JP2008159362A - Solid oxide fuel cell system - Google Patents

Solid oxide fuel cell system Download PDF

Info

Publication number
JP2008159362A
JP2008159362A JP2006345657A JP2006345657A JP2008159362A JP 2008159362 A JP2008159362 A JP 2008159362A JP 2006345657 A JP2006345657 A JP 2006345657A JP 2006345657 A JP2006345657 A JP 2006345657A JP 2008159362 A JP2008159362 A JP 2008159362A
Authority
JP
Japan
Prior art keywords
air
fuel cell
solid oxide
oxide fuel
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006345657A
Other languages
Japanese (ja)
Other versions
JP5064014B2 (en
Inventor
Minoru Suzuki
稔 鈴木
Tadayuki Sogi
忠幸 曽木
Katsumi Higaki
勝己 檜垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Osaka Gas Co Ltd
Original Assignee
Kyocera Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Osaka Gas Co Ltd filed Critical Kyocera Corp
Priority to JP2006345657A priority Critical patent/JP5064014B2/en
Publication of JP2008159362A publication Critical patent/JP2008159362A/en
Application granted granted Critical
Publication of JP5064014B2 publication Critical patent/JP5064014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid oxide fuel cell system from which a rated power generation output can be easily take out with a comparatively simple structure and control even if a fuel cell stack is deteriorated. <P>SOLUTION: This solid oxide fuel cell system includes a fuel reformer 6 to reform a fuel gas, and a solid oxide fuel cell stack 4 having a fuel electrode and an air electrode, and fuel cell power generation reaction is performed between the reformed gas fed to the fuel electrode side from the fuel reformer 6 and air fed to the air electrode side from a blower. In this case, an air distributing and feeding means 42 to feed air flowing toward the air electrode by distributing it is provided, the air distributing and feeding means 42 has a center feed passage part 50 and an end feed passage parts 46, 48, and if the flow of air flowing in the air passage increases, the air distributing and feeding means 42 distributes and feeds air so that the distribution ratio of a distributed air flow distributed and fed to the end feed passage part to a total air flow flowing to the air passage becomes small. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料ガスを改質して燃料電池反応を行う固体酸化物形燃料電池システムに関する。   The present invention relates to a solid oxide fuel cell system that performs a fuel cell reaction by reforming a fuel gas.

現在、燃料電池の一つとして、高発電効率での発電が可能なことから固体酸化物形燃料電池を用いた燃料電池システムの開発が行われている(例えば、特許文献1参照)。固体酸化物形燃料電池では、電解質として酸素イオンを伝導する固体電解質が用いられ、この固体電解質の片側に燃料ガスを酸化する機能を有する燃料極が設けられ、その他側に空気中の酸素を還元する機能を有する空気極が設けられている。固体電解質としては、一般的にはイットリアをドープしたジルコニアが用いられている。原燃料ガスとして例えばメタンを主成分とする燃料ガス(例えば、天然ガス)を用いた場合、この原燃料ガスの改質反応によって得られる改質ガス(水素、一酸化炭素、炭化水素などを含んでいる)が燃料極に供給され、空気(酸素を含んでいる)が空気極に供給される。このような固体酸化物形燃料電池では、700〜1000℃の高温で、改質ガス(水素、一酸化炭素、炭化水素)と酸素とを電気化学反応させて発電が行われる。この固体酸化物形燃料電池を用いた燃料電池システムは、他の燃料電池システム、ガスエンジンなどに比して高発電効率での発電が可能であることから、有望な発電技術として開発が行われている。   Currently, as one of the fuel cells, a fuel cell system using a solid oxide fuel cell is being developed because it can generate power with high power generation efficiency (see, for example, Patent Document 1). In a solid oxide fuel cell, a solid electrolyte that conducts oxygen ions is used as an electrolyte, a fuel electrode that functions to oxidize fuel gas is provided on one side of the solid electrolyte, and oxygen in the air is reduced on the other side. An air electrode having a function to perform is provided. As the solid electrolyte, zirconia doped with yttria is generally used. For example, when a fuel gas mainly composed of methane (for example, natural gas) is used as a raw fuel gas, a reformed gas (including hydrogen, carbon monoxide, hydrocarbons, etc.) obtained by a reforming reaction of the raw fuel gas is included. Is supplied to the fuel electrode, and air (containing oxygen) is supplied to the air electrode. In such a solid oxide fuel cell, electric power is generated by electrochemical reaction of reformed gas (hydrogen, carbon monoxide, hydrocarbon) and oxygen at a high temperature of 700 to 1000 ° C. This fuel cell system using solid oxide fuel cells can be generated with higher power generation efficiency than other fuel cell systems, gas engines, etc., and is therefore developed as a promising power generation technology. ing.

この種の固体酸化物形燃料電池システムの適用先としては、数十kW級以上の業務用、産業用の大型のものと、1kW級の家庭用の小型のものとがある。定格発電出力が1kW級程度の小型の個体酸化物形燃料電池システムでは、このシステムに接続される電力負荷が時間とともに大きく変動するために、負荷変動に伴う部分負荷時においても高い性能を発揮することが求められる。   The application destinations of this type of solid oxide fuel cell system include a large size for business use and industrial use of several tens kW class or more, and a small size for household use of 1 kW class. In a small solid oxide fuel cell system with a rated power output of about 1 kW class, the power load connected to this system fluctuates greatly with time, so it exhibits high performance even during partial loads due to load fluctuations. Is required.

特許第3113340号公報Japanese Patent No. 3113340

この固体酸化物形燃料電池においては、作動温度が高いと発電性能は向上するが、その作動温度がその固体酸化物形燃料電池の固有の劣化管理温度を超えると、固体酸化物形燃料電池の劣化速度が増大して必要な耐久性能が得られないという問題がある。そこで、固体酸化物形燃料電池の燃料電池スタックの上限温度が設定され、この上限温度を超えないように、固体酸化物形燃料電池の空気極側に送給される空気の流量が制御され、このようにして劣化が進むのを抑えている。   In this solid oxide fuel cell, if the operating temperature is high, the power generation performance is improved. However, if the operating temperature exceeds the inherent degradation management temperature of the solid oxide fuel cell, the solid oxide fuel cell There is a problem that the required durability performance cannot be obtained due to an increase in the deterioration rate. Therefore, the upper limit temperature of the fuel cell stack of the solid oxide fuel cell is set, and the flow rate of air supplied to the air electrode side of the solid oxide fuel cell is controlled so as not to exceed this upper limit temperature, In this way, the progress of deterioration is suppressed.

この固体酸化物形燃料電池では、発電出力が大きいほど発熱が大きくなるために、燃料利用率や空気利用率が大きく変化しない作動条件では、燃料電池スタックの温度は、部分負荷時においては低く、定格出力時においては高くなる傾向にある。また、固体酸化物形燃料電池の発電出力(W)は、
発電出力(W)=発電電流(I)×発電電圧(V)
で表され、燃料電池燃料電池スタックの劣化が進むと、同一発電電流での発電電圧が低下するために、定格の発電出力を維持するためには、劣化前の状態よりも発電電流を増大させて低い発電電圧で発電を行うように稼働される。このように稼働して発電を行うと、劣化の進行に伴って燃料電池スタックの発熱が増加するようになり、燃料電池スタックの耐久性を維持するためには、燃料電池スタックが高温にならないように、その冷却を強める必要がある。
In this solid oxide fuel cell, heat generation increases as the power generation output increases, so under operating conditions where the fuel utilization rate and air utilization rate do not change significantly, the temperature of the fuel cell stack is low at partial load, It tends to be higher at the rated output. The power output (W) of the solid oxide fuel cell is
Generated output (W) = Generated current (I) x Generated voltage (V)
When the deterioration of the fuel cell fuel cell stack progresses, the power generation voltage at the same power generation current decreases, so in order to maintain the rated power output, the power generation current is increased from the state before the deterioration. It is operated to generate electricity at a low generation voltage. When power is generated by operating in this way, the heat generation of the fuel cell stack increases with the progress of deterioration, and in order to maintain the durability of the fuel cell stack, the fuel cell stack should not be heated to a high temperature. In addition, it is necessary to increase the cooling.

家庭用などの小型の固体酸化物形燃料電池システムでは、発電出力が小さいために、燃料電池スタックの放熱表面積が大きく、この燃料電池スタックから外部へ放散される熱が大きく、燃料電池スタックの中心部とその端部とでは放熱量が異なり、その中心部の方が端部よりも放熱が少なく、その温度が高くなる傾向にある。作動温度が高い燃料電池スタックの中心部で劣化が進行した場合、この中心部の温度がより高くなるために、燃料電池スタックの中心部における劣化の進行を抑えるためには、この中心部を冷却して温度を下げる必要があるが、冷却のために燃料電池スタックの空気極に送給する空気の流量を多くすると、燃料電池スタックの中心部の温度を下げることができるが、その端部の温度も同時に下がってしまい、従って、燃料電池スタックが劣化した状態において、発電効率を大きく損なうことなく、定格発電出力を取り出すことが難しくなる。   In small solid oxide fuel cell systems for home use, etc., because the power generation output is small, the heat dissipation surface area of the fuel cell stack is large, and the heat dissipated from the fuel cell stack to the outside is large. The amount of heat radiation is different between the portion and the end portion, and the center portion has less heat radiation than the end portion, and the temperature tends to be higher. When deterioration progresses at the center of the fuel cell stack where the operating temperature is high, the temperature at this center increases. Therefore, in order to suppress the progress of deterioration at the center of the fuel cell stack, this center is cooled. However, if the flow rate of air sent to the air electrode of the fuel cell stack for cooling is increased, the temperature at the center of the fuel cell stack can be lowered. The temperature also decreases at the same time. Therefore, in a state where the fuel cell stack is deteriorated, it is difficult to take out the rated power generation output without greatly impairing the power generation efficiency.

