JP2016044896A - Laminate type heat exchanger - Google Patents

Laminate type heat exchanger Download PDF

Info

Publication number
JP2016044896A
JP2016044896A JP2014169882A JP2014169882A JP2016044896A JP 2016044896 A JP2016044896 A JP 2016044896A JP 2014169882 A JP2014169882 A JP 2014169882A JP 2014169882 A JP2014169882 A JP 2014169882A JP 2016044896 A JP2016044896 A JP 2016044896A
Authority
JP
Japan
Prior art keywords
plate
fluid
heat exchanger
pair
dish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014169882A
Other languages
Japanese (ja)
Inventor
田中 外治
Sotoharu Tanaka
外治 田中
大輔 諏訪下
Daisuke Suwashita
大輔 諏訪下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Rad Co Ltd
Original Assignee
T Rad Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Rad Co Ltd filed Critical T Rad Co Ltd
Priority to JP2014169882A priority Critical patent/JP2016044896A/en
Publication of JP2016044896A publication Critical patent/JP2016044896A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To manufacture a laminate type heat exchanger having dimples in which a pressure loss of internal fluid between plates is made to be the same as that of a laminate type heat exchanger having herringbone stripes.SOLUTION: Several dish-shaped plates of the same shape are laminated to form their cores, a pair of communicating holes and a pair of bypass holes are arranged at four corners of the dish-shaped plates, C-shaped ribs are protruded at circumferential edges of the pair of communication holes while their opening sides are being repelled to each other and many dimples are protruded at the heat transfer surfaces. Such dish-shaped plates are rotated by 180° in a circumferential direction for every plate and laminated. Then, the plates are formed in such a way that each fluid is flowed from one communication hole to the other communication hole while like a threading between the dimples while bypassing C-shaped ribs.SELECTED DRAWING: Figure 1

Description

本発明は、多数のディンプルが表面に突設された皿状プレートを積層してコアを形成する積層型熱交換器であって、各プレート間に流通する流体の均一化を図るものであり、特に、内部に流通する流体の流量が小さいものに関する。   The present invention is a stacked heat exchanger in which a core is formed by stacking a plate-like plate with a large number of dimples protruding on the surface, and the fluid flowing between the plates is made uniform. In particular, the present invention relates to a small flow rate of fluid flowing inside.

金属板を積層してコアを形成する熱交換器として、特許文献1に記載のものが提案されている。
この金属プレートは、その外周が平面略方形に形成されたものであり、その平面部の四隅に一対の連通孔と一対のバイパス孔を有するとともに、それらを避けてヘリボーン波状(平面V字状)の凹凸条が設けられた伝熱面を有する。
このような金属プレートがガスケットを介して多数積層されてコアを形成し、そのコア内部はプレート1枚おきに第1流体が流通する第1流路と、第2流体が流通する第2流路が交互に形成される。
そして、第1流体と第2流体とが伝熱面を介して熱交換するものである。
A heat exchanger described in Patent Document 1 has been proposed as a heat exchanger that forms a core by stacking metal plates.
This metal plate has an outer periphery formed in a substantially rectangular plane, and has a pair of communication holes and a pair of bypass holes at the four corners of the plane portion, and avoids them to form a helibone wave (plane V shape). It has a heat transfer surface provided with an uneven strip.
A large number of such metal plates are stacked via a gasket to form a core, and the core has a first flow path through which the first fluid flows and every second plate, and a second flow path through which the second fluid flows. Are alternately formed.
The first fluid and the second fluid exchange heat through the heat transfer surface.

このヘリボーンタイプの熱交換器は、そのヘリボーンで形成された流路に従って流体が流れる。そして、その流路は使用流量に対してある程度の流通抵抗があるため、プレートの数を増加した際に、配流を考慮しなくても流体が流れる。   In this helibone type heat exchanger, a fluid flows along a flow path formed by the helibone. And since the flow path has a certain flow resistance with respect to the used flow rate, when the number of plates is increased, the fluid flows without considering the flow distribution.

特開2000−97581号公報JP 2000-97581 A

しかし、本発明の対象とする多数のディンプルを有するカッププレートは、多数のディンプルによって、流体の圧力損失を抑えたものである。そのためプレートの積層数を増加すると、入口近くのプレートに流体がより多く流れ、全プレートに流れず、偏流が発生する。特に、流量が0.5L/min以下の小流量の場合、その偏流が顕著である。そこで、本発明は、ディンプル付きカッププレートにおいて、この偏流の防止に有効なものを各種実験により確かめ、本発明を完成したものである。
即ち、本発明は、伝熱面にディンプルを設けた積層型熱交換器について、内部を流通する各流体の流量が低流量であっても、各プレートで偏流を起こすことのない積層型熱交換器を提供するものである。
However, the cup plate having a large number of dimples targeted by the present invention suppresses the pressure loss of the fluid by the large number of dimples. Therefore, when the number of stacked plates is increased, more fluid flows to the plate near the inlet, not to all the plates, and drift occurs. In particular, when the flow rate is a small flow rate of 0.5 L / min or less, the drift is remarkable. Therefore, the present invention has been confirmed by various experiments to confirm that the cup plate with dimples is effective in preventing the drift, and the present invention has been completed.
That is, the present invention relates to a stacked heat exchanger in which dimples are provided on the heat transfer surface, and even if the flow rate of each fluid flowing through the interior is low, the stacked heat exchanger does not cause a drift in each plate. A container is provided.

