JP2016044693A - Non-stage transmission - Google Patents

Non-stage transmission Download PDF

Info

Publication number
JP2016044693A
JP2016044693A JP2014166983A JP2014166983A JP2016044693A JP 2016044693 A JP2016044693 A JP 2016044693A JP 2014166983 A JP2014166983 A JP 2014166983A JP 2014166983 A JP2014166983 A JP 2014166983A JP 2016044693 A JP2016044693 A JP 2016044693A
Authority
JP
Japan
Prior art keywords
pulley
ring
sheave
sheaves
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014166983A
Other languages
Japanese (ja)
Other versions
JP6437241B2 (en
Inventor
陽介 清
Yosuke Sei
陽介 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HKS Co Ltd
Original Assignee
HKS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HKS Co Ltd filed Critical HKS Co Ltd
Priority to JP2014166983A priority Critical patent/JP6437241B2/en
Publication of JP2016044693A publication Critical patent/JP2016044693A/en
Application granted granted Critical
Publication of JP6437241B2 publication Critical patent/JP6437241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a non-stage transmission that is simple in compact size and has a superior operability.SOLUTION: This invention relates to a non-stage transmission 100 having a rotational speed ratio between a first shaft 1 and a second shaft 2 changed in non step manner comprising a first pulley 10 having a pair of mating sheaves 11, 12 rotatably attached to the first shaft 1 under nonelastic manner in which a space between sheave surfaces 11A, 12A of both sheaves 11, 12 can be adjusted; a second pulley 20 having a pair of mating sheaves 21, 22 rotatably attached to the second shaft 2 under nonelastic manner in which a space between sheave surfaces 21A, 22A of both sheaves 21, 22 can be adjusted; a first ring 30 held between the sheave surfaces 11A, 12A of both sheaves 11, 12 at the first pulley 10; a second ring 40 held between the sheave surfaces 21A, 22A of both sheaves 21, 22 at the second pulley 20; and a winding member 50 wound around the first ring 30 and the second ring 40.SELECTED DRAWING: Figure 1

Description

本発明は無段変速機に関する。   The present invention relates to a continuously variable transmission.

従来、第1軸と第2軸の回転速度比を無段階で変速させるベルト式無段変速機として、相対する一対のシーブを第1軸に同行回転可能に取付けてなり、両シーブのシーブ面の間隔を調整可能にされてなる第1プーリと、相対する一対のシーブを第2軸に同行回転可能に取付けてなり、両シーブのシーブ面の間隔を調整可能にされてなる第2プーリと、第1プーリ及び第2プーリに巻掛けられる可撓巻掛け部材とを有してなるものがある。巻掛け部材は、第1プーリにおける両シーブのシーブ面の間に挟まれるとともに、第2プーリにおける両シーブのシーブ面の間に挟まれる。   Conventionally, as a belt-type continuously variable transmission that continuously changes the rotation speed ratio between the first shaft and the second shaft, a pair of opposed sheaves are attached to the first shaft so as to be able to rotate together, and the sheave surfaces of both sheaves A first pulley having an adjustable interval, and a second pulley having a pair of opposed sheaves attached to the second shaft so as to be able to rotate together, and an interval between the sheave surfaces of both sheaves being adjustable. And a flexible winding member wound around the first pulley and the second pulley. The winding member is sandwiched between the sheave surfaces of both sheaves in the first pulley, and is sandwiched between the sheave surfaces of both sheaves in the second pulley.

ベルト式無段変速機では、第1プーリを構成する両シーブのシーブ面の間隔を拡縮することにより、第1プーリの径方向に巻掛け部材を移動させて、第1プーリの有効径(プーリのシーブ面における巻掛け部材との接触部の回転半径)を変更できる。また、第2プーリを構成する両シーブのシーブ面の間隔を拡縮することにより、第2プーリの径方向に巻掛け部材を移動させて、第2プーリの有効径を変更できる。第1プーリの有効径が拡大(又は縮小)すると同期して、第2プーリの有効径を相対的に縮小(又は拡大)するように変更調整することで、第1軸の回転速度に比して第2軸の回転速度を増速(又は減速)し、所望の変速比を実現できる。   In the belt-type continuously variable transmission, the effective diameter of the first pulley (pulley) is increased by moving the winding member in the radial direction of the first pulley by expanding or reducing the distance between the sheave surfaces of the sheaves constituting the first pulley. The radius of rotation of the contact portion of the sheave surface with the winding member can be changed. In addition, by expanding or reducing the distance between the sheave surfaces of both sheaves constituting the second pulley, the effective diameter of the second pulley can be changed by moving the winding member in the radial direction of the second pulley. When the effective diameter of the first pulley is enlarged (or reduced), the effective diameter of the second pulley is changed and adjusted so that the effective diameter of the second pulley is relatively reduced (or enlarged), thereby comparing with the rotation speed of the first shaft. Thus, the rotational speed of the second shaft can be increased (or decelerated) to achieve a desired gear ratio.

特開2009-144751号公報JP 2009-144751

従来のベルト式無段変速機には以下の問題原がある。
(1)第1プーリと第2プーリのそれぞれにおける両シーブの間隔が拡縮されるシーブ面の間に可撓巻掛け部材を挟んで、該巻掛け部材を各プーリの径方向に移動させるものであり、巻掛け部材の構造、制作に困難を伴う。
The conventional belt type continuously variable transmission has the following problems.
(1) A flexible winding member is sandwiched between sheave surfaces in which the distance between both sheaves in each of the first pulley and the second pulley is expanded and contracted, and the winding member is moved in the radial direction of each pulley. There is a difficulty in the structure and production of the winding member.

(2)無段変速機では、動力伝達時に、第1プーリのシーブ面と巻掛け部材との滑りを防止し、第2プーリのシーブ面と巻掛け部材との滑りを防止するため、巻掛け部材に付与する張力を、伝達トルクの増減分に見合うように増減制御する必要がある。   (2) In the continuously variable transmission, when transmitting power, the slipping between the sheave surface of the first pulley and the winding member is prevented, and the slipping between the sheave surface of the second pulley and the winding member is prevented. It is necessary to control increase / decrease of the tension applied to the member so as to match the increase / decrease of the transmission torque.

ところが、ベルト式無段変速機では、巻掛け部材に付与する張力の制御は、第1プーリと第2プーリの有効径の相対的な変更調整によりなされる。従って、第1プーリと第2プーリの各有効径の調整は、前述の如くに第1軸と第2軸に所望の変速比を実現するための相対的な変更調整だけでなく、巻掛け部材が第1プーリと第2プーリの各シーブ面に対して滑りを生ずることのない張力を巻掛け部材に付与するための相対的な変更調整も必要となり、それらの相対的な変更調整を同時に両立させる必要があって、複雑で困難を伴う。   However, in the belt type continuously variable transmission, the tension applied to the winding member is controlled by changing and adjusting the effective diameters of the first pulley and the second pulley. Therefore, the adjustment of the effective diameters of the first pulley and the second pulley is not only a relative change adjustment for realizing a desired gear ratio on the first shaft and the second shaft as described above, but also a winding member. It is also necessary to make relative changes and adjustments to apply tension to the winding member that does not cause slippage on the sheave surfaces of the first pulley and the second pulley. Complicated and difficult.

第1軸と第2軸に所望の変速比を実現するためだけでなく、巻掛け部材が第1プーリと第2プーリの各シーブ面に対して滑りを生ずることのない張力を巻掛け部材に付与するためにも、第1プーリと第2プーリの各シーブ面の間隔を拡縮させてそれらの各有効径を相対的に変更調整する必要があり、第1プーリと第2プーリの各シーブ面の間隔を調整するための駆動源(油圧ポンプ、モータ等)が、第1軸と第2軸の両側で大容量化(重量、スペース)するという不都合も伴う。   Not only to achieve a desired transmission ratio between the first shaft and the second shaft, but also the tension applied to the winding member so that the winding member does not slip on the sheave surfaces of the first pulley and the second pulley. In order to apply, it is necessary to enlarge and reduce the distance between the sheave surfaces of the first pulley and the second pulley to relatively change and adjust the effective diameters of the sheave surfaces of the first pulley and the second pulley. The drive source (hydraulic pump, motor, etc.) for adjusting the distance between the first shaft and the second shaft is also increased in capacity (weight, space).

