JP2016040005A - Blood flow information generation apparatus, blood flow information generation method, and program - Google Patents

Blood flow information generation apparatus, blood flow information generation method, and program Download PDF

Info

Publication number
JP2016040005A
JP2016040005A JP2015248099A JP2015248099A JP2016040005A JP 2016040005 A JP2016040005 A JP 2016040005A JP 2015248099 A JP2015248099 A JP 2015248099A JP 2015248099 A JP2015248099 A JP 2015248099A JP 2016040005 A JP2016040005 A JP 2016040005A
Authority
JP
Japan
Prior art keywords
blood vessel
image
blood flow
cross
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015248099A
Other languages
Japanese (ja)
Other versions
JP6021289B2 (en
Inventor
秋葉 正博
Masahiro Akiba
正博 秋葉
晃敏 吉田
Akitoshi Yoshida
晃敏 吉田
福間 康文
Yasufumi Fukuma
康文 福間
秀光 野老
Hidemitsu Tokoro
秀光 野老
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Asahikawa Medical University NUC
Original Assignee
Topcon Corp
Asahikawa Medical University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp, Asahikawa Medical University NUC filed Critical Topcon Corp
Priority to JP2015248099A priority Critical patent/JP6021289B2/en
Publication of JP2016040005A publication Critical patent/JP2016040005A/en
Application granted granted Critical
Publication of JP6021289B2 publication Critical patent/JP6021289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform blood flow measurement with high accuracy.SOLUTION: A blood flow information generation apparatus comprises an acquisition unit, a blood vessel region identification unit, and a blood flow information generation unit. The acquisition unit acquires a tomographic image showing time-series variation of a form of a cross section crossing a target blood vessel of a living body, which is formed by executing optical coherence tomography (OCT) to the cross section, and a phase image showing time-series variation of a phase difference. The blood vessel region identification unit identifies blood vessel regions corresponding to the target blood vessel for each of the tomographic image and the phase image. The blood flow information generation unit generates blood flow information on the target blood vessel on the basis of the blood vessel region of the tomographic image and the time-series variation of the phase difference in the blood vessel region of the phase image.SELECTED DRAWING: Figure 3

Description

この発明は、光コヒーレンストモグラフィ(Optical Coherence Tomography:OCT)を用いて得られる画像に基づいて血流計測を行うための装置、方法、及びプログラムに関する。   The present invention relates to an apparatus, a method, and a program for performing blood flow measurement based on an image obtained using optical coherence tomography (OCT).

近年、レーザ光源等からの光ビームを用いて被測定物体の表面形態や内部形態を表す画像を形成するOCTが注目を集めている。OCTは、X線CTのような人体に対する侵襲性を持たないことから、特に医療分野や生物学分野における応用の展開が期待されている。たとえば眼科分野においては、眼底や角膜等の画像を形成する装置が実用化されている。   In recent years, OCT that forms an image representing the surface form or internal form of an object to be measured using a light beam from a laser light source or the like has attracted attention. Since OCT has no invasiveness to the human body like X-ray CT, it is expected to be applied particularly in the medical field and the biological field. For example, in the field of ophthalmology, an apparatus for forming an image of the fundus oculi or cornea has been put into practical use.

特許文献1には、いわゆる「フーリエドメインOCT(Fourier Domain OCT)」の手法を用いた装置が開示されている。すなわち、この装置は、被測定物体に対して低コヒーレンス光のビームを照射し、その反射光と参照光とを重ね合わせて干渉光を生成し、この干渉光のスペクトル強度分布を取得してフーリエ変換を施すことにより被測定物体の深度方向(z方向)の形態を画像化するものである。更に、この装置は、光ビーム(信号光)をz方向に直交する1方向(x方向)に走査するガルバノミラーを備え、それにより被測定物体の所望の測定対象領域の画像を形成するようになっている。この装置により形成される画像は、光ビームの走査方向(x方向)に沿った深度方向(z方向)の2次元断層像となる。なお、この手法は、特にスペクトラルドメイン(Spectral Domain)とも呼ばれる。   Patent Document 1 discloses an apparatus using a so-called “Fourier Domain OCT (Fourier Domain OCT)” technique. That is, this apparatus irradiates the object to be measured with a beam of low coherence light, superimposes the reflected light and the reference light to generate interference light, acquires the spectral intensity distribution of the interference light, and performs Fourier transform. By performing the conversion, the form of the object to be measured in the depth direction (z direction) is imaged. Further, this apparatus includes a galvanometer mirror that scans a light beam (signal light) in one direction (x direction) orthogonal to the z direction, thereby forming an image of a desired measurement target region of the object to be measured. It has become. An image formed by this apparatus is a two-dimensional tomographic image in the depth direction (z direction) along the scanning direction (x direction) of the light beam. Note that this technique is also called a spectral domain.

特許文献2には、信号光を水平方向(x方向)及び垂直方向(y方向)に走査(スキャン)することにより水平方向の2次元断層像を複数形成し、これら複数の断層像に基づいて測定範囲の3次元の断層情報を取得して画像化する技術が開示されている。この3次元画像化としては、たとえば、複数の断層像を垂直方向に並べて表示させる方法や(スタックデータなどと呼ばれる)、スタックデータに基づくボリュームデータ(ボクセルデータ)にレンダリング処理を施して3次元画像を形成する方法などがある。   In Patent Document 2, a plurality of two-dimensional tomographic images in the horizontal direction are formed by scanning (scanning) the signal light in the horizontal direction (x direction) and the vertical direction (y direction), and based on the plurality of tomographic images. A technique for acquiring and imaging three-dimensional tomographic information of a measurement range is disclosed. As this three-dimensional imaging, for example, a method of displaying a plurality of tomographic images side by side in a vertical direction (referred to as stack data or the like), volume data (voxel data) based on the stack data is rendered, and a three-dimensional image is rendered. There is a method of forming.

特許文献3、4には、他のタイプのOCT装置が開示されている。特許文献3には、被測定物体に照射される光の波長を走査(波長掃引)し、各波長の光の反射光と参照光とを重ね合わせて得られる干渉光を検出してスペクトル強度分布を取得し、それに対してフーリエ変換を施すことにより被測定物体の形態を画像化するOCT装置が記載されている。このようなOCT装置は、スウェプトソース(Swept Source)タイプなどと呼ばれる。スウェプトソースタイプはフーリエドメインタイプの一種である。   Patent Documents 3 and 4 disclose other types of OCT apparatuses. In Patent Document 3, the wavelength of light irradiated to a measured object is scanned (wavelength sweep), and interference intensity obtained by superimposing reflected light of each wavelength and reference light is detected to detect spectral intensity distribution. And an OCT apparatus for imaging the form of an object to be measured by performing Fourier transform on the obtained image. Such an OCT apparatus is called a swept source type. The swept source type is a kind of Fourier domain type.

また、特許文献4には、所定のビーム径を有する光を被測定物体に照射し、その反射光と参照光とを重ね合わせて得られる干渉光の成分を解析することにより、光の進行方向に直交する断面における被測定物体の画像を形成するOCT装置が記載されている。このようなOCT装置は、フルフィールド(full−field)タイプ、或いはインファス(en−face)タイプなどと呼ばれる。   In Patent Document 4, the traveling direction of light is obtained by irradiating the object to be measured with light having a predetermined beam diameter, and analyzing the component of interference light obtained by superimposing the reflected light and the reference light. An OCT apparatus for forming an image of an object to be measured in a cross-section orthogonal to is described. Such an OCT apparatus is called a full-field type or an en-face type.

特許文献5には、OCTを眼科分野に適用した構成が開示されている。なお、OCTが応用される以前には、被検眼を観察するための装置として眼底カメラやスリットランプなどが使用されていた(たとえば特許文献6、特許文献7を参照)。眼底カメラは被検眼に照明光を照射し、その眼底反射光を受光することで眼底を撮影する装置である。スリットランプは、スリット光を用いて角膜の光切片を切り取ることにより角膜の断面の画像を取得する装置である。   Patent Document 5 discloses a configuration in which OCT is applied to the ophthalmic field. Prior to the application of OCT, a fundus camera, a slit lamp, or the like was used as an apparatus for observing the eye to be examined (see, for example, Patent Document 6 and Patent Document 7). A fundus camera is a device that shoots the fundus by illuminating the subject's eye with illumination light and receiving the fundus reflection light. A slit lamp is a device that acquires an image of a cross-section of the cornea by cutting off a light section of the cornea using slit light.

OCTを用いた装置は、高精細の画像を取得できる点、更には断層像や3次元画像を取得できる点などにおいて、眼底カメラ等に対して優位性を持つ。   An apparatus using OCT has an advantage over a fundus camera or the like in that a high-definition image can be acquired, and further, a tomographic image or a three-dimensional image can be acquired.

