not be applied at the start of power plant operation, but may be applied after sufficient performance data has been accumulated.

風況データの例としては、風速の出現率分布を表すワイブル分布がある。ワイブル分布は、一般に下記数式(4)で表される。   As an example of wind condition data, there is a Weibull distribution representing an appearance rate distribution of wind speed. The Weibull distribution is generally represented by the following formula (4).

Figure 2016049008
Figure 2016049008

式中、f(V)は風速Vの出現率であり、cは尺度係数であり、kは形状係数である。   In the equation, f (V) is the appearance rate of the wind speed V, c is a scale factor, and k is a shape factor.

次に、保守充電開始の決定に関するタスクのフローを説明する。これらのフローは、図1の平準化制御部103内の複数の機能ブロックが関連して動作する。   Next, a task flow regarding determination of the start of maintenance charging will be described. These flows operate in association with a plurality of functional blocks in the leveling control unit 103 of FIG.

図5は、保守充電開始決定タスクの例を示すフロー図である。   FIG. 5 is a flowchart showing an example of the maintenance charge start determination task.

まず、S510で保守充電要求起動部106が保守充電開始要求のトリガを発生させる。トリガ発生の要因としては、例えば2週間毎等の定期的な保守充電の期限の到来、バンク中の複数の蓄電池間での電圧のばらつき(SOCのばらつき)が所定値を超過した場合、運転員の手動操作による保守充電指令の入力、他の発電サイトも含め統括的に管理する上位系からの遠隔による保守充電指令などがある。   First, in S510, the maintenance charge request activation unit 106 generates a maintenance charge start request trigger. Factors for trigger occurrence include, for example, when the period for regular maintenance charging comes every two weeks, etc., or when voltage variation (SOC variation) among a plurality of storage batteries in the bank exceeds a predetermined value. There is a maintenance charge command input by manual operation, and a remote maintenance charge command from a host system that is centrally managed including other power generation sites.

運転員の操作や遠隔からの指令は、外部入力117より入力される。その他、2週間等の一定周期のトリガは、外部入力117より入力しても、平準化制御部103内部の図示しないリアルタイムクロックからトリガをかけても良い。また、セル間のばらつきは、平準化制御部103に入力される計測データから算出される。   Operator operations and remote commands are input from the external input 117. In addition, the trigger of a fixed period such as two weeks may be input from the external input 117 or may be triggered from a real time clock (not shown) inside the leveling control unit 103. The cell-to-cell variation is calculated from the measurement data input to the leveling control unit 103.

但し、S510で保守充電開始要求トリガが発生した時点では、保守充電の開始要求に過ぎず、実際に保守充電を開始するか否かの判定は、保守充電開始判定部107が他の要因を勘案して判定する。そのステップの1つがS511である。   However, when the maintenance charge start request trigger is generated in S510, the maintenance charge start request is only a request for maintenance charge, and the maintenance charge start determination unit 107 considers other factors in determining whether to actually start maintenance charge. Judgment. One of the steps is S511.

ここでは、SOCの現在値、バンク構成、及び保守充電必要バンク数や希望する保守充電時間等の諸条件から、対応する保守充電成功率データを参照し、その時点での保守充電成功率を算出する。保守充電成功率データの参照にあたっては、季節や天候等の状態を外部入力117より入力し、例えば季節毎や天候毎に、対応する保守充電成功率のデータを参照することで、より精度の高い保守充電成功率のデータを得ることができる。   Here, the maintenance charge success rate at that time is calculated by referring to the corresponding maintenance charge success rate data from various conditions such as the current SOC value, bank configuration, the number of banks required for maintenance charge and the desired maintenance charge time. To do. When referring to the maintenance charge success rate data, the state such as season and weather is input from the external input 117, and for example, by referring to the corresponding maintenance charge success rate data for each season and every weather, the accuracy is higher. Maintenance charge success rate data can be obtained.

実際に日本付近では、季節毎に変わる気候により、季節風の影響が顕著に現れ、冬季と夏季では風況が大幅に異なる地点が多いことが知られている。同様に天候の大まかな傾向により風況が異なるため、保守充電成功率の特性も変わる。よって、天候に応じ、適用する保守充電成功率のデータを対応する天候のものに切り換えることで、保守充電成功率の高精度化が図れる。   In fact, in the vicinity of Japan, it is known that the influence of seasonal winds is noticeable due to the climate that changes from season to season, and there are many places where the wind conditions differ greatly between winter and summer. Similarly, since the wind conditions differ depending on the general tendency of the weather, the characteristics of the maintenance charging success rate also change. Therefore, the accuracy of the maintenance charge success rate can be improved by switching the data of the maintenance charge success rate to be applied to the corresponding weather according to the weather.

一般に、気象予測データを用い、数時間後までの風速そのものを予測し、変動緩和動作に役立てることは、現在の予測精度の関係で困難である。一方、本実施例のように、気象との関連を統計処理したデータ群の切り換えに、気象の現況データを用いる場合は平均化により効果が見込める。   In general, it is difficult to predict the wind speed itself up to several hours later using weather forecast data and use it for fluctuation mitigation operation because of current prediction accuracy. On the other hand, as in the present embodiment, when the current weather data is used to switch the data group statistically processed for the relationship with the weather, an effect can be expected by averaging.