(3)無段変速機では、必要な変速幅を得るための第1プーリと第2プーリの各シーブ面の間隔調整量を小さくし、変速操作時間の短縮、変速操作スペースの狭小化を図るため、第1プーリと第2プーリの各シーブ角を小さくすることが望まれる。   (3) In the continuously variable transmission, the distance adjustment amount between the sheave surfaces of the first pulley and the second pulley to obtain the required shift width is reduced, thereby shortening the shift operation time and narrowing the shift operation space. Therefore, it is desirable to reduce the sheave angles of the first pulley and the second pulley.

ところが、ベルト式無段変速機では、第1プーリと第2プーリの各シーブ角を小さくすると、ベルトが各プーリにクサビ効果で食い込み、緩み側のベルトが各プーリに絡みついて外れにくくなる。   However, in the belt-type continuously variable transmission, when the sheave angles of the first pulley and the second pulley are made small, the belt bites into each pulley due to the wedge effect, and the loose side belt becomes entangled with each pulley and becomes difficult to come off.

本発明の課題は、簡易でコンパクト、かつ作動性の優れた無段変速機を提供することにある。   An object of the present invention is to provide a continuously variable transmission that is simple, compact, and excellent in operability.

請求項1に係る発明は、第1軸と第2軸の回転速度比を無段階で変速させる無段変速機において、相対する一対のシーブを第1軸に同行回転可能に取付けてなり、両シーブのシーブ面の間隔を調整可能にされてなる第1プーリと、相対する一対のシーブを第2軸に同行回転可能に取付けてなり、両シーブのシーブ面の間隔を調整可能にされてなる第2プーリと、第1プーリにおける両シーブのシーブ面の間に挟まれる第1リングと、第2プーリにおける両シーブのシーブ面の間に挟まれる第2リングと、第1リング及び第2リングに巻掛けられる巻掛け部材とを有してなるようにしたものである。   According to a first aspect of the present invention, in a continuously variable transmission that continuously changes the rotational speed ratio between the first shaft and the second shaft, a pair of opposed sheaves are attached to the first shaft so as to be able to rotate together. A first pulley having an adjustable interval between the sheave surfaces of the sheave and a pair of opposing sheaves are attached to the second shaft so as to be able to rotate together, and the interval between the sheave surfaces of both sheaves can be adjusted. A second ring, a first ring sandwiched between sheave surfaces of both sheaves in the first pulley, a second ring sandwiched between sheave surfaces of both sheaves in the second pulley, a first ring and a second ring It is made to have a winding member wound around.

請求項2に係る発明は、請求項1に係る発明において更に、前記第1プーリの一対のシーブが固定シーブと、固定シーブに対して軸方向に移動する可動シーブとからなり、両シーブは互いに逆向きに傾斜するテーパ状シーブ面を備え、第2プーリの一対のシーブが固定シーブと、固定シーブに対して軸方向に移動する可動シーブとからなり、両シーブは互いに逆向きに傾斜するテーパ状シーブ面を備えてなるようにしたものである。   According to a second aspect of the present invention, in the first aspect of the invention, the pair of sheaves of the first pulley includes a fixed sheave and a movable sheave that moves in the axial direction with respect to the fixed sheave. A pair of sheaves of the second pulley are composed of a fixed sheave and a movable sheave that moves in the axial direction with respect to the fixed sheave, and both sheaves are tapered in the opposite directions. A sheave surface is provided.

請求項3に係る発明は、請求項1又は2に係る発明において更に、前記第1リングと第2リングがそれらの外周に歯車面を備えたリングからなり、巻掛け部材が第1リングと第2リングに滑りなく巻掛けられる歯付巻掛け部材からなるようにしたものである。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the first ring and the second ring further include a ring having a gear surface on the outer periphery thereof, and the winding member is the first ring and the second ring. It is made of a toothed wrapping member that can be wound around two rings without slipping.

(a)第1リングと第2リングは、図3に示す如く、巻掛け部材に作用する初期張力Tと伝達力Wによって、第1プーリと第2プーリに押付けられて接触し、この接触点Pに作用する接触圧力に基づくトラクションドライブ効果、又はフリクションドライブ効果により動力を伝達する。これにより、第1軸に付与された回転入力が第1プーリ、第1リング、巻掛け部材、第2リング、第2プーリを介して第2軸に伝達され、第2軸から回転出力として取出される。   (a) As shown in FIG. 3, the first ring and the second ring are pressed against and contacted with the first pulley and the second pulley by the initial tension T and the transmission force W acting on the winding member. Power is transmitted by a traction drive effect based on contact pressure acting on P or a friction drive effect. Thereby, the rotation input given to the first shaft is transmitted to the second shaft through the first pulley, the first ring, the winding member, the second ring, and the second pulley, and is taken out as the rotation output from the second shaft. Is done.

(b)動力を伝達していないとき(空転時を含む)、図3(A)に示す如く、第1プーリに挟まれている第1リングに巻掛けた巻掛け部材には、張り側、緩み側とも同じ初期張力Tが作用し、第1リングは両方の張力T、Tにより第1プーリにおける両シーブのシーブ面に1つの接触点Pで押付けられる。このとき、第1リングは、張り側の巻掛け部材に作用する張力Tが上記接触点Pまわりに及ぼすモーメントMaと、緩み側の巻掛け部材に作用する張力Tが上記接触点Pまわりに及ぼすモーメントMbとがつり合う(Ma=Mb)特定姿勢で安定化する(この特定姿勢において、接触点Pから張り側の巻掛け部材と緩み側の巻掛け部材のそれぞれに垂下した直線の長さをLa、Lbとするとき、Ma=T・La、Mb=T・Lbとなり、Ma=Mbより、La=Lbとなる)。   (b) When power is not transmitted (including when idling), as shown in FIG. 3 (A), the winding member wound on the first ring sandwiched between the first pulleys has a tension side, The same initial tension T acts on the loose side, and the first ring is pressed at one contact point P against the sheave surfaces of both sheaves in the first pulley by both tensions T and T. At this time, the first ring has a moment Ma exerted around the contact point P by the tension T acting on the tension side winding member and a tension T acting on the loose side winding member around the contact point P. The moment Mb balances (Ma = Mb) and stabilizes in a specific posture (in this specific posture, the length of a straight line hanging from the contact point P to each of the tension-side winding member and the loose-side winding member is La. , Lb, Ma = T · La and Mb = T · Lb. From Ma = Mb, La = Lb).

このとき、同様に、第2リングも特定姿勢で安定化する。   At this time, similarly, the second ring is also stabilized in a specific posture.

(c)次に、第1軸に回転入力Fが付与され、動力を伝達するとき、図3(B)に示す如く、第1プーリに挟まれている第1リングに巻掛けた巻掛け部材には、張り側で初期張力Tと伝達力Wの合力が作用し、緩み側には初期張力Tのみが作用し、上記伝達力Wにより引っ張られる第1リングは、第1プーリとの接触点Pが第1軸を中心に転がり運動をして回転入力Fと反対方向に移動する。このとき、第1リングは、張り側の巻掛け部材に作用する張力Tと伝達力Wの合力が上記接触点Pまわりに及ぼすモーメントMaと、緩み側の巻掛け部材に作用する張力Tが上記接触点Pまわりに及ぼすモーメントMbとがつり合う(Ma=Mb)特定姿勢で再び第1プーリにおける両シーブのシーブ面に上記1つの接触点Pで押付けられて安定化する(この特定姿勢において、接触点Pから張り側の巻掛け部材と緩み側の巻掛け部材のそれぞれに垂下した直線の長さをLa、Lbとするとき、Ma=(T+W)La、Mb=T・Lbとなり、Ma=Mbより、La=T・Lb/(T+W)となる)。   (c) Next, when the rotational input F is applied to the first shaft and the power is transmitted, as shown in FIG. 3B, the winding member wound around the first ring sandwiched between the first pulleys In this case, the resultant tension of the initial tension T and the transmission force W acts on the tension side, and only the initial tension T acts on the loose side, and the first ring pulled by the transmission force W is in contact with the first pulley. P rolls around the first axis and moves in the direction opposite to the rotation input F. At this time, in the first ring, the moment Ma exerted around the contact point P by the resultant force T and the transmission force W acting on the tension-side winding member and the tension T acting on the loose-side winding member are described above. The moment Mb exerted around the contact point P is balanced (Ma = Mb), and the sheave surface of both sheaves in the first pulley is again pressed against the sheave surface of the first pulley at the one contact point P to be stabilized (in this specific posture, the contact When the lengths of the straight lines hanging from the point P to the tension member and the slack member are La and Lb, Ma = (T + W) La, Mb = T · Lb, and Ma = Mb (La = T · Lb / (T + W)).

