JP2016043290A - Electrodialyzer and electrodialysis method for cleaned waste water - Google Patents

Electrodialyzer and electrodialysis method for cleaned waste water Download PDF

Info

Publication number
JP2016043290A
JP2016043290A JP2014167944A JP2014167944A JP2016043290A JP 2016043290 A JP2016043290 A JP 2016043290A JP 2014167944 A JP2014167944 A JP 2014167944A JP 2014167944 A JP2014167944 A JP 2014167944A JP 2016043290 A JP2016043290 A JP 2016043290A
Authority
JP
Japan
Prior art keywords
catholyte
water
chamber
organic acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014167944A
Other languages
Japanese (ja)
Other versions
JP6347547B2 (en
Inventor
藤丸 篤
Atsushi Fujimaru
篤 藤丸
正 森田
Tadashi Morita
正 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2014167944A priority Critical patent/JP6347547B2/en
Publication of JP2016043290A publication Critical patent/JP2016043290A/en
Application granted granted Critical
Publication of JP6347547B2 publication Critical patent/JP6347547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrodialyzer for cleaned waste water where the increase of the pH of a catholyte upon electrolysis can be suppressed, both of nitric ions and metallic ions are separated from cleaned water water, and water of high purity can be suitably obtained.SOLUTION: There is provided an electrodialyzer comprising: an intermediate chamber 10 for pouring cleaned waste water including nitric ions and metallic ions; an anode chamber 20 separated with an anion-exchange membrane 21 from the intermediate chamber 10 and storing an anolyte 23; and a cathode chamber 30 separated with a cation-exchange membrane 31 from the intermediate chamber 10 and storing a catholyte 33. The anolyte 23 is an aqueous solution including nitric acid, and the catholyte 33 is an aqueous solution added with organic acid in such a manner that its electric conductivity is controlled to the range of 0.1 to 1.0 mS/cm.SELECTED DRAWING: Figure 2

Description

本発明は、洗浄廃水の電気透析装置及び電気透析方法に関する。   The present invention relates to an electrodialysis apparatus and an electrodialysis method for washing wastewater.

従来、各種の蒸着装置では、成膜すべき基板以外(チャンバーの内壁やチャンバー内に配される防着板等)に付着し堆積する金属堆積物を除去すべく、硝酸洗浄及びその後の水洗浄が定期的に行われる。ただ、水洗浄に使用した水には、硝酸イオンに加え、極微量ではあるものの金属イオンが含まれることになる。このような洗浄廃水は、コンタミ防止のためそのまま水洗浄に再利用することができず、このため洗浄毎に高純度の水が新たに必要となって多量の洗浄廃水が処分されるという、低コスト化や環境負荷低減の観点から改善が強く求められている状況がある。   Conventionally, in various vapor deposition apparatuses, nitric acid cleaning and subsequent water cleaning are performed in order to remove metal deposits attached and deposited on a substrate other than a substrate to be formed (such as an inner wall of a chamber or a deposition plate disposed in the chamber). Is performed regularly. However, the water used for washing with water contains metal ions in addition to nitrate ions, although in very small amounts. Such washing wastewater cannot be reused as it is for water washing to prevent contamination, and therefore, a high amount of high-purity water is required for each washing and a large amount of washing wastewater is disposed of. There are situations where improvement is strongly demanded from the viewpoint of cost reduction and environmental load reduction.

ここで、水中の金属イオンを電気透析によって分離する方法がある。この種の方法は、中間室及び陽極室を陰イオン交換膜で隔て、中間室及び陰極室を陽イオン交換膜で隔てた電気透析装置を用い、電気分解を施すことで、金属イオンを中間室から陰極室に移動させて陰極に電着させるものである。一方、上記のような硝酸洗浄及び水洗浄が定期的に行われる装置では、他のイオン(塩素イオンや硫酸イオン等)もコンタミの原因となるため、特に酸として硝酸以外のものを用いることができないとの認識があった。そこで、かかる認識を考慮し、硝酸及びその加水分解物であるアンモニアからなる硝酸アンモニウムを陰極液の電解質として用い、電気分解により金属イオンを分離することが考えられる。   Here, there is a method of separating metal ions in water by electrodialysis. In this type of method, electrolysis is performed using an electrodialysis apparatus in which the intermediate chamber and the anode chamber are separated by an anion exchange membrane and the intermediate chamber and the cathode chamber are separated by a cation exchange membrane. To the cathode chamber and electrodeposited on the cathode. On the other hand, in the apparatus in which the nitric acid cleaning and the water cleaning as described above are performed periodically, other ions (chlorine ions, sulfate ions, etc.) also cause contamination. There was recognition that it was not possible. In view of this recognition, it is conceivable to separate metal ions by electrolysis using ammonium nitrate composed of nitric acid and its hydrolyzate ammonia as the electrolyte of the catholyte.

尚、水中の金属イオンを電気透析によって分離する方法自体としては、陰極液として無機塩及びpH緩衝剤を含有するものを用いる方法も提案されている(例えば、特許文献1参照)。この特許文献1では、pH緩衝剤の例が多種記載されており、そのなかに有機酸であるクエン酸が挙げられている。   As a method for separating metal ions in water by electrodialysis itself, a method using a catholyte containing an inorganic salt and a pH buffer has also been proposed (for example, see Patent Document 1). In this Patent Document 1, various examples of pH buffering agents are described, and citric acid which is an organic acid is mentioned therein.

特開平08−000966号公報Japanese Patent Laid-Open No. 08-000966

しかしながら、陰極液として硝酸アンモニウムからなるものを用いると、電気分解によって陰極室にて硝酸イオンが還元されてアンモニウムイオンが発生し、陰極液のpHが上昇する問題が生じる。この場合、陰イオン交換膜が劣化し、また陰極液が変質する等の不具合が引き起こされる。   However, when the cathode solution made of ammonium nitrate is used, nitrate ions are reduced in the cathode chamber by electrolysis to generate ammonium ions, which raises the problem of increasing the pH of the cathode solution. In this case, the anion exchange membrane is deteriorated and the catholyte is deteriorated.

また、特許文献1においては、陰極液に無機塩(例えば陽極液のイオン種と同種のもの)が含まれることが必須であって、その無機塩の濃度が大きいほうが好ましいとの記載もある。このため、無機塩に由来する金属イオンが拡散し、陽イオン交換膜を透過して中間室に再移動する可能性を排除できず、上記の水洗浄に使用可能なほどに高純度な水を得ることは困難であった。そもそも、特許文献1は、陽極液としては硝酸以外の酸を含有することを必須としている。このため、硝酸以外の酸に由来するイオン(塩素イオンや硫酸イオン等)によってコンタミが生じるおそれがあり、上記のような硝酸洗浄及び水洗浄が定期的に行われる装置に適用不可能であった。   Patent Document 1 also describes that it is essential that the catholyte contains an inorganic salt (for example, the same kind as the ionic species of the anolyte), and it is preferable that the concentration of the inorganic salt be higher. For this reason, it is impossible to exclude the possibility that metal ions derived from inorganic salts diffuse and permeate the cation exchange membrane and re-transfer to the intermediate chamber, and water that is so pure that it can be used for the above-described water washing can be used. It was difficult to get. In the first place, Patent Document 1 requires that the anolyte contains an acid other than nitric acid. For this reason, there is a possibility that contamination may occur due to ions derived from acids other than nitric acid (chlorine ions, sulfate ions, etc.), and it was not applicable to the apparatus in which nitric acid cleaning and water cleaning as described above are performed periodically. .