このように、OCTを用いた装置は被検眼の様々な部位の観察に適用可能であり、また高精細な画像を取得できることから、様々な眼科疾患の診断への応用がなされてきている。   As described above, an apparatus using OCT can be applied to observation of various parts of an eye to be examined, and can acquire high-definition images, and thus has been applied to diagnosis of various ophthalmic diseases.

また、OCTは、被測定物体の形態の計測だけでなく、生体内の血管を流れる血液の血流計測にも用いられる(たとえば特許文献8、9を参照)。OCTを用いた血流計測は、眼底血流の測定などに応用されている。   The OCT is used not only for measuring the form of the object to be measured but also for measuring blood flow of blood flowing through a blood vessel in a living body (for example, see Patent Documents 8 and 9). Blood flow measurement using OCT is applied to fundus blood flow measurement and the like.

特開平11−325849号公報JP 11-325849 A 特開2002−139421号公報JP 2002-139421 A 特開2007−24677号公報JP 2007-24677 A 特開2006−153838号公報JP 2006-153838 A 特開2008−73099公報JP 2008-73099 A 特開平9−276232号公報JP-A-9-276232 特開2008−259544号公報JP 2008-259544 A 特開2009−165710号公報JP 2009-165710 A 特表2010−523286号公報Special table 2010-523286

血流の変化は早期疾患においても生じるので、その診断に血流計測を用いることが可能と考えられる。しかし、従来の血流計測では、早期診断に用いるのに十分な確度を実現することは困難であった。   Since changes in blood flow also occur in early diseases, it is considered possible to use blood flow measurement for the diagnosis. However, with the conventional blood flow measurement, it has been difficult to achieve sufficient accuracy for use in early diagnosis.

そこで、この発明は、血流計測を高い確度で行うことが可能な技術を提供することを目的とする。   Accordingly, an object of the present invention is to provide a technique capable of performing blood flow measurement with high accuracy.

実施形態の血流情報生成装置は、生体の注目血管に交差する断面に対して光コヒーレンストモグラフィ(OCT)を実行することにより形成された、前記断面における形態の時系列変化を表す断層像と位相差の時系列変化を表す位相画像とを取得する取得部と、前記断層像及び前記位相画像のそれぞれについて、前記注目血管に対応する血管領域を特定する血管領域特定部と、前記断層像の前記血管領域と前記位相画像の前記血管領域における位相差の時系列変化とに基づいて、前記注目血管に関する血流情報を生成する血流情報生成部とを有する。
他の実施形態の血流情報生成装置は、生体の注目血管に交差する断面に対して光コヒーレンストモグラフィ(OCT)を実行することにより得られたデータを取得する取得部と、前記取得部により取得された前記データに基づいて、前記断面における形態の時系列変化を表す断層像と位相差の時系列変化を表す位相画像とを形成する画像形成部と、前記断層像及び前記位相画像のそれぞれについて、前記注目血管に対応する血管領域を特定する血管領域特定部と、前記断層像の前記血管領域と前記位相画像の前記血管領域における位相差の時系列変化とに基づいて、前記注目血管に関する血流情報を生成する血流情報生成部とを有する。
The blood flow information generation device according to the embodiment includes a tomographic image representing a time-series change in morphology in the cross section formed by executing optical coherence tomography (OCT) on a cross section intersecting a target blood vessel of a living body. An acquisition unit that acquires a phase image representing a time-series change in phase difference; a blood vessel region specifying unit that specifies a blood vessel region corresponding to the target blood vessel for each of the tomographic image and the phase image; and A blood flow information generation unit configured to generate blood flow information related to the blood vessel of interest based on the blood vessel region and a time-series change in phase difference in the blood vessel region of the phase image;
The blood flow information generation device according to another embodiment includes an acquisition unit that acquires data obtained by executing optical coherence tomography (OCT) on a cross section that intersects a target blood vessel of a living body, and the acquisition unit. Based on the acquired data, an image forming unit that forms a tomographic image representing a time-series change in form in the cross section and a phase image representing a time-series change in phase difference, and each of the tomographic image and the phase image A blood vessel region specifying unit that specifies a blood vessel region corresponding to the blood vessel of interest, and a time-series change in phase difference between the blood vessel region of the tomographic image and the blood vessel region of the phase image. A blood flow information generation unit that generates blood flow information.

この発明によれば、位相画像と同じ断面の断層像と位相差の時系列変化とを用いて血流計測を行うように構成されているので、高い確度の血流計測を実現できる。   According to the present invention, the blood flow measurement is performed using the tomographic image having the same cross section as the phase image and the time-series change of the phase difference, so that the blood flow measurement with high accuracy can be realized.

実施形態に係る眼底観察装置(光画像計測装置)の構成の一例を表す概略図である。It is a schematic diagram showing an example of composition of a fundus oculi observation device (optical image measurement device) concerning an embodiment. 実施形態に係る眼底観察装置の構成の一例を表す概略図である。It is a schematic diagram showing an example of composition of a fundus oculi observation device concerning an embodiment. 実施形態に係る眼底観察装置の構成の一例を表す概略ブロック図である。It is a schematic block diagram showing an example of composition of a fundus oculi observation device concerning an embodiment. 実施形態に係る眼底観察装置の構成の一例を表す概略ブロック図である。It is a schematic block diagram showing an example of composition of a fundus oculi observation device concerning an embodiment. 実施形態に係る眼底観察装置の動作の一例を表す概略図である。It is the schematic showing an example of operation | movement of the fundus observation apparatus which concerns on embodiment. 実施形態に係る眼底観察装置の動作の一例を表す概略図である。It is the schematic showing an example of operation | movement of the fundus observation apparatus which concerns on embodiment. 実施形態に係る眼底観察装置の動作例を表すフローチャートである。It is a flowchart showing the operation example of the fundus oculi observation device concerning an embodiment.

この発明に係る光画像計測装置の実施形態の一例について、図面を参照しながら詳細に説明する。この発明に係る光画像計測装置は、OCTを用いて生体の断層像や3次元画像を形成する。この明細書では、OCTによって取得される画像をOCT画像と総称することがある。また、OCT画像を形成するための計測動作をOCT計測と呼ぶことがある。なお、この明細書に記載された文献の記載内容を、以下の実施形態の内容として適宜援用することが可能である。   An example of an embodiment of an optical image measurement device according to the present invention will be described in detail with reference to the drawings. The optical image measurement device according to the present invention forms a tomographic image or a three-dimensional image of a living body using OCT. In this specification, images acquired by OCT may be collectively referred to as OCT images. In addition, a measurement operation for forming an OCT image may be referred to as OCT measurement. In addition, it is possible to use suitably the description content of the literature described in this specification as the content of the following embodiment.

以下の実施形態では、生体の計測対象を被検眼(眼底)とし、フーリエドメインタイプのOCTを適用して眼底のOCT計測を行う眼底観察装置について説明する。特に、実施形態に係る眼底観察装置は、特許文献5に開示された装置と同様に、スペクトラルドメインOCTの手法を用いて眼底のOCT画像及び眼底像の双方を取得可能である。なお、スペクトラルドメイン以外のタイプ、たとえばスウェプトソースOCTの手法を用いる光画像計測装置に対して、この発明に係る構成を適用することも可能である。また、この実施形態ではOCT装置と眼底カメラとを組み合わせた装置について説明するが、眼底カメラ以外の眼底撮影装置、たとえばSLO(Scanning Laser Ophthalmoscope)、スリットランプ、眼科手術用顕微鏡などに、この実施形態に係る構成を有するOCT装置を組み合わせることも可能である。また、この実施形態に係る構成を、単体のOCT装置に組み込むことも可能である。また、眼底以外の生体部位を計測するOCT装置に、この実施形態の構成を適用することもできる。このような生体部位は、血流状態の検査対象となる任意の部位である。   In the following embodiments, a fundus oculi observation device that performs OCT measurement of the fundus using a Fourier domain type OCT with a measurement target of a living body as an eye to be examined (fundus) will be described. In particular, the fundus oculi observation device according to the embodiment can acquire both the fundus OCT image and the fundus oculi image using the spectral domain OCT technique, similarly to the device disclosed in Patent Document 5. Note that the configuration according to the present invention can be applied to an optical image measurement apparatus using a type other than the spectral domain, for example, a swept source OCT technique. In this embodiment, an apparatus combining an OCT apparatus and a fundus camera will be described. However, this embodiment may be applied to a fundus imaging apparatus other than a fundus camera, for example, an SLO (Scanning Laser Ophthalmoscope), a slit lamp, an ophthalmic surgical microscope, and the like. It is also possible to combine an OCT apparatus having the configuration according to the above. In addition, the configuration according to this embodiment can be incorporated into a single OCT apparatus. The configuration of this embodiment can also be applied to an OCT apparatus that measures a biological part other than the fundus. Such a living body part is an arbitrary part to be inspected for a blood flow state.