このとき、同様に、第2リングも特定姿勢で再び安定化する。   At this time, similarly, the second ring is again stabilized in the specific posture.

(d)上述(a)、(b)より、動力を伝達していないときにも、動力を伝達するときにも、常に、第1リングと第2リングは張力T、伝達力Wによって一義的に定まる特定姿勢にて第1プーリ又は第2プーリにおける両シーブのシーブ面に押付けられて安定化し、それらの各リングの姿勢を安定保持するためのガイドローラ等を必要としない。   (d) From the above-mentioned (a) and (b), the first ring and the second ring are always unambiguous by the tension T and the transmission force W both when the power is not transmitted and when the power is transmitted. Therefore, a guide roller or the like is not required to stably hold the posture of each ring by pressing against the sheave surfaces of both sheaves of the first pulley or the second pulley in a specific posture determined by

(e)上述(d)の通り、動力を伝達していないときにも、動力を伝達するときにも、常に、第1リングと第2リングは張力T、伝達力Wによって一義的に定まる特定姿勢にて第1プーリ又は第2プーリにおける両シーブのシーブ面に押付けられて安定化するから、第1軸の正転運転だけでなく、第1軸の逆転運転、又は第2軸から回転入力(エンジンブレーキ等)が付与される運転についても、動力伝達できる。   (e) As described above (d), the first ring and the second ring are always uniquely determined by the tension T and the transmission force W, both when power is not transmitted and when power is transmitted. Since it is pressed against the sheave surface of both sheaves in the first pulley or the second pulley in the posture and stabilized, not only the forward rotation operation of the first shaft but also the reverse rotation operation of the first shaft or the rotation input from the second shaft Power can also be transmitted for driving to which (engine brake or the like) is applied.

(f)第1プーリと第2プーリのそれぞれにおける両シーブの間隔が拡縮されるシーブ面の間に剛体の第1リングと第2リングを挟み、変速時にはそれらの各リングを各プーリの径方向に移動させるものであり、各リングの構造、製作が簡易になる。   (f) A rigid first ring and second ring are sandwiched between sheave surfaces in which the distance between both sheaves in each of the first pulley and the second pulley is expanded and contracted, and these rings are connected in the radial direction of each pulley at the time of shifting. The structure and production of each ring is simplified.

(g)上述(c)の通り、第1軸に回転入力Fが付与され、動力を伝達するとき、第1リングは、第1プーリとの接触点Pが第1軸を中心に転がり運動をして回転入力Fと反対方向に移動する。これを換言すると、第1リングはその中心O1が第1軸を中心に転がり運動をして回転入力Fと反対方向に移動する。このとき、第2リングはその中心O2が第2軸を中心に転がり運動をして回転出力Gと同一方向に移動する。この第1リングの中心O1と第2リングの中心O2の移動は、両リングの中心間距離(スパン)が増加することを意味する(動力を伝達していないときに両リングの中心O1、O2は、第1軸と第2軸の中心を結んだ直線上にあって、そのスパンをSo(図4(A))とするのに対し、動力を伝達するときの両リングの中心O1、O2は、第1軸と第2軸を中心にする上述の方向に移動してそのスパンをSw(So<Sw)(図4(B))とする)。   (g) As described above (c), when the rotational input F is applied to the first shaft and power is transmitted, the first ring causes the contact point P with the first pulley to roll around the first shaft. And move in the opposite direction to the rotation input F. In other words, the center O1 of the first ring rolls around the first axis and moves in the direction opposite to the rotation input F. At this time, the center O2 of the second ring rolls around the second axis and moves in the same direction as the rotational output G. This movement of the center O1 of the first ring and the center O2 of the second ring means that the distance (span) between the centers of both rings increases (the centers O1, O2 of both rings when power is not transmitted). Is on a straight line connecting the centers of the first axis and the second axis, and its span is So (FIG. 4A), whereas the centers O1 and O2 of both rings when power is transmitted. Moves in the above-mentioned direction around the first axis and the second axis, and the span is Sw (So <Sw) (FIG. 4B).

即ち、第1リングと第2リングのスパンが増加し、結果として、両リングに巻き回されている巻掛け部材は弾性的に伸び、その張力を増加する。従って、動力伝達時に、伝達力Wの増加分に見合う張力が巻掛け部材に生じ、この張力が第1リングと第2リングを第1プーリのシーブ面と第2プーリのシーブ面に押付ける力を自動的に増すものになり、両リングの滑りを防止するものになる。   That is, the span of the first ring and the second ring is increased, and as a result, the winding member wound around both the rings is elastically stretched to increase its tension. Accordingly, a tension corresponding to the increase in the transmission force W is generated in the winding member during power transmission, and this tension presses the first ring and the second ring against the sheave surface of the first pulley and the sheave surface of the second pulley. Automatically increases and prevents slipping of both rings.

従って、伝達力の増加時に、第1リングと第2リングが第1プーリと第2プーリの各シーブ面に対して滑ることのないように、第1プーリと第2プーリの各シーブ面の間隔を意図的に調整する必要がない。第1軸と第2軸に所望の変速比を実現するためにだけ、第1プーリと第2プーリの各シーブ面の間隔を調整すれば足り、簡易にして作動性の優れた無段変速機を構築できる。   Therefore, when the transmission force increases, the distance between the sheave surfaces of the first pulley and the second pulley is such that the first ring and the second ring do not slide relative to the sheave surfaces of the first pulley and the second pulley. There is no need to intentionally adjust. A continuously variable transmission that is simple and excellent in operability by adjusting the distance between the sheave surfaces of the first pulley and the second pulley only in order to achieve a desired gear ratio between the first shaft and the second shaft. Can be built.

(h)第1リングと第2リングが剛体からなるため、各リングが各プーリに引張側で食い込む力が緩み側を各プーリから離脱させる力となり、第1プーリと第2プーリの各シーブ角を小さくしても、各リングが各プーリに絡み付いて外れにくくなるおそれがない。従って、第1プーリと第2プーリの各シーブ角を小さくし、結果として、必要な変速幅を得るための第1プーリと第2プーリの各シーブ面の間隔調整量を小さくし、変速操作時間の短縮、変速操作スペースの狭小化を図ることができる。   (h) Since the first ring and the second ring are rigid bodies, the force that each ring bites into each pulley on the pull side becomes the force that causes the loose side to separate from each pulley, and each sheave angle of the first pulley and the second pulley Even if it is made small, there is no possibility that each ring will be entangled with each pulley and difficult to come off. Therefore, each sheave angle of the first pulley and the second pulley is reduced, and as a result, the distance adjustment amount between the sheave surfaces of the first pulley and the second pulley for obtaining a necessary shift width is reduced, and the shift operation time is reduced. Can be shortened and the space for shifting operation can be reduced.

図1は無段変速機の全体構成を示す模式図である。FIG. 1 is a schematic diagram showing the overall configuration of a continuously variable transmission. 図2は無段変速機の基本構造を示す模式平面図である。FIG. 2 is a schematic plan view showing the basic structure of the continuously variable transmission. 図3は無段変速機の動力伝達原理を示し、(A)は動力を伝達していない状態を示す模式正面図、(B)は動力伝達状態を示す模式正面図である。3A and 3B show the principle of power transmission of the continuously variable transmission. FIG. 3A is a schematic front view showing a state where power is not transmitted, and FIG. 3B is a schematic front view showing a power transmission state. 図4は無段変速機の動力伝達による第1リングと第2リングのスパン変化を示し、(A)は動力を伝達していないときのスパンを示す模式正面図、(B)は動力伝達時のスパンを示す模式正面図である。4A and 4B show the span change of the first ring and the second ring due to the power transmission of the continuously variable transmission. FIG. 4A is a schematic front view showing the span when power is not transmitted. FIG. It is a model front view which shows the span of.