本発明はこのような事情に鑑み、電気分解時の陰極液のpH上昇を抑制でき、洗浄廃水から硝酸イオン及び金属イオンの両方を分離して高純度の水を好適に得ることができる洗浄廃水の電気透析装置及び電気透析方法を提供することを目的とする。   In view of such circumstances, the present invention can suppress an increase in the pH of the catholyte during electrolysis, and can clean water waste water that can suitably obtain high-purity water by separating both nitrate ions and metal ions from the cleaning waste water. It is an object of the present invention to provide an electrodialysis apparatus and an electrodialysis method.

上記課題を解決する本発明の態様は、硝酸イオン及び金属イオンが含まれる洗浄廃水を投入するための中間室と、前記中間室から陰イオン交換膜によって隔てられ、陽極液を収容するための陽極室と、前記中間室から陽イオン交換膜によって隔てられ、陰極液を収容するための陰極室と、を有し、前記陽極液が、硝酸を含む水溶液であり、前記陰極液が、その電気伝導率が0.1〜1.0mS/cmの範囲内となるように有機酸を含む水溶液であることを特徴とする洗浄廃水の電気透析装置にある。   An aspect of the present invention that solves the above problems includes an intermediate chamber for introducing cleaning waste water containing nitrate ions and metal ions, and an anode for accommodating an anolyte separated from the intermediate chamber by an anion exchange membrane. A cathodic chamber for containing a catholyte separated from the intermediate chamber by a cation exchange membrane, wherein the anolyte is an aqueous solution containing nitric acid, and the catholyte is electrically conductive The electrodialysis apparatus for washing wastewater is an aqueous solution containing an organic acid so that the rate is in the range of 0.1 to 1.0 mS / cm.

かかる態様によれば、陰極液が有機酸を含む水溶液なので、例えば、陰極液として硝酸アンモニウムからなるものを用いた場合と比べても、陰極室での硝酸イオンの還元によるアンモニウムイオンの発生を防止でき、陰極液のpHの上昇を防止することができる。そして、陰極液にて上記の範囲の電気伝導率が確保されているので、電気分解を好適に進行させることができる。以上より、電気分解時の陰極液のpH上昇を抑制でき、洗浄廃水から硝酸イオン及び金属イオンの両方を分離して高純度の水を好適に得ることができる。   According to such an embodiment, since the catholyte is an aqueous solution containing an organic acid, for example, generation of ammonium ions due to reduction of nitrate ions in the cathode chamber can be prevented even when compared with the case where the catholyte is made of ammonium nitrate. It is possible to prevent the pH of the catholyte from increasing. And since the electrical conductivity of said range is ensured with the catholyte, electrolysis can be advanced suitably. From the above, it is possible to suppress an increase in the pH of the catholyte during electrolysis, and it is possible to suitably obtain high-purity water by separating both nitrate ions and metal ions from the washing wastewater.

ここで、前記陰極液における前記有機酸の濃度が5〜20質量%であることが好ましい。これによれば、陰極液のpHの上昇を防止しやすくなり、また、電気分解時に陰極液にて上記の範囲の電気伝導率を確保しやすくもなる。   Here, the concentration of the organic acid in the catholyte is preferably 5 to 20% by mass. According to this, it becomes easy to prevent an increase in the pH of the catholyte, and it becomes easy to ensure the electric conductivity in the above range with the catholyte during electrolysis.

また、前記陰極液に含まれる酸のうち前記有機酸が90質量%以上であることが好ましい。これによれば、陰極液のpHの上昇を十分に防止することができる。   Moreover, it is preferable that the said organic acid is 90 mass% or more among the acids contained in the said catholyte. According to this, an increase in the pH of the catholyte can be sufficiently prevented.

また、前記陰極液が実質的に無機塩を含まないことが好ましい。これによれば、条件や誤差のために完全に除去しきれない無機塩を除いた範囲で無機塩を含まないので、無機塩に由来する金属イオンが陰極室から陽イオン交換膜を透過して中間室に移動する可能性を排除できる。このため、硝酸洗浄及び水洗浄が定期的に行われる各種の装置にて生じる洗浄廃水に好適に適用でき、コンタミを確実に防止できる電気透析装置となる。   Further, it is preferable that the catholyte contains substantially no inorganic salt. According to this, since the inorganic salt is not included in the range excluding the inorganic salt that cannot be completely removed due to conditions and errors, metal ions derived from the inorganic salt permeate from the cathode chamber through the cation exchange membrane. The possibility of moving to the intermediate chamber can be eliminated. For this reason, the electrodialysis apparatus can be suitably applied to cleaning wastewater generated in various apparatuses in which nitric acid cleaning and water cleaning are performed periodically, and contamination can be reliably prevented.

上記課題を解決する本発明の他の態様は、硝酸イオン及び金属イオンが含まれる洗浄廃水を投入するための中間室と、前記中間室から陰イオン交換膜によって隔てられ、陽極液を収容するための陽極室と、前記中間室から陽イオン交換膜によって隔てられ、陰極液を収容するための陰極室と、を有する電気透析装置を用いるとともに、前記陽極液として、硝酸を含む水溶液を用い、前記陽極液として、その電気伝導率が0.1〜1.0mS/cmの範囲内となるように有機酸を含む水溶液を用いることを特徴とする廃水の電気透析方法にある。   Another aspect of the present invention that solves the above-described problem is that an intermediate chamber for introducing cleaning wastewater containing nitrate ions and metal ions is separated from the intermediate chamber by an anion exchange membrane and contains an anolyte. Using an electrodialyzer having an anode chamber and a cathode chamber separated from the intermediate chamber by a cation exchange membrane and containing a catholyte, and using an aqueous solution containing nitric acid as the anolyte, In the electrodialysis method of wastewater, an aqueous solution containing an organic acid is used as the anolyte so that its electric conductivity is in the range of 0.1 to 1.0 mS / cm.

かかる態様によれば、陰極液として有機酸を含む水溶液を用いるので、例えば、陰極液として硝酸アンモニウムからなるものを用いた場合と比べても、陰極室での硝酸イオンの還元によるアンモニウムイオンの発生を防止でき、陰極液のpHの上昇を防止することができる。そして、陰極液にて所定範囲の電気伝導率が確保されているので、電気分解を好適に進行させることができる。以上より、電気分解時の陰極液のpH上昇を抑制でき、洗浄廃水から硝酸イオン及び金属イオンの両方を分離して高純度の水を好適に得ることができる。   According to this aspect, since an aqueous solution containing an organic acid is used as the catholyte, for example, generation of ammonium ions due to reduction of nitrate ions in the cathode chamber can be achieved as compared with the case where the cathode solution is made of ammonium nitrate. It is possible to prevent the pH of the catholyte from increasing. And since the electric conductivity of the predetermined range is ensured with the catholyte, electrolysis can be advanced suitably. From the above, it is possible to suppress an increase in the pH of the catholyte during electrolysis, and it is possible to suitably obtain high-purity water by separating both nitrate ions and metal ions from the washing wastewater.

本発明の洗浄廃水の電気透析装置及び電気透析方法によれば、電気分解時の陰極液のpH上昇を抑制でき、洗浄廃水から硝酸イオン及び金属イオンの両方を分離して高純度の水を好適に得ることができる。   According to the electrodialysis apparatus and electrodialysis method of the cleaning wastewater of the present invention, the pH increase of the catholyte during electrolysis can be suppressed, and both high purity water is preferable by separating both nitrate ions and metal ions from the cleaning wastewater. Can get to.