請求項1に記載の本発明は、外周に側壁部(2b)が形成された平面略方形の3以上の皿状プレート(2)を有し、
その皿状プレート(2)の平面部(2a)の四隅には、一対の連通孔(3)とその口縁が環状に突設された一対のバイパス孔(4)とが設けられ、
前記皿状プレート(2)がその側壁部(2b)で接するように複数積層されてコア(7)を形成し、その皿状プレート(2)の1枚おきに交互に第1流体(13)の第1流路(8)と、第2流体(14)の第2流路(9)とが形成された積層型熱交換器において、
前記一対の連通孔(3)の周縁には、平面C字状のリブ(5)がその開口部(5a)を互いに離反側に位置し且つ、その開口部(5a)が皿状プレート(2)の前記各流路の端縁側に向くように突設され、
前記バイパス孔(4)および、リブ(5)を避けた位置で、皿状プレート(2)の平面部(2a)に多数のディンプル(6)が突設された伝熱面を有し、
前記バイパス孔(4)、リブ(5)、及びディンプル(6)が厚み方向の同一側に突設されるとともに、それらの頂部が隣接する皿状プレート(2)の平坦な面に当接するように配置され、
前記コア(7)が、前記皿状プレート(2)を1枚ごとに周方向に180度回転して積層され、
そのコア(7)の積層方向の両端部に、前記第1流路(8)に連通する一対の出入口孔(11)及び、前記第2流路(9) に連通する一対の出入口孔(11)が形成され、
前記各流体(13)(14)は、C字状のリブ(5)を迂回して各ディンプル(6)間を、縫うように一方の連通孔(3)から、他方の連通孔(3)に流通することを特徴とする積層型熱交換器である。
である。
The present invention according to claim 1 has three or more flat plate-like plates (2) having a substantially rectangular plane with side walls (2b) formed on the outer periphery,
At the four corners of the flat surface portion (2a) of the dish-shaped plate (2), a pair of communication holes (3) and a pair of bypass holes (4) whose rims project annularly are provided,
A plurality of the plate-like plates (2) are laminated so as to be in contact with the side wall portion (2b) to form a core (7), and the first fluid (13) is alternately arranged every other plate-like plate (2). In the stacked heat exchanger in which the first flow path (8) and the second flow path (9) of the second fluid (14) are formed,
At the periphery of the pair of communication holes (3), a plane C-shaped rib (5) has its opening (5a) located on the side away from each other, and its opening (5a) is a dish-shaped plate (2 ) Projecting toward the edge side of each of the flow paths,
At a position avoiding the bypass hole (4) and the rib (5), the flat plate portion (2a) of the plate-like plate (2) has a heat transfer surface projecting a large number of dimples (6),
The bypass hole (4), the rib (5), and the dimple (6) are provided on the same side in the thickness direction, and their tops are in contact with the flat surface of the adjacent plate-like plate (2). Placed in
The core (7) is laminated by rotating the plate-like plate (2) 180 degrees in the circumferential direction one by one,
A pair of inlet / outlet holes (11) communicating with the first channel (8) and a pair of inlet / outlet holes (11) communicating with the second channel (9) are provided at both ends of the core (7) in the stacking direction. ) Is formed,
Each of the fluids (13) and (14) bypasses the C-shaped rib (5) and sews between the dimples (6) from one communication hole (3) to the other communication hole (3). It is a lamination type heat exchanger characterized by circulating in.
It is.

請求項2に記載の本発明は、請求項1に記載の積層型熱交換器において、
前記第1流体(13)及び第2流体(14)のそれぞれの流量が低流量であり、
前記連通孔(3)の中心を基準として、前記C字状のリブ(5)の開口部(5a)の開口角度αが60度以上180度以下に形成されることを特徴とする積層型熱交換器である。
According to a second aspect of the present invention, in the stacked heat exchanger according to the first aspect,
The flow rates of the first fluid (13) and the second fluid (14) are low flow rates,
The laminated heat is characterized in that the opening angle α of the opening (5a) of the C-shaped rib (5) is 60 degrees or more and 180 degrees or less with reference to the center of the communication hole (3). It is an exchanger.

請求項3に記載の本発明は、請求項1又は請求項2のいずれかに記載の積層型熱交換器において、
前記第1流体(13)及び第2流体(14)が対向流となるように前記第1流路(8) に連通する一対の出入口孔(11)及び、第2流路(9) に連通する一対の出入口孔(11)が配置されることを特徴とする積層型熱交換器である。
According to a third aspect of the present invention, in the stacked heat exchanger according to the first or second aspect,
The first fluid (13) and the second fluid (14) communicate with the first channel (8) and a pair of inlet / outlet holes (11) and the second channel (9) so that the first fluid (13) and the second fluid (14) are opposed to each other. A stacked heat exchanger characterized in that a pair of inlet / outlet holes (11) are arranged.