図1、図2に示す無段変速機100は、自動車のドライブトレーンに適用される他、自動車以外においても用いられる。   The continuously variable transmission 100 shown in FIG. 1 and FIG. 2 is used not only for automobiles but also for vehicles other than automobiles.

無段変速機100は、例えばエンジン側に接続されている第1軸1(入力軸)とタイヤ側に接続されている第2軸2(出力軸)との間に設けられ、第1軸1と第2軸2の回転速度比を無段階で変速させる。   The continuously variable transmission 100 is provided between, for example, a first shaft 1 (input shaft) connected to the engine side and a second shaft 2 (output shaft) connected to the tire side. And the rotation speed ratio of the second shaft 2 are steplessly changed.

無段変速機100は、第1プーリ10、第2プーリ20、第1リング30、第2リング40、可撓巻掛け部材50を有する。   The continuously variable transmission 100 includes a first pulley 10, a second pulley 20, a first ring 30, a second ring 40, and a flexible winding member 50.

無段変速機10は、相対する一対のシーブ11、12を第1軸1に同行回転可能に取付けてなり、変速操作手段60により両シーブ11、12のシーブ面11A、12Aの間隔を調整可能にされている。本実施例において、無段変速機10の一方のシーブ11は第1軸1に一体をなして固定化されている固定シーブ11とされる。無段変速機10の他方のシーブ12は第1軸1の外周にスプライン結合され、固定シーブ11に対して軸方向に移動する可動シーブ12とされる。第1軸1は、第1プーリ10(シーブ11、12)が設けられている部分の一端側と他端側を軸受1A、1Bにより枢支される。両シーブ11、12は互いに逆向きに傾斜するテーパ状シーブ面11A、12Aを備え、両シーブ面11A、12Aの間にシーブ角θのV溝13を形成する。   The continuously variable transmission 10 has a pair of opposing sheaves 11 and 12 attached to the first shaft 1 so as to be able to rotate along with the first shaft 1, and the distance between the sheave surfaces 11 A and 12 A of the sheaves 11 and 12 can be adjusted by the speed change operation means 60. Has been. In the present embodiment, one sheave 11 of the continuously variable transmission 10 is a fixed sheave 11 that is integrally fixed to the first shaft 1. The other sheave 12 of the continuously variable transmission 10 is spline-coupled to the outer periphery of the first shaft 1 to be a movable sheave 12 that moves in the axial direction with respect to the fixed sheave 11. The first shaft 1 is pivotally supported by bearings 1A and 1B at one end side and the other end side of a portion where the first pulley 10 (sheaves 11 and 12) is provided. Both sheaves 11 and 12 have tapered sheave surfaces 11A and 12A inclined in opposite directions, and a V-groove 13 having a sheave angle θ is formed between both sheave surfaces 11A and 12A.

第2プーリ20は、相対する一対のシーブ21、22を第2軸2に同行回転可能に取付けてなり、変速操作手段60により両シーブ21、22のシーブ面21A、22Aの間隔を調整可能にされている。本実施例において、第2プーリ20の一方のシーブ21は第2軸2に一体をなして固定化されている固定シーブ21とされる。第2プーリ20の他方のシーブ22は第2軸2の外周にスプライン結合され、固定シーブ21に対して軸方向に移動する可動シーブ22とされる。第2軸2は、第2プーリ20(シーブ21、22)が設けられている部分の一端側と他端側を軸受2A、2Bにより枢支される。両シーブ21、22は互いに逆向きに傾斜するテーパ状シーブ面21A、22Aを備え、両シーブ面21A、22Aの間にシーブ角θのV溝23を形成する。   The second pulley 20 has a pair of opposed sheaves 21 and 22 attached to the second shaft 2 so as to be able to rotate along with the second shaft 2, and the speed change operation means 60 can adjust the distance between the sheave surfaces 21 A and 22 A of both sheaves 21 and 22. Has been. In the present embodiment, one sheave 21 of the second pulley 20 is a fixed sheave 21 that is integrally fixed to the second shaft 2. The other sheave 22 of the second pulley 20 is splined to the outer periphery of the second shaft 2, and serves as a movable sheave 22 that moves in the axial direction with respect to the fixed sheave 21. The second shaft 2 is pivotally supported by bearings 2A and 2B at one end side and the other end side of the portion where the second pulley 20 (the sheaves 21 and 22) is provided. Both sheaves 21 and 22 have tapered sheave surfaces 21A and 22A inclined in opposite directions, and a V-groove 23 having a sheave angle θ is formed between the sheave surfaces 21A and 22A.

第1リング30は、第1プーリ10における両シーブ11、12のシーブ面11A、12Aの間に挟まれる。第1リング30は、図2に示す如く、円環状の剛体リングからなり、両側面を動力伝達面31、32とする。第1リング30は、周方向の一部を両シーブ11、12のシーブ面11A、12Aが形成するV溝13に嵌合し、両動力伝達面31、32を両シーブ面11A、12Aに隙間のない接触状態で係合する。   The first ring 30 is sandwiched between the sheave surfaces 11 </ b> A and 12 </ b> A of the sheaves 11 and 12 in the first pulley 10. As shown in FIG. 2, the first ring 30 is formed of an annular rigid ring, and both side surfaces are power transmission surfaces 31 and 32. The first ring 30 is partially fitted in the V-groove 13 formed by the sheave surfaces 11A and 12A of the sheaves 11 and 12, and the power transmission surfaces 31 and 32 are spaced from the sheave surfaces 11A and 12A. Engage with no contact.

第2リング40は、第2プーリ20における両シーブ21、22のシーブ面21A、22Aの間に挟まれる。第2リング40は、図2に示す如く、円環状の剛体リングからなり、両側面を動力伝達面41、42とする。第2リング40は、周方向の一部を両シーブ21、22のシーブ面21A、22Aが形成するV溝23に嵌合し、両動力伝達面41、42を両シーブ面21A、22Aに隙間のない接触状態で係合する。   The second ring 40 is sandwiched between the sheave surfaces 21 </ b> A and 22 </ b> A of the sheaves 21 and 22 in the second pulley 20. As shown in FIG. 2, the second ring 40 is formed of an annular rigid ring, and both side surfaces are power transmission surfaces 41 and 42. The second ring 40 is partially fitted in the V-groove 23 formed by the sheave surfaces 21A and 22A of the sheaves 21 and 22, and the power transmission surfaces 41 and 42 are spaced from the sheave surfaces 21A and 22A. Engage with no contact.

巻掛け部材50は、第1プーリ10における両シーブ11、12のシーブ面11A、12Aの間に挟まれた第1リング30と、第2プーリ20における両シーブ21、22のシーブ面21A、22Aの間に挟まれた第2リング40とに、一定の初期張力を付与された状態で巻掛けられる。本実施例において、第1リング30と第2リング40はそれらの外周に歯車面33、43を備えたスプロケットリングとされ、巻掛け部材50はそれらの歯車面33、43に噛合いして滑りなく巻掛けられるスプロケットチェーンからなるものとされる。尚、第1リング30と第2リング40はそれらの外周に歯車面を備えた歯付リングとされ、巻掛け部材50はそれらの歯車面に噛合いして滑りなく巻掛けられる歯付ベルトからなるものとされても良い。   The winding member 50 includes a first ring 30 sandwiched between the sheave surfaces 11A and 12A of the sheaves 11 and 12 of the first pulley 10 and sheave surfaces 21A and 22A of the sheaves 21 and 22 of the second pulley 20. Is wound around the second ring 40 sandwiched between them with a certain initial tension applied thereto. In the present embodiment, the first ring 30 and the second ring 40 are sprocket rings having gear surfaces 33 and 43 on their outer circumferences, and the winding member 50 meshes with the gear surfaces 33 and 43 so as not to slip. It is assumed to consist of a wound sprocket chain. The first ring 30 and the second ring 40 are toothed rings having gear faces on the outer periphery thereof, and the winding member 50 is formed of a toothed belt that meshes with the gear faces and is wound without slipping. It may be assumed.

