JP2016046075A - Fuel cell power generation system, vehicle including fuel cell power generation system and starting method of fuel cell power generation system - Google Patents

Fuel cell power generation system, vehicle including fuel cell power generation system and starting method of fuel cell power generation system Download PDF

Info

Publication number
JP2016046075A
JP2016046075A JP2014169063A JP2014169063A JP2016046075A JP 2016046075 A JP2016046075 A JP 2016046075A JP 2014169063 A JP2014169063 A JP 2014169063A JP 2014169063 A JP2014169063 A JP 2014169063A JP 2016046075 A JP2016046075 A JP 2016046075A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
power generation
generation system
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014169063A
Other languages
Japanese (ja)
Inventor
祐介 岡
Yusuke Oka
祐介 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014169063A priority Critical patent/JP2016046075A/en
Publication of JP2016046075A publication Critical patent/JP2016046075A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell power generation system capable of reducing fuel consumption, required at the time of start-up, remarkably while avoiding damage on the metallic components in the fuel cell due to high temperature, when starting the fuel cell power generation system, and to provide a vehicle including this fuel cell power generation system, and a starting method of a fuel cell power generation system.SOLUTION: When starting a fuel cell power generation system 1, a combustion apparatus 11 for start-up generates combustion gas Gb1 to be supplied to a fuel cell 10, and a part of combustion gas Gb2 from the fuel cell 10 is returned to the combustion apparatus 11 for start-up from the downstream side of a fuel reformer 16. Based on the temperature T1 of the combustion gas Gb1 flowing into the fuel cell 10, or the temperature T2 of returning combustion gas Gb3, the fuel quantity and the amount of air supplied to the combustion apparatus 11 for start-up, and the flow rate of return gas Gb3 are controlled.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池を発電可能な温度まで昇温させる際に必要な燃料消費量を削減することができる燃料電池発電システム、この燃料電池発電システムを備えた車両及び燃料電池発電システムの起動方法に関する。   The present invention relates to a fuel cell power generation system capable of reducing a fuel consumption required for raising the temperature of a fuel cell to a temperature at which power generation is possible, a vehicle including the fuel cell power generation system, and a method for starting the fuel cell power generation system. About.

近年、燃料電池で水素と酸素の化学反応によって発電した電気エネルギーを用いて、モーターを回転させて車両走行用の動力を得る燃料電池車両(FCV:Fuel Cell Vehicle)の研究開発が自動車業界で行われている。   In recent years, research and development of fuel cell vehicles (FCVs) that use electric energy generated by a chemical reaction between hydrogen and oxygen in a fuel cell to rotate the motor to obtain power for vehicle travel has been conducted in the automotive industry. It has been broken.

一般に燃料電池は、空気が供給される空気極と、燃料を燃料改質器等で改質することで得た水素が供給される燃料極と、空気極と燃料極の間に挟み込まれたイオンのみを通過させる電解質と、この電解質の外部で空気極と燃料極を接続する外部電子回路を備えたものを単体セルとして、この単体セルをセパレータを介して複数重ね合わせて(スタック状態にして)構成されている。   In general, a fuel cell has an air electrode to which air is supplied, a fuel electrode to which hydrogen obtained by reforming the fuel with a fuel reformer or the like, and an ion sandwiched between the air electrode and the fuel electrode. A single cell is made up of an electrolyte that passes only the electrolyte and an external electronic circuit that connects the air electrode and the fuel electrode outside the electrolyte, and a plurality of the single cells are stacked (in a stacked state) via a separator. It is configured.

そして、燃料電池を用いた燃料電池発電システムでは、燃料極が備える触媒の作用により、水素(H2)を分解し、分解で生じた電子を外部電子回路を経由して空気極に移動することで発電する。また、分解で生じた水素イオンは電解質を通過して空気極に移動し、外部電子回路を経由して空気極に戻る電子とともに、空気極に供給される空気中の酸素と化学反応して水となる。この水は、上記の化学反応による発熱を伴って生成されるため、高温の水蒸気であり、燃料電池からの排気ガスの一部として、燃料電池より排出される。 In a fuel cell power generation system using a fuel cell, hydrogen (H 2 ) is decomposed by the action of a catalyst provided in the fuel electrode, and electrons generated by the decomposition are transferred to the air electrode via an external electronic circuit. To generate electricity. Hydrogen ions generated by the decomposition move to the air electrode through the electrolyte and return to the air electrode via an external electronic circuit, and also chemically react with oxygen in the air supplied to the air electrode. It becomes. Since this water is generated with heat generated by the above chemical reaction, it is high-temperature water vapor and is discharged from the fuel cell as part of the exhaust gas from the fuel cell.

この燃料電池には、燃料や電解質等に応じて、固体高分子形(PEFC:Polymer Electrolyte Fuel Cell)、りん酸型(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩形(MCFC:Molten Carbonate Fuel Cell)、固体酸化物形(SOFC:Solid Oxide Fuel Cell)等の複数の種類がある。   This fuel cell includes a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC) depending on the fuel, electrolyte, and the like. ) And solid oxide fuel cells (SOFCs).

この固体酸化物形の燃料電池は、他種類の燃料電池と比較して、発電可能な温度が高温(700℃〜800℃程度)であり、燃料電池を起動して発電を行うためには、少なくとも定格発電時の温度の700℃程度まで燃料電池を昇温する必要がある。この昇温方法では、起動用燃焼装置(バーナー等)における燃料の燃焼で発生させた燃焼ガスを燃料電池に供給して、燃焼ガスの熱を伝達することで行っている。   This solid oxide fuel cell has a higher power generation temperature (about 700 ° C. to 800 ° C.) than other types of fuel cells, and in order to generate power by starting the fuel cell, It is necessary to raise the temperature of the fuel cell to at least about 700 ° C. at the rated power generation. In this temperature raising method, the combustion gas generated by the combustion of the fuel in the start-up combustion apparatus (burner or the like) is supplied to the fuel cell to transmit the heat of the combustion gas.

例えば、空気極、電解質、及び燃料極を備えた複数の単セルよりなる燃料電池スタックと、空気極に酸化剤ガスを供給する酸化剤ガス供給手段と、燃料ガスを供給する燃料ガス供給手段と、燃料ガス供給手段に供給される燃料ガスを水蒸気改質反応により改質する水蒸気改質手段とを備えた燃料電池システムで、起動時に、起動用燃焼器において、起動用燃料供給経路に供給される起動用燃料を、起動用空気供給経路より供給される起動用空気により燃焼させ、この燃焼温度により、燃料電池スタックの温度を発電に適した温度にまで上昇させる。ただし、起動の後に定常運転状態となった後は、起動用燃料供給経路による起動用燃料の供給を停止し、起動用空気供給経路による起動用空気の供給を停止し、起動用燃焼器による熱供給を停止する燃料電池システムが提案されている(例えば、特許文献1参照)。   For example, a fuel cell stack composed of a plurality of single cells provided with an air electrode, an electrolyte, and a fuel electrode, an oxidant gas supply means for supplying an oxidant gas to the air electrode, and a fuel gas supply means for supplying fuel gas A fuel cell system comprising a steam reforming means for reforming the fuel gas supplied to the fuel gas supply means by a steam reforming reaction, and is supplied to the startup fuel supply path in the startup combustor during startup The starting fuel is burned by the starting air supplied from the starting air supply path, and the temperature of the fuel cell stack is raised to a temperature suitable for power generation by this combustion temperature. However, after a steady state is reached after startup, the supply of startup fuel through the startup fuel supply path is stopped, the startup air supply through the startup air supply path is stopped, and the heat generated by the startup combustor A fuel cell system for stopping supply has been proposed (see, for example, Patent Document 1).