実施形態1に係る洗浄廃水の電気透析装置の適用例等を示す図。The figure which shows the example of application of the electrodialysis apparatus of the washing waste water which concerns on Embodiment 1. FIG. 実施形態1に係る洗浄廃水の電気透析装置の構成例を示す横断面図。FIG. 3 is a cross-sectional view illustrating a configuration example of an electrodialysis apparatus for washing wastewater according to the first embodiment. 実施例1〜3に係る洗浄廃水の電気透析装置による試験結果を示す図。The figure which shows the test result by the electrodialysis apparatus of the washing waste water which concerns on Examples 1-3. 実施例4及び5に係る洗浄廃水の電気透析装置による試験結果を示す図。The figure which shows the test result by the electrodialysis apparatus of the washing waste water which concerns on Example 4 and 5. FIG. 比較例1及び2に係る洗浄廃水の電気透析装置による試験結果を示す図。The figure which shows the test result by the electrodialysis apparatus of the washing waste water which concerns on the comparative examples 1 and 2. FIG.

(実施形態1)
図1は、本発明の実施形態1に係る洗浄廃水の電気透析装置(以下、単に「電気透析装置」と称することがある。)の適用例等を示す図である。
(Embodiment 1)
FIG. 1 is a diagram showing an application example of a washing wastewater electrodialysis apparatus (hereinafter, simply referred to as “electrodialysis apparatus”) according to Embodiment 1 of the present invention.

PVD装置やCVD装置等、各種の蒸着装置では、成膜すべき基板以外に付着し堆積する金属堆積物を除去すべく、硝酸による溶解洗浄(硝酸洗浄)及びその後の水による超音波洗浄やすすぎ洗浄(水洗浄)が定期的に行われる。水洗浄に使用した洗浄廃水には、硝酸イオン;NO に加え、極微量ではあるものの金属イオン;Mが含まれることになり、このような洗浄廃水が、本実施形態に係る電気透析装置1に投入される。 In various vapor deposition apparatuses such as PVD apparatus and CVD apparatus, in order to remove metal deposits that adhere to and deposit other than the substrate to be deposited, nitric acid dissolution cleaning (nitric acid cleaning) and subsequent ultrasonic cleaning with water and rinsing are easy. Cleaning (water cleaning) is performed periodically. The cleaning wastewater used for the water cleaning contains a very small amount of metal ions; M + in addition to nitrate ions; NO 3 −, and such cleaning wastewater is electrodialyzed according to the present embodiment. The device 1 is charged.

電気透析装置1は、洗浄廃水を投入するための中間室10と、中間室10から陰イオン交換膜21によって隔てられ、陽極液を収容するための陽極室20と、中間室10から陽イオン交換膜31によって隔てられ、陰極液を収容するための陰極室30と、を有している。電気分解により、中間室10から移動した硝酸イオンが陽極室20で濃縮させられて、中間室10から移動した金属イオンが陰極室30にて電着させられる。これにより、中間室10に投入された洗浄廃水から硝酸イオン及び金属イオンの両方を分離できる。   The electrodialysis apparatus 1 is separated from the intermediate chamber 10 by an anion exchange membrane 21 for introducing washing waste water, and the anode chamber 20 for containing the anolyte and the cation exchange from the intermediate chamber 10. A cathode chamber 30 which is separated by a membrane 31 and contains catholyte. By electrolysis, nitrate ions moved from the intermediate chamber 10 are concentrated in the anode chamber 20, and metal ions moved from the intermediate chamber 10 are electrodeposited in the cathode chamber 30. As a result, both nitrate ions and metal ions can be separated from the cleaning wastewater introduced into the intermediate chamber 10.

電気透析装置1にて硝酸イオン及び金属イオンの両方が分離された後の水は、例えば、硝酸イオンが数百ppm未満であり、また、金属イオンもほとんど検出されないレベルであるので、水洗浄用に再利用することができる。従って、電気透析装置1によれば、洗浄毎に高純度の水が新たに必要となって多量の洗浄廃水が処分されていた従来に対し、低コスト化や環境負荷低減を実現できる。   The water after separation of both nitrate ions and metal ions by the electrodialyzer 1 is, for example, less than several hundred ppm of nitrate ions, and the level at which metal ions are hardly detected. Can be reused. Therefore, according to the electrodialysis apparatus 1, it is possible to realize cost reduction and environmental load reduction as compared with the conventional case where high-purity water is newly required for each washing and a large amount of washing wastewater is disposed.

尚、洗浄廃水は、硝酸イオン及び金属イオンの両方を含むものであれば、本発明の範囲において上記の水洗浄後の水に制限されない。洗浄廃水の電気分解によって得られる水は、水洗浄用とは異なる他の用途にも使用できる。電気分解後に得られる水に残存していてもよい硝酸イオンや金属イオンの濃度も、その得られる水の用途に応じて様々である。   The washing waste water is not limited to the water after washing as long as it contains both nitrate ions and metal ions within the scope of the present invention. Water obtained by electrolysis of washing wastewater can be used for other purposes different from those for washing water. The concentration of nitrate ions and metal ions that may remain in the water obtained after electrolysis also varies depending on the intended use of the water.

図2は、上記の電気透析装置の構成例を示す横断面図である。   FIG. 2 is a cross-sectional view showing a configuration example of the electrodialysis apparatus.

電気透析装置1では、中間室10から陰イオン交換膜21によって隔てられた陽極室20に陽極22が配されて、中間室10から陽イオン交換膜31によって隔離された陰極室30に陰極32が配されており、陽極22及び陰極32が電源11を介して電気的に接続されている。陽極室20には陽極液23が収容され、陰極室30には陰極液33が収容される。   In the electrodialysis apparatus 1, the anode 22 is disposed in the anode chamber 20 separated from the intermediate chamber 10 by the anion exchange membrane 21, and the cathode 32 is disposed in the cathode chamber 30 separated from the intermediate chamber 10 by the cation exchange membrane 31. The anode 22 and the cathode 32 are electrically connected via the power source 11. The anode chamber 20 contains an anolyte 23 and the cathode chamber 30 contains a catholyte 33.

これらのうち、陰イオン交換膜21及び陽イオン交換膜31は市販のものを用いることができる。安価なものは、電解液のpH上昇に対する耐劣化性が十分でないものが多いが、電気透析装置1によれば、電気分解時の陰極液33のpH上昇を抑制できるので、そのような安価なイオン交換樹脂であっても好適に使用できる。陰イオン交換膜21や陽イオン交換膜31には、強度向上のための補強部材が設けられていてもよい。   Of these, commercially available anion exchange membranes 21 and cation exchange membranes 31 can be used. Many inexpensive ones are not sufficiently resistant to deterioration of the pH of the electrolytic solution. However, according to the electrodialysis apparatus 1, the pH increase of the catholyte 33 during electrolysis can be suppressed. Even an ion exchange resin can be suitably used. The anion exchange membrane 21 and the cation exchange membrane 31 may be provided with a reinforcing member for improving the strength.

陽極22及び陰極32は、導電性を有するものであって、ある程度の耐腐食性を有し、かつ電解液中に溶出しにくいものを選択して用いることができる。一例としては、陽極22としてステンレス、陰極32として白金(Pt)をメッキしたチタン(Ti)を用いることができる。陽極22及び陰極32の材料は前記の例に制限されず、金(Au)や銀(Ag)等も電極材料として、又はメッキ材料として使用できる。   The anode 22 and the cathode 32 have conductivity, and have a certain degree of corrosion resistance and are not easily eluted into the electrolytic solution. As an example, titanium (Ti) plated with stainless steel as the anode 22 and platinum (Pt) as the cathode 32 can be used. The materials of the anode 22 and the cathode 32 are not limited to the above examples, and gold (Au), silver (Ag), or the like can be used as an electrode material or a plating material.