例えば、曇天の場合、晴天と比較し日射の影響が小さく、風力の変動が小さいと予想される。山と海に面した風力発電機の場合、気象データの一例として、例えば風向を用いれば、海からの風に対しては変動が少ないことが予想され、逆に山からの風に対しては、地形による乱流で変動が大きな風況となることが予想される。その他、時間帯による保守充電成功率の切り換えを行っても良い。これは、早朝や夕方は海陸風等の効果で風速が小さい等の傾向を利用するものである。   For example, in the case of cloudy weather, it is expected that the influence of solar radiation is small and the fluctuation of wind power is small compared to clear weather. In the case of wind generators facing the mountains and the sea, for example, if the wind direction is used as an example of weather data, it is expected that there will be little fluctuation for the wind from the sea, and conversely for the wind from the mountains It is expected that the turbulence caused by the topography will cause large fluctuations in wind conditions. In addition, the maintenance charging success rate may be switched according to the time zone. This utilizes the tendency that the wind speed is low in the early morning and evening due to the effect of sea and land breeze.

その算出結果をもって、S512にて、成功率が閾値以上かを判定する。成功率が閾値以上の場合、十分に高い確率で変動緩和動作中の保守充電が可能と判定し、S518で保守充電開始判定部107が充放電制御部105に対して、保守充電の開始を指令する。充放電制御部105は、指定された保守充電の方式に従い、変動緩和システム中の保守充電対象の蓄電池バンク101に対し保守充電を行うようコンバータ102に指令値を送る。保守充電の方式に関し、鉛蓄電池ではセル間のバラツキ防止のための均等充電、若しくは電流積算値のリセットのための充電がある。   Based on the calculation result, it is determined in S512 whether the success rate is equal to or higher than a threshold value. If the success rate is equal to or greater than the threshold value, it is determined that maintenance charging during fluctuation mitigation operation is possible with a sufficiently high probability, and the maintenance charging start determination unit 107 instructs the charging / discharging control unit 105 to start maintenance charging in S518. To do. The charge / discharge control unit 105 sends a command value to the converter 102 so as to perform maintenance charging on the storage battery bank 101 to be subjected to maintenance charging in the fluctuation mitigation system in accordance with the designated maintenance charging method. Regarding the method of maintenance charging, in lead-acid batteries, there are equal charging for preventing variation between cells, or charging for resetting the integrated current value.

リチウムイオン蓄電池では、開放電圧(OCV)取得のための充放電の休止若しくはSOCに対する閉路電圧勾配平坦部(CCV電圧勾配平坦部)を回避するための充電等が挙げられる。電圧勾配平坦部の回避は、例えばSOCを高い箇所若しくは低い箇所に移行させることで、SOC変化に対する閉路電圧(CCV)の変化の大きな状態とし、SOCのズレを修正する(SOCゲージのリセット)ためのものである。OCVの取得は、リチウムイオン蓄電池に限らず鉛蓄電池を含む他の蓄電池に対しておこなっても良い。本実施例では、保守充電に伴う均等充電やSOC調整時の電源は、図1に図示しない別電源を用いることを前提とした。   In the lithium ion storage battery, charging / discharging for obtaining an open circuit voltage (OCV), charging for avoiding a closed circuit voltage gradient flat portion (CCV voltage gradient flat portion) with respect to the SOC, or the like can be given. To avoid the voltage gradient flat part, for example, by shifting the SOC to a high or low part, the closed circuit voltage (CCV) changes greatly with respect to the SOC change, and the deviation of the SOC is corrected (reset of the SOC gauge). belongs to. The OCV may be acquired not only for the lithium ion storage battery but also for other storage batteries including a lead storage battery. In the present embodiment, it is assumed that a separate power source (not shown in FIG. 1) is used as the power source for uniform charging accompanying SOC charging and SOC adjustment.

加えて、別電源を用いずに変動緩和システムの母線109を電源とする方式で、保守充電成功率演算部114にて保守充電成功率を演算し、該成功率を保守充電成功率データ保持部113に保持することで、別電源を用いない保守充電にも対応できる。保守充電に別電源を用いる方式と用いない方式の双方の保守充電成功率を保守充電成功率データ保持部113に保持し、実際におこなう保守充電の方式にあわせて切り換える方式としてもよい。   In addition, the maintenance charge success rate calculation unit 114 calculates the maintenance charge success rate by using the bus 109 of the fluctuation mitigation system as a power source without using a separate power source, and the maintenance charge success rate data holding unit By holding at 113, maintenance charging without using a separate power source can be handled. The maintenance charging success rate of both the method using a separate power source and the method not using it for maintenance charging may be held in the maintenance charging success rate data holding unit 113 and switched according to the maintenance charging method actually performed.

尚、母線109を電源とする保守充電の方式では、保守充電のための電力は、風力発電機110から供給(吸収)されるようにしてもよい。また、保守充電のための電力は、保守充電対象とならない他の蓄電池バンク101から供給されるようにしてもよい。さらに、他の蓄電池バンクのみが当該電源から電力を吸収するようにしてもよい。さらにまた、保守充電のための電力は、図示しない他の電源から母線109経由で供給(吸収)されるようにしてもよい。   In the maintenance charging method using the bus 109 as a power source, the power for maintenance charging may be supplied (absorbed) from the wind power generator 110. Further, the power for maintenance charging may be supplied from another storage battery bank 101 that is not subject to maintenance charging. Furthermore, only other storage battery banks may absorb power from the power source. Furthermore, the power for maintenance charging may be supplied (absorbed) from another power source (not shown) via the bus 109.

S513〜S515は、オプションであるため、必ずしも適用する必要はないが、利便性が向上する。   S513 to S515 are optional and need not be applied, but convenience is improved.