本発明の目的は、比較的簡単な構成及び制御でもって、固体酸化物形燃料電池スタックが劣化しても定格発電出力を容易に取り出すことができる固体酸化物形燃料電池システムを提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a solid oxide fuel cell system having a relatively simple configuration and control and capable of easily taking out the rated power output even if the solid oxide fuel cell stack is deteriorated. is there.

本発明の請求項1に記載の固体酸化物形燃料電池システムは、燃料ガスを改質して改質ガスを生成するための燃料改質器と、燃料極及び空気極を有する固体酸化物形燃料電池スタックと、前記燃料改質器からの改質ガスを前記固体酸化物形燃料電池スタックの前記燃料極側に送給する改質ガス送給流路と、送風機からの空気を前記固体酸化物形燃料電池スタックの前記空気極側に送給する空気流路と、を備え、前記固体酸化物燃料電池スタックは、前記燃料極側に送給される改質ガスと前記空気極側に送給される空気との間で燃料電池発電反応を行う固体酸化物形燃料電池システムであって、
前記空気流路には、前記空気極に向けて流れる空気を分配して送給するための空気分配送給手段が設けられ、前記空気分配送給手段は、前記固体酸化物形燃料電池スタックの中央部に送給するための中央送給流路部と、前記固体酸化物形燃料電池スタックの端部に送給するための端送給流路部とを有しており、
前記空気流路を流れる空気の流量が少ないときには、その空気流の動圧が小さいことに関連して、前記空気分配送給手段は、前記空気流路を流れる全空気流量に対する前記端送給流路部に分配送給される分配空気流量の分配比率が大きくなるように空気を分配送給し、また前記空気流路を流れる空気の流量が多くなると、その空気流の動圧が増大することに関連して、前記空気分配送給手段は、前記空気流路を流れる全空気流量に対する前記端送給流路部に分配送給される分配空気流量の分配比率が小さくなるように空気を分配送給することを特徴とする。
A solid oxide fuel cell system according to claim 1 of the present invention is a solid oxide fuel cell system having a fuel reformer for generating a reformed gas by reforming a fuel gas, and a fuel electrode and an air electrode. A fuel cell stack, a reformed gas feed passage for feeding reformed gas from the fuel reformer to the fuel electrode side of the solid oxide fuel cell stack, and air from a blower for the solid oxidation An air flow path for feeding to the air electrode side of the physical fuel cell stack, and the solid oxide fuel cell stack is fed to the reformed gas to be fed to the fuel electrode side and to the air electrode side. A solid oxide fuel cell system that performs a fuel cell power generation reaction with supplied air,
The air flow path is provided with an air content delivery means for distributing and feeding the air flowing toward the air electrode, and the air content delivery means is provided on the solid oxide fuel cell stack. A central feed channel for feeding to the center and an end feed channel for feeding to the end of the solid oxide fuel cell stack;
When the flow rate of the air flowing through the air flow path is small, the air delivery / feed means is connected to the end feed flow with respect to the total air flow rate flowing through the air flow path in connection with the small dynamic pressure of the air flow. When the air is distributed and supplied so that the distribution ratio of the distributed air flow to be distributed to the passage is increased, and the flow rate of the air flowing through the air flow path increases, the dynamic pressure of the air flow increases. The air distribution delivery means distributes the air so that a distribution ratio of a distribution air flow rate distributed to the end feed flow path portion with respect to a total air flow rate flowing through the air flow path is small. It is characterized by delivery.

また、本発明の請求項2に記載の固体酸化物形燃料電池システムでは、前記空気分配送給手段の前記中央送給流路部の開口部と前記端送給流路部の開口部とは、前記空気流路を流れる空気流の空気動線に対して異なる角度に配置され、前記空気流路を流れる空気の流量が変化すると、前記空気流路を流れる全空気流量に対する前記端送給流路部に分配送給される分配空気流量の分配比率が変化することを特徴とする。   Further, in the solid oxide fuel cell system according to claim 2 of the present invention, the opening of the central supply flow path part and the opening of the end supply flow path part of the air content delivery and supply means are When the flow rate of air flowing through the air flow path is changed at different angles with respect to the air flow line of the air flow flowing through the air flow path, the end feeding flow with respect to the total air flow rate flowing through the air flow path The distribution ratio of the distribution air flow rate distributed and supplied to the road portion is changed.

また、本発明の請求項3に記載の固体酸化物形燃料電池システムでは、前記空気分配送給手段は、前記固体酸化物形燃料電池スタックに隣接して設けられ、前記空気分配送給手段を流れる空気と前記固体酸化物形燃料電池スタックの熱との間で熱交換が行われることを特徴とする。   In the solid oxide fuel cell system according to claim 3 of the present invention, the air content delivery / supply means is provided adjacent to the solid oxide fuel cell stack, and the air content delivery / supply means is provided. Heat exchange is performed between flowing air and heat of the solid oxide fuel cell stack.

また、本発明の請求項4に記載の固体酸化物形燃料電池システムでは、前記固体酸化物形燃料電池スタックの下流側には、前記燃料極側から排出される燃料改質ガスと前記空気極側から排出される空気とを反応させて燃焼させるための燃焼室が設けられ、前記空気分配送給手段は、前記燃焼室から前記固体酸化物形燃料電池スタックにわたって設けられ、前記空気分配送給手段を流れる空気と前記燃焼室及び固体酸化物形燃料電池スタックの熱との間で熱交換が行われることを特徴とする。   In the solid oxide fuel cell system according to claim 4 of the present invention, the fuel reformed gas discharged from the fuel electrode side and the air electrode are disposed downstream of the solid oxide fuel cell stack. A combustion chamber for reacting with the air discharged from the side and burning it, and the air content delivery and supply means is provided from the combustion chamber to the solid oxide fuel cell stack, and the air content delivery and supply Heat exchange is performed between the air flowing through the means and the heat of the combustion chamber and the solid oxide fuel cell stack.

更に、本発明の請求項5に記載の固体酸化物形燃料電池システムでは、前記固体酸化物形燃料電池スタックの中央部の温度を検出するための温度検知手段が設けられ、前記温度検知手段の検知温度に基づいて前記送風機の回転数が制御され、前記検知温度が上昇すると、前記送風機から送給される空気流量が増大することを特徴とする。   Furthermore, in the solid oxide fuel cell system according to claim 5 of the present invention, temperature detection means for detecting the temperature of the central portion of the solid oxide fuel cell stack is provided, and the temperature detection means The number of rotations of the blower is controlled based on the detected temperature, and the flow rate of air supplied from the blower increases when the detected temperature rises.

本発明の請求項1に記載の固体酸化物形燃料電池システムによれば、固体酸化物形燃料電池スタックの空気極側に空気を送給するための空気流路に空気を分配して送給するための空気分配送給手段が設けられ、この空気分配送給手段は、固体酸化物形燃料電池スタックの中央部に送給するための中央送給流路部と、固体酸化物形燃料電池スタックの端部に送給するための端送給流路部とを有している。この空気分配送給手段は、空気流路を流れる空気流量が少ないときには、その空気流の動圧が小さいことに関連して、空気流路を流れる全空気流量に対する前記端送給流路部に分配送給される分配空気流量の分配比率が大きくなるように分配送給するので、このような送給状態のときには、固体酸化物形燃料電池スタックの全体をほぼ均一に冷却して、この燃料電池スタック全体をほぼ同一の温度状態にたもつことができる。また、空気流路を流れる空気流量が大きいときには、その空気流の動圧が大きいことに関連して、この空気分配送給手段は、空気流路を流れる全空気流量に対する端送給流路部に分配送給される分配空気流量の分配比率が小さくなるように分配送給するので、空気流量を増大させる際に、燃料電池スタックの中央部、即ち高温となる部位には多くの空気流量を送給させることができる一方、燃料電池スタックの端部、即ち高温とならない部位における空気流量はあまり増大せず、従って、燃料電池スタックの中央部(即ち、高温部位)の温度上昇を抑制しながら、その端部(即ち、低温部位)の温度を維持することができ、これによって、燃料電池スタックの平均温度を高く保つことができる。その結果、劣化して温度上昇し易くなった燃料電池スタックの中央部を効果的に冷却して温度上昇を抑えることができ、かくして、発電効率を大きく損なうことなく、定格発電出力を取り出すことが可能となる。また、この固体酸化物形燃料電池システムでは、空気流の動圧変動を利用して空気流量の分配比率を変化させているので、空気分配送給手段の中央送給流路部及び端送給流路部に分配制御するための特別な構成及び制御を必要とせず、比較的簡単で安価な構成でもって上述した作用効果を達成することができる。   According to the solid oxide fuel cell system of the first aspect of the present invention, air is distributed and supplied to the air flow path for supplying air to the air electrode side of the solid oxide fuel cell stack. An air content delivery and supply means is provided, the air content delivery and supply means comprising: a central feed channel for feeding to the central portion of the solid oxide fuel cell stack; and a solid oxide fuel cell And an end feeding flow path section for feeding to the end of the stack. When the air flow rate flowing through the air flow path is small, the air content delivery and supply means is connected to the end feed flow path portion for the total air flow rate flowing through the air flow path in relation to the small dynamic pressure of the air flow. Since the distribution is performed so that the distribution ratio of the distribution air flow to be distributed is increased, the entire solid oxide fuel cell stack is cooled almost uniformly in such a supply state, and this fuel is supplied. The entire battery stack can be kept at approximately the same temperature. In addition, when the air flow rate flowing through the air flow path is large, this air component delivery and supply means is connected to the end feed flow path portion for the total air flow rate flowing through the air flow path in connection with the large dynamic pressure of the air flow. Therefore, when the air flow rate is increased, a large amount of air flow rate is applied to the central portion of the fuel cell stack, i.e., the part that becomes hot. While it can be delivered, the air flow rate at the end of the fuel cell stack, that is, the portion where the temperature does not become high does not increase so much, and thus the temperature rise in the central portion of the fuel cell stack (ie, the high temperature portion) is suppressed The temperature of the end portion (that is, the low temperature portion) can be maintained, whereby the average temperature of the fuel cell stack can be kept high. As a result, it is possible to effectively cool the central portion of the fuel cell stack, which has been prone to temperature rise due to deterioration, to suppress the temperature rise, and thus to take out the rated power output without significantly impairing power generation efficiency. It becomes possible. Further, in this solid oxide fuel cell system, the distribution ratio of the air flow rate is changed by utilizing the dynamic pressure fluctuation of the air flow. The above-described effects can be achieved with a relatively simple and inexpensive configuration without requiring a special configuration and control for distributing and controlling the flow path portion.