陽極液23は、硝酸を含む水溶液である。これは、硝酸洗浄及びその後の水洗浄が定期的に行われる各種の装置では、他の酸に由来するイオン(塩素イオンや硫酸イオン等)もコンタミの原因となるためである。陽極液23における硝酸の濃度は、数質量%程度とすることができ、例えば0.5〜3質量%とすることができる。電気分解の開始時において、陽極液23における硝酸の濃度が上記範囲になるように調節することで、電気分解を好適に進行させることができる。   The anolyte 23 is an aqueous solution containing nitric acid. This is because in various apparatuses in which nitric acid cleaning and subsequent water cleaning are performed periodically, ions derived from other acids (chlorine ions, sulfate ions, etc.) also cause contamination. The concentration of nitric acid in the anolyte 23 can be about several mass%, for example, 0.5 to 3 mass%. By adjusting the concentration of nitric acid in the anolyte 23 to be in the above range at the start of electrolysis, the electrolysis can be suitably advanced.

電気分解により、中間室10から硝酸イオンが陰イオン交換膜21を透過し、陽極液23に濃縮されてくる。陽極液23における硝酸イオンの濃度が過度に高くなると、陰イオン交換膜21に悪影響を及ぼし、また硝酸イオンも陽極室20に移動しにくくなる。よって、電気分解中も継続して硝酸の濃度が上記範囲で維持されるように、所定時間ごとに、陽極液23の一部又は全部を交換・補充するのが好ましい。   By electrolysis, nitrate ions pass through the anion exchange membrane 21 from the intermediate chamber 10 and are concentrated in the anolyte 23. When the concentration of nitrate ions in the anolyte 23 is excessively high, the anion exchange membrane 21 is adversely affected, and nitrate ions are also difficult to move to the anode chamber 20. Therefore, it is preferable to replace or replenish part or all of the anolyte 23 every predetermined time so that the concentration of nitric acid is maintained within the above range even during electrolysis.

ここで、陰極液33は、有機酸を含む水溶液である。これによれば、例えば、陰極液33として硝酸アンモニウムからなるものを用いた場合と比べても、陰極室30での硝酸イオンの還元によるアンモニウムイオンの発生を防止でき、陰極液33のpHの上昇を防止することができる。ひいては、陽イオン交換膜31の劣化や陰極液33の変質をも防止することができる。   Here, the catholyte 33 is an aqueous solution containing an organic acid. According to this, for example, compared with the case where the cathode solution 33 is made of ammonium nitrate, generation of ammonium ions due to reduction of nitrate ions in the cathode chamber 30 can be prevented, and the pH of the cathode solution 33 is increased. Can be prevented. As a result, deterioration of the cation exchange membrane 31 and alteration of the catholyte 33 can also be prevented.

このような有機酸は、一般的に弱酸性を示すものである。このため、有機酸の種類にはよるが、該有機酸を含む陰極液33がpH緩衝機能を発揮し得ることも、陰極液33のpHの上昇を防止することができる一因となっている。   Such an organic acid generally shows weak acidity. For this reason, although it depends on the type of organic acid, the catholyte 33 containing the organic acid can exhibit a pH buffering function, which is one factor that can prevent the pH of the catholyte 33 from increasing. .

しかも、有機酸自体が、比較的その解離・変質を防止しやすいものである上、仮にその極微量が陽イオン交換膜31を透過して中間室10に移動したとしても、各種の無機酸に比べれば、その汚染度も低い。   In addition, the organic acid itself is relatively easy to prevent its dissociation and alteration, and even if a trace amount of the organic acid permeates the cation exchange membrane 31 and moves to the intermediate chamber 10, it can be converted into various inorganic acids. In comparison, its pollution level is low.

そして、陰極液33は、そのような有機酸を、電気伝導率が0.1〜1.0mS/cmの範囲内となるように含むものである。電気伝導率が上記の範囲未満であると、電気分解が好適に進行しない。一方で、電気伝導率が高い方が電解処理には有利に働くが、有機酸は濃度が高くなると溶液の粘性が高くなりやすいので、電気伝導率が上記の範囲以上となるほどに有機酸を含む場合には、金属イオンの移動度やイオン交換膜の透過性に悪影響を及ぼす危険が生じてくる。また、水の電気分解による水の蒸発により有機酸の濃度が更に濃くなって、有機酸の水への溶解度を超えてしまい結晶物が発生し、その結果、かかる結晶物が原因となってイオン交換膜の目詰まりが引き起こされる危険も生じてくる。コスト面からも、電気伝導率が上記の範囲以上となるほどに有機酸の過剰に含有せしめるのは好ましくない。これらを踏まえ、陽極液23にて上記の範囲の電気伝導率が確保されるように有機酸が含まれていることで、電気分解を好適に進行させ、洗浄廃水から硝酸イオン及び金属イオンの両方を分離することができる。   The catholyte 33 contains such an organic acid so that the electric conductivity is in the range of 0.1 to 1.0 mS / cm. When the electrical conductivity is less than the above range, electrolysis does not proceed suitably. On the other hand, the higher electrical conductivity works favorably for electrolytic treatment, but the organic acid tends to increase in viscosity when the concentration is high, so the organic acid is contained so that the electrical conductivity is above the above range. In some cases, there is a risk of adversely affecting the mobility of metal ions and the permeability of the ion exchange membrane. In addition, the concentration of the organic acid further increases due to the evaporation of water due to the electrolysis of the water, and the solubility of the organic acid in water is exceeded, resulting in the formation of crystals. There is also a risk of clogging the exchange membrane. Also from the viewpoint of cost, it is not preferable that the organic acid is excessively contained so that the electric conductivity exceeds the above range. Based on these, since the organic acid is contained in the anolyte 23 so as to ensure the electric conductivity in the above range, the electrolysis is suitably advanced, and both the nitrate ion and the metal ion from the cleaning waste water are obtained. Can be separated.

陰極液33における有機酸の濃度は、5〜20質量%である。有機酸の濃度が上記の範囲未満であると、陰極液33のpHの上昇を防止する機能が得られ難くなる。一方、有機酸の濃度が上記の範囲を超えると、上記の各種の不具合が生じる危険が高くなり、また陰極液33にて上記の範囲の電気伝導率を確保し難くなる。電気分解の開始時において、陰極液33における有機酸の濃度が上記範囲になるように調節することで、陰極液33のpHの上昇を防止しやすくなり、また、電気分解の開始時に陰極液33にて上記の範囲の電気伝導率を確保しやすくもなる。電気分解中も継続して、陰極液33における有機酸の濃度が上記の範囲で維持されるように、所定時間ごとに陰極液33の一部又は全部を交換・補充するのが好ましい。   The concentration of the organic acid in the catholyte 33 is 5 to 20% by mass. When the concentration of the organic acid is less than the above range, it is difficult to obtain a function of preventing the pH of the catholyte 33 from increasing. On the other hand, when the concentration of the organic acid exceeds the above range, there is a high risk that the above various problems will occur, and it becomes difficult to ensure the electrical conductivity in the above range in the catholyte 33. By adjusting the concentration of the organic acid in the catholyte 33 to be in the above range at the start of electrolysis, it becomes easy to prevent the pH of the catholyte 33 from increasing, and the catholyte 33 at the start of electrolysis. It becomes easy to ensure the electrical conductivity of said range. It is preferable to replace or replenish part or all of the catholyte 33 every predetermined time so that the concentration of the organic acid in the catholyte 33 is maintained within the above range continuously during electrolysis.