しかしながら、この燃焼ガスによる伝熱量は温度差が大きいほど多くなるため、燃料電池の昇温の開始時には、燃料電池が低温であり、燃焼ガスとの温度差が大きいので伝熱量が多くなり昇温速度が大きいが、昇温が進み燃料電池の温度が高温になるにつれて、燃焼ガスとの温度差が小さくなるので伝熱量が少なくなり昇温速度も小さくなる。そのため、燃料電池の昇温が進むにつれて、昇温に要する時間が長くなり、発電可能な温度まで昇温させるために必要な起動エネルギー、すなわち、燃料電池の起動開始から起動完了までの間における燃料消費量が多くなる。そのため、起動に要する時間が長くなり、燃料電池を発電可能な温度まで昇温させる際に必要な燃料の消費量が多くなるという問題がある。   However, since the amount of heat transfer by the combustion gas increases as the temperature difference increases, the temperature of the fuel cell is low at the start of temperature rise of the fuel cell, and the temperature difference from the combustion gas is large, so the amount of heat transfer increases and the temperature rises. Although the speed is high, as the temperature rises and the temperature of the fuel cell increases, the temperature difference from the combustion gas decreases, so the amount of heat transfer decreases and the temperature increase rate also decreases. Therefore, as the temperature of the fuel cell increases, the time required for the temperature increase increases, and the startup energy required to raise the temperature to a temperature at which power generation is possible, that is, the fuel between the start of startup of the fuel cell and the completion of startup. Consumption increases. For this reason, there is a problem that the time required for activation becomes longer and the amount of fuel consumption necessary for raising the temperature of the fuel cell to a temperature at which power can be generated increases.

特開2009−76273号公報(段落〔0034〕)JP 2009-76273 A (paragraph [0034])

一方、本発明者は、固体酸化物形の燃料電池を用いた燃料電池発電システムでは、その起動時においては、起動用の燃焼ガスが供給される燃料電池から排出される燃焼ガスも800℃程度と高温であるにもかかわらず、燃料電池より下流側の燃料改質器の加熱及び熱交換器の加熱や貯湯タンクでの排熱回収に用いているが、起動時の燃料電池の加熱には寄与させずに大部分の排熱量を大気へ放出していることと、起動用燃焼装置における燃焼ガスの温度が高温になり過ぎないように、空気過剰状態で燃料を燃焼するため、燃料電池に供給し、燃料電池から排出される燃焼ガスに多量の酸素が含まれていることを考慮すると、この排気ガスが有する多量の排熱量及び酸素を起動時に有効利用することで、発電可能な温度まで昇温させる際に必要な燃料消費量を削減することができるとの知見に到った。   On the other hand, the present inventor has found that in a fuel cell power generation system using a solid oxide fuel cell, the combustion gas discharged from the fuel cell supplied with the starting combustion gas is about 800 ° C. Despite the high temperature, it is used to heat the fuel reformer downstream of the fuel cell, heat exchanger, and exhaust heat recovery in the hot water storage tank. In order to burn the fuel in excess of air so that most of the exhaust heat is released to the atmosphere without contributing and the temperature of the combustion gas in the start-up combustion device does not become too high, the fuel cell Considering that the combustion gas that is supplied and discharged from the fuel cell contains a large amount of oxygen, the exhaust gas has a large amount of exhaust heat and oxygen that is effectively used at start-up so that the temperature can be generated. Necessary when raising the temperature And it reached the finding that it is possible to reduce the fuel consumption.

更に、起動時の後期における燃焼ガスの再循環では、燃焼ガスと燃料電池との温度差が小さく、伝熱量が少なくなるので、燃料電池から排出される燃焼ガスの温度も高くなり、この高温の燃焼ガスを再循環させると、起動用燃焼装置で発生する燃焼ガスの温度が上昇して、燃料電池内の金属部品等が破損する恐れが生じるという知見も得た。   Further, in the recirculation of the combustion gas at the later stage of start-up, the temperature difference between the combustion gas and the fuel cell is small and the amount of heat transfer is reduced, so the temperature of the combustion gas discharged from the fuel cell is also increased. It has also been found that when the combustion gas is recirculated, the temperature of the combustion gas generated in the start-up combustion device rises and the metal parts in the fuel cell may be damaged.

本発明は、上記のことを鑑みてなされたものであり、その目的は、燃料電池発電システムの起動時に、燃料電池内の金属部品等の高熱による破損を回避しつつ、起動用燃焼装置で発生して燃料電池に送られる燃焼ガスが有する熱量及び酸素を有効利用することで、燃料電池を発電可能な温度まで昇温させる際に必要な燃料の消費量を著しく低減することができる、燃料電池発電システム、この燃料電池発電システムを備えた車両、及び、燃料電池発電システムの起動方法を提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to occur in a start-up combustion device while avoiding damage due to high heat of metal parts in the fuel cell at the time of start-up of the fuel cell power generation system. By effectively using the amount of heat and oxygen contained in the combustion gas sent to the fuel cell, the fuel cell consumption can be significantly reduced when the temperature of the fuel cell is raised to a temperature at which power can be generated. An object of the present invention is to provide a power generation system, a vehicle including the fuel cell power generation system, and a method for starting the fuel cell power generation system.

上記の目的を達成するための本発明の燃料電池発電システムは、燃料を改質する燃料改質器と、該燃料改質器で改質された燃料と空気の供給を受けて発電する燃料電池とを備え、燃料を前記燃料改質器で改質してから、空気と共に前記燃料電池に供給して発電し、前記燃料電池からの排気ガスを前記燃料改質器に送り、排気ガスで前記燃料改質器を暖める燃料電池発電システムにおいて、該燃料電池発電システムの起動時に前記燃料電池に供給する燃焼ガスを発生させる起動用燃焼装置と、前記燃料電池から排出される燃焼ガスの一部を前記燃料改質器より下流側から前記起動用燃焼装置に還流する還流通路と、該還流通路に流す燃焼ガスの流量を調整する流量調整弁と、前記燃料電池に流入する燃焼ガスの温度または前記起動用燃焼装置に還流する還流ガスの温度に基づいて、前記起動用燃焼装置に供給する燃料量と、前記起動用燃焼装置に供給する空気量と、前記還流通路に流す燃焼ガスの流量とを制御する燃焼ガス温度制御手段とを設けて構成される。   In order to achieve the above object, a fuel cell power generation system according to the present invention includes a fuel reformer that reforms fuel, and a fuel cell that generates power by receiving fuel and air reformed by the fuel reformer. The fuel is reformed by the fuel reformer, and then supplied to the fuel cell together with air to generate electric power. The exhaust gas from the fuel cell is sent to the fuel reformer, and the exhaust gas In a fuel cell power generation system for warming a fuel reformer, a start-up combustion device that generates combustion gas to be supplied to the fuel cell when the fuel cell power generation system is started, and a part of the combustion gas discharged from the fuel cell A recirculation passage that recirculates from the downstream side of the fuel reformer to the start-up combustion device, a flow rate adjustment valve that adjusts a flow rate of the combustion gas that flows through the recirculation passage, and a temperature of the combustion gas that flows into the fuel cell, or For start-up combustion equipment Combustion gas temperature for controlling the amount of fuel supplied to the start-up combustion device, the amount of air supplied to the start-up combustion device, and the flow rate of the combustion gas flowing through the return passage based on the temperature of the recirculation gas flowing And a control means.