また、本発明の請求項2に記載の固体酸化物形燃料電池システムによれば、空気分配送給手段の中央送給流路部の開口部と端送給流路部の開口部とは、空気流路を流れる空気流の空気動線に対して異なる角度に配置されているので、空気流路を流れる空気の流量が変化すると、空気流路を流れる全空気流量に対する端送給流路部に分配送給される分配空気流量の分配比率が変化し、かくして、空気流の動圧変動を利用して空気流量の分配比率を変化させることができる。例えば、中央送給流路部の開口は、空気流路を流れる空気の空気動線の方向に配置され、また端送給流路部の開口は、この空気動線に対して垂直な方向に配置される。   Further, according to the solid oxide fuel cell system according to claim 2 of the present invention, the opening of the central feed flow path part and the opening of the end feed flow path part of the air content delivery means are: Since it is arranged at a different angle with respect to the air flow line of the air flow flowing through the air flow path, when the flow rate of the air flowing through the air flow path changes, the end feed flow path section for the total air flow rate flowing through the air flow path Thus, the distribution ratio of the distribution air flow rate to be distributed is changed, and thus the distribution ratio of the air flow rate can be changed by utilizing the dynamic pressure fluctuation of the air flow. For example, the opening of the central feed flow path section is arranged in the direction of the air flow line of the air flowing through the air flow path, and the opening of the end feed flow path section is in a direction perpendicular to the air flow line. Be placed.

また、本発明の請求項3に記載の固体酸化物形燃料電池システムによれば、空気分配送給手段は、固体酸化物形燃料電池スタックに隣接して設けられるので、空気分配送給手段を流れる空気と固体酸化物形燃料電池スタックの熱との間で熱交換が行われ、この熱交換によって、燃料電池スタックを冷却することができる。特に、空気流路を流れる空気流量が多いときには、空気分配送給手段の中央送給流路分を流れる空気の流量が多くなるので、この中央分配送給分を流れる空気と燃料電池スタックの中央部(即ち、高温部位)との熱交換が促進されて冷却効果が高められ、これによって、燃料電池スタックの中央分をより効果的に冷却して温度上昇を抑えることできる。   In the solid oxide fuel cell system according to claim 3 of the present invention, the air content delivery / supply means is provided adjacent to the solid oxide fuel cell stack. Heat exchange is performed between the flowing air and the heat of the solid oxide fuel cell stack, and the fuel cell stack can be cooled by this heat exchange. In particular, when the flow rate of air flowing through the air flow path is large, the flow rate of air flowing through the central supply flow path of the air distribution delivery means increases, so the air flowing through the central distribution supply and the center of the fuel cell stack The heat exchange with the part (that is, the high-temperature part) is promoted and the cooling effect is enhanced, whereby the center portion of the fuel cell stack can be cooled more effectively and the temperature rise can be suppressed.

また、本発明の請求項4に記載の固体酸化物形燃料電池システムによれば、空気分配送給手段は、燃焼室から固体酸化物形燃料電池スタックにわたって設けられるので、空気分配送給手段を流れる空気と燃焼室及び固体酸化物形燃料電池スタックの熱との間で熱交換が行われ、この熱交換によって、上述したと同様に、燃料電池スタックを冷却することができる。   In the solid oxide fuel cell system according to claim 4 of the present invention, since the air content delivery / supply means is provided from the combustion chamber to the solid oxide fuel cell stack, the air content delivery / supply means is provided. Heat exchange is performed between the flowing air and the heat of the combustion chamber and the solid oxide fuel cell stack. By this heat exchange, the fuel cell stack can be cooled as described above.

更に、本発明の請求項5に記載の固体酸化物形燃料電池システムによれば、固体酸化物形燃料電池スタックの中央部の温度を検知するための温度検知手段の検知温度に基づいて送風機の回転数が制御され、この検知温度が上昇すると、送風機から送給される空気流量が増大するので、燃料電池スタックが高温に上昇するのを抑えることができる。   Furthermore, according to the solid oxide fuel cell system according to claim 5 of the present invention, the blower fan is based on the detected temperature of the temperature detecting means for detecting the temperature of the central portion of the solid oxide fuel cell stack. When the rotational speed is controlled and the detected temperature rises, the air flow rate supplied from the blower increases, so that the fuel cell stack can be prevented from rising to a high temperature.

以下、添付図面を参照して、本発明に従う固体酸化物形燃料電池システムの実施形態について説明する。図1は、固体酸化物形燃料電池システムの一実施形態を簡略的に示す断面図であり、図2は、図1の固体酸化物形燃料電池システムにおける空気分配送給手段を示す簡略断面図であり、図3は、図2の空気分配送給手段を用いた場合における空気流量が少ないときの空気の分配を説明するための図であり、図4は、図2の空気分配送給手段を用いた場合における空気流量が多いときの空気の分配を説明するための図である。   Embodiments of a solid oxide fuel cell system according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view schematically showing an embodiment of a solid oxide fuel cell system, and FIG. 2 is a simplified cross-sectional view showing air content delivery and supply means in the solid oxide fuel cell system of FIG. FIG. 3 is a diagram for explaining air distribution when the air flow rate is small when the air content delivery / supply means of FIG. 2 is used, and FIG. 4 is an air content delivery / supply means of FIG. It is a figure for demonstrating distribution of air when there are many air flow rates in the case of using.

図1において、図示の実施形態の固体酸化物形燃料電池システム2は、固体酸化物形燃料電池スタック4と、燃料改質器6と、空気予熱器8とを備えており、固体酸化物燃料電池スタック4、燃料改質器6及び空気予熱器8が、断熱された遮熱壁10によって規定される高温収容室12に収容されている。固体酸化物形燃料電池スタック4は高温収容室12の略中央に配設され、図1において左右方向に間隔をおいて配設された複数の燃料電池セル14を備え、燃料電池セル14の下端部が連通接続部材16に接続されている。   In FIG. 1, a solid oxide fuel cell system 2 of the illustrated embodiment includes a solid oxide fuel cell stack 4, a fuel reformer 6, and an air preheater 8. The battery stack 4, the fuel reformer 6, and the air preheater 8 are accommodated in a high-temperature accommodation chamber 12 defined by a heat insulating wall 10 that is insulated. The solid oxide fuel cell stack 4 is disposed at substantially the center of the high-temperature housing chamber 12 and includes a plurality of fuel cells 14 that are spaced apart in the left-right direction in FIG. The part is connected to the communication connecting member 16.

各燃料電池セル14は、図示していないが、酸素イオンを伝導する固体電解質と、この固体電解質の片側に配設された燃料極と、その他側に配設された空気極とを備え、固体電解質は、例えばイットリアをドープしたジルコニアから形成される。燃料極では後述する如くして改質された改質ガスが酸化され、空気極では空気中の酸素が還元され、この酸素イオンが固体電解質を通過、移動して改質ガスと電気化学反応を行うことによって発電が行われる。固体酸化物形燃料電池スタック4における電気化学反応は700〜1000℃の高温で行われる。尚、固体酸化物形燃料電池スタック4は遮熱壁10によって囲まれた高温収容室1に収容されているので、固体酸化物形燃料電池スタック4は高温が維持される。   Although not shown, each fuel battery cell 14 includes a solid electrolyte that conducts oxygen ions, a fuel electrode disposed on one side of the solid electrolyte, and an air electrode disposed on the other side. The electrolyte is made of zirconia doped with yttria, for example. The reformed gas reformed as described later is oxidized at the fuel electrode, and oxygen in the air is reduced at the air electrode, and these oxygen ions pass through and move through the solid electrolyte to cause an electrochemical reaction with the reformed gas. By doing so, power generation is performed. The electrochemical reaction in the solid oxide fuel cell stack 4 is performed at a high temperature of 700 to 1000 ° C. In addition, since the solid oxide fuel cell stack 4 is accommodated in the high temperature accommodation chamber 1 surrounded by the heat shield wall 10, the high temperature of the solid oxide fuel cell stack 4 is maintained.

この固体酸化物形燃料電池システム2においては、燃料電池スタック4の空気極側には空気流路26が配設され、この空気流路26には、空気供給手段としての送風機28及び空気・排気熱交換器としての空気予熱器8が設けられ、送風機28からの空気が空気流路26及び空気予熱器8を流れ、空気予熱器8にて後述する如く予熱され、かく予熱された空気が後述するようにして固体酸化物形燃料電池スタック4の空気極側に送給される。   In the solid oxide fuel cell system 2, an air flow path 26 is disposed on the air electrode side of the fuel cell stack 4, and a blower 28 as an air supply means and air / exhaust are provided in the air flow path 26. An air preheater 8 as a heat exchanger is provided, air from the blower 28 flows through the air flow path 26 and the air preheater 8, and is preheated in the air preheater 8 as described later, and the preheated air is described later. In this way, it is fed to the air electrode side of the solid oxide fuel cell stack 4.

また、固体酸化物形燃料電池スタック4の燃料極側(即ち、各燃料電池セル14の燃料極側)はに連通接続部材16が接続され、この連通接続部材16は改質ガス送給流路30を介して燃料改質器6に接続され、この燃料改質器6は燃料ガス送給流路32を介して脱硫器34に接続され、脱硫器34は燃料ガス供給流路36を介して、燃料タンク(又は埋設供給管)の如き燃料供給源(図示せず)に接続され、燃料ガス供給流路36には昇圧ファン38が配設されている。   A communication connecting member 16 is connected to the fuel electrode side of the solid oxide fuel cell stack 4 (that is, the fuel electrode side of each fuel cell 14), and the communication connecting member 16 is a reformed gas feed channel. The fuel reformer 6 is connected to a desulfurizer 34 via a fuel gas supply passage 32, and the desulfurizer 34 is connected via a fuel gas supply passage 36. A fuel supply source (not shown) such as a fuel tank (or a buried supply pipe) is connected, and a booster fan 38 is disposed in the fuel gas supply flow path 36.