[構成]
図1に示すように、眼底観察装置1は、眼底カメラユニット2、OCTユニット100及び演算制御ユニット200を含んで構成される。眼底カメラユニット2は、従来の眼底カメラとほぼ同様の光学系を有する。OCTユニット100には、眼底のOCT画像を取得するための光学系が設けられている。演算制御ユニット200は、各種の演算処理や制御処理等を実行するコンピュータを具備している。
[Constitution]
As shown in FIG. 1, the fundus oculi observation device 1 includes a fundus camera unit 2, an OCT unit 100, and an arithmetic control unit 200. The retinal camera unit 2 has almost the same optical system as a conventional retinal camera. The OCT unit 100 is provided with an optical system for acquiring an OCT image of the fundus. The arithmetic control unit 200 includes a computer that executes various arithmetic processes and control processes.

〔眼底カメラユニット〕
図1に示す眼底カメラユニット2には、被検眼Eの眼底Efの表面形態を表す2次元画像(眼底像)を取得するための光学系が設けられている。眼底像には、観察画像や撮影画像などが含まれる。観察画像は、たとえば、近赤外光を用いて所定のフレームレートで形成されるモノクロの動画像である。撮影画像は、たとえば、可視光をフラッシュ発光して得られるカラー画像、又は近赤外光若しくは可視光を照明光として用いたモノクロの静止画像であってもよい。眼底カメラユニット2は、これら以外の画像、たとえばフルオレセイン蛍光画像やインドシアニングリーン蛍光画像や自発蛍光画像などを取得可能に構成されていてもよい。
[Fundus camera unit]
The fundus camera unit 2 shown in FIG. 1 is provided with an optical system for obtaining a two-dimensional image (fundus image) representing the surface form of the fundus oculi Ef of the eye E to be examined. The fundus image includes an observation image and a captured image. The observation image is, for example, a monochrome moving image formed at a predetermined frame rate using near infrared light. The captured image may be, for example, a color image obtained by flashing visible light, or a monochrome still image using near infrared light or visible light as illumination light. The fundus camera unit 2 may be configured to be able to acquire images other than these, such as a fluorescein fluorescent image, an indocyanine green fluorescent image, a spontaneous fluorescent image, and the like.

眼底カメラユニット2には、被検者の顔を支持するための顎受けや額当てが設けられている。更に、眼底カメラユニット2には、照明光学系10と撮影光学系30が設けられている。照明光学系10は眼底Efに照明光を照射する。撮影光学系30は、この照明光の眼底反射光を撮像装置(CCDイメージセンサ(単にCCDと呼ぶことがある)35、38。)に導く。また、撮影光学系30は、OCTユニット100からの信号光を眼底Efに導くとともに、眼底Efを経由した信号光をOCTユニット100に導く。   The retinal camera unit 2 is provided with a chin rest and a forehead support for supporting the subject's face. Further, the fundus camera unit 2 is provided with an illumination optical system 10 and a photographing optical system 30. The illumination optical system 10 irradiates the fundus oculi Ef with illumination light. The photographing optical system 30 guides the fundus reflection light of the illumination light to an imaging device (CCD image sensor (sometimes simply referred to as a CCD) 35, 38). The imaging optical system 30 guides the signal light from the OCT unit 100 to the fundus oculi Ef and guides the signal light passing through the fundus oculi Ef to the OCT unit 100.

照明光学系10の観察光源11は、たとえばハロゲンランプにより構成される。観察光源11から出力された光(観察照明光)は、曲面状の反射面を有する反射ミラー12により反射され、集光レンズ13を経由し、可視カットフィルタ14を透過して近赤外光となる。更に、観察照明光は、撮影光源15の近傍にて一旦集束し、ミラー16により反射され、リレーレンズ17、18、絞り19及びリレーレンズ20を経由する。そして、観察照明光は、孔開きミラー21の周辺部(孔部の周囲の領域)にて反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efを照明する。なお、観察光源としてLED(Light Emitting Diode)を用いることも可能である。   The observation light source 11 of the illumination optical system 10 is constituted by a halogen lamp, for example. The light (observation illumination light) output from the observation light source 11 is reflected by the reflection mirror 12 having a curved reflection surface, passes through the condensing lens 13, passes through the visible cut filter 14, and is converted into near infrared light. Become. Further, the observation illumination light is once converged in the vicinity of the photographing light source 15, reflected by the mirror 16, and passes through the relay lenses 17 and 18, the diaphragm 19 and the relay lens 20. Then, the observation illumination light is reflected at the peripheral portion (region around the hole portion) of the aperture mirror 21, passes through the dichroic mirror 46, and is refracted by the objective lens 22 to illuminate the fundus oculi Ef. An LED (Light Emitting Diode) can also be used as the observation light source.

観察照明光の眼底反射光は、対物レンズ22により屈折され、ダイクロイックミラー46を透過し、孔開きミラー21の中心領域に形成された孔部を通過し、ダイクロイックミラー55を透過し、合焦レンズ31を経由し、ミラー32により反射される。更に、この眼底反射光は、ハーフミラー40を透過し、ダイクロイックミラー33により反射され、集光レンズ34によりCCDイメージセンサ35の受光面に結像される。CCDイメージセンサ35は、たとえば所定のフレームレートで眼底反射光を検出する。表示装置3には、CCDイメージセンサ35により検出された眼底反射光に基づく画像(観察画像)が表示される。なお、撮影光学系のピントが前眼部に合わせられている場合、被検眼Eの前眼部の観察画像が表示される。   The fundus reflection light of the observation illumination light is refracted by the objective lens 22, passes through the dichroic mirror 46, passes through the hole formed in the central region of the perforated mirror 21, passes through the dichroic mirror 55, and is a focusing lens. It is reflected by the mirror 32 via 31. Further, the fundus reflection light passes through the half mirror 40, is reflected by the dichroic mirror 33, and forms an image on the light receiving surface of the CCD image sensor 35 by the condenser lens 34. The CCD image sensor 35 detects fundus reflected light at a predetermined frame rate, for example. On the display device 3, an image (observation image) based on fundus reflection light detected by the CCD image sensor 35 is displayed. When the photographing optical system is focused on the anterior segment, an observation image of the anterior segment of the eye E is displayed.

撮影光源15は、たとえばキセノンランプにより構成される。撮影光源15から出力された光(撮影照明光)は、観察照明光と同様の経路を通って眼底Efに照射される。撮影照明光の眼底反射光は、観察照明光のそれと同様の経路を通ってダイクロイックミラー33まで導かれ、ダイクロイックミラー33を透過し、ミラー36により反射され、集光レンズ37によりCCDイメージセンサ38の受光面に結像される。表示装置3には、CCDイメージセンサ38により検出された眼底反射光に基づく画像(撮影画像)が表示される。なお、観察画像を表示する表示装置3と撮影画像を表示する表示装置3は、同一のものであってもよいし、異なるものであってもよい。また、被検眼Eを赤外光で照明して同様の撮影を行う場合には、赤外の撮影画像が表示される。また、撮影光源としてLEDを用いることも可能である。   The imaging light source 15 is constituted by, for example, a xenon lamp. The light (imaging illumination light) output from the imaging light source 15 is applied to the fundus oculi Ef through the same path as the observation illumination light. The fundus reflection light of the imaging illumination light is guided to the dichroic mirror 33 through the same path as that of the observation illumination light, passes through the dichroic mirror 33, is reflected by the mirror 36, and is reflected by the condenser lens 37 of the CCD image sensor 38. An image is formed on the light receiving surface. On the display device 3, an image (captured image) based on fundus reflection light detected by the CCD image sensor 38 is displayed. Note that the display device 3 that displays the observation image and the display device 3 that displays the captured image may be the same or different. In addition, when similar imaging is performed by illuminating the eye E with infrared light, an infrared captured image is displayed. It is also possible to use an LED as a photographing light source.

LCD(Liquid Crystal Display)39は、固視標や視力測定用指標を表示する。固視標は被検眼Eを固視させるための指標であり、眼底撮影時やOCT計測時などに使用される。   An LCD (Liquid Crystal Display) 39 displays a fixation target and an eyesight measurement index. The fixation target is an index for fixing the eye E to be examined, and is used at the time of fundus photographing or OCT measurement.