このような有機酸は、有機化合物の酸であり、ここでいう有機化合物は、一般的に有機化合物と称されているものと同意義である。有機酸は、カルボン酸(RCOOH)、フェノール(ArOH)、エノール(RCH=C(OH)R’)、オキシム(RCH=NOH)、ニトロ化合物(RNO)等の何れも使用可能であるが、上記のように弱酸であればpH緩衝機能を発揮し得るため、全体としての酸性が強くなり過ぎないようにすることが好ましい。有機酸の一例としては、蟻酸、酢酸、酪酸、シュウ酸、クエン酸、アスコルビン酸、酒石酸、安息香酸、乳酸、リンゴ酸等を挙げることができる。また、有機酸としては、入手容易性や溶解性等の観点からは、炭素数が2〜8の有機化合物の酸を用いることが好ましい。 Such an organic acid is an acid of an organic compound, and the organic compound here is synonymous with what is generally called an organic compound. As the organic acid, any of carboxylic acid (RCOOH), phenol (ArOH), enol (RCH = C (OH) R ′), oxime (RCH═NOH), nitro compound (RNO 2 ) and the like can be used. As described above, a weak acid can exert a pH buffer function, so that it is preferable that the acidity as a whole does not become too strong. Examples of organic acids include formic acid, acetic acid, butyric acid, oxalic acid, citric acid, ascorbic acid, tartaric acid, benzoic acid, lactic acid, malic acid and the like. Moreover, as an organic acid, it is preferable to use the acid of the C2-C8 organic compound from viewpoints, such as availability and solubility.

このなかでも、酢酸、クエン酸、アスコルビン酸は、比較的安価で入手可能で、水に溶けやすいので水溶液の電気伝導率も良好な範囲となり、また、毒劇物など有害性もなく環境負荷もない為、より好ましい添加剤と言える。酢酸、クエン酸、アスコルビン酸は、それぞれ5%〜20%の濃度範囲における電気伝導率は以下のようになる。
酢酸:5%〜20%,電気伝導率:0.1〜0.5mS/cm
クエン酸:5%〜20%,電気伝導率:0.5〜1.0mS/cm
アスコルビン酸:5%〜20%,電気伝導率:0.1〜0.5mS/cm
Of these, acetic acid, citric acid, and ascorbic acid are relatively inexpensive and readily available, and are easily soluble in water, so the electrical conductivity of the aqueous solution is also in a good range. Therefore, it can be said that it is a more preferable additive. The electrical conductivity of acetic acid, citric acid, and ascorbic acid in the concentration range of 5% to 20% is as follows.
Acetic acid: 5% to 20%, electric conductivity: 0.1 to 0.5 mS / cm
Citric acid: 5% to 20%, electric conductivity: 0.5 to 1.0 mS / cm
Ascorbic acid: 5% to 20%, electric conductivity: 0.1 to 0.5 mS / cm

上記の有機酸には、該有機酸の水和物も含まれる。有機酸は、1種単独で用いてもよく2種以上を併用してもよい。   The organic acid includes a hydrate of the organic acid. An organic acid may be used individually by 1 type, and may use 2 or more types together.

陰極液33に含まれる酸のうち、上記の有機酸が90質量%以上であり、好ましくは95質量%以上である。言い換えれば、陰極液33に含まれる酸のうち、上記の有機酸以外の酸の存在は、その酸の種類にもよるが10質量%未満程度は許容できる。これによれば、陰極液33のpHの上昇を十分に防止することができる。   Among the acids contained in the catholyte 33, the organic acid is 90% by mass or more, preferably 95% by mass or more. In other words, among the acids contained in the catholyte 33, the presence of an acid other than the above-mentioned organic acid can be allowed to be less than about 10% by mass although it depends on the type of the acid. According to this, an increase in the pH of the catholyte 33 can be sufficiently prevented.

加えて、陰極液33は実質的に無機塩を含まないものである。これによれば、条件や誤差のために完全に除去しきれない無機塩を除いた範囲で無機塩を含まない陰極液33となるので、無機塩に由来する金属イオンが陰極室30から陽イオン交換膜31を透過して中間室10に移動する可能性を排除できる。尚、陰極液33における無機塩は、その無機塩の種類や、硝酸イオン及び金属イオンが分離された後の水の用途等にもよるが、無機塩が一般的なものであり、硝酸イオン及び金属イオンが分離された後の水を上記の水洗浄に再利用しようとするときには、100ppm以下であれば許容でき、この場合、実質的に無機塩を含まないと言うことができる。   In addition, the catholyte 33 is substantially free of inorganic salts. According to this, since the catholyte 33 does not contain an inorganic salt in a range excluding an inorganic salt that cannot be completely removed due to conditions and errors, metal ions derived from the inorganic salt are transferred from the cathode chamber 30 to a cation. The possibility of passing through the exchange membrane 31 and moving to the intermediate chamber 10 can be eliminated. The inorganic salt in the catholyte 33 depends on the kind of the inorganic salt and the use of water after separation of the nitrate ion and the metal ion. When the water after the metal ions are separated is to be reused for the above water washing, 100 ppm or less is acceptable, and in this case, it can be said that it contains substantially no inorganic salt.

このような陰極液33の作製タイミングは制限されず、陰極室30に収容する前の段階で水に有機酸を含有せしめて陰極液33を作製し、これを陰極室30に収容するようにしてもよく、水を陰極室30に収容した後の段階で水に有機酸を含有せしめて陰極液33を作製するようにしてもよい。これらの手法を組み合わせることもできる。上記の陰極液33に使用される水としては、イオン交換水、限外濾過水、逆浸透水、蒸留水等の純水又は超純水等が挙げられるが、前記の例に制限されない。このような水は、上記の陽極液23にも勿論使用可能である。   The production timing of the catholyte 33 is not limited, and the catholyte 33 is produced by adding an organic acid to water in a stage before being accommodated in the cathode chamber 30, and is accommodated in the cathode chamber 30. Alternatively, the catholyte 33 may be produced by adding an organic acid to the water after the water is accommodated in the cathode chamber 30. These methods can be combined. Examples of the water used for the catholyte 33 include pure water such as ion exchange water, ultrafiltration water, reverse osmosis water, and distilled water, or ultrapure water, but are not limited to the above examples. Such water can of course also be used for the anolyte 23 described above.

以上説明した電気透析装置1を用いた電気透析方法は以下のとおりである。すなわち、陽極液23として、硝酸を含む水溶液を用い、陰極液33として、その電気伝導率が0.1〜1.0mS/cmの範囲内となるように有機酸を含む水溶液を用いる。そして、中間室10に、硝酸イオン及び金属イオンを含む洗浄廃水を投入し、あわせて陽極22及び陰極32に電圧を印加して電気分解する。   The electrodialysis method using the electrodialysis apparatus 1 described above is as follows. That is, an aqueous solution containing nitric acid is used as the anolyte 23, and an aqueous solution containing an organic acid is used as the catholyte 33 so that its electric conductivity is in the range of 0.1 to 1.0 mS / cm. Then, cleaning wastewater containing nitrate ions and metal ions is put into the intermediate chamber 10, and electrolysis is performed by applying a voltage to the anode 22 and the cathode 32.

電気分解により、陽極室20では、中間室10から陰イオン交換膜21を透過した硝酸イオンが濃縮されてくる。硝酸イオンが濃縮された陽極液23は、酢酸洗浄のための硝酸として再利用してもよいし、他の用途に用いてもよい。勿論、所定の用途に用いることなく処分してもよい。   In the anode chamber 20, nitrate ions that have passed through the anion exchange membrane 21 from the intermediate chamber 10 are concentrated in the anode chamber 20. The anolyte 23 in which nitrate ions are concentrated may be reused as nitric acid for cleaning acetic acid or may be used for other purposes. Of course, you may dispose without using for a predetermined use.