この構成によれば、起動時における燃料電池を通過した後の燃焼ガスの一部を還流ガスとして空気(新気)と共に起動用燃焼装置に供給し、かつ、燃焼ガス温度制御手段により、起動用燃焼装置での燃焼温度を例えば900℃〜1100℃程度の一定の温度に維持して燃料電池内の金属部品等の破損を防止しながら、起動用燃焼装置に還流する還流ガス中に含まれる酸素を高温の酸化剤として有効に利用して起動用燃焼装置での燃焼を促進して、少ない燃料で高温の燃焼ガスを燃料電池に供給することができる。これにより、燃料電池を発電可能な温度まで昇温させるために必要な起動エネルギー、すなわち、燃料電池の起動開始から起動完了までの間における燃料消費量を削減することができる。   According to this configuration, a part of the combustion gas after passing through the fuel cell at the time of start-up is supplied as recirculation gas to the start-up combustion device together with air (fresh air), and the start-up by the combustion gas temperature control means Oxygen contained in the recirculated gas that flows back to the start-up combustion device while maintaining the combustion temperature in the combustion device at a constant temperature of, for example, about 900 ° C. to 1100 ° C. to prevent damage to metal parts and the like in the fuel cell Is effectively used as a high-temperature oxidant to promote combustion in the start-up combustion device, and high-temperature combustion gas can be supplied to the fuel cell with a small amount of fuel. As a result, it is possible to reduce the startup energy necessary for raising the temperature of the fuel cell to a temperature at which power can be generated, that is, the amount of fuel consumed between the start of startup of the fuel cell and the completion of startup.

特に、燃料電池として、燃料電池の発電可能な温度が700℃〜800℃程度の高温である固体酸化物形を用いる場合には、特に、燃料消費量の削減効果が大きく、また、燃料電池発電システムの起動回数が多いほど、燃料消費量の削減効果が大きくなる。   In particular, when a solid oxide form in which the temperature at which the fuel cell can generate electricity is as high as 700 ° C. to 800 ° C. is used as the fuel cell, the effect of reducing fuel consumption is particularly great. The more the system is activated, the greater the effect of reducing fuel consumption.

また、燃料電池を通過した後の燃焼ガスの一部を還流ガスとして、燃料改質器より下流側から還流通路を経由して起動用燃焼装置に還流するので、燃料電池と共に燃料改質器も燃料を改質できる温度に加熱することができる。そのため、燃料電池が発電可能な温度まで昇温して発電用の経路に切り替える時点では、既に燃料改質器も昇温しているので、効率よく発電できる。   In addition, since a part of the combustion gas after passing through the fuel cell is recirculated to the start-up combustion device via the recirculation passage from the downstream side of the fuel reformer, the fuel reformer is also installed together with the fuel cell. The fuel can be heated to a temperature at which it can be reformed. Therefore, when the temperature is raised to a temperature at which the fuel cell can generate power and the path is switched to the power generation path, the temperature of the fuel reformer has already been raised, so that power can be generated efficiently.

更に、燃焼ガス温度制御手段により、燃料電池に流入する燃焼ガスの温度または起動用燃焼装置に還流する還流ガスの温度に基づいて、起動用燃焼装置に供給する燃料量と、起動用燃焼装置に供給する空気量と、還流通路に流す燃焼ガスの流量とを制御することができるので、効率よく燃料を節約すると共に、起動用燃焼装置で発生する燃焼ガスの温度の上昇を抑制しながら燃料電池を昇温できるので、燃料電池発電システムの起動時における、燃料電池内の金属部品等の高熱による破損を回避できる。   Further, the combustion gas temperature control means controls the amount of fuel supplied to the startup combustion device based on the temperature of the combustion gas flowing into the fuel cell or the temperature of the recirculation gas returning to the startup combustion device, and the startup combustion device. Since the amount of air to be supplied and the flow rate of the combustion gas flowing in the recirculation passage can be controlled, the fuel cell can be efficiently saved while suppressing the rise in the temperature of the combustion gas generated in the start-up combustion device. Therefore, it is possible to avoid breakage due to high heat of metal parts or the like in the fuel cell at the time of starting the fuel cell power generation system.

また、上記の燃料電池発電システムにおいて、前記燃料電池で発生した排気ガスの熱を利用して前記燃料電池に供給する空気を暖める空気予熱器を、前記燃料改質器より下流側に設けるとともに、前記還流通路を前記空気予熱器より下流側から分岐して設けて構成される。   In the fuel cell power generation system, an air preheater for heating air supplied to the fuel cell using heat of exhaust gas generated in the fuel cell is provided on the downstream side of the fuel reformer, The reflux passage is configured to be branched from the downstream side of the air preheater.

この構成によれば、起動時に燃料電池を通過した後の燃焼ガスの一部を還流ガスとして、燃料改質器より下流側に設けた空気予熱器より下流側から還流通路を経由して起動用燃焼装置に還流するので、空気予熱器を加熱して、燃料電池発電システムの起動後の定格発電時に、燃料電池に供給する空気と燃料電池から排出される排気ガスの温度差を小さくすることができ、熱交換器内の部品、特に、陶器製の部品の温度差に起因する破損を防止することができる。   According to this configuration, a part of the combustion gas after passing through the fuel cell at the time of start-up is used as the recirculation gas, and the start-up is started from the downstream side of the air preheater provided on the downstream side of the fuel reformer via the recirculation passage. Since the air is recirculated to the combustion device, the air preheater is heated to reduce the temperature difference between the air supplied to the fuel cell and the exhaust gas discharged from the fuel cell during rated power generation after the fuel cell power generation system is started. It is possible to prevent breakage due to a temperature difference between components in the heat exchanger, particularly, ceramic components.

また、上記の燃料電池発電システムを搭載した車両は、上記の燃料電池発電システムと同様の作用効果を奏することができる。   In addition, a vehicle equipped with the fuel cell power generation system can achieve the same effects as the fuel cell power generation system.

また、上記の目的を達成するための本発明の燃料電池発電システムの起動方法は、燃料改質器と燃料電池を備え、燃料を前記燃料改質器で改質してから、空気と共に前記燃料電池に供給して発電し、前記燃料電池からの排気ガスを前記燃料改質器に送り、排気ガスで前記燃料改質器を暖める燃料電池発電システムの起動方法であって、該燃料電池発電システムの起動時に、起動用燃焼装置で前記燃料電池に供給する燃焼ガスを発生させて、前記燃料電池から排出される燃焼ガスの一部を前記燃料改質器より下流側から前記起動用燃焼装置に還流すると共に、前記燃料電池に流入する燃焼ガスの温度または前記起動用燃焼装置に還流する還流ガスの温度に基づいて、前記起動用燃焼装置に供給する燃料量と、前記起動用燃焼装置に供給する空気量と、還流する燃焼ガスの流量とを制御することを特徴とする方法である。   In addition, a method for starting a fuel cell power generation system according to the present invention for achieving the above object includes a fuel reformer and a fuel cell. The fuel is reformed by the fuel reformer, and then the fuel is combined with air. A method for starting a fuel cell power generation system that supplies power to a battery to generate power, sends exhaust gas from the fuel cell to the fuel reformer, and warms the fuel reformer with exhaust gas, the fuel cell power generation system At the start-up time, combustion gas supplied to the fuel cell is generated by the start-up combustion device, and a part of the combustion gas discharged from the fuel cell is sent from the downstream side to the start-up combustion device from the fuel reformer. Based on the temperature of the combustion gas flowing into the fuel cell or the temperature of the reflux gas returning to the start-up combustion device, the amount of fuel supplied to the start-up combustion device and the start-up combustion device are supplied Air When a method characterized by controlling the flow rate of the combustion gas reflux.