請求項4に記載の本発明は、請求項1〜請求項3のいずれかに記載の積層型熱交換器において、
前記皿状プレート(2)が平面長方形に形成され、
その皿状プレート(2)の幅方向の一方側に前記一対の連通孔(3)が配置され、幅方向の他方側に前記一対のバイパス孔(4)が配置されたことを特徴とする積層型熱交換器である。
According to a fourth aspect of the present invention, in the stacked heat exchanger according to any one of the first to third aspects,
The dish-shaped plate (2) is formed in a plane rectangle,
The pair of communication holes (3) is disposed on one side in the width direction of the dish-shaped plate (2), and the pair of bypass holes (4) are disposed on the other side in the width direction. It is a mold heat exchanger.

本願発明は、そのコアが同一形状の皿状プレートが多数積層されて形成されるものであり、その皿状プレートの4隅部に一対の連通孔と一対のバイパス孔が配置され、その連通孔の周縁にC字状のリブがその開口部側を互いに離反して突設され、その伝熱面に多数のディンプルが突設されている。このような皿状プレートが1枚ごとに周方向に180度回転して積層される。そして、各流体は、C字状のリブを迂回して各ディンプル間を、縫うように一方の連通孔から、他方の連通孔に流通する。
この構造によると、C字状のリブが迂回路を形成し、流体抵抗の比較的小さい多数のディンプル間に可及的に均一に流体が流通する。さらにC字状のリブは連通孔の出口側に堰を造り、各プレートに均一に流体を分配し、プレート間に偏流をなくす効果がある。即ち、比較的簡単な構造で各プレート間の流量を均一にすることができる。
In the present invention, the core is formed by laminating a large number of dish-shaped plates having the same shape, and a pair of communication holes and a pair of bypass holes are arranged at the four corners of the dish-shaped plate. A C-shaped rib protrudes at the periphery of the opening, with the opening side being separated from each other, and a large number of dimples protrude from the heat transfer surface. Each such plate is rotated and rotated 180 degrees in the circumferential direction. And each fluid distribute | circulates from one communicating hole to the other communicating hole so that it may sew between each dimple, bypassing a C-shaped rib.
According to this structure, the C-shaped rib forms a detour, and fluid flows as uniformly as possible between a large number of dimples having a relatively small fluid resistance. Furthermore, the C-shaped rib has an effect of forming a weir on the outlet side of the communication hole, distributing the fluid uniformly to each plate, and eliminating drift between the plates. That is, the flow rate between the plates can be made uniform with a relatively simple structure.

上記構成において、連通孔の中心を基準として、C字状のリブの開口部の開口角度αを60度以上180度以下とした場合には、コアの内部の流路を流通する各流体の流量が小さくても、それぞれの流路における極端な偏流が抑制され、熱交換性能と流体の圧力損失とのバランスを取ることができる積層型熱交換器を提供することができる。
上記構成において、第1流体と第2流体の流通方向が各流路で対向流となるように設計することができる。この構成により、より効率の良い積層型熱交換器を提供することができる。
In the above configuration, when the opening angle α of the opening of the C-shaped rib is set to 60 degrees or more and 180 degrees or less with respect to the center of the communication hole, the flow rate of each fluid flowing through the flow path inside the core Even if it is small, an extreme drift in each flow path is suppressed, and a stacked heat exchanger that can balance heat exchange performance and fluid pressure loss can be provided.
The said structure WHEREIN: It can design so that the distribution direction of a 1st fluid and a 2nd fluid may become a counterflow in each flow path. With this configuration, a more efficient stacked heat exchanger can be provided.

本発明の積層型熱交換器の実施例を示す分解斜視図。The disassembled perspective view which shows the Example of the laminated heat exchanger of this invention. 同熱交換器を構成する皿状プレート2の平面図(A)であって、(B)はそのB−B矢視断面図、(C)は(A)のC−C矢視断面図、(D)は(A)のD−D矢視断面図、(E)は(A)のE−E矢視断面図、(F)は(A)のF部拡大図。It is the top view (A) of the plate-shaped plate 2 which comprises the same heat exchanger, Comprising: (B) is the BB arrow sectional drawing, (C) is CC arrow sectional drawing of (A), (D) is the DD arrow sectional view of (A), (E) is the EE arrow sectional view of (A), (F) is the F section enlarged view of (A). 図2のIII-III矢視断面図。III-III arrow sectional drawing of FIG. 同熱交換器の組立斜視図。The assembly perspective view of the heat exchanger. 図4のV-V矢視断面図。FIG. 5 is a cross-sectional view taken along the line V-V in FIG. 4. 図4のVI−VI矢視断面図。FIG. 6 is a sectional view taken along the line VI-VI in FIG. 4. 図6のVII部拡大図。The VII section enlarged view of FIG. 本願の熱交換器と比較例の皿状プレート2を用いた熱交換器との圧力損失の比較図であり、縦軸に圧力損失(%)を、横軸に本願の熱交換器のC字状のリブ5の開口角度(°)をプロットした図。It is a comparison figure of the pressure loss of the heat exchanger of this application and the heat exchanger using the plate-shaped plate 2 of a comparative example, a vertical axis | shaft is pressure loss (%), and a horizontal axis is C-shape of the heat exchanger of this application. The figure which plotted the opening angle (degree) of the rib 5 of a shape. 積層型熱交換器の皿状プレート2の比較例を示す平面図。The top view which shows the comparative example of the plate-shaped plate 2 of a laminated | stacked heat exchanger. 本願の積層型熱交換器の第2実施例を示す組立斜視図。The assembly perspective view showing the 2nd example of the lamination type heat exchanger of this application. 本願の積層型熱交換器の第3実施例を示す組立斜視図。The assembly perspective view showing the 3rd example of the lamination type heat exchanger of this application.