LCD39から出力された光は、その一部がハーフミラー40にて反射され、ミラー32に反射され、合焦レンズ31及びダイクロイックミラー55を経由し、孔開きミラー21の孔部を通過し、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投影される。   A part of the light output from the LCD 39 is reflected by the half mirror 40, reflected by the mirror 32, passes through the focusing lens 31 and the dichroic mirror 55, passes through the hole of the perforated mirror 21, and is dichroic. The light passes through the mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef.

LCD39の画面上における固視標の表示位置を変更することにより、被検眼Eの固視位置を変更できる。被検眼Eの固視位置としては、たとえば従来の眼底カメラと同様に、眼底Efの黄斑部を中心とする画像を取得するための位置や、視神経乳頭を中心とする画像を取得するための位置や、黄斑部と視神経乳頭との間の眼底中心を中心とする画像を取得するための位置などがある。また、固視標の表示位置を任意に変更することも可能である。   By changing the display position of the fixation target on the screen of the LCD 39, the fixation position of the eye E can be changed. As the fixation position of the eye E, for example, a position for acquiring an image centered on the macular portion of the fundus oculi Ef, or a position for acquiring an image centered on the optic disc as in the case of a conventional fundus camera And a position for acquiring an image centered on the fundus center between the macula and the optic disc. It is also possible to arbitrarily change the display position of the fixation target.

更に、眼底カメラユニット2には、従来の眼底カメラと同様にアライメント光学系50とフォーカス光学系60が設けられている。アライメント光学系50は、被検眼Eに対する装置光学系の位置合わせ(アライメント)を行うための指標(アライメント指標)を生成する。フォーカス光学系60は、眼底Efに対してフォーカス(ピント)を合わせるための指標(スプリット指標)を生成する。   Further, the fundus camera unit 2 is provided with an alignment optical system 50 and a focus optical system 60 as in a conventional fundus camera. The alignment optical system 50 generates an index (alignment index) for performing alignment (alignment) of the apparatus optical system with respect to the eye E. The focus optical system 60 generates an index (split index) for focusing on the fundus oculi Ef.

アライメント光学系50のLED51から出力された光(アライメント光)は、絞り52、53及びリレーレンズ54を経由してダイクロイックミラー55により反射され、孔開きミラー21の孔部を通過し、ダイクロイックミラー46を透過し、対物レンズ22により被検眼Eの角膜に投影される。   The light (alignment light) output from the LED 51 of the alignment optical system 50 is reflected by the dichroic mirror 55 via the apertures 52 and 53 and the relay lens 54, passes through the hole of the aperture mirror 21, and reaches the dichroic mirror 46. And is projected onto the cornea of the eye E by the objective lens 22.

アライメント光の角膜反射光は、対物レンズ22、ダイクロイックミラー46及び上記孔部を経由し、その一部がダイクロイックミラー55を透過し、合焦レンズ31を通過し、ミラー32により反射され、ハーフミラー40を透過し、ダイクロイックミラー33に反射され、集光レンズ34によりCCDイメージセンサ35の受光面に投影される。CCDイメージセンサ35による受光像(アライメント指標)は、観察画像とともに表示装置3に表示される。ユーザは、従来の眼底カメラと同様の操作を行ってアライメントを実施する。また、演算制御ユニット200がアライメント指標の位置を解析して光学系を移動させることによりアライメントを行ってもよい(オートアライメント機能)。   The cornea-reflected light of the alignment light passes through the objective lens 22, the dichroic mirror 46, and the hole, part of which passes through the dichroic mirror 55, passes through the focusing lens 31, and is reflected by the mirror 32. 40 is reflected by the dichroic mirror 33 and projected onto the light-receiving surface of the CCD image sensor 35 by the condenser lens 34. The light reception image (alignment index) by the CCD image sensor 35 is displayed on the display device 3 together with the observation image. The user performs alignment by performing the same operation as that of a conventional fundus camera. Further, the arithmetic control unit 200 may perform alignment by analyzing the position of the alignment index and moving the optical system (auto-alignment function).

フォーカス調整を行う際には、照明光学系10の光路上に反射棒67の反射面が斜設される。フォーカス光学系60のLED61から出力された光(フォーカス光)は、リレーレンズ62を通過し、スプリット指標板63により2つの光束に分離され、二孔絞り64を通過し、ミラー65に反射され、集光レンズ66により反射棒67の反射面に一旦結像されて反射される。更に、フォーカス光は、リレーレンズ20を経由し、孔開きミラー21に反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投影される。   When performing the focus adjustment, the reflecting surface of the reflecting rod 67 is obliquely provided on the optical path of the illumination optical system 10. The light (focus light) output from the LED 61 of the focus optical system 60 passes through the relay lens 62, is separated into two light beams by the split indicator plate 63, passes through the two-hole aperture 64, and is reflected by the mirror 65, The light is focused on the reflecting surface of the reflecting bar 67 by the condenser lens 66 and reflected. Further, the focus light passes through the relay lens 20, is reflected by the perforated mirror 21, passes through the dichroic mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef.

フォーカス光の眼底反射光は、アライメント光の角膜反射光と同様の経路を通ってCCDイメージセンサ35により検出される。CCDイメージセンサ35による受光像(スプリット指標)は、観察画像とともに表示装置3に表示される。演算制御ユニット200は、従来と同様に、スプリット指標の位置を解析して合焦レンズ31及びフォーカス光学系60を移動させてピント合わせを行う(オートフォーカス機能)。また、スプリット指標を視認しつつ手動でピント合わせを行ってもよい。   The fundus reflection light of the focus light is detected by the CCD image sensor 35 through the same path as the cornea reflection light of the alignment light. A light reception image (split index) by the CCD image sensor 35 is displayed on the display device 3 together with the observation image. The arithmetic control unit 200 analyzes the position of the split index and moves the focusing lens 31 and the focus optical system 60 to perform focusing as in the conventional case (autofocus function). Alternatively, focusing may be performed manually while visually checking the split indicator.

ダイクロイックミラー46は、眼底撮影用の光路からOCT計測用の光路を分岐させている。つまり、眼底撮影用の光路とOCT計測用の光路はダイクロイックミラー46により同軸に構成され、ダイクロイックミラー46よりも被検眼E側の光路を共有している。ダイクロイックミラー46は、OCT計測に用いられる波長帯の光を反射し、眼底撮影用の光を透過させる。このOCT計測用の光路には、OCTユニット100側から順に、コリメータレンズユニット40と、光路長変更部41と、ガルバノスキャナ42と、合焦レンズ43と、ミラー44と、リレーレンズ45とが設けられている。   The dichroic mirror 46 branches the optical path for OCT measurement from the optical path for fundus photography. That is, the optical path for fundus imaging and the optical path for OCT measurement are configured coaxially by the dichroic mirror 46 and share the optical path on the eye E side with respect to the dichroic mirror 46. The dichroic mirror 46 reflects light in a wavelength band used for OCT measurement and transmits light for fundus photographing. In this optical path for OCT measurement, a collimator lens unit 40, an optical path length changing unit 41, a galvano scanner 42, a focusing lens 43, a mirror 44, and a relay lens 45 are provided in this order from the OCT unit 100 side. It has been.

光路長変更部41は、図1に示す矢印の方向に移動可能とされ、OCT計測用の光路の長さを変更する。この光路長の変更は、被検眼Eの眼軸長に応じた光路長の補正や、干渉状態の調整などに利用される。光路長変更部41は、たとえばコーナーキューブと、これを移動する機構とを含んで構成される。   The optical path length changing unit 41 is movable in the direction of the arrow shown in FIG. 1 and changes the length of the optical path for OCT measurement. This change in the optical path length is used for correcting the optical path length according to the axial length of the eye E or adjusting the interference state. The optical path length changing unit 41 includes, for example, a corner cube and a mechanism for moving the corner cube.

ガルバノスキャナ42は、OCT計測用の光路を通過する光(信号光LS)の進行方向を変更する。それにより、眼底Efを信号光LSで走査することができる。ガルバノスキャナ42は、たとえば、信号光LSをx方向に走査するガルバノミラーと、y方向に走査するガルバノミラーと、これらを独立に駆動する機構とを含んで構成される。それにより、信号光LSをxy平面上の任意の方向に走査することができる。ガルバノスキャナ42は「走査部」の一例である。   The galvano scanner 42 changes the traveling direction of light (signal light LS) passing through the optical path for OCT measurement. Thereby, the fundus oculi Ef can be scanned with the signal light LS. The galvano scanner 42 includes, for example, a galvano mirror that scans the signal light LS in the x direction, a galvano mirror that scans in the y direction, and a mechanism that drives these independently. Thereby, the signal light LS can be scanned in an arbitrary direction on the xy plane. The galvano scanner 42 is an example of a “scanning unit”.