この方法によれば、上記の燃料電池発電システムと同様に、起動用燃焼装置に還流する還流ガス中に含まれる酸素を高温の酸化剤として有効に利用して起動用燃焼装置での燃焼を促進して、少ない燃料で高温の燃焼ガスを燃料電池に供給ができるので、燃料電池の起動開始から起動完了までの間における燃料消費量を削減することができる。   According to this method, as in the fuel cell power generation system described above, the oxygen contained in the reflux gas recirculated to the start-up combustion device is effectively used as a high-temperature oxidant to promote combustion in the start-up combustion device. As a result, high-temperature combustion gas can be supplied to the fuel cell with a small amount of fuel, so that it is possible to reduce the amount of fuel consumed between the start of the start of the fuel cell and the completion of the start.

また、燃料電池を通過した後の燃焼ガスの一部を還流ガスとして、燃料改質器より下流側から起動用燃焼装置に還流するので、燃料電池と共に燃料改質器も燃料を改質できる温度に加熱することができ、燃料電池が発電可能な温度まで昇温して発電用の経路に切り替える時に、既に、燃料改質器も昇温しているので、効率よく発電できる。   In addition, since a part of the combustion gas after passing through the fuel cell is recirculated to the start-up combustion device from the downstream side of the fuel reformer, the temperature at which the fuel reformer can reform the fuel together with the fuel cell. When the temperature is raised to a temperature at which the fuel cell can generate electricity and switched to the power generation path, the temperature of the fuel reformer has already been raised, so that power can be generated efficiently.

更に、燃焼ガス温度制御手段により、燃料電池に流入する燃焼ガスの温度または起動用燃焼装置に還流する還流ガスの温度に基づいて、起動用燃焼装置における燃料量と空気量と還流される燃焼ガスの流量とを制御することにより、効率よく燃料を節約すると共に、起動用燃焼装置で発生する燃焼ガスの温度の上昇を抑制しながら、燃料電池を昇温するので、燃料電池発電システムの起動時における、燃料電池内の金属部品等の高熱による破損を回避できる。   Furthermore, the combustion gas temperature control means relies on the temperature of the combustion gas flowing into the fuel cell or the temperature of the recirculation gas returning to the start-up combustion device, and the amount of fuel and air in the start-up combustion device being recirculated. By controlling the flow rate of the fuel cell, the fuel cell is heated while the fuel cell is efficiently saved while suppressing the rise in the temperature of the combustion gas generated in the start-up combustion device. In this case, it is possible to avoid damage due to high heat, such as metal parts in the fuel cell.

本発明の燃料電池発電システム、この燃料電池発電システムを備えた車両及び燃料電池発電システムの起動方法によれば、燃料電池発電システムの起動時に、燃料電池内の金属部品等の高熱による破損を回避しつつ、起動用燃焼装置で発生して燃料電池に送られる燃焼ガスが有する熱量及び酸素を有効利用することで、燃料電池を発電可能な温度まで昇温させる際に必要な燃料の消費量を著しく低減することができる。   According to the fuel cell power generation system, the vehicle equipped with the fuel cell power generation system, and the fuel cell power generation system startup method according to the present invention, at the time of startup of the fuel cell power generation system, damage to metal parts and the like in the fuel cell due to high heat is avoided. However, by effectively using the amount of heat and oxygen contained in the combustion gas that is generated by the start-up combustion device and sent to the fuel cell, the amount of fuel consumption required to raise the temperature of the fuel cell to a temperature at which power can be generated is reduced. It can be significantly reduced.

本発明に係る実施の形態の燃料電池発電システムの構成の一例を示す図であり、起動時の径路を示す図である。It is a figure which shows an example of a structure of the fuel cell power generation system of embodiment which concerns on this invention, and is a figure which shows the path | route at the time of starting. 本発明に係る実施の形態の燃料電池発電システムの構成の他の例を示す図であり、起動時の径路を示す図である。It is a figure which shows the other example of a structure of the fuel cell power generation system of embodiment which concerns on this invention, and is a figure which shows the path | route at the time of starting. 本発明に係る排気ガスの再循環率と燃料消費量の削減率の関係の一例を示す図である。It is a figure which shows an example of the relationship between the recirculation rate of the exhaust gas which concerns on this invention, and the reduction rate of fuel consumption. 従来技術に係る実施の形態の燃料電池発電システムの構成の一例を示す図であり、起動後の定格発電時の径路を示す図である。It is a figure which shows an example of a structure of the fuel cell power generation system of embodiment which concerns on a prior art, and is a figure which shows the path | route at the time of the rated power generation after starting. 従来技術に係る実施の形態の燃料電池発電システムの構成の一例を示す図であり、起動時の径路を示す図である。It is a figure which shows an example of a structure of the fuel cell power generation system of embodiment which concerns on a prior art, and is a figure which shows the path | route at the time of starting.

以下、本発明に係る実施の形態の燃料電池発電システム、この燃料電池発電システムを備えた車両、及び、燃料電池発電システムの起動方法について、図面を参照しながら説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a fuel cell power generation system according to an embodiment of the present invention, a vehicle including the fuel cell power generation system, and a startup method of the fuel cell power generation system will be described with reference to the drawings.

最初に、本発明に係る燃料電池発電システムと、従来技術に係る燃料電池発電システムの差を明確にすべく、従来技術に係る燃料電池発電システムの起動方法について説明する。   First, in order to clarify the difference between the fuel cell power generation system according to the present invention and the fuel cell power generation system according to the prior art, a method for starting the fuel cell power generation system according to the prior art will be described.

図4及び図5に示すように、従来技術に係る燃料電池発電システム1Xは、燃料電池10、起動用燃焼装置(バーナー等)11、ブロワ12、燃料タンク13、圧力調整弁14、燃焼器15、燃料改質器16、空気予熱器(熱交換器)17、貯湯タンク18、サプライポンプ19等を有して構成される。   As shown in FIGS. 4 and 5, the fuel cell power generation system 1 </ b> X according to the prior art includes a fuel cell 10, a starting combustion device (burner or the like) 11, a blower 12, a fuel tank 13, a pressure regulating valve 14, and a combustor 15. , A fuel reformer 16, an air preheater (heat exchanger) 17, a hot water storage tank 18, a supply pump 19 and the like.

この燃料電池10は、空気(新気)Aを供給される空気極(陰極)と、燃料Fを燃料改質器16で改質することで得た水素Hを供給される燃料極(陽極)と、空気極と燃料極の間に挟み込まれたイオンのみを通過させる電解質と、この電解質の外部で空気極と燃料極を接続する外部電子回路を備えたものを単体セルとして、この単体セルをセパレータを介して複数重ね合わせて、即ち、スタック状態にして構成される。   The fuel cell 10 includes an air electrode (cathode) supplied with air (fresh air) A and a fuel electrode (anode) supplied with hydrogen H obtained by reforming the fuel F with the fuel reformer 16. A single cell having an electrolyte that allows only ions sandwiched between the air electrode and the fuel electrode to pass through, and an external electronic circuit that connects the air electrode and the fuel electrode outside the electrolyte. A plurality of layers are overlapped via a separator, that is, in a stacked state.