S513は、前のステップのS512で保守充電の成功率が閾値未満の場合、SOCの現在値、バンク構成、保守充電必要バンク数その他測定値や情報に基づき、保守充電成功率が所定の閾値を上回るまでの予想待ち時間を算出する。待ち時間の算出方法は後述する。   In S513, if the success rate of maintenance charging is less than the threshold value in S512 of the previous step, the maintenance charging success rate reaches a predetermined threshold based on the current value of SOC, the bank configuration, the number of banks required for maintenance charging, and other measured values and information. Calculate the expected waiting time until it exceeds. A method for calculating the waiting time will be described later.

S514では、予想待ち時間の閾値判定を行う。   In S514, a threshold determination of the expected waiting time is performed.

もし予想待ち時間が閾値以上であった場合、S515に進む。変動緩和動作を継続しつつ保守充電を行う場合、希望する待ち時間内で、成功率の高い保守充電を行えない可能性がある旨を表示し、又は遠隔に送信し、以後の動作の選択に関する運転員の指示を仰ぐ他、例外処理1の実行に移る。   If the expected waiting time is greater than or equal to the threshold, the process proceeds to S515. When performing maintenance charging while continuing the fluctuation mitigation operation, a message indicating that there is a possibility that maintenance charging with a high success rate may not be performed within the desired waiting time is displayed or transmitted remotely, and regarding the selection of subsequent operations In addition to requesting the operator's instruction, the process proceeds to execution of exception handling 1.

上記の移行の動作の選択の例として、強制的に保守充電を開始するか、或いは稼働率を重視し、確率的には低いが、SOCの状況が好転するまで限界まで待ち、その後、変動緩和動作を継続し、又は休止して保守充電を行うか等の選択がある。   As an example of selection of the above-mentioned transition operation, maintenance charging is forcibly started or the operating rate is emphasized, and although it is stochastically low, it waits until the SOC situation improves, and then the fluctuation is reduced. There are selections such as whether to continue operation or pause and perform maintenance charging.

上記例外処理1の例としては、操作員の選択結果の入力を待たずに、若しくは選択結果の入力のタイムアウトした際に、保守充電の実行を即時に実行し、若しくは最大待ち時間まで待った後に実行し、その際、変動緩和動作を休止するか否か等の選択を予め定められた手順で自動実行する。この際、操作員の入力指示待ち時には提示しない、より複雑な手順を組み込んでも良い。   As an example of the above exception processing 1, without waiting for the input of the operator's selection result, or when the input of the selection result has timed out, execution of maintenance charging is executed immediately or after waiting for the maximum waiting time At that time, the selection of whether or not to suspend the fluctuation mitigation operation is automatically executed according to a predetermined procedure. At this time, a more complicated procedure that is not presented when waiting for an operator's input instruction may be incorporated.

例えば、蓄電池の全6バンク中、3バンクが保守充電必要となった場合、保守充電必要なバンクのうち1バンクの保守充電までの待ち時間を長く取れ、他の2バンクの待ち時間が短く、かつ2バンクまでの保守充電であれば、保守充電成功率が閾値以上となる場合、当該2バンクのみに保守充電を適用する等がある。   For example, when 3 banks out of all 6 banks of storage batteries require maintenance charging, the waiting time until maintenance charging of 1 bank out of the banks requiring maintenance charging can be increased, and the waiting time of the other 2 banks is shortened. In the case of maintenance charging up to two banks, when the maintenance charging success rate is equal to or higher than the threshold, maintenance charging is applied only to the two banks.

予想待ち時間の閾値は、状況により異なる。例えば2週間毎の定期的な保守充電の開始を行う場合、数日程度まで保守充電の間隔が延びた場合の影響は小さいと仮定し、閾値を数日程度に設定できる。一方、電流積算によるSOC値と他の指標によるSOC値の指示の差が拡大し、制御に支障が出る場合などは、短期間の閾値を設定する。もちろん操作員の入力による保守充電開始の即実行指令の場合は、閾値は0である。   The threshold for the expected waiting time varies depending on the situation. For example, when starting regular maintenance charging every two weeks, the threshold can be set to several days on the assumption that the effect of extending the maintenance charging interval to several days is small. On the other hand, a short-term threshold value is set when the difference between the SOC value based on the current integration and the SOC value indication by another index is increased and the control is hindered. Of course, the threshold value is 0 in the case of an immediate execution command for starting maintenance charging by an operator input.

S516は、保守充電成功率が閾値以下であるために保守充電を保留している場合の最大待ち時間超過の判定である。同様に、S516にて、待ち時間以外に絶対遵守要件の超過の切迫の有無を判定基準としても良い。例えば、ばらつき等、S510での保守充電開始要求を発生させる閾値ではなく、より要件が厳しい絶対に遵守すべき閾値(S516中では絶対遵守要件と記載。例えばその値を超えると永久故障となる確率が急激に高くなる条件、例えば電気/電子部品における絶対最大定格値など)を、保守充電の開始を保留している間に超過してしまわないように、S516のステップにて、更新された測定値その他の情報に基づき判定する。   S516 is a determination that the maximum waiting time has been exceeded when maintenance charging is suspended because the maintenance charging success rate is equal to or less than the threshold value. Similarly, in S516, it may be determined whether there is an urgent need to exceed the absolute compliance requirement other than the waiting time. For example, it is not a threshold value for generating a maintenance charge start request in S510, such as a variation, but a threshold value that must be strictly observed, which is more stringent (described as an absolute compliance requirement in S516. In step S516, the updated measurement is performed so as not to exceed the condition in which the value of A / D increases rapidly, such as the absolute maximum rating value of the electrical / electronic component, etc. while the start of maintenance charging is suspended. Judgment based on value and other information.