次に、図面に基づいて本発明の実施の形態につき、説明する。
図1〜図7は、本発明の第1の実施形態を示すものであり、図1はその分解斜視図であり、図2(A)は熱交換器に用いる皿状プレート2の平面図であり、図3は図2のIII-III矢視断面図であり、図4は積層型熱交換器の組立斜視図であり、図5は図4のV-V矢視断面図、図6は図4のVI-VI矢視断面図である。図2(B)以降は、図面の簡単な説明で記載されているとおりである。
Next, embodiments of the present invention will be described with reference to the drawings.
1 to 7 show a first embodiment of the present invention, FIG. 1 is an exploded perspective view thereof, and FIG. 2 (A) is a plan view of a plate-like plate 2 used in a heat exchanger. 3 is a sectional view taken along the line III-III in FIG. 2, FIG. 4 is an assembled perspective view of the laminated heat exchanger, FIG. 5 is a sectional view taken along the line VV in FIG. 4, and FIG. It is VI-VI arrow directional cross-sectional view. FIG. 2B and subsequent figures are as described in the brief description of the drawings.

本発明の特徴は、特に、コア7を構成する各皿状プレート2の構造に有る。
このコア7は、図2の皿状プレート2を交互に180°回転させて積層するものである。
各皿状プレート2は、プレス成型により同一形状に形成されるものであり、図2(A)に示す如く、平面部2aが平面視で長方形に形成され、その周縁部には図2(B)において、斜め下方に立ち下げられた側壁部2bを有している。その皿状プレート2の平面部2aの4隅部に一対の連通孔3と、孔縁部が環状に突設された一対のバイパス孔4とが配置されている。一対の連通孔3は皿状プレート2の幅方向の一方側に配置され、一対のバイパス孔4は幅方向の他方側に配置されている。
The feature of the present invention lies particularly in the structure of each dish-like plate 2 constituting the core 7.
The core 7 is formed by alternately rotating the dish-like plate 2 of FIG. 2 by 180 °.
Each dish-like plate 2 is formed in the same shape by press molding, and as shown in FIG. 2 (A), a flat surface portion 2a is formed in a rectangular shape in a plan view, and the peripheral portion thereof has a shape shown in FIG. ) Has a side wall portion 2b that is slanted downward. A pair of communication holes 3 and a pair of bypass holes 4 having annularly projecting hole edges are arranged at the four corners of the flat surface portion 2a of the dish-shaped plate 2. The pair of communication holes 3 are disposed on one side in the width direction of the dish-shaped plate 2, and the pair of bypass holes 4 are disposed on the other side in the width direction.

前記一対の連通孔3の周縁には、図2(A)に示す如く、C字状のリブ5がその開口部5aを長手方向の端縁側に位置して、その開口部5aが互いに離反するように突設されている。この開口部5aは、連通孔3の中心を基準として、その開口角度αが60度以上180度以下に形成され、このC字状のリブ5が堰(各流体がリブ5を迂回する)となり、コア7の内部に流通する各流体を各ディンプル間に均一に分配する作用をする。さらに、そのリブ5による堰は連通孔の流体の出口側をC字状に取り囲み、各皿状プレートに均一に流体を分配し、各プレート間の偏流をなくす作用がある。
そして、バイパス孔4の外周縁と、リブ5を避けた皿状プレート2の平面部2aには、多数のディンプル6を突設した伝熱面が形成される。図3に示す如く、パイパス孔4の突設高さ、リブ5の突設高さ、ディンプル6の突設高さは互いに略整合し、さらに、それらは前記側壁部2bと反対の方向に突設されている。
As shown in FIG. 2 (A), C-shaped ribs 5 are located on the edges of the longitudinal direction at the peripheral edges of the pair of communication holes 3, and the openings 5a are separated from each other. So as to protrude. The opening 5a is formed with an opening angle α of 60 degrees or more and 180 degrees or less with respect to the center of the communication hole 3, and the C-shaped rib 5 serves as a weir (each fluid bypasses the rib 5). The fluid flowing through the core 7 is uniformly distributed between the dimples. Further, the weir by the rib 5 surrounds the outlet side of the fluid in the communication hole in a C shape, and has an action of uniformly distributing the fluid to each dish-like plate and eliminating the drift between the plates.
A heat transfer surface with a large number of dimples 6 is formed on the outer peripheral edge of the bypass hole 4 and on the flat surface 2a of the dish-like plate 2 avoiding the ribs 5. As shown in FIG. 3, the projecting height of the bypass hole 4, the projecting height of the rib 5, and the projecting height of the dimple 6 are substantially aligned with each other, and further, they project in the direction opposite to the side wall 2b. It is installed.