〔OCTユニット〕
図2を参照しつつOCTユニット100の構成の一例を説明する。OCTユニット100には、眼底EfのOCT画像を取得するための光学系が設けられている。この光学系は、従来のスペクトラルドメインタイプのOCT装置と同様の構成を有する。すなわち、この光学系は、低コヒーレンス光を参照光と信号光に分割し、眼底Efを経由した信号光と参照光路を経由した参照光とを干渉させて干渉光を生成し、この干渉光のスペクトル成分を検出するように構成されている。この検出結果(検出信号)は演算制御ユニット200に送られる。
[OCT unit]
An example of the configuration of the OCT unit 100 will be described with reference to FIG. The OCT unit 100 is provided with an optical system for acquiring an OCT image of the fundus oculi Ef. This optical system has the same configuration as a conventional spectral domain type OCT apparatus. That is, this optical system divides low-coherence light into reference light and signal light, and generates interference light by causing interference between the signal light passing through the fundus oculi Ef and the reference light passing through the reference optical path. It is configured to detect spectral components. This detection result (detection signal) is sent to the arithmetic control unit 200.

なお、スウェプトソースタイプのOCT装置の場合には、低コヒーレンス光源を出力する光源の代わりに波長掃引光源が設けられるとともに、干渉光をスペクトル分解する光学部材が設けられない。一般に、OCTユニット100の構成については、光コヒーレンストモグラフィのタイプに応じた公知の技術を任意に適用することができる。   In the case of a swept source type OCT apparatus, a wavelength swept light source is provided instead of a light source that outputs a low coherence light source, and an optical member that spectrally decomposes interference light is not provided. In general, for the configuration of the OCT unit 100, a known technique according to the type of optical coherence tomography can be arbitrarily applied.

光源ユニット101は広帯域の低コヒーレンス光L0を出力する。低コヒーレンス光L0は、たとえば、近赤外領域の波長帯(約800nm〜900nm程度)を含み、数十マイクロメートル程度の時間的コヒーレンス長を有する。なお、人眼では視認できない波長帯、たとえば1040〜1060nm程度の中心波長を有する近赤外光を低コヒーレンス光L0として用いてもよい。   The light source unit 101 outputs a broadband low-coherence light L0. The low coherence light L0 includes, for example, a near-infrared wavelength band (about 800 nm to 900 nm) and has a temporal coherence length of about several tens of micrometers. Note that near-infrared light having a wavelength band that cannot be visually recognized by the human eye, for example, a center wavelength of about 1040 to 1060 nm, may be used as the low-coherence light L0.

光源ユニット101は、スーパールミネセントダイオード(Super Luminescent Diode:SLD)や、LEDや、SOA(Semiconductor Optical Amplifier)等の光出力デバイスを含んで構成される。   The light source unit 101 includes a light output device such as a super luminescent diode (SLD), an LED, or an SOA (Semiconductor Optical Amplifier).

光源ユニット101から出力された低コヒーレンス光L0は、光ファイバ102によりファイバカプラ103に導かれて信号光LSと参照光LRに分割される。   The low-coherence light L0 output from the light source unit 101 is guided to the fiber coupler 103 by the optical fiber 102 and split into the signal light LS and the reference light LR.

参照光LRは、光ファイバ104により導かれて光減衰器(アッテネータ)105に到達する。光減衰器105は、公知の技術を用いて、演算制御ユニット200の制御の下、光ファイバ104に導かれる参照光LRの光量を自動で調整する。光減衰器105により光量が調整された参照光LRは、光ファイバ104により導かれて偏波調整器(偏波コントローラ)106に到達する。偏波調整器106は、たとえば、ループ状にされた光ファイバ104に対して外部から応力を与えることで、光ファイバ104内を導かれる参照光LRの偏光状態を調整する装置である。なお、偏波調整器106の構成はこれに限定されるものではなく、任意の公知技術を用いることが可能である。偏波調整器106により偏光状態が調整された参照光LRは、ファイバカプラ109に到達する。   The reference light LR is guided by the optical fiber 104 and reaches the optical attenuator (attenuator) 105. The optical attenuator 105 automatically adjusts the amount of the reference light LR guided to the optical fiber 104 under the control of the arithmetic control unit 200 using a known technique. The reference light LR whose light amount has been adjusted by the optical attenuator 105 is guided by the optical fiber 104 and reaches the polarization adjuster (polarization controller) 106. The polarization adjuster 106 is, for example, a device that adjusts the polarization state of the reference light LR guided in the optical fiber 104 by applying a stress from the outside to the optical fiber 104 in a loop shape. The configuration of the polarization adjuster 106 is not limited to this, and any known technique can be used. The reference light LR whose polarization state is adjusted by the polarization adjuster 106 reaches the fiber coupler 109.

ファイバカプラ103により生成された信号光LSは、光ファイバ107により導かれ、コリメータレンズユニット105により平行光束とされる。更に、信号光LSは、光路長変更部41、ガルバノスキャナ42、合焦レンズ43、ミラー44、及びリレーレンズ45を経由してダイクロイックミラー46に到達する。そして、信号光LSは、ダイクロイックミラー46により反射され、対物レンズ11により屈折されて眼底Efに照射される。信号光LSは、眼底Efの様々な深さ位置において散乱(反射を含む)される。眼底Efによる信号光LSの後方散乱光は、往路と同じ経路を逆向きに進行してファイバカプラ103に導かれ、光ファイバ108を経由してファイバカプラ109に到達する。   The signal light LS generated by the fiber coupler 103 is guided by the optical fiber 107 and converted into a parallel light beam by the collimator lens unit 105. Further, the signal light LS reaches the dichroic mirror 46 via the optical path length changing unit 41, the galvano scanner 42, the focusing lens 43, the mirror 44, and the relay lens 45. Then, the signal light LS is reflected by the dichroic mirror 46, refracted by the objective lens 11, and irradiated onto the fundus oculi Ef. The signal light LS is scattered (including reflection) at various depth positions of the fundus oculi Ef. The backscattered light of the signal light LS from the fundus oculi Ef travels in the same direction as the forward path in the reverse direction, is guided to the fiber coupler 103, and reaches the fiber coupler 109 via the optical fiber 108.

ファイバカプラ109は、信号光LSの後方散乱光と、ファイバカプラ104を経由した参照光LRとを干渉させる。これにより生成された干渉光LCは、光ファイバ110により導かれて出射端111から出射される。更に、干渉光LCは、コリメータレンズ112により平行光束とされ、回折格子113により分光(スペクトル分解)され、集光レンズ114により集光されてCCDイメージセンサ115の受光面に投影される。なお、図2に示す回折格子118は透過型であるが、たとえば反射型の回折格子など、他の形態の分光素子を用いることも可能である。   The fiber coupler 109 causes the backscattered light of the signal light LS to interfere with the reference light LR that has passed through the fiber coupler 104. The interference light LC generated thereby is guided by the optical fiber 110 and emitted from the emission end 111. Further, the interference light LC is converted into a parallel light beam by the collimator lens 112, dispersed (spectral decomposition) by the diffraction grating 113, condensed by the condenser lens 114, and projected onto the light receiving surface of the CCD image sensor 115. The diffraction grating 118 shown in FIG. 2 is a transmission type, but other types of spectroscopic elements such as a reflection type diffraction grating can also be used.

CCDイメージセンサ115は、たとえばラインセンサであり、分光された干渉光LCの各スペクトル成分を検出して電荷に変換する。CCDイメージセンサ115は、この電荷を蓄積して検出信号を生成し、これを演算制御ユニット200に送る。   The CCD image sensor 115 is a line sensor, for example, and detects each spectral component of the split interference light LC and converts it into electric charges. The CCD image sensor 115 accumulates this electric charge, generates a detection signal, and sends it to the arithmetic control unit 200.

この実施形態ではマイケルソン型の干渉計を採用しているが、たとえばマッハツェンダー型など任意のタイプの干渉計を適宜に採用することが可能である。また、CCDイメージセンサに代えて、他の形態のイメージセンサ、たとえばCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどを用いることが可能である。   In this embodiment, a Michelson type interferometer is employed, but any type of interferometer such as a Mach-Zehnder type can be appropriately employed. Further, in place of the CCD image sensor, another form of image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor can be used.