従って、無段変速機100にあっては、変速操作手段60により、第1プーリ10における両シーブ11、12のシーブ面11A、12Aの間隔、ひいてはV溝13の溝幅を調整し、第1リング30の動力伝達面31、32が接触状態で係合する第1プーリ10の有効径R1を変更するとともに、第2プーリ20における両シーブ21、22のシーブ面21A、22Aの間隔、ひいてはV溝23の溝幅を調整し、第2リング40の動力伝達面41、42が接触状態で係合する第2プーリ20の有効径R2を変更し、第1軸1の回転速度N1と第2軸2の回転速度N2をN2=(R1/R2)・N1の如くに変速する。このとき、変速操作手段60は、変速したときにも巻掛け部材50が弛まないように、以下の如くにして、第1プーリ10の有効径R1を拡大(又は縮小)した分だけ、第2プーリ20の有効径R2を縮小(又は拡大)させることとしている。   Therefore, in the continuously variable transmission 100, the distance between the sheave surfaces 11 </ b> A, 12 </ b> A of the sheaves 11, 12 in the first pulley 10 and the groove width of the V-groove 13 are adjusted by the shift operation means 60. The effective diameter R1 of the first pulley 10 with which the power transmission surfaces 31 and 32 of the ring 30 are engaged in contact is changed, and the distance between the sheave surfaces 21A and 22A of the sheaves 21 and 22 in the second pulley 20 and thus V By adjusting the groove width of the groove 23, the effective diameter R2 of the second pulley 20 with which the power transmission surfaces 41, 42 of the second ring 40 are engaged in contact is changed, and the rotational speed N1 of the first shaft 1 and the second The rotational speed N2 of the shaft 2 is changed as N2 = (R1 / R2) · N1. At this time, the speed change operation means 60 increases the second effective diameter R1 of the first pulley 10 as much as possible so as not to loosen the winding member 50 even when the speed is changed. The effective diameter R2 of the pulley 20 is reduced (or enlarged).

変速操作手段60は、本実施例では、第1軸1の他端側で、軸受1Bと第1プーリ10の可動シーブ12とに挟まれる部分の外周に押圧カラー61を相対回転可能に嵌合し、可動シーブ12の外側端面とこれに相対する押圧カラー61の端面との間にスラスト軸受62を介装し、押圧カラー61の外周に螺設したボールねじ溝61Aに不図示のボールを介して被動ギヤ63の内周に螺設した不図示のボールねじ溝を螺合し、この被動ギヤ63を軸受64によって回転可能かつ軸方向不動に支持している。変速操作手段60は、電動モータにより駆動される変速操作軸60Sの一端に設けた駆動ギヤ65を上述の被動ギヤ63に噛合いさせている。   In this embodiment, the speed change operating means 60 is fitted on the other end side of the first shaft 1 so that the pressing collar 61 is relatively rotatable on the outer periphery of the portion sandwiched between the bearing 1B and the movable sheave 12 of the first pulley 10. A thrust bearing 62 is interposed between the outer end surface of the movable sheave 12 and the end surface of the pressing collar 61 opposite to the movable sheave 12, and a ball screw groove 61A screwed on the outer periphery of the pressing collar 61 is inserted with a ball (not shown). A ball screw groove (not shown) screwed on the inner periphery of the driven gear 63 is screwed, and the driven gear 63 is rotatably supported by the bearing 64 and is axially fixed. The speed change operation means 60 has a drive gear 65 provided at one end of a speed change operation shaft 60 </ b> S driven by an electric motor meshed with the driven gear 63 described above.

変速操作手段60は、第2軸2の他端側で、軸受2Bと第2プーリ20の可動シーブ22とに挟まれる部分の外周に押圧カラー71を相対回転可能に嵌合し、可動シーブ22の外側端面とこれに相対する押圧カラー71の端面との間にスラスト軸受72を介装し、押圧カラー71の外周に螺設したボールねじ溝71Aに不図示のボールを介して被動ギヤ73の内周に螺設した不図示のボールねじ溝を螺合し、この被動ギヤ73を軸受74によって回転可能かつ軸方向不動に支持している。変速操作手段60は、電動モータにより駆動される変速操作軸60Sの一端に設けた駆動ギヤ75を上述の被動ギヤ73に噛合いさせている。   The speed change operating means 60 is fitted on the outer periphery of the portion sandwiched between the bearing 2B and the movable sheave 22 of the second pulley 20 on the other end side of the second shaft 2 so as to be relatively rotatable. A thrust bearing 72 is interposed between the outer end surface of the pressing collar 71 and the end surface of the pressing collar 71 opposite to the outer end surface, and a ball screw groove 71A screwed on the outer periphery of the pressing collar 71 is inserted into the driven gear 73 via a ball (not shown). A ball screw groove (not shown) screwed on the inner periphery is screwed, and the driven gear 73 is supported by a bearing 74 so as to be rotatable and axially immovable. The speed change operation means 60 has a drive gear 75 provided at one end of a speed change operation shaft 60S driven by an electric motor meshed with the driven gear 73 described above.

尚、変速操作手段60は、電動モータ等の電気/機械的操作手段に限らず、手動により変速操作軸60Sを駆動する等の手動操作手段によるものでも良い。   The shift operation means 60 is not limited to an electric / mechanical operation means such as an electric motor, but may be a manual operation means such as manually driving the shift operation shaft 60S.

これにより、電動モータに加える回転角制御により、変速操作軸60Sが所望の変速比を第1軸1と第2軸2の間に実現可能にする回転角度位置に設置されると、(i)駆動ギヤ65と被動ギヤ63の噛合いを介して、押圧カラー61と、この押圧カラー61がスラスト軸受62を介してバックアップしている第1プーリ10の可動シーブ12を上記回転角度位置に対応する軸方向位置に設定し、固定シーブ11のシーブ面11Aと可動シーブ12のシーブ面12Aの間隔、ひいてはV溝13の溝幅を変化させ、第1リング30に関する第1プーリ10の有効径R1(第1プーリ10のシーブ面11A、12Aにおける巻掛け部材50との接触部の回転半径)を変更すると同時に、(ii)駆動ギヤ75と被動ギヤ73の噛合いを介して、押圧カラー71と、この押圧カラー71がスラスト軸受72を介してバックアップしている第2プーリ20の可動シーブ22を上記回転角度位置に対応する軸方向位置に設定し、固定シーブ21のシーブ面21Aと可動シーブ22のシーブ面22Aの間隔、ひいてはV溝23の溝幅を変化させ、第2リング40に関する第2プーリ20の有効径R2(第2プーリ20のシーブ面21A、22Aにおける巻掛け部材50との接触部の回転半径)を変更する。このとき、第1プーリ10と第2プーリ20は、それらのシーブ11、12とシーブ21、22を同一寸法形状に設定している。また、変速操作手段60は、押圧カラー61、被動ギヤ63、駆動ギヤ65と押圧カラー71、被動ギヤ73、駆動ギヤ75を同一形状に設定している。これにより、第1軸1の側のボールねじ(押圧カラー61のボールねじ溝61A等)の向きと、第2軸2の側のボールねじ(押圧カラー71のボールねじ溝71A等)の向きの設定により、変速操作手段60によって第1プーリ10における固定シーブ11のシーブ面11Aと可動シーブ12のシーブ面12Aの間隔を拡大(又は縮小)したら、同じ量だけ第2プーリ20における固定シーブ21のシーブ面21Aと可動シーブ22のシーブ面22Aの間隔を縮小(又は拡大)させるものとしている。即ち、変速操作手段60は、第1プーリ10の有効径R1が拡大(又は縮小)すると同期して、第2プーリ20の有効径R2を相対的に縮小(又は拡大)するように変更調整し、第1軸1の回転速度N1に比して第2軸2の回転速度N2を増速(又は減速)し、所定の変速比N2=(R1/R2)・N1を実現するものである。   Thus, when the speed change operation shaft 60S is installed at a rotation angle position that makes it possible to realize a desired speed change ratio between the first shaft 1 and the second shaft 2 by rotation angle control applied to the electric motor, (i) The press collar 61 and the movable sheave 12 of the first pulley 10 backed up by a thrust bearing 62 through the engagement of the drive gear 65 and the driven gear 63 correspond to the rotational angle position. It is set to an axial position, and the effective diameter R1 of the first pulley 10 with respect to the first ring 30 is changed by changing the interval between the sheave surface 11A of the fixed sheave 11 and the sheave surface 12A of the movable sheave 12, and the groove width of the V-groove 13. At the same time that the radius of contact of the sheave surfaces 11A and 12A of the first pulley 10 with the winding member 50 is changed (ii) through the meshing of the drive gear 75 and the driven gear 73, the pressing collar 7 The movable sheave 22 of the second pulley 20 backed up by the pressing collar 71 via the thrust bearing 72 is set to the axial position corresponding to the rotational angle position, and the sheave surface 21A of the fixed sheave 21 and the movable sheave 21 The effective diameter R2 of the second pulley 20 with respect to the second ring 40 (with the winding member 50 on the sheave surfaces 21A and 22A of the second pulley 20) is changed. Change the radius of contact). At this time, the first pulley 10 and the second pulley 20 have the sheaves 11 and 12 and the sheaves 21 and 22 set to have the same size and shape. Further, the speed change operation means 60 sets the pressing collar 61, the driven gear 63, the driving gear 65 and the pressing collar 71, the driven gear 73, and the driving gear 75 to the same shape. Thereby, the direction of the ball screw on the first shaft 1 side (ball screw groove 61A etc. of the pressing collar 61) and the direction of the ball screw on the second shaft 2 side (ball screw groove 71A etc. on the pressing collar 71) are changed. If the distance between the sheave surface 11A of the fixed sheave 11 and the sheave surface 12A of the movable sheave 12 in the first pulley 10 is increased (or reduced) by the speed change operation means 60, the same amount of the fixed sheave 21 in the second pulley 20 is set. The interval between the sheave surface 21A and the sheave surface 22A of the movable sheave 22 is reduced (or enlarged). That is, the speed change operation means 60 is changed and adjusted so that the effective diameter R2 of the second pulley 20 is relatively reduced (or enlarged) in synchronization with the effective diameter R1 of the first pulley 10 being enlarged (or reduced). The rotational speed N2 of the second shaft 2 is increased (or decelerated) as compared with the rotational speed N1 of the first shaft 1, thereby realizing a predetermined speed ratio N2 = (R1 / R2) · N1.