このような皿状プレート2は、1枚ごとに周方向に180度回転して、その側壁部2bで液密に接するように複数積層されてコア7を形成する。このとき、各ディンプル6の先端は対向する皿状プレート2の平面に当接する(図7の符号6参照)。従って、各ディンプル6の配置は、対向する皿状プレート2の平面に接触するように分散して設けられる。そして、各ディンプル6の頂部は、隣接する皿状プレート2の各ディンプル6間に配置されるようにして接触する。また、図5、図6に示す如く、前記バイパス孔4の突設部の頂部は、隣接する皿状プレート2の連通孔3の孔縁に整合して接触し、前記リブ5の頂部は、隣接する皿状プレート2のバイパス孔4の外周部の平面部2aに当接する。
そして、コア7を形成する皿状プレート2の1枚おきに、第1流体13の第1流路8と第2流体14の第2流路9と、が交互に形成される。
Such a plate-like plate 2 rotates 180 degrees in the circumferential direction for each sheet, and a plurality of layers are laminated so as to be in liquid-tight contact with the side wall portion 2b to form the core 7. At this time, the tip of each dimple 6 abuts against the flat surface of the opposing dish-like plate 2 (see reference numeral 6 in FIG. 7). Accordingly, the arrangement of the dimples 6 is provided in a distributed manner so as to be in contact with the flat surface of the opposing dish-like plate 2. And the top part of each dimple 6 contacts so that it may be arrange | positioned between each dimple 6 of the adjacent plate-shaped plate 2. Further, as shown in FIGS. 5 and 6, the top portion of the projecting portion of the bypass hole 4 is in contact with the hole edge of the communication hole 3 of the adjacent plate-like plate 2, and the top portion of the rib 5 is It abuts on the flat surface portion 2 a of the outer peripheral portion of the bypass hole 4 of the adjacent plate-like plate 2.
Then, the first flow path 8 for the first fluid 13 and the second flow path 9 for the second fluid 14 are alternately formed on every other plate-shaped plate 2 forming the core 7.

このコア7の積層方向の両端部には、第1流体13の出入口孔11と第2流体14の出入口11が設けられた端プレート10が配置される。この第1流体13の一対の出入口孔11は、図6に示す如く、各第1流路8と連通しており、第2流体14の一対の出入口孔11は、図5に示す如く、各第2流路9と連通している。
さらに、端プレート10の外側からカバープレート12が取付けられる。カバープレート12には、前記端プレート10の各出入口孔11に整合する位置にパイプ取付孔が穿設され、その孔に第1流体13の出入口パイプ15および、第2流体14の出入口パイプ16が取付けられる。
このような組立て状態で、高温の炉内で各部品が一体的にろう付け固定されて、本願の積層型熱交換器1(図4)が完成する。
End plates 10 provided with an inlet / outlet hole 11 for the first fluid 13 and an inlet / outlet 11 for the second fluid 14 are disposed at both ends of the core 7 in the stacking direction. As shown in FIG. 6, the pair of inlet / outlet holes 11 of the first fluid 13 are in communication with the first flow paths 8, and the pair of inlet / outlet holes 11 of the second fluid 14 are connected to the first passage 13 as shown in FIG. It communicates with the second flow path 9.
Further, the cover plate 12 is attached from the outside of the end plate 10. The cover plate 12 is formed with pipe mounting holes at positions corresponding to the respective inlet / outlet holes 11 of the end plate 10, and an inlet / outlet pipe 15 for the first fluid 13 and an inlet / outlet pipe 16 for the second fluid 14 are formed in the holes. Mounted.
In such an assembled state, the components are integrally brazed and fixed in a high-temperature furnace to complete the laminated heat exchanger 1 (FIG. 4) of the present application.

この例の積層型熱交換器は、通常、コア7が重力方向に配置され、第1流体13が下方から上方へ内部を上昇するように流通され、第2流体14が上方から下方へ内部を流下するように流通される。即ち、互いの流体13、14が対向流となるように流通される。
そして、第1流体13として被加温用の水が第1流路8を流通し、第2流体14として高温の熱水が第2流路9を流通する。それらの流量は、比較的小さく、1L/min以下で流通されるものである。
In the laminated heat exchanger of this example, the core 7 is normally arranged in the direction of gravity, the first fluid 13 is circulated so as to rise from below to above, and the second fluid 14 passes from above to below. It is distributed to flow down. That is, the fluids 13 and 14 are circulated so as to face each other.
Then, water to be heated flows through the first flow path 8 as the first fluid 13, and hot hot water flows through the second flow path 9 as the second fluid 14. Their flow rates are relatively small and are circulated at 1 L / min or less.

(性能)
図8は、本発明のディンプル6が設けられた伝熱面を有する積層型熱交換器と、図9に示す、従来のヘリンボーン条が設けられた伝熱面を有する積層型熱交換器との圧力損失を比較したものである。この図のヘリンボーン条(長手方向に定間隔に並列した平面視で「くの字状」の凸条)を有する積層型熱交換器には、C字状のリブ5が形成されていないものを用いている。その条の頂部は隣接するプレートに接触するように設計されているものである。
このヘリンボーン条を有する積層型熱交換器の場合、その条自体が抵抗体となるため、皿状プレート2の積層枚数に関係なく、各プレートの流路について、均一に配流される。その圧力損失は、約110hPaである。
(Performance)
FIG. 8 shows a laminated heat exchanger having a heat transfer surface provided with the dimple 6 of the present invention and a conventional laminated heat exchanger having a heat transfer surface provided with a herringbone strip shown in FIG. This is a comparison of pressure loss. In the laminated heat exchanger having the herringbone strips (the convex strips having a “U” shape in plan view parallel to the longitudinal direction in the longitudinal direction) in this figure, the one having no C-shaped ribs 5 is formed. Used. The top of the strip is designed to contact the adjacent plate.
In the case of the stacked heat exchanger having the herringbone strip, the strip itself becomes a resistor, so that the flow path of each plate is uniformly distributed regardless of the number of stacked plates 2. The pressure loss is about 110 hPa.