そして、発電時では、図4に示すように、ブロワ12からの空気Aを空気予熱器17で昇温してから燃料電池10に送ると共に、燃料タンク13の燃料Fを圧力調整弁14を経由して燃料改質器16に供給し、この燃料改質器16で燃料Fの改質で生じた水素Hを燃料電池10に供給して発電し、燃料電池10からの排気ガスGa1を燃焼器15に通して、排気ガスGaに含まれている、燃料電池10で消費されなかった不純物などを燃焼し、その後の排気ガスGa2を燃料改質器16、空気予熱器17及び貯湯タンク18に送り、排気ガスGa2で燃料改質器16、空気予熱器17及び貯湯タンク18を暖めてその排熱を回収している。   At the time of power generation, as shown in FIG. 4, the air A from the blower 12 is heated by the air preheater 17 and then sent to the fuel cell 10, and the fuel F in the fuel tank 13 passes through the pressure adjustment valve 14. The fuel reformer 16 supplies the hydrogen H generated by the reforming of the fuel F to the fuel cell 10 to generate power, and the exhaust gas Ga1 from the fuel cell 10 is combusted. 15, the impurities contained in the exhaust gas Ga that are not consumed by the fuel cell 10 are combusted, and the exhaust gas Ga 2 thereafter is sent to the fuel reformer 16, the air preheater 17, and the hot water storage tank 18. The exhaust gas Ga2 warms the fuel reformer 16, the air preheater 17, and the hot water storage tank 18 to recover the exhaust heat.

この燃料電池10の定格発電時では、燃料電池10の各単体セルにおいて、空気極に供給された空気A中の酸素が酸素イオン(O2-)に分解し、この酸素イオン(O2-)が電解質を経由して燃料極に移動する。燃料極で酸素イオン(O2-)は水素と電気化学的に反応して水を生成する。このときに放出される電子(2e-)によって発電する(H2+O2-→H2O+2e-)。 In the rated power generation of the fuel cell 10, in each single cell of the fuel cell 10, oxygen in the air A supplied to the air electrode is decomposed into oxygen ions (O 2-), the oxygen ions (O 2-) Moves to the fuel electrode via the electrolyte. At the fuel electrode, oxygen ions (O 2− ) electrochemically react with hydrogen to produce water. Electricity is generated by the electrons (2e ) emitted at this time (H 2 + O 2− → H 2 O + 2e ).

発電時に生成される水は、上記の化学反応による発熱を伴う高温の水蒸気であり、燃料電池10からの排気ガスGa1の一部として、燃料電池10より排出される。この排気ガスGa1には、水蒸気の他に、未化学反応分の空気及び水素、燃料改質器16により改質されなかった燃料等が含まれるが、これらの水蒸気以外の成分については、燃料電池10より下流側でかつ燃料改質器16より上流側に配設される燃焼器15での燃焼により、二酸化炭素、二酸化窒素、水蒸気等になる。   The water generated at the time of power generation is high-temperature steam accompanied by heat generation due to the above chemical reaction, and is discharged from the fuel cell 10 as a part of the exhaust gas Ga1 from the fuel cell 10. The exhaust gas Ga1 includes, in addition to water vapor, air and hydrogen for unchemical reaction, fuel that has not been reformed by the fuel reformer 16, and the like. Combustion in the combustor 15 disposed downstream of the fuel reformer 16 and upstream of the fuel reformer 16 results in carbon dioxide, nitrogen dioxide, steam, or the like.

なお、燃料改質器16の温度は、燃料Fを水素Hに改質するのに最適な温度、例えば、500〜600℃程度に維持するのが好ましく、また、空気予熱器17の温度は400〜500℃程度に維持するのが好ましい。なお、燃料電池10として固体酸化物形の燃料電池を用いる場合は、通常は、燃料Fとして主に都市ガスが用いられる。   Note that the temperature of the fuel reformer 16 is preferably maintained at an optimum temperature for reforming the fuel F into hydrogen H, for example, about 500 to 600 ° C., and the temperature of the air preheater 17 is 400. It is preferable to maintain at about ~ 500 ° C. When a solid oxide fuel cell is used as the fuel cell 10, city gas is usually mainly used as the fuel F.

そして、図5に示すように、燃料電池発電システム1Xの起動時には、この起動用燃焼装置11にブロワ12からの空気Asにより、燃料タンク13から圧力調整弁14経由でサプライポンプ19により供給された燃料Fsを燃焼させて、その燃焼ガスGb1を燃料電池10に供給することで、燃料電池10を発電可能な温度、例えば、700℃〜800℃程度まで昇温させる。そして、燃料電池10から排出される燃焼ガスGb2は、燃料改質器16、空気予熱器17及び貯湯タンク18に送られ、これらの装置16〜18を暖めてその排熱を回収される。なお、図4及び図5では、燃焼ガスGb2を燃焼器15を迂回させているが、燃焼器15を通過する構成にしてもよい。この場合燃焼器15では燃焼しないでそのまま燃焼ガスGb2を通過させる。   Then, as shown in FIG. 5, when the fuel cell power generation system 1 </ b> X is started, the start-up combustion apparatus 11 is supplied from the fuel tank 13 by the supply pump 19 via the pressure adjustment valve 14 by the air As from the blower 12. By burning the fuel Fs and supplying the combustion gas Gb1 to the fuel cell 10, the temperature of the fuel cell 10 is raised to a temperature at which power can be generated, for example, about 700 ° C to 800 ° C. And the combustion gas Gb2 discharged | emitted from the fuel cell 10 is sent to the fuel reformer 16, the air preheater 17, and the hot water storage tank 18, and these apparatuses 16-18 are warmed and the waste heat is collect | recovered. 4 and 5, the combustion gas Gb2 is bypassed the combustor 15, but may be configured to pass through the combustor 15. In this case, the combustion gas Gb2 is allowed to pass through without being burned in the combustor 15.

そして、図1及び図2に示すように、本発明に係る燃料電池発電システム1は、上述した従来技術に係る燃料電池発電システム1Xを基に、燃料電池発電システム1の起動時に燃料電池10に供給する燃焼ガスGb1を発生させる起動用燃焼装置11に加えて、燃料電池10から排出される燃焼ガスGb2の一部の還流ガスGb3を燃料改質器16より下流側から起動用燃焼装置11に還流する還流通路21を設ける。なお、図1では、燃料改質器16と空気予熱器17との間から還流通路21を分岐し、図2では、空気予熱器17の下流側から還流通路21を分岐している。   As shown in FIGS. 1 and 2, the fuel cell power generation system 1 according to the present invention is based on the fuel cell power generation system 1 </ b> X according to the related art described above. In addition to the start-up combustion device 11 that generates the combustion gas Gb1 to be supplied, a part of the recirculation gas Gb3 of the combustion gas Gb2 discharged from the fuel cell 10 is sent from the downstream side of the fuel reformer 16 to the start-up combustion device 11. A reflux passage 21 for reflux is provided. In FIG. 1, the reflux passage 21 is branched from between the fuel reformer 16 and the air preheater 17, and in FIG. 2, the reflux passage 21 is branched from the downstream side of the air preheater 17.

それと共に、還流通路21に流す還流ガスGb3の流量を調整する流量調整弁22と、燃料電池10に流入する燃焼ガスGb1の温度T1または起動用燃焼装置11に還流する還流ガスGb3の温度T2に基づいて、起動用燃焼装置11に供給する燃料量と、起動用燃焼装置11に供給する空気量と、還流通路21に流す還流ガスGb3の流量とを制御する燃焼ガス温度制御手段を設ける。この燃焼ガス温度制御手段は、通常、燃料電池発電システム1を制御する制御装置に設けられる。   At the same time, the flow rate adjusting valve 22 for adjusting the flow rate of the recirculation gas Gb3 flowing through the recirculation passage 21 and the temperature T1 of the combustion gas Gb1 flowing into the fuel cell 10 or the temperature T2 of the recirculation gas Gb3 recirculating to the start-up combustion device 11 are obtained. Based on this, a combustion gas temperature control means for controlling the amount of fuel supplied to the start-up combustion device 11, the amount of air supplied to the start-up combustion device 11, and the flow rate of the recirculation gas Gb3 flowing through the recirculation passage 21 is provided. This combustion gas temperature control means is normally provided in a control device that controls the fuel cell power generation system 1.