〔演算制御ユニット〕
演算制御ユニット200の構成について説明する。演算制御ユニット200は、CCDイメージセンサ115から入力される検出信号を解析して眼底EfのOCT画像を形成する。そのための演算処理は、従来のスペクトラルドメインタイプのOCT装置と同様である。
[Calculation control unit]
The configuration of the arithmetic control unit 200 will be described. The arithmetic control unit 200 analyzes the detection signal input from the CCD image sensor 115 and forms an OCT image of the fundus oculi Ef. The arithmetic processing for this is the same as that of a conventional spectral domain type OCT apparatus.

また、演算制御ユニット200は、眼底カメラユニット2、表示装置3及びOCTユニット100の各部を制御する。たとえば演算制御ユニット200は、眼底EfのOCT画像を表示装置3に表示させる。   The arithmetic control unit 200 controls each part of the fundus camera unit 2, the display device 3, and the OCT unit 100. For example, the arithmetic control unit 200 displays an OCT image of the fundus oculi Ef on the display device 3.

また、眼底カメラユニット2の制御として、演算制御ユニット200は、観察光源11、撮影光源15及びLED51、61の動作制御、LCD39の動作制御、合焦レンズ31、43の移動制御、反射棒67の移動制御、フォーカス光学系60の移動制御、光路長変更部41の移動制御、ガルバノスキャナ42の動作制御などを行う。   As the control of the fundus camera unit 2, the arithmetic control unit 200 controls the operation of the observation light source 11, the imaging light source 15 and the LEDs 51 and 61, the operation control of the LCD 39, the movement control of the focusing lenses 31 and 43, and the reflector 67. Movement control, movement control of the focus optical system 60, movement control of the optical path length changing unit 41, operation control of the galvano scanner 42, and the like are performed.

また、OCTユニット100の制御として、演算制御ユニット200は、光源ユニット101の動作制御、光減衰器105の動作制御、偏波調整器106の動作制御、CCDイメージセンサ120の動作制御などを行う。   As control of the OCT unit 100, the arithmetic control unit 200 performs operation control of the light source unit 101, operation control of the optical attenuator 105, operation control of the polarization adjuster 106, operation control of the CCD image sensor 120, and the like.

演算制御ユニット200は、たとえば、従来のコンピュータと同様に、マイクロプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイスなどを含んで構成される。ハードディスクドライブ等の記憶装置には、眼底観察装置1を制御するためのコンピュータプログラムが記憶されている。演算制御ユニット200は、各種の回路基板、たとえばOCT画像を形成するための回路基板を備えていてもよい。また、演算制御ユニット200は、キーボードやマウス等の操作デバイス(入力デバイス)や、LCD等の表示デバイスを備えていてもよい。   The arithmetic control unit 200 includes, for example, a microprocessor, a RAM, a ROM, a hard disk drive, a communication interface, etc., as in a conventional computer. A computer program for controlling the fundus oculi observation device 1 is stored in a storage device such as a hard disk drive. The arithmetic control unit 200 may include various circuit boards, for example, a circuit board for forming an OCT image. The arithmetic control unit 200 may include an operation device (input device) such as a keyboard and a mouse, and a display device such as an LCD.

眼底カメラユニット2、表示装置3、OCTユニット100及び演算制御ユニット200は、一体的に(つまり単一の筺体内に)構成されていてもよいし、2つ以上の筐体に別れて構成されていてもよい。   The fundus camera unit 2, the display device 3, the OCT unit 100, and the calculation control unit 200 may be configured integrally (that is, in a single housing) or separated into two or more housings. It may be.

〔制御系〕
眼底観察装置1の制御系の構成について図3及び図4を参照しつつ説明する。
[Control system]
The configuration of the control system of the fundus oculi observation device 1 will be described with reference to FIGS.

(制御部)
眼底観察装置1の制御系は、制御部210を中心に構成される。制御部210は、たとえば、前述のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイス等を含んで構成される。制御部210には、主制御部211と記憶部212が設けられている。
(Control part)
The control system of the fundus oculi observation device 1 is configured around the control unit 210. The control unit 210 includes, for example, the aforementioned microprocessor, RAM, ROM, hard disk drive, communication interface, and the like. The control unit 210 is provided with a main control unit 211 and a storage unit 212.

(主制御部)
主制御部211は前述の各種制御を行う。特に、主制御部211は、眼底カメラユニット2の合焦駆動部31A、光路長変更部41及びガルバノスキャナ42、更にOCTユニット100の光源ユニット101、光減衰器105及び偏波調整器106を制御する。
(Main control unit)
The main control unit 211 performs the various controls described above. In particular, the main control unit 211 controls the focusing drive unit 31A, the optical path length changing unit 41, and the galvano scanner 42 of the fundus camera unit 2, and further the light source unit 101, the optical attenuator 105, and the polarization adjuster 106 of the OCT unit 100. To do.

合焦駆動部80は、合焦レンズ31を光軸方向に移動させる。それにより、撮影光学系30の合焦位置が変更される。なお、主制御部211は、図示しない光学系駆動部を制御して、眼底カメラユニット2に設けられた光学系を3次元的に移動させることもできる。この制御は、アライメントやトラッキングにおいて用いられる。トラッキングとは、被検眼Eの眼球運動に合わせて装置光学系を移動させるものである。トラッキングを行う場合には、事前にアライメントとピント合わせが実行される。トラッキングは、装置光学系の位置を眼球運動に追従させることにより、アライメントとピントが合った好適な位置関係を維持する機能である。   The focusing drive unit 80 moves the focusing lens 31 in the optical axis direction. Thereby, the focus position of the photographic optical system 30 is changed. The main control unit 211 can also move an optical system provided in the fundus camera unit 2 in a three-dimensional manner by controlling an optical system drive unit (not shown). This control is used in alignment and tracking. Tracking is to move the apparatus optical system in accordance with the eye movement of the eye E. When tracking is performed, alignment and focusing are performed in advance. Tracking is a function of maintaining a suitable positional relationship in which the alignment and focus are achieved by causing the position of the apparatus optical system to follow the eye movement.

また、主制御部211は、記憶部212にデータを書き込む処理や、記憶部212からデータを読み出す処理を行う。   Further, the main control unit 211 performs processing for writing data into the storage unit 212 and processing for reading data from the storage unit 212.

(記憶部)
記憶部212は、各種のデータを記憶する。記憶部212に記憶されるデータとしては、たとえば、OCT画像の画像データ、眼底像の画像データ、被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報などの被検眼に関する情報を含む。また、記憶部212には、眼底観察装置1を動作させるための各種プログラムやデータが記憶されている。
(Memory part)
The storage unit 212 stores various data. Examples of the data stored in the storage unit 212 include OCT image image data, fundus image data, and examined eye information. The eye information includes information about the subject such as patient ID and name, and information about the eye such as left / right eye identification information. The storage unit 212 stores various programs and data for operating the fundus oculi observation device 1.

(画像形成部)
画像形成部220は、CCDイメージセンサ115からの検出信号に基づいて、眼底Efの断層像の画像データと位相画像の画像データとを形成する。これらの画像については後述する。画像形成部220は、たとえば、前述の回路基板やマイクロプロセッサを含んで構成される。なお、この明細書では、「画像データ」と、それに基づく「画像」とを同一視することがある。画像形成部220は、断層像形成部221と位相画像形成部222を有する。
(Image forming part)
The image forming unit 220 forms tomographic image data and phase image data of the fundus oculi Ef based on the detection signal from the CCD image sensor 115. These images will be described later. The image forming unit 220 includes, for example, the circuit board and the microprocessor described above. In this specification, “image data” and “image” based thereon may be identified. The image forming unit 220 includes a tomographic image forming unit 221 and a phase image forming unit 222.

この実施形態では、眼底Efに対して2種類の走査(第1走査及び第2走査)を行う。第1走査では、眼底Efの注目血管に交差する第1断面を信号光LSで反復的に走査する。第2走査では、この注目血管に交差し、かつ、第1断面の近傍に位置する第2断面を信号光LSで走査する。ここで、第1断面と第2断面は、注目血管の走行方向に対して直交するように向き付けられることが望ましい。図5の眼底像Dに示すように、この実施形態では、眼底Efの視神経乳頭Daの近傍に、1つの第1断面C0と、2つの第2断面C1、C2が所定の注目血管Dbに交差するように設定される。2つの第2断面C1、C2は、その一方が第1断面C0に対して注目血管Dbの上流側に位置し、他方が下流側に位置する。   In this embodiment, two types of scanning (first scanning and second scanning) are performed on the fundus oculi Ef. In the first scan, the first cross section that intersects the target blood vessel of the fundus oculi Ef is repeatedly scanned with the signal light LS. In the second scan, the second cross section that intersects the blood vessel of interest and is located in the vicinity of the first cross section is scanned with the signal light LS. Here, the first cross section and the second cross section are preferably oriented so as to be orthogonal to the traveling direction of the blood vessel of interest. As shown in the fundus oculi image D of FIG. 5, in this embodiment, one first cross section C0 and two second cross sections C1 and C2 intersect a predetermined blood vessel Db in the vicinity of the optic disc Da of the fundus oculi Ef. Set to do. One of the two second cross sections C1 and C2 is located upstream of the target blood vessel Db with respect to the first cross section C0, and the other is located downstream.