もし最大待ち時間を超過した場合、或いは絶対最大要件の超過が切迫した場合、S517で例外処理2を行う。これは例外処理1と類似であるが、最大待ち時間終了まで状況の好転を待つという動作は除く。また、図示はしないが、保守充電を即時実行する際、保守充電を行わない蓄電池バンクにて変動緩和動作を継続するか否かの選択を操作員に求めるために提示しても良い。最大待ち時間を超過していない場合、S511に再び戻り、更新され続けるSOC現在値等の情報に基づき、再び以降のフローを実行する。   If the maximum waiting time has been exceeded or if the absolute maximum requirement has been exceeded, exception processing 2 is performed in S517. This is similar to exception processing 1, except for the operation of waiting for the situation to improve until the maximum waiting time ends. Although not shown, when maintenance charging is immediately executed, it may be presented to the operator to select whether or not to continue the fluctuation mitigation operation in the storage battery bank that does not perform maintenance charging. If the maximum waiting time has not been exceeded, the process returns to S511 again, and the subsequent flow is executed again based on information such as the SOC current value that is continuously updated.

もちろん、操作員の入力による保守充電開始の即実行指令の処理は、図5のフローを実行せず、保守充電開始判定部107が充放電制御部105に対して、即保守充電開始指令を指示しても良い。   Of course, the process of the immediate execution command for starting the maintenance charge by the operator's input does not execute the flow of FIG. 5, and the maintenance charge start determination unit 107 instructs the charge / discharge control unit 105 to perform the immediate maintenance charge start command. You may do it.

図6は、保守充電成功率の時間推移の例を示したものである。横軸は保守充電を開始するまでの待ち時間を、縦軸は保守充電成功率を示している。   FIG. 6 shows an example of the time transition of the maintenance charging success rate. The horizontal axis represents the waiting time until the start of maintenance charging, and the vertical axis represents the maintenance charging success rate.

本図は、保守充電成功率が低いSOCの場合には、保守充電の開始を遅らせればよいことを説明するものである。言い換えると、保守充電の開始の留保をすることにより、保守充電成功率が向上することを示している。   This figure explains that in the case of an SOC with a low maintenance charging success rate, the start of maintenance charging may be delayed. In other words, the maintenance charge success rate is improved by reserving the start of the maintenance charge.

具体的には、本図においては、SOCが55%〜60%の範囲にあるとき、すぐには保守充電を実施せず、横軸に表示した時間だけ待った後、保守充電を開始した場合の保守充電成功率の推移を示している。蓄電池のバンク構成としては、同一容量の全2バンクのうち1バンクに関し保守充電を行い、残りの1バンクで変動緩和動作を継続するケースのデータを示している。   Specifically, in this figure, when the SOC is in the range of 55% to 60%, the maintenance charge is not performed immediately, and the maintenance charge is started after waiting for the time indicated on the horizontal axis. It shows the transition of maintenance charge success rate. As the bank configuration of the storage battery, data is shown in a case where maintenance charging is performed for one bank out of all two banks having the same capacity, and the fluctuation mitigation operation is continued in the remaining one bank.

本図からわかるように、待ち時間が0か非常に短い間は、保守充電成功率は低いものの、その後、時間の経過とほぼ比例し、保守充電成功率が増加する。待ち時間が約13時間で保守充電成功率はほぼ飽和に達する。よって、例えば2週間毎の保守充電を開始しようとした場合、その時点のSOCが55%前後であった場合、約半日待つことで、変動緩和動作を行いながら保守充電を行った際の成功率が高い条件に移行することが判る。   As can be seen from this figure, while the waiting time is 0 or very short, the maintenance charging success rate is low, but thereafter, the maintenance charging success rate increases in proportion to the passage of time. The maintenance charge success rate reaches almost saturation at a waiting time of about 13 hours. Thus, for example, when maintenance charging is started every two weeks, if the SOC at that time is around 55%, the success rate when performing maintenance charging while performing fluctuation mitigation operation by waiting about half a day It turns out that it shifts to high conditions.

尚、本図において、縦軸の保守充電成功率の最大値が40%とあまり大きな値とならないのは、保守充電開始要求を受けた時点のSOCが55%〜60%の範囲にある多くのケースをサンプルとして用いているためであり、成功率の高いものと低いものとが平均化されていることによる。例えば、約半日の待ち時間の間で、より高い保守充電成功率に達しているサンプルもあれば、より短い時間で高い保守充電成功率に達した後、逆に小さな保守充電成功率に移動しているサンプルも含めている。   In this figure, the maximum value of the maintenance charge success rate on the vertical axis is not so large as 40% because the SOC when the maintenance charge start request is received is in the range of 55% to 60%. This is because the case is used as a sample, and the high success rate and the low success rate are averaged. For example, some samples have reached a higher maintenance charge success rate during the waiting time of about half a day, but after reaching a high maintenance charge success rate in a shorter time, the sample moves to a smaller maintenance charge success rate. Samples that are included.