また、燃料電池10に流入する燃焼ガスGb1の温度T1を計測するための第1温度センサ23と、起動用燃焼装置11に還流する還流ガスGb3の温度T2を計測するための第2温度センサ24とのいずれか又は両方を設ける。   Further, a first temperature sensor 23 for measuring the temperature T1 of the combustion gas Gb1 flowing into the fuel cell 10 and a second temperature sensor 24 for measuring the temperature T2 of the recirculation gas Gb3 returning to the start-up combustion device 11. Or both.

そして、燃料電池発電システム1の起動時に、起動用燃焼装置11で燃料電池10に供給する燃焼ガスGb1を発生させて、燃料電池10から排出される燃焼ガスGb2の一部の還流ガスGb3を燃料改質器16より下流側から起動用燃焼装置11に還流すると共に、燃料電池10に流入する燃焼ガスGb1の温度T1または起動用燃焼装置11に還流する還流ガスGb3の温度T2に基づいて、起動用燃焼装置11に供給する燃料量と、起動用燃焼装置11に供給する空気量と、還流する還流ガスGb3の流量とを制御し、燃料電池10に流入する燃焼ガスGb1の温度T1が、900℃以上、1100℃以下の範囲の温度、好ましくは1000℃の目標温度T1tを維持するようにフィードバック制御する。   When starting the fuel cell power generation system 1, the combustion gas Gb 1 supplied to the fuel cell 10 is generated by the startup combustion device 11, and a part of the recirculation gas Gb 3 of the combustion gas Gb 2 discharged from the fuel cell 10 is fueled. Starting from the downstream side of the reformer 16 to the start-up combustion device 11, the start-up is based on the temperature T1 of the combustion gas Gb1 flowing into the fuel cell 10 or the temperature T2 of the recirculation gas Gb3 returning to the start-up combustion device 11. The temperature T1 of the combustion gas Gb1 flowing into the fuel cell 10 is controlled by controlling the amount of fuel supplied to the combustion device 11, the amount of air supplied to the start-up combustion device 11, and the flow rate of the recirculation gas Gb 3. Feedback control is performed so as to maintain a temperature in the range of 1 ° C. or higher and 1100 ° C. or lower, preferably a target temperature T1t of 1000 ° C.

例えば、最初に、還流する還流ガスGb3の流量を還流しても起動用燃焼装置11で燃料を燃焼可能な範囲で最大になるように設定する。なお、この流量は予め実験や数値計算により求めておく。次の燃料量とこの燃料量に対する空気量を予め設定しておき、燃料量の増加により燃焼ガスGb1の温度T1を高くし、燃料量の減少により燃焼ガスGb1の温度T1を低くする。これにより、燃焼ガスGb1の温度T1が目標温度T1tになるように、燃焼ガスGb1の温度T1に対して燃料量及び空気量を増減するというフィードバック制御をする。   For example, first, even if the flow rate of the reflux gas Gb3 to be refluxed is refluxed, the maximum value is set in a range in which the fuel can be combusted by the startup combustion device 11. This flow rate is obtained in advance by experiments or numerical calculations. The next fuel amount and the air amount with respect to this fuel amount are set in advance, the temperature T1 of the combustion gas Gb1 is increased by increasing the fuel amount, and the temperature T1 of the combustion gas Gb1 is decreased by decreasing the fuel amount. Thus, feedback control is performed to increase or decrease the fuel amount and the air amount with respect to the temperature T1 of the combustion gas Gb1 so that the temperature T1 of the combustion gas Gb1 becomes the target temperature T1t.

なお、還流ガスGb3の温度T2に基づいて、燃料量及び空気量を増減するというフィードバック制御をする場合には、予め、還流ガスGb3の温度T2と燃焼ガスGb1の温度T1の関係を実験や数値計算等により求めておき、還流ガスGb3の温度T2の目標温度T2tを設定し、この目標温度T2tに還流ガスGb3の温度T2がなるように、還流ガスGb3の温度T2に対して燃料量及び空気量を増減するというフィードバック制御をすればよい。   When feedback control is performed to increase or decrease the amount of fuel and the amount of air based on the temperature T2 of the recirculation gas Gb3, the relationship between the temperature T2 of the recirculation gas Gb3 and the temperature T1 of the combustion gas Gb1 is previously determined through experiments and numerical values. The target temperature T2t of the temperature T2 of the recirculation gas Gb3 is set by calculation or the like, and the fuel amount and the air with respect to the temperature T2 of the recirculation gas Gb3 are set so that the target temperature T2t becomes the temperature T2 of the recirculation gas Gb3. What is necessary is just to perform feedback control to increase or decrease the amount.

そして、図2に示すように、燃料改質器16より下流側に設けた空気予熱器17より下流側から還流通路21を分岐して設けた場合には、起動時において空気予熱器17を加熱しているので、起動後の定格発電時に、燃料電池10に供給する空気Aと燃料電池10から排出される排気ガスGa2の温度差を小さくすることができ、燃料電池10内の部品、特に、陶器製の部品の温度差に起因する破損を防止することができる。   As shown in FIG. 2, when the reflux passage 21 is branched from the downstream side of the air preheater 17 provided on the downstream side of the fuel reformer 16, the air preheater 17 is heated at startup. Therefore, during rated power generation after startup, the temperature difference between the air A supplied to the fuel cell 10 and the exhaust gas Ga2 discharged from the fuel cell 10 can be reduced. It is possible to prevent damage caused by temperature differences in ceramic parts.

なお、貯湯タンク18により、起動用燃焼装置11に還流しない残りの燃焼ガスGb4(=Gb2−Gb3)の排熱の一部を回収してもよい。   A part of the exhaust heat of the remaining combustion gas Gb4 (= Gb2-Gb3) that does not recirculate to the start-up combustion device 11 may be recovered by the hot water storage tank 18.

そして、本発明に係る燃料電池発電システム1における、起動後の定格発電時の径路とその運転方法は、従来技術に係る燃料電池発電システム1X(図4参照)と同様である。また、本発明の実施の形態の車両は、本発明の実施の形態の燃料電池発電システムを搭載した車両である。   In the fuel cell power generation system 1 according to the present invention, the path during rated power generation after startup and the operation method thereof are the same as those of the fuel cell power generation system 1X (see FIG. 4) according to the prior art. The vehicle according to the embodiment of the present invention is a vehicle equipped with the fuel cell power generation system according to the embodiment of the present invention.