この固体酸化物形燃料電池システム2では、燃料ガスとして例えば液化天然ガスをベースとした燃料ガス、即ちメタンを主成分とする燃料ガス(例えば、都市ガス)が用いられ、このような燃料ガスが原燃料ガスとして燃料ガス供給流路36を通して供給され、かく供給される燃料ガスが昇圧ファン38によって昇圧された後に脱硫器34に送給される。脱硫器34においては、燃料ガスに含まれる硫黄成分が除去され、脱硫された燃料ガスが燃料ガス送給流路32を通して燃料改質器6に送給される。燃料改質器6には改質触媒が内蔵されており、例えば700〜800℃程度の高温で燃料ガスの改質反応が行われ、改質された改質ガスが改質ガス送給流路30を通して連通接続部材16に送給され、この連通接続部材16を通して固体酸化物形燃料電池スタック4の各燃料電池セル14の燃料極側に改質ガスが供給される。   In the solid oxide fuel cell system 2, for example, a fuel gas based on liquefied natural gas, that is, a fuel gas mainly composed of methane (for example, city gas) is used as the fuel gas. The raw fuel gas is supplied through the fuel gas supply passage 36, and the supplied fuel gas is boosted by the booster fan 38 and then fed to the desulfurizer 34. In the desulfurizer 34, the sulfur component contained in the fuel gas is removed, and the desulfurized fuel gas is supplied to the fuel reformer 6 through the fuel gas supply passage 32. The fuel reformer 6 has a built-in reforming catalyst. For example, the reforming reaction of the fuel gas is performed at a high temperature of about 700 to 800 ° C., and the reformed reformed gas is supplied to the reformed gas supply passage. 30 is supplied to the communication connecting member 16, and the reformed gas is supplied to the fuel electrode side of each fuel cell 14 of the solid oxide fuel cell stack 4 through the communication connecting member 16.

この固体酸化物形燃料電池システム2では、燃料電池スタック4の排出側、即ち下流側には燃焼室40が設けられ、この燃焼室40からの燃焼排気ガスが空気予熱器8を通り、排気流路62を通して外部に排出されるように構成されている。燃焼部40には、燃料電池スタック4の燃料極側からの反応燃料ガスとその空気極側からの空気とが排出され、空気中の酸素を用いて反応燃料ガスの燃焼が行われる。尚、この燃焼室40には燃料改質器6が配設されており、燃料気質器6は燃焼室40の燃焼熱を利用して燃料ガスの改質反応処理を行う。   In this solid oxide fuel cell system 2, a combustion chamber 40 is provided on the discharge side, that is, the downstream side of the fuel cell stack 4, and the combustion exhaust gas from the combustion chamber 40 passes through the air preheater 8 and flows into the exhaust stream. It is configured to be discharged to the outside through the path 62. Reacted fuel gas from the fuel electrode side of the fuel cell stack 4 and air from the air electrode side of the fuel cell stack 4 are discharged to the combustion unit 40, and the reaction fuel gas is burned using oxygen in the air. A fuel reformer 6 is disposed in the combustion chamber 40, and the fuel qualifier 6 performs a fuel gas reforming reaction process using the combustion heat of the combustion chamber 40.

図1とともに図2を参照して、この固体酸化物形燃料電池システム2では、空気流路26に空気分配送給手段42が設けられ、この空気分配送給手段42は、固体酸化物形燃料電池スタック4の空気極側に送給される空気を所要の通りに分配して送給する。図示の形態では、空気分配送給手段42は、空気予熱器8に接続される接続部44と、この接続部44から固体酸化物形燃料電池スタック4の一端側(図1において左端側)に分岐する第1端送給流路部46と、接続部44から燃料電池スタック4の他端側(図1において右端側)に分岐する第2端送給流路部48と、接続部44から燃料電池スタック4の中央部に分岐する中央送給流路部50とを有している。第1及び第2端送給流路部46,48の開口部52,54と中央送給流路部50の開口部56とは、空気流路26(具体的には、接続部44によって規定される流路)を流れる空気流の空気動線58(換言すると、空気が流れる方向の軸線)に対して異なる角度に配置され、この形態では、中央送給流路部50の開口部56は、空気動線58の方向に、即ち接続部44の流路と一致するように配置され、第1及び第2端送給流路部46,48の開口部52,54は、この空気動線58に対して垂直な方向に配置され、このように配置することによって、空気流路26を流れる空気の流量が変動すると、空気流路26を流れる空気の全流量に対する第1及び第2端送給流路部46,48に分配送給される分配空気流量の分配比率が変化する。   Referring to FIG. 1 and FIG. 2, in this solid oxide fuel cell system 2, air distribution delivery means 42 is provided in the air flow path 26, and the air delivery delivery means 42 is a solid oxide fuel. The air supplied to the air electrode side of the battery stack 4 is distributed and supplied as required. In the form shown in the figure, the air content delivery / supply means 42 is connected to the air preheater 8, and from this connection 44 to one end side of the solid oxide fuel cell stack 4 (left end side in FIG. 1). From the first end feed flow path section 46 that branches off, the second end feed flow path section 48 that branches from the connection section 44 to the other end side of the fuel cell stack 4 (right end side in FIG. 1), and the connection section 44 The fuel cell stack 4 has a central supply flow path portion 50 that branches into the central portion. The openings 52 and 54 of the first and second end feed flow channel portions 46 and 48 and the opening 56 of the central feed flow channel portion 50 are defined by the air flow channel 26 (specifically, the connection portion 44). Are arranged at different angles with respect to the air flow line 58 (in other words, the axis of the air flow direction) of the air flow flowing through the flow path), and in this form, the opening 56 of the central feed flow path section 50 is Are arranged in the direction of the air flow line 58, that is, so as to coincide with the flow path of the connecting portion 44, and the openings 52 and 54 of the first and second end feed flow path portions 46 and 48 are provided with this air flow line. If the flow rate of the air flowing through the air flow path 26 fluctuates due to this arrangement, the first and second end feeds with respect to the total flow rate of the air flowing through the air flow path 26 are arranged. The distribution ratio of the distribution air flow rate distributed and supplied to the supply passage portions 46 and 48 changes.

例えば、空気流路26を流れる空気の流量が少ないときには、空気流の動圧が小さく、このときには、図3に示すように空気が分配送給される。即ち、接続部44からの空気は、その動圧が小さい故に、図3(a)に矢印で示すように流れ、図3(b)で示すように、中央送給流路部50の開口部56を通して流れる単位面積流量(単位面積当たりの流量)と第1及び第2端送給流路部46,48の開口部52,54を通して流れる単位面積流量とがほぼ等しくなるように分配送給される。また、例えば、空気流路26を流れる空気の流量が多いときには、空気流の動圧が大きく、このときには、図4に示すように空気が分配送給される。即ち、接続部44からの空気は、その動圧が大きい故に、図4(a)に矢印で示すようにその大部分が空気動線の方向に流れ、図4(b)で示すように、中央送給流路部50の開口部56を通して流れる単位面積流量が第1及び第2端送給流路部46,48の開口部52,54を通して流れる単位面積流量よりも大きくなるように分配送給される。このように第1及び第2端送給流路部46,48の開口部52,54並びに中央送給流路部50の開口部56を配置することによって、空気流の流量の変動に伴い、空気流量26を流れる空気の全流量に対する第1及び第2端送給流路部46,48に送給される空気流量の分配比率を変化させることができる。尚、この実施形態では、第1及び第2端送給流路部46,48の開口部52,54を空気動線58に対して垂直な方向に配置しているが、この空気動線58に対する角度については適宜の角度に設定することができ、この角度を小さく設定することによって、中央送給流路部56に対する第1及び第2端送給流路部46,48に流れる空気流量を相対的に増やすことができる。   For example, when the flow rate of the air flowing through the air flow path 26 is small, the dynamic pressure of the air flow is small. At this time, the air is distributed and supplied as shown in FIG. That is, the air from the connecting portion 44 flows as shown by an arrow in FIG. 3A because the dynamic pressure is small, and as shown in FIG. 3B, the opening of the central feed channel portion 50 The unit area flow rate (flow rate per unit area) flowing through 56 and the unit area flow rate flowing through the openings 52, 54 of the first and second end feed flow channel portions 46, 48 are distributed in a distributed manner. The Further, for example, when the flow rate of air flowing through the air flow path 26 is large, the dynamic pressure of the air flow is large. At this time, air is distributed and supplied as shown in FIG. That is, since the dynamic pressure of the air from the connecting portion 44 is large, most of the air flows in the direction of the air flow line as shown by arrows in FIG. 4A, and as shown in FIG. Partial delivery so that the unit area flow rate flowing through the opening 56 of the central feed flow channel portion 50 is larger than the unit area flow rate flowing through the openings 52, 54 of the first and second end feed flow channel portions 46, 48. Be paid. As described above, by arranging the openings 52 and 54 of the first and second end supply flow passage portions 46 and 48 and the opening portion 56 of the central supply flow passage portion 50, along with the fluctuation of the flow rate of the air flow, The distribution ratio of the air flow rate supplied to the first and second end supply flow path portions 46 and 48 with respect to the total flow rate of the air flowing through the air flow rate 26 can be changed. In this embodiment, the openings 52 and 54 of the first and second end feed flow passages 46 and 48 are arranged in a direction perpendicular to the air flow line 58. The angle with respect to can be set to an appropriate angle, and by setting this angle small, the flow rate of air flowing through the first and second end feed flow path portions 46 and 48 with respect to the central feed flow path portion 56 can be reduced. It can be increased relatively.