ディンプルを有する積層型熱交換器において、C字状のリブ5が突設されない場合、その圧力損失は60hPaを下回り、各流体はディンプル間を略素通りする状態となり、各プレート間で、その配流が不均一化する。   In the laminated heat exchanger having dimples, when the C-shaped ribs 5 are not provided, the pressure loss is less than 60 hPa, and each fluid passes substantially between the dimples. Uneven.

そこで、本発明者は、ディンプル6を有する積層型熱交換器において、上記ヘリンボーン条と同等の圧力損失になるように、C字状のリブ5の開口部5aを連通孔3の中心を基準として、その開口角度αを変化させて、圧力損失試験を行った。
その結果、開口角度αが180°で75hPaとなり、60°で110hPaとなり、60°〜180°の範囲でヘリンボーン条の積層型熱交換器の圧力損失に近づくことが分かった。好ましくは、60°〜120°の範囲で設定するとより、ヘリンボーン条と同等な圧力損失を得ることができることが分かった。
また、開口角度αが45°以下になると、圧力損失が120hPaを超えることとなり、流通抵抗を過度に上昇させてしまい、つまりの原因となるおそれがある。
In view of this, the present inventor, in the laminated heat exchanger having the dimple 6, uses the opening 5a of the C-shaped rib 5 as a reference with respect to the center of the communication hole 3 so that the pressure loss is equal to that of the herringbone strip. The pressure loss test was performed by changing the opening angle α.
As a result, it was found that the opening angle α was 75 hPa at 180 °, 110 hPa at 60 °, and approached the pressure loss of the herringbone stacked heat exchanger in the range of 60 ° to 180 °. Preferably, it was found that a pressure loss equivalent to that of the herringbone strip can be obtained by setting in the range of 60 ° to 120 °.
On the other hand, when the opening angle α is 45 ° or less, the pressure loss exceeds 120 hPa, and the flow resistance is excessively increased, which may cause clogging.

(流体の流通方向に関する他の例)
第1実施例の積層型熱交換器1の夫々のパイプ配置を変更し、図10、図11のように流体を流通させることもできる。この場合も、夫々の流路8、9を流通する流体13、14が対向流となるように設計され、第1実施例のようにその流量も低流量に設定される。
図10の場合、2つの流れはZ字状にコア内部を流通し、図11の場合それらの流れはU字状に流通する。
(Other examples of fluid flow direction)
It is also possible to change the arrangement of the pipes of the stacked heat exchanger 1 of the first embodiment and to distribute the fluid as shown in FIGS. Also in this case, the fluids 13 and 14 flowing through the respective flow paths 8 and 9 are designed to be opposed flows, and the flow rate is set to a low flow rate as in the first embodiment.
In the case of FIG. 10, the two flows circulate inside the core in a Z shape, and in the case of FIG. 11, the flows circulate in a U shape.

本願発明の積層型熱交換器は、主として、内部に流通する流体の流量が小さい給湯用の熱交換器に利用することができる。ただし、オイルクーラ等の他の熱交換器に利用することもできる。   The laminated heat exchanger of the present invention can be mainly used for a heat exchanger for hot water supply in which the flow rate of fluid flowing inside is small. However, it can also be used for other heat exchangers such as oil coolers.

1 積層型熱交換器
2 皿状プレート
2a 平面部
2b 側壁部
3 連通孔
4 バイパス孔
5 リブ
5a 開口部
6 ディンプル
DESCRIPTION OF SYMBOLS 1 Laminate type heat exchanger 2 Dish plate 2a Plane part 2b Side wall part 3 Communication hole 4 Bypass hole 5 Rib
5a Opening 6 Dimple

7 コア
8 第1流路
9 第2流路
10 端プレート
11 出入口孔
12 カバープレート
13 第1流体
14 第2流体
15 出入口パイプ
16 出入口パイプ
7 cores
DESCRIPTION OF SYMBOLS 8 1st flow path 9 2nd flow path 10 End plate 11 Entrance / exit hole 12 Cover plate 13 1st fluid 14 2nd fluid 15 Entrance / exit pipe 16 Entrance / exit pipe

Claims (4)