したがって、一つ一つのサンプルに関し、保守充電成功率の閾値に達した場合に、即座に保留を中止し、保守充電を開始するなどした場合は、より短い待ち時間となる可能性がある。図6を用いると、保守充電開始要求を受けた時点のSOCに基づき、所定の保守充電成功率に達するまでの平均的待ち時間を算出できる。いま、保守充電に着手してよい保守充電成功率を閾値170に設定した場合、閾値170に対応する時間は、平均待ち時間171のように決定できる。保守充電に着手してよい閾値の定め方としては、風力発電サイトの目標の稼働率を勘案して決定する方法、図6のように保守充電成功率が飽和状態或いは振動状態に移行するまでの時間等から定める。もちろん閾値は固定とは限らず、例えば季節毎に変わる風況によってSOCが動きやすい状況になった場合、短時間のうちに保守充電成功率の高いSOCに移行する可能性が高まるため、対応して保守充電成功率の閾値も高い値とすることができる。   Accordingly, when the maintenance charge success rate threshold is reached for each sample, if the suspension is immediately stopped and the maintenance charge is started, the waiting time may be shorter. Using FIG. 6, the average waiting time until a predetermined maintenance charge success rate is reached can be calculated based on the SOC at the time when the maintenance charge start request is received. Now, when the maintenance charge success rate at which maintenance charging can be started is set to the threshold 170, the time corresponding to the threshold 170 can be determined as an average waiting time 171. As a method of determining a threshold value at which maintenance charging can be started, a method for determining the target operating rate of the wind power generation site is taken into consideration, and until the maintenance charging success rate shifts to a saturated state or a vibration state as shown in FIG. Determine from time etc. Of course, the threshold value is not necessarily fixed. For example, when the SOC becomes easy to move due to wind conditions that change from season to season, the possibility of shifting to an SOC with a high maintenance charge success rate increases in a short time. Thus, the threshold value of the maintenance charge success rate can be set to a high value.

本発明では、より高い保守充電成功率の条件になるまで保守充電の開始を保留する。したがって、保守充電の開始要求が発生してから、実際に保守充電を開始するまでに待ち時間が生じる。この待ち時間の平均値をtavwとすると、例えば2週間などの一定周期で保守充電を行う従来の方式と比較した場合、tavwだけ保守充電の間隔が延長されることになる。保守充電の間隔が延長されても問題ないケースも多いものの、推奨運用条件等で保守充電間隔が指定されている等、目標の保守充電間隔に近づける必要がある場合は、保守充電の実施間隔tに対し、tavw/2だけ予めオフセットした時間を保守充電の要求間隔とするなどの補正を行うと従来の運用との乖離を少なくできる。図7は、一定周期の保守充電の平均待ち時間の半分(tavw/2)オフセットさせる例である。前記オフセットの結果、保守充電要求起動部106が保守充電の開始要求を保守充電開始判定部107宛に出力するタイミングが、図7の逆三角形で囲まれたA点から同B点に移行する。 In the present invention, the start of maintenance charging is suspended until a condition for a higher maintenance charging success rate is satisfied. Accordingly, there is a waiting time from when the maintenance charging start request is generated until the maintenance charging is actually started. Assuming that the average value of the waiting time is t avw , the maintenance charging interval is extended by t avw as compared with a conventional method in which maintenance charging is performed at a constant cycle such as two weeks. Although there are many cases where there is no problem even if the maintenance charging interval is extended, if the maintenance charging interval is specified in the recommended operating conditions or the like, it is necessary to approach the target maintenance charging interval. If a correction is made such that a time offset in advance by t avw / 2 is set as the maintenance charge request interval for m , the deviation from the conventional operation can be reduced. FIG. 7 shows an example of offsetting by half (t avw / 2) of the average waiting time for maintenance charging in a fixed cycle. As a result of the offset, the timing at which the maintenance charge request activation unit 106 outputs the maintenance charge start request to the maintenance charge start determination unit 107 shifts from the point A surrounded by the inverted triangle in FIG.

本図において、網掛け部分180は、ある蓄電池バンクに関する保守充電の箇所を表し、白マスキング部181は、同一の蓄電池バンクに関する変動緩和動作の運用箇所を表している。   In this figure, the shaded portion 180 represents a maintenance charge location relating to a certain storage battery bank, and the white masking unit 181 represents an operation location of fluctuation mitigation operation relating to the same storage battery bank.

本図において、符号182は、前回の保守充電及びそれに続く変動緩和動作の運用、同様に中から下よりの符号183は、符号182と同一の蓄電池バンクに関する次の保守充電とそれに続く変動緩和動作の運用の箇所に対応している。   In this figure, reference numeral 182 denotes the previous maintenance charge and subsequent fluctuation mitigation operation, and similarly, the middle to lower reference numeral 183 denotes the next maintenance charge and the subsequent fluctuation mitigation action related to the same storage battery bank as 182. It corresponds to the location of operation.

また、風況等によりタイムアウトでの保守充電の確率が高い場合、tavw期間中の発生密度に偏りが生じるため、オフセットはtavw/2とは限らず、待ち時間の出現頻度を考慮したオフセットとしても良い。 In addition, when the probability of maintenance charging at time-out due to wind conditions, etc. is high, the generation density during t avw period is biased. Therefore , the offset is not limited to t avw / 2, and the offset considering the appearance frequency of the waiting time It is also good.