上記の燃料電池発電システム1、この燃料電池発電システム1を備えた車両、及び、燃料電池発電システムの起動方法によれば、燃料電池10を通過した後の燃焼ガスGb2の一部を還流ガスGb3として空気(新気)Asと共に起動用燃焼装置11に供給し、かつ、燃焼ガス温度制御手段により、起動用燃焼装置11での燃焼温度を例えば900℃〜1100℃程度の一定の温度に維持して燃料電池10内の金属部品等の破損を防止しながら、起動用燃焼装置11に還流する還流ガスGb3中に含まれる酸素を高温の酸化剤として有効に利用して起動用燃焼装置11での燃焼を促進して、少ない燃料Fsで高温の燃焼ガスGb1を燃料電池に供給することができる。これにより、燃料電池10を発電可能な温度まで昇温させるために必要な起動エネルギー、すなわち、燃料電池10の起動開始から起動完了までの間における燃料消費量を削減することができる。   According to the fuel cell power generation system 1, the vehicle equipped with the fuel cell power generation system 1, and the method for starting the fuel cell power generation system, a part of the combustion gas Gb2 after passing through the fuel cell 10 is recirculated gas Gb3. As well as air (fresh air) As and is supplied to the start-up combustor 11 and the combustion gas temperature control means maintains the combustion temperature in the start-up combustor 11 at a constant temperature of about 900 ° C. to 1100 ° C., for example. Thus, the oxygen contained in the recirculation gas Gb3 recirculated to the start-up combustion device 11 is effectively used as a high-temperature oxidant while preventing damage to the metal parts and the like in the fuel cell 10. Combustion is promoted, and high-temperature combustion gas Gb1 can be supplied to the fuel cell with a small amount of fuel Fs. Thereby, it is possible to reduce the startup energy necessary for raising the temperature of the fuel cell 10 to a temperature at which power generation is possible, that is, the amount of fuel consumed between the start of startup of the fuel cell 10 and the completion of startup.

また、燃料電池10を通過した後の燃焼ガスGb2の一部を還流ガスGb3として、燃料改質器16より下流側から還流通路21を経由して起動用燃焼装置11に還流するので、燃料電池10と共に燃料改質器16も燃料Fを改質できる温度に加熱することができる。そのため、燃料電池10が発電可能な温度まで昇温して発電用の経路に切り替える時点では、既に燃料改質器16も昇温しているので、効率よく発電できる。   Further, a part of the combustion gas Gb2 after passing through the fuel cell 10 is recirculated as a recirculation gas Gb3 from the downstream side of the fuel reformer 16 to the start-up combustion device 11 via the recirculation passage 21, so that the fuel cell 10 and the fuel reformer 16 can also be heated to a temperature at which the fuel F can be reformed. Therefore, when the temperature is raised to a temperature at which the fuel cell 10 can generate power and switched to the power generation path, the temperature of the fuel reformer 16 has already been raised, so that power can be generated efficiently.

更に、燃焼ガス温度制御手段により、燃料電池10に流入する燃焼ガスGb1の温度T1または起動用燃焼装置11に還流する還流ガスGb3の温度T2に基づいて、起動用燃焼装置11に供給する燃料量と、起動用燃焼装置11に供給する空気量と、還流通路21に流す還流ガスGb3の流量とを制御することができるので、効率よく燃料を節約すると共に、起動用燃焼装置11で発生する燃焼ガスGb1の温度T1の上昇を抑制しながら燃料電池10を昇温できるので、燃料電池発電システム1の起動時における、燃料電池10内の金属部品等の高熱による破損を回避できる。   Further, the amount of fuel supplied to the startup combustion device 11 by the combustion gas temperature control means based on the temperature T1 of the combustion gas Gb1 flowing into the fuel cell 10 or the temperature T2 of the recirculation gas Gb3 returning to the startup combustion device 11 And the amount of air supplied to the start-up combustion device 11 and the flow rate of the recirculation gas Gb3 flowing through the recirculation passage 21 can be controlled, so that fuel can be efficiently saved and combustion generated in the start-up combustion device 11 Since the temperature of the fuel cell 10 can be increased while suppressing an increase in the temperature T1 of the gas Gb1, it is possible to avoid damage due to high heat of metal parts and the like in the fuel cell 10 when the fuel cell power generation system 1 is started.

図3に、起動時の燃焼ガスGb2に対する還流ガスGb3の割合(=Gb3/Gb2)を示す燃焼ガスの再循環率Cと、還流しない場合の燃料消費量に対する、再循環率Cで還流した場合の燃料消費量の削減率Rの関係を計算で求めた結果を示す。この排気ガスの再循環率Cは、燃焼ガスGb2の流量や還流ガスGb3に含まれる酸素の濃度に基づいて計算されている。   FIG. 3 shows a case where the recirculation rate C of the combustion gas indicating the ratio of the recirculation gas Gb3 to the combustion gas Gb2 at the time of start-up (= Gb3 / Gb2) and the recirculation rate C with respect to the fuel consumption when not recirculating. The result of having calculated | required the relationship of the reduction rate R of the fuel consumption of this is shown. The exhaust gas recirculation rate C is calculated based on the flow rate of the combustion gas Gb2 and the concentration of oxygen contained in the recirculation gas Gb3.

この図3によれば、排気ガスの再循環率Cを10%〜80%とした場合に、燃料消費量の削減率Rは5%〜30%となる。しかし、この排気ガスの再循環率Cには、燃焼ガスGb1及び還流ガスGb3の流量の過剰な増大防止や、還流ガスGb3中の酸素濃度の過剰な低下を防止する必要性から上限があり、その上限は70〜90%程度となる。   According to FIG. 3, when the exhaust gas recirculation rate C is 10% to 80%, the fuel consumption reduction rate R is 5% to 30%. However, the exhaust gas recirculation rate C has an upper limit because it is necessary to prevent an excessive increase in the flow rates of the combustion gas Gb1 and the recirculation gas Gb3 and to prevent an excessive decrease in the oxygen concentration in the recirculation gas Gb3. The upper limit is about 70 to 90%.

なお、図3では、排気ガスの再循環率Cと燃料消費量の削減率Rは線形の比例関係となっているが、この計算では熱損失を考慮しておらず、熱損失を考慮すると、排気ガスの再循環率Cと燃料消費量の削減率Rは必ずしも、図3に示すような線形の比例関係とはならない。   In FIG. 3, the exhaust gas recirculation rate C and the fuel consumption reduction rate R are linearly proportional, but this calculation does not take into account heat loss. The exhaust gas recirculation rate C and the fuel consumption reduction rate R are not necessarily linearly proportional as shown in FIG.

本発明の燃料電池発電システム1、この燃料電池発電システム1を備えた車両及び燃料電池発電システムの起動方法によれば、燃料電池発電システム1の起動時に、燃料電池10内の金属部品等の高熱による破損を回避しつつ、起動用燃焼装置11で発生して燃料電池10に送られる燃焼ガスGb1が有する熱量及び酸素を有効利用することで、燃料電池10を発電可能な温度まで昇温させる際に必要な燃料Fsの消費量を著しく低減することができる。   According to the fuel cell power generation system 1, the vehicle equipped with the fuel cell power generation system 1, and the method for starting the fuel cell power generation system according to the present invention, when the fuel cell power generation system 1 is started, high heat such as metal parts in the fuel cell 10 is generated. When the fuel cell 10 is heated to a temperature capable of generating power by effectively using the amount of heat and oxygen of the combustion gas Gb1 generated in the start-up combustion device 11 and sent to the fuel cell 10 while avoiding damage due to The amount of fuel Fs required for the fuel consumption can be significantly reduced.