外周に側壁部(2b)が形成された平面略方形の3以上の皿状プレート(2)を有し、
その皿状プレート(2)の平面部(2a)の四隅には、一対の連通孔(3)とその口縁が環状に突設された一対のバイパス孔(4)とが設けられ、
前記皿状プレート(2)がその側壁部(2b)で接するように複数積層されてコア(7)を形成し、その皿状プレート(2)の1枚おきに交互に第1流体(13)の第1流路(8)と、第2流体(14)の第2流路(9)とが形成された積層型熱交換器において、
前記一対の連通孔(3)の周縁には、平面C字状のリブ(5)がその開口部(5a)を互いに離反側に位置し且つ、その開口部(5a)が皿状プレート(2)の前記各流路の端縁側に向くように突設され、
前記バイパス孔(4)および、リブ(5)を避けた位置で、皿状プレート(2)の平面部(2a)に多数のディンプル(6)が突設された伝熱面を有し、
前記バイパス孔(4)、リブ(5)、及びディンプル(6)が厚み方向の同一側に突設されるとともに、それらの頂部が隣接する皿状プレート(2)の平坦な面に当接するように配置され、
前記コア(7)が、前記皿状プレート(2)を1枚ごとに周方向に180度回転して積層され、
そのコア(7)の積層方向の両端部に、前記第1流路(8)に連通する一対の出入口孔(11)及び、前記第2流路(9) に連通する一対の出入口孔(11)が形成され、
前記各流体(13)(14)は、C字状のリブ(5)を迂回して各ディンプル(6)間を、縫うように一方の連通孔(3)から、他方の連通孔(3)に流通することを特徴とする積層型熱交換器。
Having three or more dish-like plates (2) having a substantially rectangular plane with side walls (2b) formed on the outer periphery;
At the four corners of the flat surface portion (2a) of the dish-shaped plate (2), a pair of communication holes (3) and a pair of bypass holes (4) whose rims project annularly are provided,
A plurality of the plate-like plates (2) are laminated so as to be in contact with the side wall portion (2b) to form a core (7), and the first fluid (13) is alternately arranged every other plate-like plate (2). In the stacked heat exchanger in which the first flow path (8) and the second flow path (9) of the second fluid (14) are formed,
At the periphery of the pair of communication holes (3), a plane C-shaped rib (5) has its opening (5a) located on the side away from each other, and its opening (5a) is a dish-shaped plate (2 ) Projecting toward the edge side of each of the flow paths,
At a position avoiding the bypass hole (4) and the rib (5), the flat plate portion (2a) of the plate-like plate (2) has a heat transfer surface projecting a large number of dimples (6),
The bypass hole (4), the rib (5), and the dimple (6) are provided on the same side in the thickness direction, and their tops are in contact with the flat surface of the adjacent plate-like plate (2). Placed in
The core (7) is laminated by rotating the plate-like plate (2) 180 degrees in the circumferential direction one by one,
A pair of inlet / outlet holes (11) communicating with the first channel (8) and a pair of inlet / outlet holes (11) communicating with the second channel (9) are provided at both ends of the core (7) in the stacking direction. ) Is formed,
Each of the fluids (13) and (14) bypasses the C-shaped rib (5) and sews between the dimples (6) from one communication hole (3) to the other communication hole (3). A laminated heat exchanger characterized by being distributed to
請求項1に記載の積層型熱交換器において、
前記第1流体(13)及び第2流体(14)のそれぞれの流量が低流量であり、
前記連通孔(3)の中心を基準として、前記C字状のリブ(5)の開口部(5a)の開口角度αが60度以上180度以下に形成されることを特徴とする積層型熱交換器。
The stacked heat exchanger according to claim 1, wherein
The flow rates of the first fluid (13) and the second fluid (14) are low flow rates,
The laminated heat is characterized in that the opening angle α of the opening (5a) of the C-shaped rib (5) is 60 degrees or more and 180 degrees or less with reference to the center of the communication hole (3). Exchanger.
請求項1又は請求項2のいずれかに記載の積層型熱交換器において、
前記第1流体(13)及び第2流体(14)が対向流となるように前記第1流路(8) に連通する一対の出入口孔(11)及び、第2流路(9) に連通する一対の出入口孔(11)が配置されることを特徴とする積層型熱交換器。
In the laminated heat exchanger according to claim 1 or 2,
The first fluid (13) and the second fluid (14) communicate with the first channel (8) and a pair of inlet / outlet holes (11) and the second channel (9) so that the first fluid (13) and the second fluid (14) are opposed to each other. A laminated heat exchanger, wherein a pair of inlet / outlet holes (11) are arranged.
請求項1〜請求項3のいずれかに記載の積層型熱交換器において、
前記皿状プレート(2)が平面長方形に形成され、
その皿状プレート(2)の幅方向の一方側に前記一対の連通孔(3)が配置され、幅方向の他方側に前記一対のバイパス孔(4)が配置されたことを特徴とする積層型熱交換器。
In the laminated heat exchanger according to any one of claims 1 to 3,
The dish-shaped plate (2) is formed in a plane rectangle,
The pair of communication holes (3) is disposed on one side in the width direction of the dish-shaped plate (2), and the pair of bypass holes (4) are disposed on the other side in the width direction. Mold heat exchanger.
JP2014169882A 2014-08-22 2014-08-22 Laminate type heat exchanger Pending JP2016044896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014169882A JP2016044896A (en) 2014-08-22 2014-08-22 Laminate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014169882A JP2016044896A (en) 2014-08-22 2014-08-22 Laminate type heat exchanger

Publications (1)

Publication Number Publication Date
JP2016044896A true JP2016044896A (en) 2016-04-04

Family

ID=55635621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014169882A Pending JP2016044896A (en) 2014-08-22 2014-08-22 Laminate type heat exchanger