また、電気分解により、陰極室30では、中間室10から陽イオン交換膜31を透過して金属イオンが金属Mとして陰極32に電着してくる。陰極32は、所定時間ごとに交換・洗浄すればよい。   In addition, due to electrolysis, in the cathode chamber 30, metal ions pass through the cation exchange membrane 31 from the intermediate chamber 10 and are electrodeposited on the cathode 32 as metal M. The cathode 32 may be replaced and cleaned every predetermined time.

このような電気透析方法によれば、陰極液33として有機酸を含む水溶液を用いるので、該陰極液33のpHの上昇を防止することができる。そして、陰極液33にて所定範囲の電気伝導率が確保されているので、電気分解を好適に進行させることができる。以上より、電気分解時の陰極液33のpH上昇を抑制でき、洗浄廃水から硝酸イオン及び金属イオンの両方を分離して高純度の水を好適に得ることができる。   According to such an electrodialysis method, since an aqueous solution containing an organic acid is used as the catholyte 33, an increase in pH of the catholyte 33 can be prevented. And since the electric conductivity of the predetermined range is ensured in the catholyte 33, electrolysis can be advanced suitably. From the above, it is possible to suppress an increase in pH of the catholyte 33 during electrolysis, and it is possible to suitably obtain high-purity water by separating both nitrate ions and metal ions from the washing waste water.

以下、本発明を、実施例に基づいて更に詳述する。ただし、本発明の範囲は、下記の実施例により何ら制限されるものではない。   Hereinafter, the present invention will be described in more detail based on examples. However, the scope of the present invention is not limited at all by the following examples.

(実施例1)
実施形態1に係る電気透析装置1を構成した。このうち、陽極22は、白金(Pt)をメッキしたチタン(Ti)により構成し、陰極32は、ステンレスにより構成した。陽極液23は、1質量%の硝酸水溶液を用い、陰極液33は、本発明での電気伝導率の範囲を満たすように有機酸を含む水溶液を用いた。有機酸はクエン酸を用いた。ここでは、陰極液33の初期pHが約1.27となるように有機酸を含有せしめたところ、クエン酸の初期濃度は20質量%となった。
(Example 1)
An electrodialysis apparatus 1 according to Embodiment 1 was configured. Of these, the anode 22 was made of titanium (Ti) plated with platinum (Pt), and the cathode 32 was made of stainless steel. As the anolyte 23, a 1% by mass nitric acid aqueous solution was used, and as the catholyte 33, an aqueous solution containing an organic acid was used so as to satisfy the electric conductivity range in the present invention. Citric acid was used as the organic acid. Here, when the organic acid was added so that the initial pH of the catholyte 33 was about 1.27, the initial concentration of citric acid was 20% by mass.

尚、操作誤差や検出誤差を除けば、陰極液33に含まれる酸のうち、有機酸は100質量%であり、また陰極液33は実質的に無機酸を含んでいない(以下の実施例2〜5も同様)。   Except for operational errors and detection errors, among the acids contained in the catholyte 33, the organic acid is 100% by mass, and the catholyte 33 does not substantially contain an inorganic acid (Example 2 below). The same applies to ~ 5).

中間室10に投入する洗浄廃水として、硝酸を0.5質量%、亜鉛(Zr)を0.05質量%含むものを用い、陽極22及び陰極32に約24Vの電圧を印加して電気分解を行った。   As cleaning wastewater to be introduced into the intermediate chamber 10, one containing 0.5 mass% nitric acid and 0.05 mass% zinc (Zr) is used, and electrolysis is performed by applying a voltage of about 24 V to the anode 22 and the cathode 32. went.

(実施例2)〜(実施例3)
本発明での電気伝導率の範囲を満たすように有機酸を含有せしめた結果、有機酸の濃度は表1のようになった。また、陰極液33の初期pHの影響を調べるべく、アンモニアを含有せしめて陰極液33の初期pHを表1のように調整した(表1中「NH調整」と表記)。これら以外は実施例1と同様の手法により、電気分解を行った。尚、アンモニアは、陰極液33の電気伝導率やpH変動には影響を与えず、本来的には含有せしめる必要が必ずしもないものである。
(Example 2) to (Example 3)
As a result of containing an organic acid so as to satisfy the electric conductivity range in the present invention, the concentration of the organic acid was as shown in Table 1. Further, in order to examine the influence of the initial pH of the catholyte 33, ammonia was contained and the initial pH of the catholyte 33 was adjusted as shown in Table 1 (indicated as “NH 3 adjustment” in Table 1). Except for these, electrolysis was performed in the same manner as in Example 1. Ammonia does not necessarily affect the electrical conductivity and pH variation of the catholyte 33 and is not necessarily necessarily contained essentially.

(実施例4)
有機酸の種類を表1のように変更した。また、本発明での電気伝導率の範囲を満たしつつ、陰極液33の初期pHが約2.22となるように有機酸を含有せしめた結果、有機酸の濃度は5質量%となった。これら以外は実施例1と同様の手法により、電気分解を行った。
Example 4
The type of organic acid was changed as shown in Table 1. In addition, as a result of containing an organic acid so that the initial pH of the catholyte 33 was about 2.22, while satisfying the electric conductivity range in the present invention, the concentration of the organic acid was 5% by mass. Except for these, electrolysis was performed in the same manner as in Example 1.

(実施例5)
本発明での電気伝導率の範囲を満たしつつ、陰極液33の初期pHが約2.05となるように有機酸を含有せしめた結果、有機酸の濃度は5質量%となった。また、洗浄廃水に含まれる金属イオンの種類を表1のように変更した。これら以外は実施例1と同様の手法により、電気分解を行った。
(Example 5)
As a result of adding an organic acid so that the initial pH of the catholyte 33 was about 2.05 while satisfying the electric conductivity range of the present invention, the concentration of the organic acid was 5% by mass. In addition, the types of metal ions contained in the washing wastewater were changed as shown in Table 1. Except for these, electrolysis was performed in the same manner as in Example 1.

(比較例1)
実施例1〜5と異なり、陰極液33として有機酸を含む水溶液を用いなかった。すなわち、陰極液として硝酸アンモニウムを用い、その初期pHが約4.58となるように硝酸アンモニウムを含有せしめた結果、該硝酸アンモニウムの濃度は1質量%となった。また、陽極液23は、約2〜3質量%の硝酸水溶液を用いた。そして、中間室10に投入する洗浄廃水として、硝酸を0.2質量%、亜鉛(Zn)を0.02質量%含むものを用い、実施例1の同様の条件で電気分解を行った。
(Comparative Example 1)
Unlike Examples 1 to 5, an aqueous solution containing an organic acid was not used as the catholyte 33. That is, ammonium nitrate was used as the catholyte, and ammonium nitrate was added so that the initial pH was about 4.58. As a result, the concentration of ammonium nitrate was 1% by mass. As the anolyte 23, an aqueous nitric acid solution of about 2 to 3% by mass was used. Then, as the cleaning wastewater to be put into the intermediate chamber 10, electrolysis was performed under the same conditions as in Example 1 using 0.2% by mass of nitric acid and 0.02% by mass of zinc (Zn).

(比較例2)
また、陰極液の初期pHの影響を調べるべく、アンモニアを含有せしめて陰極液の初期pHを表1のように調整した(表1中「NH調整」と表記)。それ以外は比較例1と同様の手法により、電気分解を行った。
(Comparative Example 2)
In order to investigate the influence of the initial pH of the catholyte, the initial pH of the catholyte was adjusted as shown in Table 1 by adding ammonia (indicated as “NH 3 adjustment” in Table 1). Otherwise, electrolysis was performed in the same manner as in Comparative Example 1.