従って、本実施例によれば以下の作用効果を奏する。
(a)第1リング30と第2リング40は、図3に示す如く、巻掛け部材50に作用する初期張力Tと伝達力Wによって、第1プーリ10と第2プーリ20に押付けられて接触し、この接触点Pに作用する接触圧力に基づくトラクションドライブ効果、又はフリクションドライブ効果により動力を伝達する。これにより、第1軸1に付与された回転入力が第1プーリ10、第1リング30、巻掛け部材50、第2リング40、第2プーリ20を介して第2軸2に伝達され、第2軸2から回転出力として取出される。
Therefore, according to the present embodiment, the following operational effects can be obtained.
(a) The first ring 30 and the second ring 40 are pressed against the first pulley 10 and the second pulley 20 by the initial tension T and the transmission force W acting on the winding member 50 as shown in FIG. Then, power is transmitted by the traction drive effect based on the contact pressure acting on the contact point P or the friction drive effect. As a result, the rotational input applied to the first shaft 1 is transmitted to the second shaft 2 via the first pulley 10, the first ring 30, the winding member 50, the second ring 40, and the second pulley 20. It is taken out from the two shafts 2 as a rotational output.

(b)動力を伝達していないとき(空転時を含む)、図3(A)に示す如く、第1プーリ10に挟まれている第1リング30に巻掛けた巻掛け部材50には、張り側、緩み側とも同じ初期張力Tが作用し、第1リング30は両方の張力T、Tにより第1プーリ10における両シーブ11、12のシーブ面11A、12Aに1つの接触点Pで押付けられる。このとき、第1リング30は、張り側の巻掛け部材50に作用する張力Tが上記接触点Pまわりに及ぼすモーメントMaと、緩み側の巻掛け部材50に作用する張力Tが上記接触点Pまわりに及ぼすモーメントMbとがつり合う(Ma=Mb)特定姿勢で安定化する(この特定姿勢において、接触点Pから張り側の巻掛け部材50と緩み側の巻掛け部材50のそれぞれに垂下した直線の長さをLa、Lbとするとき、Ma=T・La、Mb=T・Lbとなり、Ma=Mbより、La=Lbとなる)。   (b) When power is not transmitted (including when idling), as shown in FIG. 3A, the winding member 50 wound around the first ring 30 sandwiched between the first pulleys 10 includes: The same initial tension T acts on both the tension side and the loose side, and the first ring 30 is pressed against the sheave surfaces 11A and 12A of the sheaves 11 and 12 of the first pulley 10 at one contact point P by both tensions T and T. It is done. At this time, in the first ring 30, the moment Ma exerted on the tension side winding member 50 around the contact point P and the tension T acting on the loose side winding member 50 are affected by the contact point P. The moment Mb acting on the surroundings is balanced (Ma = Mb) and is stabilized in a specific posture (in this specific posture, straight lines hanging from the contact point P to the tension-side winding member 50 and the loose-side winding member 50, respectively. When La is L and Lb, Ma = T · La and Mb = T · Lb, and La = Lb from Ma = Mb).

このとき、同様に、第2リング40も特定姿勢で安定化する。   At this time, similarly, the second ring 40 is also stabilized in a specific posture.

(c)次に、第1軸1に回転入力Fが付与され、動力を伝達するとき、図3(B)に示す如く、第1プーリ10に挟まれている第1リング30に巻掛けた巻掛け部材50には、張り側で初期張力Tと伝達力Wの合力が作用し、緩み側には初期張力Tのみが作用し、上記伝達力Wにより引っ張られる第1リング30は、第1プーリ10との接触点Pが第1軸1を中心に転がり運動をして回転入力Fと反対方向に移動する。このとき、第1リング30は、張り側の巻掛け部材50に作用する張力Tと伝達力Wの合力が上記接触点Pまわりに及ぼすモーメントMaと、緩み側の巻掛け部材50に作用する張力Tが上記接触点Pまわりに及ぼすモーメントMbとがつり合う(Ma=Mb)特定姿勢で再び第1プーリ10における両シーブ11、12のシーブ面11A、12Aに上記1つの接触点Pで押付けられて安定化する(この特定姿勢において、接触点Pから張り側の巻掛け部材50と緩み側の巻掛け部材50のそれぞれに垂下した直線の長さをLa、Lbとするとき、Ma=(T+W)La、Mb=T・Lbとなり、Ma=Mbより、La=T・Lb/(T+W)となる)。   (c) Next, when the rotational input F is applied to the first shaft 1 and power is transmitted, it is wound around the first ring 30 sandwiched between the first pulleys 10 as shown in FIG. In the winding member 50, the resultant tension of the initial tension T and the transmission force W acts on the tension side, and only the initial tension T acts on the loose side, and the first ring 30 pulled by the transmission force W has the first ring 30. The contact point P with the pulley 10 rolls around the first shaft 1 and moves in the direction opposite to the rotation input F. At this time, the first ring 30 has a moment Ma exerted around the contact point P by the resultant force T and the transmission force W acting on the tension-side winding member 50 and a tension acting on the loose-side winding member 50. The moment Mb exerted around the contact point P by the balance T (Ma = Mb) is again pressed against the sheave surfaces 11A, 12A of the sheaves 11, 12 in the first pulley 10 at the one contact point P. Stabilize (In this specific posture, when the lengths of the straight lines hanging from the contact point P to each of the tension member 50 and the slack member 50 are La and Lb, Ma = (T + W) La, Mb = T · Lb, and since Ma = Mb, La = T · Lb / (T + W)).

このとき、同様に、第2リング40も特定姿勢で再び安定化する。   At this time, similarly, the second ring 40 is again stabilized in the specific posture.