この実施形態では、空気分配送給手段42は、燃焼室40から固体酸化物形燃料電池スタック4にわたって設けられ、中央送給流路部50は燃料電池スタック4の中央部を下方に連通接続部材16の近傍まで延び、第1及び第2端送給流路部46は燃料電池スタック4の両端部を下方に連通接続部材16の近傍まで延びており、中央送給流路部50を流れる空気は、主として燃料電池スタック4の中央部に配置された燃料電池セル14の空気極側に供給され、第1及び第2端送給流路部46,48を流れる空気は、主として燃料電池スタック4の両端部に配置された燃料電池セル14の空気極側に供給される。   In this embodiment, the air content delivery / supply means 42 is provided from the combustion chamber 40 to the solid oxide fuel cell stack 4, and the central feed channel portion 50 communicates with the central portion of the fuel cell stack 4 downward. 16, the first and second end supply flow path portions 46 extend downward from both ends of the fuel cell stack 4 to the vicinity of the communication connection member 16, and the air flowing through the central supply flow path portion 50. Is mainly supplied to the air electrode side of the fuel cell 14 arranged at the center of the fuel cell stack 4, and the air flowing through the first and second end supply flow path portions 46 and 48 is mainly the fuel cell stack 4. Are supplied to the air electrode side of the fuel cells 14 arranged at both ends of the fuel cell.

この実施形態では、空気分配送給手段42の中央送給流路部50並びに第1及び第2端送給流路部46,48は、固体酸化物形燃料電池スタック4の片面側(図1において手前側)に配置され、第1端送給流路部46の幅W1と、中央送給流路部50の幅W2と、第2端送給流路部48の幅W3との比率は、固体酸化物形燃料電池スタック4の高温部位に中央送給流路部50が位置するように、例えば、W1:W2:W3=(1.5〜2.5):(7.0〜5.0):(1.5〜2.5)に設定される。   In this embodiment, the central supply flow channel portion 50 and the first and second end supply flow channel portions 46 and 48 of the air content delivery and supply means 42 are provided on one side of the solid oxide fuel cell stack 4 (FIG. 1). The ratio of the width W1 of the first end feed channel portion 46, the width W2 of the central feed channel portion 50, and the width W3 of the second end feed channel portion 48 is For example, W1: W2: W3 = (1.5 to 2.5) :( 7.0 to 5) so that the central feeding flow path portion 50 is positioned at a high temperature portion of the solid oxide fuel cell stack 4. .0): (1.5 to 2.5).

この実施形態では、更に、固体酸化物形燃料電池スタック4の中央部(即ち、高温部位)の温度を検知するための温度検知手段64が設けられ、この温度検知手段64は例えば熱電対から構成される。この温度検知手段64の検知温度は、送風機28の回転数を制御するために利用され、この検知温度が上昇すると、送風機の回転数が増えて送風機から空気流路26に送給される空気流量が増大し、固体酸化物形燃料電池スタック4の温度が設定上限温度を超えないように送風機28が回転制御される。   In this embodiment, temperature detecting means 64 for detecting the temperature of the central portion (that is, a high temperature portion) of the solid oxide fuel cell stack 4 is further provided, and the temperature detecting means 64 is composed of, for example, a thermocouple. Is done. The detected temperature of the temperature detecting means 64 is used to control the rotational speed of the blower 28. When the detected temperature rises, the rotational speed of the blower increases and the air flow rate supplied from the blower to the air flow path 26 is increased. The rotation of the blower 28 is controlled so that the temperature of the solid oxide fuel cell stack 4 does not exceed the set upper limit temperature.

次に、主として図1及び図2を参照して、上述した固体酸化物形燃料電池システム2の作動について説明する。原燃料ガスとしてのメタンを主成分とする燃料ガス(例えば、都市ガス)が燃料ガス供給流路36を通して送給され、かく送給された燃料ガスは昇圧器38によって昇圧された後に脱硫器34に送給され、この脱硫器34にて燃料ガスに含まれた硫黄成分が除去される。脱硫器34において脱硫処理された燃料ガスは燃料改質器6に送給され、この燃料改質器6にて改質処理が行われ、改質された改質ガスが改質ガス送給流路30及び連通接続部材16を通して固体酸化物形燃料電池スタック4の各燃料電池セル14の燃料極18側に送給される。   Next, the operation of the solid oxide fuel cell system 2 described above will be described mainly with reference to FIGS. 1 and 2. A fuel gas (for example, city gas) containing methane as a main fuel gas as a main component is supplied through the fuel gas supply flow path 36, and the supplied fuel gas is pressurized by a booster 38 and then desulfurizer 34. The sulfur component contained in the fuel gas is removed by the desulfurizer 34. The fuel gas desulfurized in the desulfurizer 34 is fed to the fuel reformer 6, the reforming process is performed in the fuel reformer 6, and the reformed reformed gas is supplied to the reformed gas. The fuel is fed to the fuel electrode 18 side of each fuel cell 14 of the solid oxide fuel cell stack 4 through the path 30 and the communication connecting member 16.

また、送風機28からの空気は、空気流路26を通して後述するようにして固体酸化物形燃料電池スタック4の各燃料電池セル14の空気極に送給され、この固体酸化物形燃料電池スタック4の各燃料電池セル14において改質ガスと空気中の酸素とが燃料電池発電反応して発電が行われる。   Further, air from the blower 28 is supplied to the air electrode of each fuel cell 14 of the solid oxide fuel cell stack 4 through the air flow path 26 as described later, and this solid oxide fuel cell stack 4. In each of the fuel cells 14, the reformed gas and oxygen in the air react with each other in the fuel cell power generation to generate power.

固体酸化物形燃料電池スタック4の燃料電池セル14の燃料極側からの反応燃料ガスとその空気極側からの空気が燃焼室40に送給され、この燃焼室40にて反応燃料ガスに残留する水素ガスが燃焼される。燃焼室40からの燃焼排気ガスは、空気予熱器8を流れ、排気流路62を通って外部へ排出され、この排出の際に空気予熱器8において、排出流路62に流れる燃焼排気ガスと空気流路26を流れる空気との間で熱交換が行われて空気が予熱され、この予熱された空気が固体酸化物形燃料電池スタック4の空気極側に供給される。   The reaction fuel gas from the fuel electrode side of the fuel cell 14 of the solid oxide fuel cell stack 4 and the air from the air electrode side are supplied to the combustion chamber 40 and remain in the reaction fuel gas in the combustion chamber 40. The hydrogen gas that burns is burned. Combustion exhaust gas from the combustion chamber 40 flows through the air preheater 8 and is discharged to the outside through the exhaust passage 62, and in this air preheater 8, the combustion exhaust gas flowing into the discharge passage 62 and Heat exchange is performed with the air flowing through the air flow path 26 to preheat the air, and the preheated air is supplied to the air electrode side of the solid oxide fuel cell stack 4.

この固体酸化物形燃料電池システム4では、更に、固体酸化物形燃料電池スタック4に送給される空気が、空気分配送給手段42によって分配送給される。例えば、固体酸化物形燃料電池システム2が部分負荷運転状態などにおいてその燃料電池スタック4の温度が低い(即ち、温度検知手段64の検知温度が低い)ときには、送風機28の回転数が低く、この送風機28からの空気の送給量が少なく、この場合には、空気流路26を流れる空気は、空気分配送給手段42によって図3に示す如く分配送給される。即ち、送風機28からの空気は、空気流の動圧が小さいことに起因して、空気分配送給手段42の第1及び第2端送給流路部46,48と中央送給流路部50とにほぼ均一に分配され(即ち、単位面積当たりの流量がほぼ均一となるように分配される)、 第1及び第2端送給流路部46,48を流れる空気は、固体酸化物形燃料電池スタック4の端部の熱との間で熱交換されて温められ、主としてこの端部の燃料電池セル14の空気極側に送給され、また中央送給流路部50を流れる空気は、固体酸化物形燃料電池スタック4の中央部の熱との間で熱交換され、主としてこの中央部の燃料電池セル14の空気極側に送給される。このとき、第1及び第2端送給流路部46,48並びに中央送給流路部50を流れる空気の流量は少ないので、固体酸化物形燃料電池スタック4が過剰に冷却することがなく、固体酸化物形燃料電池システム2を所要の通りに部分負荷運転をすることができる。   In the solid oxide fuel cell system 4, the air supplied to the solid oxide fuel cell stack 4 is further delivered by the air delivery delivery means 42. For example, when the temperature of the fuel cell stack 4 is low (that is, the detection temperature of the temperature detection means 64 is low) when the solid oxide fuel cell system 2 is in a partial load operation state, the rotational speed of the blower 28 is low. The amount of air supplied from the blower 28 is small, and in this case, the air flowing through the air flow path 26 is delivered and supplied by the air delivery / supply means 42 as shown in FIG. That is, the air from the air blower 28 is caused by the small dynamic pressure of the air flow, so that the first and second end feed flow path portions 46 and 48 of the air content delivery and supply means 42 and the central feed flow path portion. 50 (ie, distributed so that the flow rate per unit area is substantially uniform), and the air flowing through the first and second end feeding flow path portions 46 and 48 is a solid oxide. Heat exchanged with the heat at the end of the fuel cell stack 4 is heated, and is mainly supplied to the air electrode side of the fuel cell 14 at this end, and also flows through the central feed flow path 50. Is exchanged with the heat at the center of the solid oxide fuel cell stack 4 and is mainly supplied to the air electrode side of the fuel cell 14 at the center. At this time, since the flow rate of the air flowing through the first and second end feed flow channel portions 46 and 48 and the central feed flow channel portion 50 is small, the solid oxide fuel cell stack 4 is not excessively cooled. The solid oxide fuel cell system 2 can be partially loaded as required.