Figure 2016043290
Figure 2016043290

(試験例1)
電気分解を行いながら、中間室10内の洗浄廃水と、陰極室30内の陰極液33と、を一定時間ごとに採取し、該洗浄廃水の硝酸イオン濃度と、該陰極液33の金属イオン濃度と、を計測して推移を観察した。実施例1〜3での結果を図3(a)〜(c)に示し、実施例4〜5での結果を図4(a)〜(b)に示し、比較例1〜2での結果を図5(a)〜(b)に示す。
(Test Example 1)
While performing the electrolysis, the cleaning wastewater in the intermediate chamber 10 and the catholyte 33 in the cathode chamber 30 are collected at regular intervals, and the nitrate ion concentration of the cleaning wastewater and the metal ion concentration of the catholyte 33 are collected. And observed the transition. The results in Examples 1 to 3 are shown in FIGS. 3 (a) to 3 (c), the results in Examples 4 to 5 are shown in FIGS. 4 (a) to (b), and the results in Comparative Examples 1 and 2 are shown. Is shown in FIGS.

図5(a)〜(b)に示す比較例1〜2では、電気分解の開始直後に陰極液の大きなpH上昇が見られたため、数時間で電気分解を中断せざるを得なかった。これは、陰極室にて硝酸アンモニウムに由来する硝酸イオンや、陽極室から陰イオン交換膜21、中間室10及び陽イオン交換膜31を介して陰極室30まで拡散した極微量の硝酸イオンが還元され、アンモニウムイオンとともに水酸化物成分が生成したためであると推察される。このような水酸化物成分が生成すると、イオン交換膜に付着して該イオン交換膜の劣化が引き起こされ、また陰極液自体の変質にもつながる。   In Comparative Examples 1 and 2 shown in FIGS. 5A and 5B, since a large pH increase of the catholyte was observed immediately after the start of electrolysis, the electrolysis had to be interrupted within a few hours. This is because nitrate ions derived from ammonium nitrate in the cathode chamber and trace amounts of nitrate ions diffused from the anode chamber to the cathode chamber 30 via the anion exchange membrane 21, the intermediate chamber 10 and the cation exchange membrane 31 are reduced. This is presumed to be due to the formation of hydroxide components together with ammonium ions. When such a hydroxide component is generated, it adheres to the ion exchange membrane to cause deterioration of the ion exchange membrane, and also leads to alteration of the catholyte itself.

これに対し、図3(a)〜(c)及び図4(a)〜(b)に示す実施例1〜5では、電気分解を開始してから数時間のうちに、中間室10内の洗浄廃水における硝酸濃度の大きな低下が見られ、更に電気分解を継続することで、24時間後には硝酸濃度を100ppm以下まで減少させることができることが分かった。特に実施例1〜2及び5では、24時間後には硝酸濃度を60ppm以下まで減少させることができることが分かった。そして、電気分解の間、陰極室30における陰極液33のpH上昇を十分に防止でき、ひいては陽イオン交換膜31の劣化や陰極液33の変質を好適に防止できることが分かった。そして、このような結果は、有機酸の種類、陰極液33の初期pH、及び洗浄廃水に含まれる金属イオンの種類等に関係なく得られることも分かった。   On the other hand, in Examples 1-5 shown in Drawing 3 (a)-(c) and Drawing 4 (a)-(b), in the middle room 10 within several hours after starting electrolysis. It was found that the nitric acid concentration in the washing wastewater was greatly reduced, and the nitric acid concentration could be reduced to 100 ppm or less after 24 hours by continuing the electrolysis. In particular, in Examples 1-2 and 5, it was found that the nitric acid concentration could be reduced to 60 ppm or less after 24 hours. Further, it was found that during electrolysis, the pH increase of the catholyte 33 in the cathode chamber 30 can be sufficiently prevented, and thus the deterioration of the cation exchange membrane 31 and the alteration of the catholyte 33 can be suitably prevented. It was also found that such a result can be obtained regardless of the type of organic acid, the initial pH of the catholyte 33, the type of metal ions contained in the washing waste water, and the like.

(試験例2)
上記の試験例1の後、陰極液から引き上げた陰極32を目視観察した。陰極32に金属の電着が確認できた場合を「○」とし、金属の電着が確認されなかった場合を「×」と評価した。結果を表2に示す。
(Test Example 2)
After Test Example 1, the cathode 32 pulled up from the catholyte was visually observed. A case where metal electrodeposition was confirmed on the cathode 32 was evaluated as “◯”, and a case where metal electrodeposition was not confirmed was evaluated as “x”. The results are shown in Table 2.

Figure 2016043290
Figure 2016043290

比較例1〜2では、金属の電着が確認されなかった。これは、上記のように、開始数時間で電気分解を中断せざるを得ず、陰極32に金属が電着する程度まで電気分解を継続できなかったためである。   In Comparative Examples 1 and 2, metal electrodeposition was not confirmed. This is because, as described above, the electrolysis must be interrupted within a few hours from the start, and the electrolysis could not be continued to the extent that metal is electrodeposited on the cathode 32.

一方、実施例1〜5では、陰極32に金属の電着が確認できた。そして、このような結果は、有機酸の種類、陰極液33の初期pH、及び洗浄廃水に含まれる金属イオンの種類等に関係なく得られることも分かった。   On the other hand, in Examples 1 to 5, metal electrodeposition was confirmed on the cathode 32. It was also found that such a result can be obtained regardless of the type of organic acid, the initial pH of the catholyte 33, the type of metal ions contained in the washing waste water, and the like.

以上、試験例1及び2によれば、実施例1〜5に例示される本実施形態の洗浄廃水の電気透析装置1及び電気透析方法により、電気分解時の陰極液のpH上昇を抑制でき、洗浄廃水から硝酸イオン及び金属イオンの両方を分離して高純度の水を好適に得ることができることが分かった。電気分解により得られる高純度の水を、水洗浄用に再利用すれば、低コスト化や環境負荷低減の観点で改善を図ることもできる。   As described above, according to Test Examples 1 and 2, by the electrodialysis apparatus 1 and the electrodialysis method of the washing wastewater of this embodiment exemplified in Examples 1 to 5, the pH increase of the catholyte during electrolysis can be suppressed. It was found that high purity water can be suitably obtained by separating both nitrate ions and metal ions from the washing waste water. If high-purity water obtained by electrolysis is reused for water washing, improvement can be achieved from the viewpoint of cost reduction and environmental load reduction.

(他の実施形態)
以上、本発明の一実施形態を説明したが、本発明の基本的構成は上記のものに限定されるものではない。例えば、上記の電気透析装置1を複数用意し、これを電気的に連結するようにしてもよい。電気透析装置1の各構成の形状や大きさも、図示しているものはあくまで一例であり、本発明の範囲において適宜変更可能である。
(Other embodiments)
Although one embodiment of the present invention has been described above, the basic configuration of the present invention is not limited to the above. For example, a plurality of the above electrodialysis apparatuses 1 may be prepared and electrically connected. The shape and size of each component of the electrodialysis apparatus 1 are also merely shown as examples, and can be appropriately changed within the scope of the present invention.