上述の例は、一定の時間間隔で保守充電開始要求を行う場合のものであるが、時間ではなく、別の指標に関しても、同様にオフセットをかけることにより保守充電待ち時間による各種誤差を低減できる。例えば、同一蓄電池バンク内のセル間のばらつきの度合いにより保守充電の開始要求を発生させる場合、ばらつきの増大の傾向が予め外挿等により予測できるとすると、ばらつきが閾値に達する時間から、tavw/2もしくは、tavw若しくはtavw+3σ相当等の時間に対応するばらつきを減じた値を閾値とすることで、目標のばらつきの閾値を超過する確率を低減できる。 The above example is for a case where a maintenance charge start request is made at a fixed time interval, but various errors due to the maintenance charge waiting time can be reduced similarly by applying an offset for another index instead of time. . For example, when a maintenance charge start request is generated according to the degree of variation between cells in the same storage battery bank, assuming that the tendency of increase in variation can be predicted in advance by extrapolation or the like, from the time when the variation reaches a threshold, t avw / 2, or by using a value obtained by subtracting the variation corresponding to time such as t avw or t avw + 3σ as a threshold, the probability of exceeding the target variation threshold can be reduced.

この方法においては、tavw/2以外に、tavw若しくはtavw+3σ(一般にはtavw+nσであり、nは条件により加減する。)に相当する時間を閾値から減じてもよい。これは、最大待ち時間の場合でも、ばらつきの最大値が絶対に遵守すべき範囲を超過しないようにするためである。同種の閾値判定は、前述のとおり、S516で行っても良い。 In this method, in addition to t avw / 2, a time corresponding to t avw or t avw + 3σ (generally t avw + nσ, where n is increased or decreased depending on conditions) may be subtracted from the threshold value. This is to prevent the maximum variation from exceeding the range that must be observed even in the case of the maximum waiting time. The same-type threshold determination may be performed in S516 as described above.

以上の実施例では、風力発電の例を示したが、太陽光発電その他の発電において発電量が変動し、その変動が予見しにくい発電手段に関し、同様に適用可能である。蓄電池は、鉛蓄電池及びリチウムイオン二次電池に限らず、他の種類の蓄電池を適用しても良い。また、均等充電、OCV取得のための休止以外に、点検等の目的で一時的に解列する場合にも同じ手法が適用できる。   In the above embodiment, an example of wind power generation has been shown. However, the power generation amount fluctuates in solar power generation and other power generation, and it can be similarly applied to power generation means in which the fluctuation is difficult to foresee. The storage battery is not limited to a lead storage battery and a lithium ion secondary battery, and other types of storage batteries may be applied. Moreover, the same method can be applied to the case of temporary disconnection for the purpose of inspection other than the suspension for equal charge and OCV acquisition.

本発明によれば、余剰な蓄電池容量をもたない構成で、変動緩和動作中に保守充電を行う場合、変動緩和動作を継続する他方の蓄電池バンクの容量(充放電可能電荷量、最大充放電電流値)を超過せずに保守充電を完遂できる確率は、保守充電を開始するSOC値及び蓄電池のバンク構成によって大幅に異なる。例えばあるバンク構成における、あるSOC値から保守充電を開始する場合、保守充電を行わない残りのバンクの容量を超過せずに保守充電を完遂できる確率はほとんど0である。よって、上記条件を予め知っていれば、その条件を避けて保守充電を開始することで、変動緩和動作を継続しつつ保守充電を行え、発電設備の稼働率を向上できる。   According to the present invention, when maintenance charging is performed during the fluctuation mitigation operation with a configuration having no surplus battery capacity, the capacity of the other storage battery bank that continues the fluctuation mitigation operation (chargeable / dischargeable charge amount, maximum charge / discharge) The probability that maintenance charging can be completed without exceeding (current value) greatly varies depending on the SOC value at which maintenance charging starts and the bank configuration of the storage battery. For example, when maintenance charging is started from a certain SOC value in a certain bank configuration, the probability that maintenance charging can be completed without exceeding the capacity of the remaining banks that do not perform maintenance charging is almost zero. Therefore, if the above conditions are known in advance, maintenance charging can be started while avoiding such conditions, so that maintenance charging can be performed while continuing the fluctuation mitigation operation, and the operating rate of the power generation equipment can be improved.

上記全ての実施例において、変動緩和の対象となる発電装置は、再生可能なものに限定されず、保守充電成功率曲線を作成可能な出力変動の統計的性質を有する全ての電源に対して、同様に適用可能である。   In all the embodiments described above, the power generation apparatus subject to fluctuation relaxation is not limited to a renewable one, and for all power supplies having statistical characteristics of output fluctuation capable of creating a maintenance charge success rate curve, The same applies.

101:蓄電池バンク、102:コンバータ、103:平準化制御部、104:SOC算出部、105:充放電制御部、106:保守充電要求起動部、107:保守充電開始判定部、108:外部系統、109:母線、110:風力発電機、111:保守充電必要バンク情報保持部、112:蓄電池諸元保持部、113:保守充電成功率データ保持部、114:保守充電成功率演算部、115:風況/発電量/充放電量データ保持部、116:保守充電猶予時間保持部、117:外部入力、118:外部出力、130、131、132:曲線、170:閾値、171:平均待ち時間。   101: storage battery bank, 102: converter, 103: leveling control unit, 104: SOC calculation unit, 105: charge / discharge control unit, 106: maintenance charge request activation unit, 107: maintenance charge start determination unit, 108: external system, 109: Busbar, 110: Wind power generator, 111: Maintenance charge necessary bank information holding unit, 112: Storage battery specification holding unit, 113: Maintenance charge success rate data holding unit, 114: Maintenance charge success rate calculating unit, 115: Wind State / power generation amount / charge / discharge amount data holding unit 116: maintenance charge grace time holding unit 117: external input 118: external output 130, 131, 132: curve, 170: threshold, 171: average waiting time.