また、例えば、固体酸化物形燃料電池システム2の劣化が進んでその燃料電池スタック4の温度が上昇する(即ち、温度検知手段64の検知温度が設定上限温度になる)と、送風機28の回転数が上昇し、この送風機28からの空気の送給量が多くなり、この場合には、空気流路26を流れる空気は、空気分配送給手段42によって図4に示す如く分配送給される。即ち、送風機28からの空気は、空気流の動圧が大きいことに起因して、空気分配送給手段42の中央送給流路部50への分配比率がその第1及び第2端送給流路部46,48よりも大きくなるように分配される(即ち、中央送給流路部50の単位面積当たりの流量が第1及び第2端送給流路部46,48よりも多く分配される)。従って、中央送給流路部50を流れる空気は、上述したように固体酸化物形燃料電池スタック4の中央部の熱との間で熱交換されるが、その流量が多い故に、かかる熱交換による燃料電池スタック4の中央部における冷却効果が高められ、かかる中央部(即ち、燃料電池スタック4の高温部位)を効果的に冷却することができる。このとき、第1及び第2端送給流路部46,48を流れる空気の流量はほとんど増加せず、それ故に、固体酸化物形燃料電池スタック4の端部が過剰に冷却されることがなく、固体酸化物形燃料電池スタック4全体として適切な温度状態に保つことができる。   Further, for example, when the deterioration of the solid oxide fuel cell system 2 progresses and the temperature of the fuel cell stack 4 rises (that is, the detected temperature of the temperature detecting means 64 reaches the set upper limit temperature), the blower 28 rotates. The number increases, and the amount of air supplied from the blower 28 increases. In this case, the air flowing through the air flow passage 26 is distributed and supplied by the air distribution and supply means 42 as shown in FIG. . In other words, the distribution ratio of the air from the blower 28 to the central supply flow path portion 50 of the air distribution delivery means 42 is the first and second end supply due to the large dynamic pressure of the air flow. It distributes so that it may become larger than flow-path parts 46 and 48 (namely, the flow volume per unit area of central supply flow-path part 50 distributes more than the 1st and 2nd end supply flow-path parts 46 and 48. ) Therefore, as described above, the air flowing through the central supply flow path section 50 is heat-exchanged with the heat of the central section of the solid oxide fuel cell stack 4, but the heat exchange is performed because the flow rate is large. The cooling effect at the central portion of the fuel cell stack 4 is enhanced, and the central portion (that is, the high temperature portion of the fuel cell stack 4) can be effectively cooled. At this time, the flow rate of the air flowing through the first and second end feeding flow path portions 46 and 48 hardly increases, and therefore the end portion of the solid oxide fuel cell stack 4 may be excessively cooled. However, the solid oxide fuel cell stack 4 as a whole can be maintained at an appropriate temperature state.

上述した実施形態では、空気分配送給手段42を燃焼室40から固体酸化物形燃料電池スタック4にわたって設けているが、このような構成に限定されず、図5に示すように設けることもできる。図5において、この実施形態では、空気分配送給手段42Aは、固体酸化物形燃料電池スタック4に隣接して設けられ、その接続部44Aから下流側の第1及び第2端送給流路部46A,48A並びに中央送給流路部50Aがこの燃料電池スタック4の側面に対向して配設され、第1端送給流路部46Aは燃料電池スタック4の片端部にて下方に延び、第2端送給流路部48Aは燃料電池スタック4の他側部にて下方に延び、また中央送給流路部50Aは燃料電池スタック4の中央部を下方に延びている。この形態のその他の構成は、図1〜図4に示す実施形態と実質上同一である。   In the embodiment described above, the air content delivery / supply means 42 is provided from the combustion chamber 40 to the solid oxide fuel cell stack 4, but is not limited to such a configuration, and may be provided as shown in FIG. 5. . In FIG. 5, in this embodiment, the air content delivery / supply means 42A is provided adjacent to the solid oxide fuel cell stack 4, and the first and second end feed passages downstream from the connecting portion 44A. The portions 46A, 48A and the central feed channel 50A are arranged to face the side surface of the fuel cell stack 4, and the first end feed channel 46A extends downward at one end of the fuel cell stack 4. The second end feed channel 48A extends downward at the other side of the fuel cell stack 4, and the center feed channel 50A extends downward through the center of the fuel cell stack 4. The other structure of this form is substantially the same as embodiment shown in FIGS.

この形態においても、第1及び第2端送給流路部46A,48Aを流れる空気は、固体酸化物形燃料電池スタック4の両端部にて発生する熱との間で熱交換が行われ、また中央送給流路部50Aを流れる空気は、その燃料電池スタック4の中央部(即ち、高温部位)にて発生する熱との間で熱交換が行われ、従って、このように構成しても上述したと同様の作用効果が達成される。   Also in this form, the air flowing through the first and second end supply flow path portions 46A, 48A is subjected to heat exchange with the heat generated at both ends of the solid oxide fuel cell stack 4, In addition, the air flowing through the central feed channel 50A is exchanged with the heat generated in the central portion (that is, the high temperature portion) of the fuel cell stack 4, and thus configured as described above. The same effects as described above can be achieved.

以上、本発明に従う固体酸化物形燃料電池システムの実施形態について説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形乃至修正が可能である。   As mentioned above, although the embodiment of the solid oxide fuel cell system according to the present invention has been described, the present invention is not limited to such an embodiment, and various variations and modifications can be made without departing from the scope of the present invention. It is.

例えば、上述した実施形態では、空気分配送給手段42(42A)が第1及び第2端送給流路部46(46A),48(48A)並びに中央送給流路部50(50A)を備え、空気流路26を流れる空気が三つに分配されるように構成されているが、送給流路部を4つ又は5つ以上設け、空気流路26からの空気を4つ又は5つ以上に分配して送給するようにしてもよい。   For example, in the above-described embodiment, the air content delivery and supply means 42 (42A) is connected to the first and second end supply flow path portions 46 (46A) and 48 (48A) and the central supply flow path portion 50 (50A). Provided, and the air flowing through the air flow path 26 is divided into three. However, four or five feeding flow path portions are provided, and four or five air from the air flow path 26 are provided. You may make it distribute and supply to two or more.

実施例及び比較例
本発明の固体酸化物形燃料電池システムの効果を確認するために、次の通りの実験を行った。実施例として、図1及び図2に示す固体酸化物形燃料電池システムを用い、定格直流発電端出力1000Wのものを定格植流出力一定条件で発電させた。燃料ガスとしてメタンを90%含む都市ガスを用いた。燃料利用率を73%と一定とし、直流発電端電力が一定となるようにした。また、空気流量は空気利用率が33〜37%となるように送風機を制御し、固体酸化物形燃料電池スタックの中央部(高温部部位)の温度が800℃を超える場合には送風機の回転数を上昇させて空気の流動を増大させ、この中央部の温度が800℃を超えないように送風機を制御した。空気分配送給手段としては、図2に示すものを用い、第1端送給流路部の幅W1と、中央送給流路部の幅W2と、第2端送給流路部の幅W3との比率は、W1:W2:W3=2.0:6.0:2.0であった。空気分配送給手段内の温度は400〜600℃で、作動圧力は常圧で、固体酸化物形燃料電池スタックから固体酸化物形燃料電池システムの排気までの排圧は約1kPaであった。固体酸化物形燃料電池スタックの中央部に第1温度検知手段(第1熱電対)を配設し、その端部に第2温度検知手段(第2熱電対)を配置し、固体酸化物形燃料電池システムの温度状態を検知した。
Examples and Comparative Examples In order to confirm the effect of the solid oxide fuel cell system of the present invention, the following experiment was conducted. As an example, a solid oxide fuel cell system shown in FIGS. 1 and 2 was used, and a power generator with a rated DC power generation end output of 1000 W was generated under a constant rated infusion output condition. A city gas containing 90% methane was used as the fuel gas. The fuel utilization rate was fixed at 73%, and the DC power generation end power was fixed. The air flow rate is controlled so that the air utilization rate is 33 to 37%. When the temperature of the central portion (high temperature portion) of the solid oxide fuel cell stack exceeds 800 ° C., the rotation of the blower is performed. The air flow was increased by increasing the number, and the blower was controlled so that the temperature at the center did not exceed 800 ° C. As the air content delivery and supply means, the one shown in FIG. 2 is used, and the width W1 of the first end feed flow path section, the width W2 of the central feed flow path section, and the width of the second end feed flow path section. The ratio with W3 was W1: W2: W3 = 2.0: 6.0: 2.0. The temperature in the air delivery and supply means was 400 to 600 ° C., the operating pressure was normal pressure, and the exhaust pressure from the solid oxide fuel cell stack to the exhaust of the solid oxide fuel cell system was about 1 kPa. The first temperature detecting means (first thermocouple) is disposed at the center of the solid oxide fuel cell stack, and the second temperature detecting means (second thermocouple) is disposed at the end of the solid oxide fuel cell stack. The temperature state of the fuel cell system was detected.

この固体酸化物形燃料電池システムを継続して稼動運転し、表1に示す結果を得た。この実施例では、発電初期においては、第1温度検知手段の検知温度は790℃で、第2温度検知手段の検知温度は762℃であり、発電時間の経過により第1温度検知手段の検知温度が上昇し、約300時間稼動運転した時点でその検知温度が800℃となり、その後継続して5000時間運転して表1の結果を得た。   The solid oxide fuel cell system was continuously operated and the results shown in Table 1 were obtained. In this embodiment, at the initial stage of power generation, the detected temperature of the first temperature detecting means is 790 ° C., the detected temperature of the second temperature detecting means is 762 ° C., and the detected temperature of the first temperature detecting means as the power generation time elapses. The detected temperature reached 800 ° C. when the operation was continued for about 300 hours, and then the operation was continued for 5000 hours to obtain the results shown in Table 1.