1、1X 燃料電池発電システム
10 燃料電池
11 起動用燃焼装置
12 ブロワ
13 燃料タンク
14 圧力調整弁
15 燃焼器
16 燃料改質器
17 空気予熱器
18 貯湯タンク
19 サプライポンプ
21 還流通路
22 流量調整弁
23 第1温度センサ
24 第2温度センサ
A、As 空気(新気)
F、Fs 燃料
Gb1 燃焼ガス
Gb2 燃料電池からの燃焼ガス
Gb3 還流ガス
Gb4 残りの排気ガス(Gb2−Gb3)
H 水素
DESCRIPTION OF SYMBOLS 1, 1X Fuel cell power generation system 10 Fuel cell 11 Start-up combustion apparatus 12 Blower 13 Fuel tank 14 Pressure adjustment valve 15 Combustor 16 Fuel reformer 17 Air preheater 18 Hot water storage tank 19 Supply pump 21 Reflux passage 22 Flow rate adjustment valve 23 First temperature sensor 24 Second temperature sensor A, As air (fresh air)
F, Fs Fuel Gb1 Combustion gas Gb2 Combustion gas Gb3 from the fuel cell Recirculation gas Gb4 Remaining exhaust gas (Gb2-Gb3)
H Hydrogen

Claims (4)

燃料を改質する燃料改質器と、該燃料改質器で改質された燃料と空気の供給を受けて発電する燃料電池とを備え、燃料を前記燃料改質器で改質してから、空気と共に前記燃料電池に供給して発電し、前記燃料電池からの排気ガスを前記燃料改質器に送り、排気ガスで前記燃料改質器を暖める燃料電池発電システムにおいて、
該燃料電池発電システムの起動時に前記燃料電池に供給する燃焼ガスを発生させる起動用燃焼装置と、
前記燃料電池から排出される燃焼ガスの一部を前記燃料改質器より下流側から前記起動用燃焼装置に還流する還流通路と、
該還流通路に流す燃焼ガスの流量を調整する流量調整弁と、
前記燃料電池に流入する燃焼ガスの温度または前記起動用燃焼装置に還流する還流ガスの温度に基づいて、前記起動用燃焼装置に供給する燃料量と、前記起動用燃焼装置に供給する空気量と、前記還流通路に流す燃焼ガスの流量とを制御する燃焼ガス温度制御手段とを設けたことを特徴とする燃料電池発電システム。
A fuel reformer that reforms the fuel; and a fuel cell that generates electricity by receiving the fuel reformed by the fuel reformer and the air, and reforms the fuel by the fuel reformer. In the fuel cell power generation system for supplying power to the fuel cell together with air to generate power, sending exhaust gas from the fuel cell to the fuel reformer, and warming the fuel reformer with exhaust gas,
A start-up combustion device for generating combustion gas to be supplied to the fuel cell when the fuel cell power generation system is started;
A recirculation passage for recirculating a part of the combustion gas discharged from the fuel cell to the start-up combustion device from the downstream side of the fuel reformer;
A flow rate adjusting valve for adjusting the flow rate of the combustion gas flowing through the reflux passage;
Based on the temperature of the combustion gas flowing into the fuel cell or the temperature of the recirculation gas returning to the start-up combustion device, the amount of fuel supplied to the start-up combustion device, and the amount of air supplied to the start-up combustion device; A fuel cell power generation system comprising combustion gas temperature control means for controlling the flow rate of the combustion gas flowing through the reflux passage.
前記燃料電池で発生した排気ガスの熱を利用して前記燃料電池に供給する空気を暖める空気予熱器を、前記燃料改質器より下流側に設けるとともに、前記還流通路を前記空気予熱器より下流側から分岐して設けたことを特徴とする請求項1に記載の燃料電池発電システム。   An air preheater that warms the air supplied to the fuel cell using heat of the exhaust gas generated in the fuel cell is provided on the downstream side of the fuel reformer, and the return passage is downstream of the air preheater. The fuel cell power generation system according to claim 1, wherein the fuel cell power generation system is provided by branching from the side. 請求項1又は2に記載の燃料電池発電システムを搭載して構成される車両。   A vehicle comprising the fuel cell power generation system according to claim 1. 燃料改質器と燃料電池を備え、燃料を前記燃料改質器で改質してから、空気と共に前記燃料電池に供給して発電し、前記燃料電池からの排気ガスを前記燃料改質器に送り、排気ガスで前記燃料改質器を暖める燃料電池発電システムの起動方法であって、該燃料電池発電システムの起動時に、起動用燃焼装置で前記燃料電池に供給する燃焼ガスを発生させて、前記燃料電池から排出される燃焼ガスの一部を前記燃料改質器より下流側から前記起動用燃焼装置に還流すると共に、前記燃料電池に流入する燃焼ガスの温度または前記起動用燃焼装置に還流する還流ガスの温度に基づいて、前記起動用燃焼装置に供給する燃料量と、前記起動用燃焼装置に供給する空気量と、還流する燃焼ガスの流量とを制御することを特徴とする燃料電池発電システムの起動方法。   A fuel reformer and a fuel cell are provided, fuel is reformed by the fuel reformer, and then supplied to the fuel cell together with air to generate power, and exhaust gas from the fuel cell is supplied to the fuel reformer. A starting method of a fuel cell power generation system for sending and warming the fuel reformer with exhaust gas, and at the time of starting the fuel cell power generation system, generating combustion gas to be supplied to the fuel cell with a starting combustion device; A part of the combustion gas discharged from the fuel cell is returned to the start-up combustion device from the downstream side of the fuel reformer, and is also returned to the start-up combustion device or the temperature of the combustion gas flowing into the fuel cell. A fuel cell that controls an amount of fuel supplied to the start-up combustion device, an amount of air supplied to the start-up combustion device, and a flow rate of the recirculating combustion gas based on a temperature of the recirculating gas Power generation system How to start.
JP2014169063A 2014-08-22 2014-08-22 Fuel cell power generation system, vehicle including fuel cell power generation system and starting method of fuel cell power generation system Pending JP2016046075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014169063A JP2016046075A (en) 2014-08-22 2014-08-22 Fuel cell power generation system, vehicle including fuel cell power generation system and starting method of fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014169063A JP2016046075A (en) 2014-08-22 2014-08-22 Fuel cell power generation system, vehicle including fuel cell power generation system and starting method of fuel cell power generation system

Publications (1)

Publication Number Publication Date
JP2016046075A true JP2016046075A (en) 2016-04-04

Family

ID=55636453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014169063A Pending JP2016046075A (en) 2014-08-22 2014-08-22 Fuel cell power generation system, vehicle including fuel cell power generation system and starting method of fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2016046075A (en)

Similar Documents

Publication Publication Date Title
JP5588709B2 (en) Solid oxide fuel cell system and cogeneration system equipped with the same
JP5122083B2 (en) Fuel cell power generator, control program, and control method for fuel cell power generator
JP5966970B2 (en) Fuel cell device and fuel cell system
JP2008159362A (en) Solid oxide fuel cell system
JP2010080192A (en) Operation shutdown method for fuel battery, and fuel battery system
JP2012038689A (en) Operation method of fuel cell
JP2009277621A (en) Fuel-cell system
JP2007287633A (en) Fuel cell power generator and control program as well as control method
US20220223888A1 (en) Fuel cell system and operating method
JP6759573B2 (en) Fuel cell system control method and fuel cell system
JP2017050049A (en) Fuel battery system
JP2007141744A (en) Fuel cell system
US20070154745A1 (en) Purging a fuel cell system
JP2011076941A (en) Solid oxide fuel cell
JP5244504B2 (en) Solid oxide fuel cell system and operation method thereof
JP6721363B2 (en) Fuel cell system and operating method thereof
JP2016154067A (en) Fuel cell module and operation method thereof
WO2018029829A1 (en) Fuel cell system, and method for controlling fuel cell system
JP2004063368A (en) Fuel cell power generation system
JP4979952B2 (en) Fuel cell power generator, control program, and control method
JP6304430B1 (en) Fuel cell system and operation method thereof
JP2007200771A (en) Reforming catalyst temperature control system and control method of fuel cell power generator
JP2016046075A (en) Fuel cell power generation system, vehicle including fuel cell power generation system and starting method of fuel cell power generation system
JP6879031B2 (en) Fuel cell system
EP2955779A1 (en) Cold idle operation of SOFC system