(d)上述(a)、(b)より、動力を伝達していないときにも、動力を伝達するときにも、常に、第1リング30と第2リング40は張力T、伝達力Wによって一義的に定まる特定姿勢にて第1プーリ10又は第2プーリ20における両シーブ11、12のシーブ面11A、12A、両シーブ21、22のシーブ面21A、22Aに押付けられて安定化し、それらの各リング30、40の姿勢を安定保持するためのガイドローラ等を必要としない。   (d) From the above (a) and (b), the first ring 30 and the second ring 40 always have the tension T and the transmission force W both when the power is not transmitted and when the power is transmitted. In a specific posture that is uniquely determined, the sheave surfaces 11A and 12A of both sheaves 11 and 12 in the first pulley 10 or the second pulley 20 are pressed against the sheave surfaces 21A and 22A of both sheaves 21 and 22 to be stabilized. There is no need for a guide roller or the like for stably holding the posture of each ring 30, 40.

(e)上述(d)の通り、動力を伝達していないときにも、動力を伝達するときにも、常に、第1リング30と第2リング40は張力T、伝達力Wによって一義的に定まる特定姿勢にて第1プーリ10又は第2プーリ20における両シーブ11、12のシーブ面11A、12A、両シーブ21、22のシーブ面21A、22Aに押付けられて安定化するから、第1軸1の正転運転だけでなく、第1軸1の逆転運転、又は第2軸2から回転入力(エンジンブレーキ等)が付与される運転についても、動力伝達できる。   (e) As described in (d) above, the first ring 30 and the second ring 40 are always uniquely determined by the tension T and the transmission force W, both when power is not transmitted and when power is transmitted. The first shaft 10 is stabilized by being pressed against the sheave surfaces 11A and 12A of the sheaves 11 and 12 and the sheave surfaces 21A and 22A of the sheaves 21 and 22 in the first pulley 10 or the second pulley 20 in a fixed specific posture. The power can be transmitted not only in the forward rotation operation of 1 but also in the reverse rotation operation of the first shaft 1 or the operation to which the rotation input (engine brake or the like) is applied from the second shaft 2.

(f)第1プーリ10と第2プーリ20のそれぞれにおける両シーブ11、12又は21、22の間隔が拡縮されるシーブ面11A、12A又は21A、22Aの間に剛体の第1リング30と第2リング40を挟み、変速時にはそれらの各リング30、40を各プーリ10、20の径方向に移動させるものであり、各リング30、40の構造、製作が簡易になる。   (f) The rigid first ring 30 and the first ring 30 between the sheave surfaces 11A, 12A or 21A, 22A in which the distance between the sheaves 11, 12 or 21, 22 in each of the first pulley 10 and the second pulley 20 is increased or reduced. The two rings 40 are sandwiched and the rings 30 and 40 are moved in the radial direction of the pulleys 10 and 20 at the time of shifting, and the structure and production of the rings 30 and 40 are simplified.

(g)上述(c)の通り、第1軸1に回転入力Fが付与され、動力を伝達するとき、第1リング30は、第1プーリ10との接触点Pが第1軸1を中心に転がり運動をして回転入力Fと反対方向に移動する。これを換言すると、第1リング30はその中心O1が第1軸1を中心に転がり運動をして回転入力Fと反対方向に移動する。このとき、第2リング40はその中心O2が第2軸2を中心に転がり運動をして回転出力Gと同一方向に移動する。この第1リング30の中心O1と第2リング40の中心O2の移動は、両リング30、40の中心間距離(スパン)が増加することを意味する(動力を伝達していないときに両リング30、40の中心O1、O2は、第1軸1と第2軸2の中心を結んだ直線上にあって、そのスパンをSo(図4(A))とするのに対し、動力を伝達するときの両リング30、40の中心O1、O2は、第1軸1と第2軸2を中心にする上述の方向に移動してそのスパンをSw(So<Sw)(図4(B))とする)。   (g) As described in (c) above, when the rotational input F is applied to the first shaft 1 and power is transmitted, the first ring 30 has a contact point P with the first pulley 10 at the center of the first shaft 1. To move in the opposite direction to the rotational input F. In other words, the center O1 of the first ring 30 rolls around the first shaft 1 and moves in the direction opposite to the rotation input F. At this time, the center O2 of the second ring 40 rolls around the second shaft 2 and moves in the same direction as the rotational output G. The movement of the center O1 of the first ring 30 and the center O2 of the second ring 40 means that the distance (span) between the centers of the rings 30 and 40 increases (both rings when power is not transmitted). The centers O1 and O2 of 30 and 40 are on a straight line connecting the centers of the first shaft 1 and the second shaft 2, and the span is defined as So (FIG. 4A). The centers O1 and O2 of the rings 30 and 40 are moved in the above-mentioned direction around the first shaft 1 and the second shaft 2, and the span is set to Sw (So <Sw) (FIG. 4B). )).

即ち、第1リング30と第2リング40のスパンが増加し、結果として、両リング30、40に巻き回されている巻掛け部材50は弾性的に伸び、その張力を増加する。従って、動力伝達時に、伝達力Wの増加分に見合う張力が巻掛け部材50に生じ、この張力が第1リング30と第2リング40を第1プーリ10のシーブ面11、12と第2プーリ20のシーブ面21、22に押付ける力を自動的に増すものになり、両リング30、40の滑りを防止するものになる。   That is, the span of the first ring 30 and the second ring 40 is increased, and as a result, the winding member 50 wound around both the rings 30 and 40 is elastically stretched to increase its tension. Therefore, during power transmission, a tension corresponding to the increase in the transmission force W is generated in the winding member 50, and this tension causes the first ring 30 and the second ring 40 to pass through the sheave surfaces 11 and 12 of the first pulley 10 and the second pulley. Thus, the pressing force against the 20 sheave surfaces 21 and 22 is automatically increased, and the sliding of both the rings 30 and 40 is prevented.

従って、伝達力の増加時に、第1リング30と第2リング40が第1プーリ10と第2プーリ20の各シーブ面11A、12A又は21A、22Aに対して滑ることのないように、第1プーリ10と第2プーリ20の各シーブ面11A、12A又は21A、22Aの間隔を意図的に調整する必要がない。第1軸1と第2軸2に所望の変速比を実現するためにだけ、第1プーリ10と第2プーリ20の各シーブ面11A、12A又は21A、22Aの間隔を調整すれば足り、簡易にして作動性の優れた無段変速機を構築できる。   Accordingly, the first ring 30 and the second ring 40 are prevented from slipping with respect to the sheave surfaces 11A, 12A or 21A, 22A of the first pulley 10 and the second pulley 20 when the transmission force is increased. There is no need to intentionally adjust the distance between the sheave surfaces 11A, 12A or 21A, 22A of the pulley 10 and the second pulley 20. It is only necessary to adjust the distance between the sheave surfaces 11A, 12A or 21A, 22A of the first pulley 10 and the second pulley 20 in order to achieve a desired gear ratio between the first shaft 1 and the second shaft 2. Thus, a continuously variable transmission with excellent operability can be constructed.

(h)第1リング30と第2リング40が剛体からなるため、各リング30、40が各プーリ10、20に引張側で食い込む力が緩み側を各プーリ10、20から離脱させる力となり、第1プーリ10と第2プーリ20の各シーブ角を小さくしても、各リングが各プーリに絡み付いて外れにくくなるおそれがない。従って、第1プーリ10と第2プーリ20の各シーブ角θを小さくし、結果として、必要な変速幅を得るための第1プーリ10と第2プーリ20の各シーブ面11A、12A又は21A、22Aの間隔調整量を小さくし、変速操作時間の短縮、変速操作スペースの狭小化を図ることができる。   (h) Since the first ring 30 and the second ring 40 are made of a rigid body, the force that each ring 30, 40 bites into each pulley 10, 20 on the tension side becomes the force that causes the loose side to separate from each pulley 10, 20, Even if each sheave angle of the first pulley 10 and the second pulley 20 is reduced, there is no possibility that each ring is entangled with each pulley and does not easily come off. Accordingly, each sheave angle θ of the first pulley 10 and the second pulley 20 is reduced, and as a result, each sheave surface 11A, 12A or 21A of the first pulley 10 and the second pulley 20 to obtain a required shift width, It is possible to reduce the interval adjustment amount of 22A, shorten the speed change operation time, and narrow the speed change operation space.