1 電気透析装置、 10 中間室、 11 電源、 20 陽極室、 21 陰イオン交換膜、 22 陽極、 23 陽極液、 30 陰極室、 31 陽イオン交換膜、 32 陰極、 33 陰極液   DESCRIPTION OF SYMBOLS 1 Electrodialyzer, 10 Middle chamber, 11 Power supply, 20 Anode chamber, 21 Anion exchange membrane, 22 Anode, 23 Anolyte, 30 Cathode chamber, 31 Cation exchange membrane, 32 Cathode, 33 Catholyte

Claims (5)

硝酸イオン及び金属イオンが含まれる洗浄廃水を投入するための中間室と、前記中間室から陰イオン交換膜によって隔てられ、陽極液を収容するための陽極室と、前記中間室から陽イオン交換膜によって隔てられ、陰極液を収容するための陰極室と、を有し、
前記陽極液が、硝酸を含む水溶液であり、
前記陰極液が、その電気伝導率が0.1〜1.0mS/cmの範囲内となるように有機酸を含む水溶液であること
を特徴とする洗浄廃水の電気透析装置。
An intermediate chamber for introducing cleaning waste water containing nitrate ions and metal ions, an anion chamber separated from the intermediate chamber by an anion exchange membrane and containing an anolyte, and a cation exchange membrane from the intermediate chamber A cathode chamber for containing the catholyte, separated by
The anolyte is an aqueous solution containing nitric acid;
An electrodialyzer for washing wastewater, wherein the catholyte is an aqueous solution containing an organic acid so that its electric conductivity is in the range of 0.1 to 1.0 mS / cm.
前記陰極液における前記有機酸の濃度が5〜20質量%であること
を特徴とする請求項1に記載の洗浄廃水の電気透析装置。
The electrodialysis apparatus for washing wastewater according to claim 1, wherein the concentration of the organic acid in the catholyte is 5 to 20% by mass.
前記陰極液に含まれる酸のうち前記有機酸が90質量%以上であること
を特徴とする請求項1又は2に記載の洗浄廃水の電気透析装置。
The electrodialysis apparatus for washing wastewater according to claim 1 or 2, wherein the organic acid in the acid contained in the catholyte is 90% by mass or more.
前記陰極液が実質的に無機塩を含まないこと
を特徴とする請求項1又は2に記載の洗浄廃水の電気透析装置。
The electrodialyzer for washing wastewater according to claim 1 or 2, wherein the catholyte contains substantially no inorganic salt.
硝酸イオン及び金属イオンが含まれる洗浄廃水を投入するための中間室と、前記中間室から陰イオン交換膜によって隔てられ、陽極液を収容するための陽極室と、前記中間室から陽イオン交換膜によって隔てられ、陰極液を収容するための陰極室と、を有する電気透析装置を用いるとともに、
前記陽極液として、硝酸を含む水溶液を用い、
前記陰極液として、その電気伝導率が0.1〜1.0mS/cmの範囲内となるように有機酸を含む水溶液を用いること
を特徴とする洗浄廃水の電気透析方法。
An intermediate chamber for introducing cleaning waste water containing nitrate ions and metal ions, an anion chamber separated from the intermediate chamber by an anion exchange membrane and containing an anolyte, and a cation exchange membrane from the intermediate chamber An electrodialyzer having a cathode chamber for containing the catholyte, separated by
As the anolyte, an aqueous solution containing nitric acid is used,
An electrodialysis method for washing wastewater, wherein an aqueous solution containing an organic acid is used as the catholyte so that the electric conductivity is in the range of 0.1 to 1.0 mS / cm.
JP2014167944A 2014-08-20 2014-08-20 Washing wastewater electrodialysis apparatus and electrodialysis method Active JP6347547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014167944A JP6347547B2 (en) 2014-08-20 2014-08-20 Washing wastewater electrodialysis apparatus and electrodialysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014167944A JP6347547B2 (en) 2014-08-20 2014-08-20 Washing wastewater electrodialysis apparatus and electrodialysis method

Publications (2)

Publication Number Publication Date
JP2016043290A true JP2016043290A (en) 2016-04-04
JP6347547B2 JP6347547B2 (en) 2018-06-27

Family

ID=55634413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014167944A Active JP6347547B2 (en) 2014-08-20 2014-08-20 Washing wastewater electrodialysis apparatus and electrodialysis method

Country Status (1)

Country Link
JP (1) JP6347547B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164143A1 (en) * 2017-03-10 2018-09-13 株式会社アストム Electrodialysis apparatus and reverse electrodialysis apparatus
CN114534501A (en) * 2022-01-04 2022-05-27 中国原子能科学研究院 Electrodialysis device and method for separating nitric acid and acetic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128110A (en) * 1982-01-26 1983-07-30 Toyo Sanso Kagaku Kk Production of potable water containing calcium ion
JPH06312185A (en) * 1993-04-30 1994-11-08 Nippon Intetsuku Kk Electrolytic water forming apparatus
JPH08966A (en) * 1994-06-24 1996-01-09 Chlorine Eng Corp Ltd Purification by electrodialysis
JPH08206661A (en) * 1995-02-08 1996-08-13 Permelec Electrode Ltd Method and apparatus for electrochemical recovery of nitrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128110A (en) * 1982-01-26 1983-07-30 Toyo Sanso Kagaku Kk Production of potable water containing calcium ion
JPH06312185A (en) * 1993-04-30 1994-11-08 Nippon Intetsuku Kk Electrolytic water forming apparatus
JPH08966A (en) * 1994-06-24 1996-01-09 Chlorine Eng Corp Ltd Purification by electrodialysis
JPH08206661A (en) * 1995-02-08 1996-08-13 Permelec Electrode Ltd Method and apparatus for electrochemical recovery of nitrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164143A1 (en) * 2017-03-10 2018-09-13 株式会社アストム Electrodialysis apparatus and reverse electrodialysis apparatus
JPWO2018164143A1 (en) * 2017-03-10 2020-01-16 株式会社アストム Electrodialysis and reverse electrodialysis
CN114534501A (en) * 2022-01-04 2022-05-27 中国原子能科学研究院 Electrodialysis device and method for separating nitric acid and acetic acid

Also Published As

Publication number Publication date
JP6347547B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
WO2013080326A1 (en) Method of regenerating plating solution
JP6347547B2 (en) Washing wastewater electrodialysis apparatus and electrodialysis method
JP2015108609A (en) METHOD AND APPARATUS FOR ELECTRODEPOSITION OF Co AND Fe
JP2007123569A (en) Manufacturing method of aluminum electrode foil of electrolytic capacitor and its manufacturing device
JP6838051B2 (en) How to make alkaline and acidic water
US11872603B2 (en) Method for cleaning a synthetic surface
EP3168332A1 (en) Electrolytic stripping agent for jig
WO2008079954A1 (en) A method of cleaning and maintaining a membrane used with an aqueous stream
JP6524516B2 (en) Electrodialysis apparatus, electrodialysis method and etching apparatus using the same
KR20220118443A (en) Method and system for depositing a zinc-nickel alloy on a substrate
WO2014156761A1 (en) Method for removing rare earth impurities in nickel electroplating solution
JP3705756B2 (en) Electrolytic solution and electrolyzed water produced by the electrolytic solution
TWI690624B (en) Method for electrolytically depositing a zinc-nickel alloy layer on at least a substrate to be treated
JP4517177B2 (en) Treatment method of electroless nickel plating solution
JPS6252624B2 (en)
JP4991655B2 (en) Electrodialysis machine
JPH11165174A (en) Method for controlling energization of ionic water generator
JPS6376884A (en) Method for regenerating chromate treatment liquid
JP6300304B2 (en) Electrolytic etching method
WO2016013562A1 (en) Method for producing surface-treated steel plate
JPH08966A (en) Purification by electrodialysis
JP6111704B2 (en) Pure water production apparatus and operation method thereof
JP5916807B2 (en) Manufacturing method of surface-treated steel sheet
WO2024116456A1 (en) Method and device for regenerating plating composition
JP5867178B2 (en) Method for producing electrogalvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6347547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250