Figure 2008159362
また、比較例として、実施例と同様の定格直流発電端出願1000Wの固体酸化物形燃料電池システムを用い、実施例と同様の条件で定格直流出力一定条件で発電させた。また、実施例の空気分配送給手段に代えて、第1及び第2端送給流路部並びに中央送給流路部が共通の一つの流路部を構成する空気送給手段を用いた。固体酸化物燃料電池スタックの特性、発電条件などは実施例と同一であった。
Figure 2008159362
In addition, as a comparative example, a solid oxide fuel cell system with a rated DC power generation end application 1000 W similar to that of the example was used, and power was generated under a constant DC output constant condition under the same conditions as in the example. Moreover, it replaced with the air content delivery supply means of the Example, and used the air supply means in which the 1st and 2nd end supply flow path part and the central supply flow path part comprised one common flow path part. . The characteristics of the solid oxide fuel cell stack, power generation conditions, etc. were the same as in the examples.

比較例においても、固体酸化物形燃料電池システムを継続して稼動運転し、表2に示す結果を得た。この実施例では、発電初期においては、第1温度検知手段の検知温度は790℃で、第2温度検知手段の検知温度は760℃であり、発電時間の経過により第1温度検知手段の検知温度が上昇し、実施例と同様に約300時間稼動運転した時点でその検知温度が800℃となり、その後継続して5000時間運転して表2の結果を得た。   Also in the comparative example, the solid oxide fuel cell system was continuously operated and the results shown in Table 2 were obtained. In this embodiment, at the initial stage of power generation, the detected temperature of the first temperature detecting means is 790 ° C., the detected temperature of the second temperature detecting means is 760 ° C., and the detected temperature of the first temperature detecting means as the power generation time elapses. When the operation was continued for about 300 hours as in the example, the detected temperature reached 800 ° C., and the operation was continued for 5000 hours to obtain the results shown in Table 2.

Figure 2008159362
表1及び表2から明らかなように、所定の発電条件の下で5000時間継続して稼動運転した時点における発電効率を対比すると、実施例の固体酸化物形燃料電池システムの方が高い発電効率を維持することができたことが確認できた。比較例の燃料電池システムでは、燃料電池スタックの劣化に伴ってその中央部の温度が上昇し、この温度上昇に伴って空気流量も増大したが、この空気流量の増大は、燃料電池スタックの中央部とその端部とにほぼ同等に増えたために、燃料電池スタックの端部の温度が抑制されて低い温度状態となり、燃料電池スタックの端部における燃料電池セルの発電電圧が低くなる。
Figure 2008159362
As is clear from Tables 1 and 2, when comparing the power generation efficiency at the time of continuous operation for 5000 hours under a predetermined power generation condition, the power generation efficiency of the solid oxide fuel cell system of the example is higher. We were able to confirm that we were able to maintain. In the fuel cell system of the comparative example, the temperature at the center of the fuel cell stack increased with the deterioration of the fuel cell stack, and the air flow rate increased with the temperature increase. Therefore, the temperature at the end of the fuel cell stack is suppressed to a low temperature state, and the power generation voltage of the fuel cell at the end of the fuel cell stack is lowered.

一般に、発電出力(P)は、
発電出力(P)=発電電流(I)×燃料電池スタック電圧(V)
で表され、また発熱量(H)は、
発熱量(H)=〔発電電流(I)〕×燃料電池スタックの内部抵抗(R)
で表される。一定発電出力を取り出す場合、発電電圧(V)が低いと発電電流(I)が大きくなり、これによって、固体酸化物形燃料電池スタックでの発熱も増大するので、これを冷却するために燃料電池スタックの空気極側に送給される空気流量も多くなる。その結果、実施例に比して比較例における固体酸化物形燃料電池スタックの中央部と端部との温度差が拡大し、燃料電池スタックの直流発電端効率が低下した。これに対して、実施例では、固体酸化物形燃料電池スタックの中央部の温度が上昇すると、空気分配送給手段の中央送給流路部を流れる空気の流量の分配比率が第1及び第2端送給流路部を流れる空気の流量の分配比率よりも大きくなり、この燃料電池スタックの中央部の冷却効率が高められる一方、その端部の冷却が抑えられる。その結果、実施例における固体酸化物形燃料電池スタックの中央部と端部との温度差が小さくなり、固体酸化物形燃料電池スタックが劣化しても発電効率を大きく損なうことなく、定格発電出力を容易に取り出すことが可能となる。
Generally, the power generation output (P) is
Power generation output (P) = Power generation current (I) × Fuel cell stack voltage (V)
And the calorific value (H) is
Calorific value (H) = [Generating current (I)] 2 x Internal resistance of fuel cell stack (R)
It is represented by When a constant power generation output is taken out, if the power generation voltage (V) is low, the power generation current (I) increases, thereby increasing the heat generation in the solid oxide fuel cell stack. The air flow rate supplied to the air electrode side of the stack also increases. As a result, the temperature difference between the central portion and the end portion of the solid oxide fuel cell stack in the comparative example was increased as compared with the embodiment, and the direct current power generation end efficiency of the fuel cell stack was reduced. On the other hand, in the embodiment, when the temperature of the central portion of the solid oxide fuel cell stack rises, the distribution ratio of the flow rate of the air flowing through the central feeding flow path portion of the air content delivery and supply means is the first and first. This is larger than the distribution ratio of the flow rate of the air flowing through the two-end supply flow path portion, and the cooling efficiency of the central portion of the fuel cell stack is enhanced, while the cooling of the end portion is suppressed. As a result, the temperature difference between the central portion and the end portion of the solid oxide fuel cell stack in the embodiment becomes small, and the rated power output is not greatly impaired even if the solid oxide fuel cell stack deteriorates. Can be easily taken out.

固体酸化物形燃料電池システムの一実施形態を簡略的に示す断面図。1 is a cross-sectional view schematically showing an embodiment of a solid oxide fuel cell system. 図1の固体酸化物形燃料電池システムにおける空気分配送給手段を示す簡略断面図。FIG. 2 is a simplified cross-sectional view showing air content delivery / supply means in the solid oxide fuel cell system of FIG. 1. 図2の空気分配送給手段を用いた場合における空気流量が少ないときの空気の分配を説明するための図。The figure for demonstrating distribution of air when the air flow rate is small at the time of using the air part delivery and supply means of FIG. 図2の空気分配送給手段を用いた場合における空気流量が多いときの空気の分配を説明するための図。The figure for demonstrating distribution of air when there are many air flow rates in the case of using the air part delivery supply means of FIG. 固体酸化物形燃料電池システムの他の実施形態を簡略的に示す断面図。Sectional drawing which shows other embodiment of a solid oxide fuel cell system simply.

符号の説明Explanation of symbols

2,2A 固体酸化物形燃料電池システム
4 固体酸化物形燃料電池スタック
6 燃料改質器
8 空気予熱器
14 燃料電池セル
26 空気流路
28 送風機
40 燃焼室
42,42A 空気分配送給手段
46,46A 第1端送給流路部
48,48A 第2端送給流路部
50,50A 中央送給流路部
58 空気動線
64 温度検知手段
2, 2A Solid oxide fuel cell system 4 Solid oxide fuel cell stack 6 Fuel reformer 8 Air preheater 14 Fuel cell 26 Air channel 28 Blower 40 Combustion chamber 42, 42A Air content delivery and supply means 46, 46A First end feed channel 48, 48A Second end feed channel 50, 50A Central feed channel 58 Air flow line 64 Temperature detection means

Claims (5)