Claims (9)

発電機からの送電量の変動を緩和するシステムであって、
複数個の独立に充放電制御可能な蓄電池バンクと、平準化制御部と、保守充電成功率演算部とを備え、
前記蓄電池バンクは、複数個の蓄電池を含み、
前記平準化制御部は、充電状態算出部と、充放電制御部とを含み、
前記平準化制御部又は前記保守充電成功率演算部は、前記蓄電池バンクの一部に対し保守充電を行うとともに残った前記蓄電池バンクにより前記変動の緩和を継続する場合に、前記残った蓄電池バンクの運用限界を超過せずに前記保守充電を完遂できる確率である保守充電成功率と、前記保守充電を開始する時点における充電状態との関係をあらかじめ算出し、この関係に関するデータを保存する機能を有し、
前記保守充電成功率は、風況/発電量/充放電量データから演算し、
前記保守充電が必要となった際に前記関係に関するデータを参照してこの際の前記保守充電成功率を算出するとともに前記保守充電成功率と予め設定した閾値とを比較しその結果が閾値以下の場合、前記保守充電の開始の留保をする判定をすることを特徴とする蓄電池システム。
A system that mitigates fluctuations in the amount of power transmitted from a generator,
It has a plurality of storage battery banks that can be charged and discharged independently, a leveling control unit, and a maintenance charge success rate calculation unit,
The storage battery bank includes a plurality of storage batteries,
The leveling control unit includes a charge state calculation unit and a charge / discharge control unit,
The leveling control unit or the maintenance charging success rate calculation unit performs maintenance charging on a part of the storage battery bank and continues the relaxation of the fluctuation by the remaining storage battery bank. It has a function to calculate in advance the relationship between the maintenance charge success rate, which is the probability that the maintenance charge can be completed without exceeding the operational limit, and the state of charge at the start of the maintenance charge, and to store data related to this relationship. And
The maintenance charge success rate is calculated from wind / power generation / charge / discharge data,
When the maintenance charge is required, the maintenance charge success rate is calculated by referring to the data related to the relationship, and the maintenance charge success rate is compared with a preset threshold value, and the result is equal to or less than the threshold value. In this case, a determination is made to reserve the start of the maintenance charging.
前記データは、前記保守充電を行う前記蓄電池バンクの容量と変動緩和動作を継続する蓄電池バンクの容量との比を含む条件を媒介変数として作成したものであることを特徴とする請求項1記載の蓄電池システム。   2. The data according to claim 1, wherein the data is created using a condition including a ratio between a capacity of the storage battery bank that performs the maintenance charging and a capacity of the storage battery bank that continues the fluctuation mitigation operation as a parameter. Storage battery system. 前記平準化制御部は、前記留保をする際、その留保の開始時における前記充電状態を用いて前記保守充電成功率が閾値以上となるまでの平均待ち時間を算出し、この平均待ち時間の経過後に前記保守充電を開始することを特徴とする請求項1又は2に記載の蓄電池システム。   The leveling control unit calculates an average waiting time until the maintenance charging success rate is equal to or higher than a threshold using the state of charge at the start of the reservation when the reservation is made, and elapse of the average waiting time The storage battery system according to claim 1 or 2, wherein the maintenance charging is started later. 前記平準化制御部は、前記平均待ち時間と前記保守充電を留保可能な最大の待ち時間とを比較し、その結果に基づき、操作員への選択の提示又は予め定められた前記保守充電の開始をすることを特徴とする請求項3記載の蓄電池システム。   The leveling control unit compares the average waiting time with the maximum waiting time during which the maintenance charge can be reserved, and based on the result, presents a selection to an operator or starts the maintenance charge that is determined in advance. The storage battery system according to claim 3, wherein: 前記風況/発電量/充放電量データに含まれる風況データは、ワイブル分布で近似されていることを特徴とする請求項1〜4のいずれか一項に記載の蓄電池システム。   The storage battery system according to any one of claims 1 to 4, wherein the wind condition data included in the wind condition / power generation amount / charge / discharge amount data is approximated by a Weibull distribution. 複数個の独立に充放電制御可能な蓄電池バンクと、平準化制御部と、保守充電成功率演算部とを備え、発電機からの送電量の変動を緩和する蓄電池システムに用いるものであって、
前記蓄電池バンクの一部に対し保守充電を行うとともに残った前記蓄電池バンクにより前記変動の緩和を継続する場合に、前記残った蓄電池バンクの運用限界を超過せずに前記保守充電を完遂できる確率である保守充電成功率と、前記保守充電を開始する時点における充電状態との関係であることを特徴とするコンピュータ読み取り可能なデータベース。
A plurality of storage battery banks that can be charged and discharged independently, a leveling control unit, and a maintenance charge success rate calculation unit, are used for a storage battery system that relaxes fluctuations in the amount of power transmitted from a generator,
When maintenance charge is performed on a part of the storage battery bank and the relaxation of the fluctuation is continued by the remaining storage battery bank, the probability that the maintenance charge can be completed without exceeding the operation limit of the remaining storage battery bank A computer-readable database characterized by a relationship between a certain maintenance charge success rate and a state of charge at the start of the maintenance charge.
前記保守充電成功率は、風況/発電量/充放電量データから演算したものであることを特徴とする請求項6記載のコンピュータ読み取り可能なデータベース。   7. The computer-readable database according to claim 6, wherein the maintenance charge success rate is calculated from wind condition / power generation / charge / discharge data. 前記風況/発電量/充放電量データに含まれる風況データは、ワイブル分布で近似されていることを特徴とする請求項7記載のコンピュータ読み取り可能なデータベース。   8. The computer-readable database according to claim 7, wherein the wind condition data included in the wind condition / power generation / charge / discharge amount data is approximated by a Weibull distribution. 請求項6〜8のいずれか一項に記載のコンピュータ読み取り可能なデータベースを有するコンピュータ読み取り可能な記録媒体。   A computer-readable recording medium comprising the computer-readable database according to claim 6.
JP2014173874A 2014-08-28 2014-08-28 Storage battery system, database and recording medium Pending JP2016049008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014173874A JP2016049008A (en) 2014-08-28 2014-08-28 Storage battery system, database and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014173874A JP2016049008A (en) 2014-08-28 2014-08-28 Storage battery system, database and recording medium