以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like without departing from the gist of the present invention. It is included in the present invention.

本発明によれば、簡易でコンパクト、かつ作動性の優れた無段変速機を提供することができる。   According to the present invention, a continuously variable transmission that is simple, compact, and excellent in operability can be provided.

1 第1軸
2 第2軸
10 第1プーリ
11 固定シーブ
12 可動シーブ
11A、12A シーブ面
13 V溝
20 第2リング
21 固定シーブ
22 可動シーブ
21A、22A シーブ面
23 V溝
30 第1リング
31、32 動力伝達面
33 歯車面
40 第2リング
41、42 動力伝達面
43 歯車面
50 巻掛け部材
60 変速操作手段
100 無段変速機
DESCRIPTION OF SYMBOLS 1 1st axis | shaft 2 2nd axis | shaft 1 1st pulley 11 Fixed sheave 12 Movable sheave 11A, 12A Sheave surface 13 V groove 20 2nd ring 21 Fixed sheave 22 Movable sheave 21A, 22A Sheave surface 23 V groove 30 1st ring 31, 32 Power transmission surface 33 Gear surface 40 Second rings 41 and 42 Power transmission surface 43 Gear surface 50 Wrapping member 60 Shifting operation means 100 Continuously variable transmission

Claims (3)

第1軸と第2軸の回転速度比を無段階で変速させる無段変速機において、
相対する一対のシーブを第1軸に同行回転可能に取付けてなり、両シーブのシーブ面の間隔を調整可能にされてなる第1プーリと、
相対する一対のシーブを第2軸に同行回転可能に取付けてなり、両シーブのシーブ面の間隔を調整可能にされてなる第2プーリと、
第1プーリにおける両シーブのシーブ面の間に挟まれる第1リングと、
第2プーリにおける両シーブのシーブ面の間に挟まれる第2リングと、
第1リング及び第2リングに巻掛けられる巻掛け部材とを有してなることを特徴とする無段変速機。
In a continuously variable transmission that continuously changes the rotation speed ratio between the first shaft and the second shaft,
A first pulley having a pair of opposed sheaves attached to the first shaft so as to be able to rotate along with the first sheave, and the interval between the sheave surfaces of both sheaves being adjustable;
A second pulley having a pair of opposed sheaves attached to the second shaft so as to be able to rotate along with the second shaft, wherein the distance between the sheave surfaces of both sheaves is adjustable;
A first ring sandwiched between sheave surfaces of both sheaves in the first pulley;
A second ring sandwiched between sheave surfaces of both sheaves in the second pulley;
A continuously variable transmission comprising a winding member wound around a first ring and a second ring.
前記第1プーリの一対のシーブが固定シーブと、固定シーブに対して軸方向に移動する可動シーブとからなり、両シーブは互いに逆向きに傾斜するテーパ状シーブ面を備え、
第2プーリの一対のシーブが固定シーブと、固定シーブに対して軸方向に移動する可動シーブとからなり、両シーブは互いに逆向きに傾斜するテーパ状シーブ面を備えてなる請求項1に記載の無段変速機。
The pair of sheaves of the first pulley includes a fixed sheave and a movable sheave that moves in an axial direction with respect to the fixed sheave, and both sheaves have tapered sheave surfaces that are inclined in opposite directions,
The pair of sheaves of the second pulley includes a fixed sheave and a movable sheave that moves in an axial direction with respect to the fixed sheave, and both sheaves have tapered sheave surfaces that are inclined in opposite directions. Continuously variable transmission.
前記第1リングと第2リングがそれらの外周に歯車面を備えたリングからなり、巻掛け部材が第1リングと第2リングに滑りなく巻掛けられる歯付巻掛け部材からなる請求項1又は2に記載の無段変速機。   The said 1st ring and a 2nd ring consist of a ring provided with the gearwheel surface in those outer periphery, and a winding member consists of a toothed winding member wound around a 1st ring and a 2nd ring without slipping. 2. The continuously variable transmission according to 2.
JP2014166983A 2014-08-19 2014-08-19 Continuously variable transmission Active JP6437241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014166983A JP6437241B2 (en) 2014-08-19 2014-08-19 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014166983A JP6437241B2 (en) 2014-08-19 2014-08-19 Continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2016044693A true JP2016044693A (en) 2016-04-04
JP6437241B2 JP6437241B2 (en) 2018-12-12

Family

ID=55635460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014166983A Active JP6437241B2 (en) 2014-08-19 2014-08-19 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JP6437241B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108506438A (en) * 2018-03-19 2018-09-07 周卫伟 The infinitely variable transmission of cone pulley component, stepless speed changing mechanism and its composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572145A (en) * 1969-10-08 1971-03-23 Hitco Variable speed mechanism
JPS63126653U (en) * 1987-02-10 1988-08-18
JPH02190652A (en) * 1989-01-19 1990-07-26 Hiroyuki Sakami V-ring type continuously variable transmission
JP2003534503A (en) * 2000-03-16 2003-11-18 ザ ゲイツ コーポレイション Drive ring CVT belt
JP2004504573A (en) * 2000-07-21 2004-02-12 ザ ゲイツ コーポレイション Belt type drive ring CVT coupler
JP2004132392A (en) * 2002-10-08 2004-04-30 Nsk Ltd Continuously variable transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572145A (en) * 1969-10-08 1971-03-23 Hitco Variable speed mechanism
JPS63126653U (en) * 1987-02-10 1988-08-18
JPH02190652A (en) * 1989-01-19 1990-07-26 Hiroyuki Sakami V-ring type continuously variable transmission
JP2003534503A (en) * 2000-03-16 2003-11-18 ザ ゲイツ コーポレイション Drive ring CVT belt
JP2004504573A (en) * 2000-07-21 2004-02-12 ザ ゲイツ コーポレイション Belt type drive ring CVT coupler
JP2004132392A (en) * 2002-10-08 2004-04-30 Nsk Ltd Continuously variable transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108506438A (en) * 2018-03-19 2018-09-07 周卫伟 The infinitely variable transmission of cone pulley component, stepless speed changing mechanism and its composition
CN108506438B (en) * 2018-03-19 2023-08-22 周卫伟 Cone pulley assembly, stepless speed change mechanism and stepless speed change box comprising same

Also Published As

Publication number Publication date
JP6437241B2 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
JP3149557B2 (en) Belt type continuously variable transmission
KR101190375B1 (en) continuously variable transmission
CN110985636A (en) Reducing chain ring wheel and reducing chain ring wheel transmission
JP6437241B2 (en) Continuously variable transmission
KR101978576B1 (en) Continuously variable transmission
US9765859B2 (en) Serial continuously variable transmission
CN211852729U (en) Reducing chain ring wheel and reducing chain ring wheel transmission
JPH07122452B2 (en) V-belt type continuously variable transmission
WO2008087450A3 (en) Twin variator transmission arrangement
JP2008045694A (en) Belt-type continuously variable transmission
KR101360431B1 (en) Stepless transmission
RU2295077C1 (en) Transmission with a flexible gearing member
JP2019086130A (en) V-belt type continuous variable transmission for vehicle
JP6146347B2 (en) Belt type continuously variable transmission for vehicles
KR101291769B1 (en) Mechanically-driven manual shift device for the continuous variable transmission
JP2006029504A (en) V-belt continuously variable transmission for small vehicle
JP2840157B2 (en) Continuously variable transmission
JP4939040B2 (en) Belt type continuously variable transmission
JP2013007397A (en) Stepless transmission
JP2002161953A (en) Belt-type continuously variable transmission
KR101919562B1 (en) Applying both sides variable pulley Continuously variable transmission Motive-power transmission appratus
JP2008183995A (en) Continuously variable transmission for bicycle
JP2015124817A (en) Belt-type stepless transmission
JP2015086913A (en) Power split type infinite variable-speed drive
JP2004156686A (en) Belt nip diameter/nip pressure serial control type continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181114

R150 Certificate of patent or registration of utility model

Ref document number: 6437241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250