Country Status (1)

Country Link
JP (1) JP2016044896A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106225529A (en) * 2016-08-23 2016-12-14 浙江银轮机械股份有限公司 A kind of plate type heat exchanger
CN107735639A (en) * 2016-06-08 2018-02-23 株式会社阿克沃斯 Plate type heat exchanger
JP2020505574A (en) * 2017-01-19 2020-02-20 アルファ−ラヴァル・コーポレート・アーベー Heat exchange plates and heat exchangers
CN112304131A (en) * 2019-08-02 2021-02-02 浙江三花智能控制股份有限公司 Plate heat exchanger
WO2022210879A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Refrigerant flow path unit and freezer
WO2023153511A1 (en) * 2022-02-14 2023-08-17 ダイキン工業株式会社 Refrigerant flow path module and air conditioner
US11820199B2 (en) 2018-04-27 2023-11-21 Denso Corporation Heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245585U (en) * 1985-08-31 1987-03-19
US5146980A (en) * 1989-12-21 1992-09-15 Valeo Thermique Moteur Plate type heat echanger, in particular for the cooling of lubricating oil in an automotive vehicle
JPH06117783A (en) * 1992-10-01 1994-04-28 Showa Alum Corp Laminated heat-exchanger
JP2004522931A (en) * 2001-07-09 2004-07-29 アルファ・ラバル・コーポレイト・エービー Heat transfer plate, plate pack and plate heat exchanger
JP2006183945A (en) * 2004-12-28 2006-07-13 Mahle Filter Systems Japan Corp Oil cooler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245585U (en) * 1985-08-31 1987-03-19
US5146980A (en) * 1989-12-21 1992-09-15 Valeo Thermique Moteur Plate type heat echanger, in particular for the cooling of lubricating oil in an automotive vehicle
JPH06117783A (en) * 1992-10-01 1994-04-28 Showa Alum Corp Laminated heat-exchanger
JP2004522931A (en) * 2001-07-09 2004-07-29 アルファ・ラバル・コーポレイト・エービー Heat transfer plate, plate pack and plate heat exchanger
JP2006183945A (en) * 2004-12-28 2006-07-13 Mahle Filter Systems Japan Corp Oil cooler

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107735639A (en) * 2016-06-08 2018-02-23 株式会社阿克沃斯 Plate type heat exchanger
CN106225529A (en) * 2016-08-23 2016-12-14 浙江银轮机械股份有限公司 A kind of plate type heat exchanger
JP2020505574A (en) * 2017-01-19 2020-02-20 アルファ−ラヴァル・コーポレート・アーベー Heat exchange plates and heat exchangers
US11820199B2 (en) 2018-04-27 2023-11-21 Denso Corporation Heat exchanger
CN112304131A (en) * 2019-08-02 2021-02-02 浙江三花智能控制股份有限公司 Plate heat exchanger
WO2022210879A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Refrigerant flow path unit and freezer
JP2022156144A (en) * 2021-03-31 2022-10-14 ダイキン工業株式会社 Refrigerant flow passage unit, and refrigerating device
JP7273327B2 (en) 2021-03-31 2023-05-15 ダイキン工業株式会社 Refrigerant channel unit and refrigerating device
US20240027113A1 (en) * 2021-03-31 2024-01-25 Daikin Industries, Ltd. Refrigerant flow path unit and refrigeration apparatus
US11946677B2 (en) 2021-03-31 2024-04-02 Daikin Industries, Ltd. Refrigerant flow path unit and refrigeration apparatus
WO2023153511A1 (en) * 2022-02-14 2023-08-17 ダイキン工業株式会社 Refrigerant flow path module and air conditioner
JP7448862B2 (en) 2022-02-14 2024-03-13 ダイキン工業株式会社 Refrigerant flow path module and air conditioner

Similar Documents

Publication Publication Date Title
JP2016044896A (en) Laminate type heat exchanger
JP6420140B2 (en) Oil cooler
JP5882179B2 (en) Internal heat exchanger with external manifold
US20120031598A1 (en) Plate heat exchanger
US11118848B2 (en) Heat-exchanging plate, and plate heat exchanger using same
JP6616115B2 (en) Heat exchanger
JP2005166855A5 (en)
JP5918114B2 (en) Laminate heat exchanger
JP5432838B2 (en) Plate laminated heat sink
JP2019530845A (en) Heat exchange plate and heat exchanger
KR20180060262A (en) Plate heat exchanger
JP6006480B2 (en) Liquid cooling heat sink
JP5999969B2 (en) Laminate heat exchanger
JP2019027667A (en) Composite oil cooler
JP6087640B2 (en) Laminate heat exchanger
JP2013130300A (en) Stacked heat exchanger
JP5788284B2 (en) Stacked heat exchanger
JP4874365B2 (en) Plate heat exchanger and refrigeration cycle apparatus using the heat exchanger
JP5411304B2 (en) Plate heat exchanger
JP2020012616A (en) Heat exchanger
CN205245623U (en) Condenser
JP7440172B2 (en) Plate stacked heat exchanger
JP7213078B2 (en) Laminated heat exchanger
JP2010190515A (en) Heat sink
JP7244438B2 (en) Laminated heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180515