燃料ガスを改質して改質ガスを生成するための燃料改質器と、燃料極及び空気極を有する固体酸化物形燃料電池スタックと、前記燃料改質器からの改質ガスを前記固体酸化物形燃料電池スタックの前記燃料極側に送給する改質ガス送給流路と、送風機からの空気を前記固体酸化物形燃料電池スタックの前記空気極側に送給する空気流路と、を備え、前記固体酸化物燃料電池スタックは、前記燃料極側に送給される改質ガスと前記空気極側に送給される空気との間で燃料電池発電反応を行う固体酸化物形燃料電池システムであって、
前記空気流路には、前記空気極に向けて流れる空気を分配して送給するための空気分配送給手段が設けられ、前記空気分配送給手段は、前記固体酸化物形燃料電池スタックの中央部に送給するための中央送給流路部と、前記固体酸化物形燃料電池スタックの端部に送給するための端送給流路部とを有しており、
前記空気流路を流れる空気の流量が少ないときには、その空気流の動圧が小さいことに関連して、前記空気分配送給手段は、前記空気流路を流れる全空気流量に対する前記端送給流路部に分配送給される分配空気流量の分配比率が大きくなるように空気を分配送給し、また前記空気流路を流れる空気の流量が多くなると、その空気流の動圧が増大することに関連して、前記空気分配送給手段は、前記空気流路を流れる全空気流量に対する前記端送給流路部に分配送給される分配空気流量の分配比率が小さくなるように空気を分配送給することを特徴とする固体酸化物形燃料電池システム。
A fuel reformer for reforming a fuel gas to generate a reformed gas, a solid oxide fuel cell stack having a fuel electrode and an air electrode, and the reformed gas from the fuel reformer as the solid A reformed gas feed passage for feeding the fuel electrode side of the oxide fuel cell stack, and an air passage for feeding air from a blower to the air electrode side of the solid oxide fuel cell stack; The solid oxide fuel cell stack includes a solid oxide type that performs a fuel cell power generation reaction between the reformed gas supplied to the fuel electrode side and the air supplied to the air electrode side. A fuel cell system,
The air flow path is provided with an air content delivery means for distributing and feeding the air flowing toward the air electrode, and the air content delivery means is provided on the solid oxide fuel cell stack. A central feed channel for feeding to the center and an end feed channel for feeding to the end of the solid oxide fuel cell stack;
When the flow rate of the air flowing through the air flow path is small, the air delivery / feed means is connected to the end feed flow with respect to the total air flow rate flowing through the air flow path in connection with the small dynamic pressure of the air flow. When the air is distributed and supplied so that the distribution ratio of the distributed air flow to be distributed to the passage is increased, and the flow rate of the air flowing through the air flow path increases, the dynamic pressure of the air flow increases. The air distribution delivery means distributes the air so that a distribution ratio of a distribution air flow rate distributed to the end feed flow path portion with respect to a total air flow rate flowing through the air flow path is small. A solid oxide fuel cell system, characterized by being delivered.
前記空気分配送給手段の前記中央送給流路部の開口部と前記端送給流路部の開口部とは、前記空気流路を流れる空気流の空気動線に対して異なる角度に配置され、前記空気流路を流れる空気の流量が変化すると、前記空気流路を流れる全空気流量に対する前記端送給流路部に分配送給される分配空気流量の分配比率が変化することを特徴とする請求項1に記載の固体酸化物形燃料電池システム。   The opening of the central feed channel and the opening of the end feed channel are arranged at different angles with respect to the air flow line of the air flow flowing through the air channel. When the flow rate of the air flowing through the air flow path is changed, the distribution ratio of the distributed air flow distributed to the end feeding flow path section with respect to the total air flow flowing through the air flow path is changed. The solid oxide fuel cell system according to claim 1. 前記空気分配送給手段は、前記固体酸化物形燃料電池スタックに隣接して設けられ、前記空気分配送給手段を流れる空気と前記固体酸化物形燃料電池スタックの熱との間で熱交換が行われることを特徴とする請求項1又は2に記載の固体酸化物形燃料電池システム。   The air content delivery and supply means is provided adjacent to the solid oxide fuel cell stack, and heat exchange is performed between the air flowing through the air content delivery and supply means and the heat of the solid oxide fuel cell stack. The solid oxide fuel cell system according to claim 1, wherein the solid oxide fuel cell system is performed. 前記固体酸化物形燃料電池スタックの下流側には、前記燃料極側から排出される燃料改質ガスと前記空気極側から排出される空気とを反応させて燃焼させるための燃焼室が設けられ、前記空気分配送給手段は、前記燃焼室から前記固体酸化物形燃料電池スタックにわたって設けられ、前記空気分配送給手段を流れる空気と前記燃焼室及び固体酸化物形燃料電池スタックの熱との間で熱交換が行われることを特徴とする請求項1又は2に記載の固体酸化物形燃料電池システム。   A combustion chamber for reacting and burning the fuel reformed gas discharged from the fuel electrode side and the air discharged from the air electrode side is provided on the downstream side of the solid oxide fuel cell stack. The air content delivery / supply means is provided from the combustion chamber to the solid oxide fuel cell stack, and air flowing through the air content delivery / supply means and heat of the combustion chamber and the solid oxide fuel cell stack. The solid oxide fuel cell system according to claim 1, wherein heat exchange is performed between the two. 前記固体酸化物形燃料電池スタックの中央部の温度を検出するための温度検知手段が設けられ、前記温度検知手段の検知温度に基づいて前記送風機の回転数が制御され、前記検知温度が上昇すると、前記送風機から送給される空気流量が増大することを特徴とする請求項1〜4に記載の固体酸化物形燃料電池システム。   When temperature detection means for detecting the temperature of the central portion of the solid oxide fuel cell stack is provided, the rotational speed of the blower is controlled based on the detected temperature of the temperature detection means, and the detected temperature rises The solid oxide fuel cell system according to claim 1, wherein an air flow rate supplied from the blower is increased.
JP2006345657A 2006-12-22 2006-12-22 Solid oxide fuel cell system Active JP5064014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345657A JP5064014B2 (en) 2006-12-22 2006-12-22 Solid oxide fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006345657A JP5064014B2 (en) 2006-12-22 2006-12-22 Solid oxide fuel cell system

Publications (2)

Publication Number Publication Date
JP2008159362A true JP2008159362A (en) 2008-07-10
JP5064014B2 JP5064014B2 (en) 2012-10-31

Family

ID=39660045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345657A Active JP5064014B2 (en) 2006-12-22 2006-12-22 Solid oxide fuel cell system

Country Status (1)

Country Link
JP (1) JP5064014B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040314A (en) * 2008-08-05 2010-02-18 Toto Ltd Reformer unit for fuel cell and fuel cell module
JP2010049944A (en) * 2008-08-22 2010-03-04 Toto Ltd Fuel cell module
JP2010067384A (en) * 2008-09-09 2010-03-25 Toto Ltd Fuel battery module
JP2010146783A (en) * 2008-12-17 2010-07-01 Kyocera Corp Fuel battery module and fuel battery device
WO2010114047A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114048A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114049A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114046A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
JP2010277857A (en) * 2009-05-28 2010-12-09 Noritz Corp Air supply method for solid oxide fuel battery, and the solid oxide fuel battery implementing the same
WO2012043645A1 (en) * 2010-09-30 2012-04-05 Toto株式会社 Fuel cell device
JP2013229129A (en) * 2012-04-24 2013-11-07 Kyocera Corp Fuel battery device
JP2014022230A (en) * 2012-07-19 2014-02-03 Toto Ltd Solid oxide fuel cell device
JP5636496B2 (en) * 2011-11-02 2014-12-03 日本特殊陶業株式会社 Fuel cell
JP2019110059A (en) * 2017-12-19 2019-07-04 東芝燃料電池システム株式会社 Fuel battery module and fuel battery system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240640A (en) * 1988-03-22 1989-09-26 Sumitomo Metal Ind Ltd Slit nozzle
JPH09141320A (en) * 1995-11-15 1997-06-03 Nkk Corp Nozzle type upper surface cooling header pipe for cooling steel strip
JPH10316703A (en) * 1997-05-20 1998-12-02 Mitsui Chem Inc Gas-phase polymerizer
JP2000090943A (en) * 1998-09-17 2000-03-31 Toyota Central Res & Dev Lab Inc Fuel cell
JP2005158526A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel cell assembly and its operating method
JP2005315508A (en) * 2004-04-28 2005-11-10 Tokyo Radiator Mfg Co Ltd Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240640A (en) * 1988-03-22 1989-09-26 Sumitomo Metal Ind Ltd Slit nozzle
JPH09141320A (en) * 1995-11-15 1997-06-03 Nkk Corp Nozzle type upper surface cooling header pipe for cooling steel strip
JPH10316703A (en) * 1997-05-20 1998-12-02 Mitsui Chem Inc Gas-phase polymerizer
JP2000090943A (en) * 1998-09-17 2000-03-31 Toyota Central Res & Dev Lab Inc Fuel cell
JP2005158526A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel cell assembly and its operating method
JP2005315508A (en) * 2004-04-28 2005-11-10 Tokyo Radiator Mfg Co Ltd Heat exchanger

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040314A (en) * 2008-08-05 2010-02-18 Toto Ltd Reformer unit for fuel cell and fuel cell module
JP2010049944A (en) * 2008-08-22 2010-03-04 Toto Ltd Fuel cell module
JP2010067384A (en) * 2008-09-09 2010-03-25 Toto Ltd Fuel battery module
JP2010146783A (en) * 2008-12-17 2010-07-01 Kyocera Corp Fuel battery module and fuel battery device
US8492041B2 (en) 2009-03-31 2013-07-23 Toto Ltd. Solid oxide fuel cell
US8859156B2 (en) 2009-03-31 2014-10-14 Toto Ltd. Solid oxide fuel cell
WO2010114049A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
WO2010114046A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
JP2010238616A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel cell
JP2010238619A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel cell
JP4622005B2 (en) * 2009-03-31 2011-02-02 Toto株式会社 Solid oxide fuel cell
JP4656610B2 (en) * 2009-03-31 2011-03-23 Toto株式会社 Solid oxide fuel cell
WO2010114048A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
US8426074B2 (en) 2009-03-31 2013-04-23 Toto Ltd. Solid oxide fuel cell
WO2010114047A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
US8980496B2 (en) 2009-03-31 2015-03-17 Toto Ltd. Solid oxide fuel cell
JP2010277857A (en) * 2009-05-28 2010-12-09 Noritz Corp Air supply method for solid oxide fuel battery, and the solid oxide fuel battery implementing the same
WO2012043645A1 (en) * 2010-09-30 2012-04-05 Toto株式会社 Fuel cell device
JP5636496B2 (en) * 2011-11-02 2014-12-03 日本特殊陶業株式会社 Fuel cell
US10224555B2 (en) 2011-11-02 2019-03-05 Ngk Spark Plug Co., Ltd. Fuel cell
JP2013229129A (en) * 2012-04-24 2013-11-07 Kyocera Corp Fuel battery device
JP2014022230A (en) * 2012-07-19 2014-02-03 Toto Ltd Solid oxide fuel cell device
JP2019110059A (en) * 2017-12-19 2019-07-04 東芝燃料電池システム株式会社 Fuel battery module and fuel battery system

Also Published As

Publication number Publication date
JP5064014B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5064014B2 (en) Solid oxide fuel cell system
KR102171743B1 (en) Improved fuel cell systems and methods
JP5154030B2 (en) Fuel cell system and operation method thereof
JP5705414B2 (en) Fuel cell system
US10193170B2 (en) Fuel cell module
JP5349251B2 (en) Fuel cell system
US11196059B2 (en) Fuel cell system
JP2008277280A (en) Fuel cell system and operation method of fuel cell system
JP5871945B2 (en) Solid oxide fuel cell system and solid oxide fuel cell system operating method
WO2007077780A1 (en) Indirect internal reforming solid oxide fuel cell
JP5519357B2 (en) Solid oxide fuel cell system and cogeneration system equipped with the same
JP6064782B2 (en) Fuel cell device
JP2016192334A (en) Fuel battery system
JP6114197B2 (en) Fuel cell system
US20080292922A1 (en) Method and apparatus for fueling a solid oxide fuel cell stack assembly
JP2005327513A (en) Hot standby method for solid oxide fuel cell and system for the same
JP2003031249A (en) Fuel cell power generating system
JP2004119298A (en) Fuel cell power generation system
JP6582572B2 (en) Fuel cell system
JP6405171B2 (en) Solid oxide fuel cell system
US11742498B1 (en) Thermal management of a solid oxide fuel cell system
JP6115310B2 (en) Fuel cell system
JP6026691B1 (en) Fuel cell system
WO2015189270A1 (en) Cold idle operation of sofc system
CN112840490A (en) Method for heating fuel cell system and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Ref document number: 5064014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250