なお、第1走査は、患者の心臓の少なくとも1心周期の間にわたって実行されることが望ましい。それにより、心臓の全ての時相における血流情報が得られる。なお、第1走査を実行する時間は、あらかじめ設定された一定の時間であってもよいし、患者ごとに又は検査毎に設定された時間であってもよい。前者の場合、一般的な心周期よりも長い時間が設定される(たとえば2秒間)。後者の場合、患者の心電図等の検査データを参照することとなる。ここで、心周期以外のファクターを考慮することも可能である。このファクターの例としては、検査に掛かる時間(患者への負担)、ガルバノスキャナ42の応答時間(走査間隔)、CCD115の応答時間(走査間隔)などがある。   Note that the first scan is preferably performed over at least one cardiac cycle of the patient's heart. Thereby, blood flow information in all time phases of the heart is obtained. The time for executing the first scan may be a predetermined time set in advance, or may be a time set for each patient or for each examination. In the former case, a time longer than a general cardiac cycle is set (for example, 2 seconds). In the latter case, examination data such as a patient's electrocardiogram is referred to. Here, factors other than the cardiac cycle can be considered. Examples of this factor include time required for examination (a burden on the patient), response time of the galvano scanner 42 (scan interval), response time of the CCD 115 (scan interval), and the like.

(断層像形成部)
断層像形成部221は、第1走査により得られる干渉光LCの検出結果に基づいて、第1断面における形態の時系列変化を表す断層像(第1断層像)を形成する。この処理についてより詳しく説明する。第1走査は、上記のように第1断面C0を繰り返し走査するものである。断層像形成部221には、第1走査に応じて、OCTユニット100のCCD115から検出信号が逐次入力される。断層像形成部221は、第1断層像の各走査に対応する検出信号に基づいて、第1断面C0の1枚の断層像を形成する。断層像形成部221は、この処理を第1走査の反復回数だけ繰り返すことで、時系列に沿った一連の断層像を形成する。ここで、これら断層像を複数の群に分割し、各群の断層像を重ね合わせて画質の向上を図ってもよい。
(Tomographic image forming part)
The tomographic image forming unit 221 forms a tomographic image (first tomographic image) representing a time-series change in form in the first cross section based on the detection result of the interference light LC obtained by the first scanning. This process will be described in more detail. In the first scanning, the first cross section C0 is repeatedly scanned as described above. Detection signals are sequentially input from the CCD 115 of the OCT unit 100 to the tomographic image forming unit 221 in accordance with the first scan. The tomographic image forming unit 221 forms one tomographic image of the first cross section C0 based on the detection signal corresponding to each scan of the first tomographic image. The tomographic image forming unit 221 forms a series of tomographic images along a time series by repeating this process as many times as the first scan is repeated. Here, these tomographic images may be divided into a plurality of groups, and the tomographic images of each group may be superimposed to improve the image quality.

また、断層像形成部221は、第2断面C1、C2に対する第2走査により得られる干渉光LCの検出結果に基づいて、第2断面C1における形態を表す断層像(第2断層像)と、第2断面C2における形態を表す断層像(第2断層像)とを形成する。この処理は、第1断層像の場合と同様にして実行される。なお、第1断層像は時系列に沿う一連の断層像であるが、第2断層像は1枚の断層像であってもよい。また、第2断層像は、第2断面C1、C2のそれぞれを複数回走査して得られた複数の断層像を重ね合わせて画質の向上を図ったものであってもよい。   In addition, the tomographic image forming unit 221 includes a tomographic image (second tomographic image) representing a form in the second cross section C1, based on the detection result of the interference light LC obtained by the second scanning with respect to the second cross sections C1 and C2. A tomographic image (second tomographic image) representing the form in the second cross section C2 is formed. This process is executed in the same manner as in the case of the first tomogram. The first tomographic image is a series of tomographic images along time series, but the second tomographic image may be a single tomographic image. The second tomographic image may be an image obtained by superimposing a plurality of tomographic images obtained by scanning each of the second cross sections C1 and C2 a plurality of times to improve image quality.

このような断層像を形成する処理は、従来のスペクトラルドメインタイプの光コヒーレンストモグラフィと同様に、ノイズ除去(ノイズ低減)、フィルタ処理、FFT(Fast Fourier Transform)などの処理を含んでいる。他のタイプのOCT装置の場合、断層像形成部221は、そのタイプに応じた公知の処理を実行する。   The processing for forming such a tomographic image includes processing such as noise removal (noise reduction), filter processing, FFT (Fast Fourier Transform), and the like, similarly to the conventional spectral domain type optical coherence tomography. In the case of another type of OCT apparatus, the tomographic image forming unit 221 executes a known process corresponding to the type.

(位相画像形成部)
位相画像形成部222は、第1走査により得られる干渉光LSの検出結果に基づいて、第1断面における位相差の時系列変化を表す位相画像を形成する。この処理に用いられる検出結果は、断層像形成部221による第1断層像の形成処理に供されるものと同じである。よって、第1断層像と位相画像との間の位置合わせをすることが可能である。つまり、第1断層像の画素と位相画像の画素とを自然に対応付けることが可能である。
(Phase image forming unit)
The phase image forming unit 222 forms a phase image representing a time-series change of the phase difference in the first cross section based on the detection result of the interference light LS obtained by the first scanning. The detection result used in this process is the same as that used for the first tomographic image forming process by the tomographic image forming unit 221. Therefore, it is possible to perform alignment between the first tomographic image and the phase image. That is, it is possible to naturally associate the pixels of the first tomographic image with the pixels of the phase image.

位相画像の形成方法の一例を説明する。この例の位相画像は、隣り合うAライン複素信号(隣接する走査点に対応する信号)の位相差を算出することにより得られるものである。換言すると、この例の位相画像は、第1断層像の各画素について、その画素の画素値(輝度値)の時系列変化に基づいて形成される。任意の画素について、位相画像形成部222は、その輝度値の時系列変化のグラフを考慮する。位相画像形成部222は、このグラフにおいて所定の時間間隔Δtだけ離れた2つの時点t1、t2(=t1+Δt)の間における位相差Δφを求める。そして、この位相差Δφを時点t1(より一般に2つの時点t1、t2の間の任意の時点)における位相差Δφ(t1)として定義する。あらかじめ設定された多数の時点のそれぞれについてこの処理を実行することで、当該画素における位相差の時系列変化が得られる。   An example of a phase image forming method will be described. The phase image in this example is obtained by calculating the phase difference between adjacent A-line complex signals (signals corresponding to adjacent scanning points). In other words, the phase image of this example is formed based on the time series change of the pixel value (luminance value) of each pixel of the first tomographic image. For an arbitrary pixel, the phase image forming unit 222 considers a graph of a time-series change in luminance value. The phase image forming unit 222 obtains a phase difference Δφ between two time points t1 and t2 (= t1 + Δt) separated by a predetermined time interval Δt in this graph. The phase difference Δφ is defined as the phase difference Δφ (t1) at the time point t1 (more generally, any time point between the two time points t1 and t2). By executing this process for each of a number of preset time points, a time-series change in phase difference at the pixel can be obtained.

位相画像は、各画素の各時点における位相差の値を画像として表現したものである。この画像化処理は、たとえば、位相差の値を表示色や輝度で表現することで実現できる。このとき、時系列に沿って位相が増加した場合の表示色(たとえば赤)と、減少した場合の表示色(たとえば青)とを変更することができる。また、位相の変化量の大きさを表示色の濃さで表現することもできる。このような表現方法を採用することで、血流の向きや大きさを表示色で明示することが可能となる。以上の処理を各画素について実行することにより位相画像が形成される。   The phase image represents the value of the phase difference at each time point of each pixel as an image. This imaging process can be realized, for example, by expressing the value of the phase difference with the display color or brightness. At this time, the display color (for example, red) when the phase increases along the time series and the display color (for example, blue) when it decreases can be changed. Also, the magnitude of the phase change amount can be expressed by the darkness of the display color. By adopting such an expression method, the direction and size of the blood flow can be clearly indicated by the display color. A phase image is formed by executing the above processing for each pixel.