Publications (1)

Publication Number Publication Date
JP2016049008A true JP2016049008A (en) 2016-04-07

Family

ID=55649632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014173874A Pending JP2016049008A (en) 2014-08-28 2014-08-28 Storage battery system, database and recording medium

Country Status (1)

Country Link
JP (1) JP2016049008A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110091730A (en) * 2018-01-31 2019-08-06 丰田自动车株式会社 Electric vehicle
CN112072655A (en) * 2020-09-10 2020-12-11 天津大学 Hybrid energy storage optimal configuration method for grid-connected wind energy storage power generation system
CN116683060A (en) * 2023-08-01 2023-09-01 深圳奥特迅电力设备股份有限公司 Storage battery pack maintenance method, storage battery pack maintenance device, terminal equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157382A (en) * 1999-11-25 2001-06-08 Nissin Electric Co Ltd Method of operating batteries in power storage apparatus
JP2009079559A (en) * 2007-09-27 2009-04-16 Hitachi Engineering & Services Co Ltd Power storage system with wind power generation system
JP2009261076A (en) * 2008-04-15 2009-11-05 Hitachi Engineering & Services Co Ltd Wind power station
JP2010233287A (en) * 2009-03-26 2010-10-14 Hitachi Industrial Equipment Systems Co Ltd Charge and discharge control device, and method of controlling charge and discharge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157382A (en) * 1999-11-25 2001-06-08 Nissin Electric Co Ltd Method of operating batteries in power storage apparatus
JP2009079559A (en) * 2007-09-27 2009-04-16 Hitachi Engineering & Services Co Ltd Power storage system with wind power generation system
JP2009261076A (en) * 2008-04-15 2009-11-05 Hitachi Engineering & Services Co Ltd Wind power station
JP2010233287A (en) * 2009-03-26 2010-10-14 Hitachi Industrial Equipment Systems Co Ltd Charge and discharge control device, and method of controlling charge and discharge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110091730A (en) * 2018-01-31 2019-08-06 丰田自动车株式会社 Electric vehicle
CN112072655A (en) * 2020-09-10 2020-12-11 天津大学 Hybrid energy storage optimal configuration method for grid-connected wind energy storage power generation system
CN112072655B (en) * 2020-09-10 2022-05-27 天津大学 Hybrid energy storage optimal configuration method for grid-connected wind energy storage power generation system
CN116683060A (en) * 2023-08-01 2023-09-01 深圳奥特迅电力设备股份有限公司 Storage battery pack maintenance method, storage battery pack maintenance device, terminal equipment and storage medium
CN116683060B (en) * 2023-08-01 2024-02-02 深圳奥特迅电力设备股份有限公司 Storage battery pack maintenance method, storage battery pack maintenance device, terminal equipment and storage medium

Similar Documents

Publication Publication Date Title
US10355517B2 (en) Storage-battery control device, storage-battery charge/discharge system, photovoltaic power generation system, and storage-battery control method
JP6729985B2 (en) Storage battery system charge control device, storage battery system and storage battery charge control method
EP2495576B1 (en) Method for controlling secondary cell and power storage device
JP6192531B2 (en) Power management system, power management apparatus, power management method, and program
JP2016114469A (en) Secondary battery charge state estimation method and secondary battery charge state estimation device
JP2012186877A (en) Battery state detector for photovoltaic generation battery system
AU2016357764B2 (en) Received power control device and received power control method
JP2013183509A (en) Charge/discharge amount prediction system and charge/discharge amount prediction method
KR101785344B1 (en) Method and System for power supplying
US9871396B2 (en) System and method for controlling charge of an energy storage device from a renewable energy source
JP6338008B1 (en) Power stabilization system and control device
JP2016116401A (en) Power load leveling device
JP6826152B2 (en) Secondary battery charge status estimation method and estimation device
JP2016049008A (en) Storage battery system, database and recording medium
JPWO2011078215A1 (en) Power supply method, computer-readable recording medium, and power generation system
WO2016190271A1 (en) Power supply control device, power supply system, power supply control method, and program
JP6228702B2 (en) Power management apparatus, power management method and program
JP2020018108A (en) Power storage system
JP6071214B2 (en) Rechargeable battery charge depth management method
AU2022275472A1 (en) Secondary battery management system, secondary battery management method and secondary battery management program for said secondary battery management system, and secondary battery system
WO2019193837A1 (en) Power generating system and its control method
JP5992748B2 (en) Solar power generation system and power supply system
JP2020010557A (en) Control system, and power storage system
JP2015213409A (en) Load leveling device
WO2018105645A1 (en) Operation control system, and control method therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180410