なお、位相差の時系列変化は、上記の時間間隔Δtを十分に小さくして位相の相関を確保することにより得られる。このとき、信号光LSの走査において断層像の分解能に相当する時間未満の値に時間間隔Δtを設定したオーバーサンプリングが実行される。   The time-series change of the phase difference is obtained by ensuring the phase correlation by sufficiently reducing the time interval Δt. At this time, oversampling in which the time interval Δt is set to a value less than the time corresponding to the resolution of the tomographic image in the scanning of the signal light LS is executed.

(画像処理部)
画像処理部230は、画像形成部220により形成された画像に対して各種の画像処理や解析処理を施す。たとえば、画像処理部230は、画像の輝度補正や分散補正等の各種補正処理を実行する。また、画像処理部230は、眼底カメラユニット2により得られた画像(眼底像、前眼部像等)に対して各種の画像処理や解析処理を施す。
(Image processing unit)
The image processing unit 230 performs various types of image processing and analysis processing on the image formed by the image forming unit 220. For example, the image processing unit 230 executes various correction processes such as image brightness correction and dispersion correction. The image processing unit 230 performs various types of image processing and analysis processing on the image (fundus image, anterior eye image, etc.) obtained by the fundus camera unit 2.

画像処理部230は、断層像の間の画素を補間する補間処理などの公知の画像処理を実行して、眼底Efの3次元画像の画像データを形成する。なお、3次元画像の画像データとは、3次元座標系により画素の位置が定義された画像データを意味する。3次元画像の画像データとしては、3次元的に配列されたボクセルからなる画像データがある。この画像データは、ボリュームデータ或いはボクセルデータなどと呼ばれる。ボリュームデータに基づく画像を表示させる場合、画像処理部230は、このボリュームデータに対してレンダリング処理を施すことで、特定の視線方向から見たときの擬似的な3次元画像の画像データを形成する。表示部240A等の表示デバイスには、この擬似的な3次元画像が表示される。   The image processing unit 230 executes known image processing such as interpolation processing for interpolating pixels between tomographic images to form image data of a three-dimensional image of the fundus oculi Ef. Note that the image data of a three-dimensional image means image data in which pixel positions are defined by a three-dimensional coordinate system. As image data of a three-dimensional image, there is image data composed of voxels arranged three-dimensionally. This image data is called volume data or voxel data. When displaying an image based on volume data, the image processing unit 230 performs rendering processing on the volume data to form image data of a pseudo three-dimensional image when viewed from a specific line-of-sight direction. . This pseudo three-dimensional image is displayed on a display device such as the display unit 240A.

また、3次元画像の画像データとして、複数の断層像のスタックデータを形成することも可能である。スタックデータは、複数の走査線に沿って得られた複数の断層像を、走査線の位置関係に基づいて3次元的に配列させることで得られる画像データである。すなわち、スタックデータは、元々個別の2次元座標系により定義されていた複数の断層像を、1つの3次元座標系により表現する(つまり1つの3次元空間に埋め込む)ことにより得られる画像データである。   It is also possible to form stack data of a plurality of tomographic images as image data of a three-dimensional image. The stack data is image data obtained by three-dimensionally arranging a plurality of tomographic images obtained along a plurality of scanning lines based on the positional relationship of the scanning lines. That is, stack data is image data obtained by expressing a plurality of tomographic images originally defined by individual two-dimensional coordinate systems by one three-dimensional coordinate system (that is, by embedding them in one three-dimensional space). is there.

画像処理部230は、血管領域特定部231と、血流情報生成部232とを有する。血流情報生成部232には、傾き算出部233と、血流速度算出部234と、血管径算出部235と、血流量算出部236とが設けられている。更に、画像処理部230は断面設定部237を有する。以下、これら各部231〜237について説明する。   The image processing unit 230 includes a blood vessel region specifying unit 231 and a blood flow information generating unit 232. The blood flow information generation unit 232 includes an inclination calculation unit 233, a blood flow velocity calculation unit 234, a blood vessel diameter calculation unit 235, and a blood flow rate calculation unit 236. Further, the image processing unit 230 has a cross-section setting unit 237. Hereinafter, each of these units 231 to 237 will be described.

(血管領域特定部)
血管領域特定部231は、第1断層像、第2断層像、及び位相画像のそれぞれについて、注目血管Dbに対応する血管領域を特定する。この処理は、各画像の画素値を解析することによって行うことが可能である(たとえば閾値処理)。
(Vessel region specific part)
The blood vessel region specifying unit 231 specifies a blood vessel region corresponding to the target blood vessel Db for each of the first tomographic image, the second tomographic image, and the phase image. This processing can be performed by analyzing the pixel value of each image (for example, threshold processing).

なお、第1断層像と第2断層像は解析処理を行うのに十分な解像度を持っているが、位相画像については血管領域の境界を特定できるほどの解像度を持っていないことが考えられる。しかし、位相画像に基づいて血流情報を生成する以上、その血管領域を高精度かつ高確度で特定する必要がある。そこで、たとえば次のような処理を行うことで、位相画像の血管領域をより正確に特定することが望ましい。   It should be noted that the first tomogram and the second tomogram have sufficient resolution to perform analysis processing, but the phase image may not have enough resolution to identify the boundary of the blood vessel region. However, as long as blood flow information is generated based on the phase image, it is necessary to specify the blood vessel region with high accuracy and high accuracy. Therefore, for example, it is desirable to specify the blood vessel region of the phase image more accurately by performing the following processing.

前述のように、第1断層像と位相画像は同じ検出信号に基づいて形成され、互いの画素の間の対応付けが可能である。これを利用し、まず第1断層像を解析して血管領域を求め、この血管領域に含まれる画素に対応する画素からなる位相画像中の画像領域をその血管領域とする。これにより、位相画像の血管領域を高精度かつ高確度で特定することができる。   As described above, the first tomographic image and the phase image are formed based on the same detection signal, and the correspondence between the pixels can be made. Using this, first, the first tomogram is analyzed to obtain a blood vessel region, and an image region in a phase image composed of pixels corresponding to the pixels included in this blood vessel region is set as the blood vessel region. Thereby, the blood vessel region of the phase image can be specified with high accuracy and high accuracy.

(血流情報生成部)
血流情報生成部232は、第1断面と第2断面との間の距離、血管領域の特定結果、及び位相画像の血管領域における位相差の時系列変化に基づいて、注目血管Dbに関する血流情報を生成する。ここで、第1断面と第2断面との間の距離(断面間距離)は、事前に決定される。その一例は、断面設定部237の説明において後述する。血管領域は、血管領域特定部231により得られる。位相画像の血管領域における位相差の時系列変化は、位相画像の血管領域内の画素についての位相差の時系列変化として得られる。以下、この処理を実行するための構成の一例を説明する。前述のように、血流情報生成部232には、傾き算出部233と、血流速度算出部234と、血管径算出部235と、血流量算出部236とが設けられている。
(Blood flow information generator)
The blood flow information generation unit 232 determines the blood flow related to the target blood vessel Db based on the distance between the first cross section and the second cross section, the result of specifying the blood vessel region, and the time-series change of the phase difference in the blood vessel region of the phase image. Generate information. Here, the distance between the first cross section and the second cross section (inter-section distance) is determined in advance. One example will be described later in the description of the cross-section setting unit 237. The blood vessel region is obtained by the blood vessel region specifying unit 231. The time series change of the phase difference in the blood vessel region of the phase image is obtained as the time series change of the phase difference for the pixels in the blood vessel region of the phase image. Hereinafter, an example of a configuration for executing this process will be described. As described above, the blood flow information generation unit 232 includes the inclination calculation unit 233, the blood flow velocity calculation unit 234, the blood vessel diameter calculation unit 235, and the blood flow rate calculation unit 236.

(傾き算出部)
傾き算出部233は、断面間距離と血管領域の特定結果とに基づいて、第1断面における注目血管Dbの傾きを算出する。まず、注目血管Dbの傾きを算出する理由を説明する。血流情報はドップラーOCTの手法で得られる(特許文献8、9を参照)。ドップラーシフトに寄与する血流の速度成分は、信号光LSの照射方向の成分である。したがって、たとえ血流速度が同じであっても、血流方向(つまり注目血管Dbの向き)と信号光LSとが成す角度に応じて信号光LSが受けるドップラーシフトが変化し、ひいては得られる血流情報も変わってしまう。このような不都合を避けるために、注目血管Dbの傾きを求め、これを血流速度の算出処理に反映させる必要がある。
(Inclination calculator)
The inclination calculation unit 233 calculates the inclination of the target blood vessel Db in the first cross section based on the distance between cross sections and the result of specifying the blood vessel region. First, the reason for calculating the inclination of the target blood vessel Db will be described. Blood flow information is obtained by the Doppler OCT technique (see Patent Documents 8 and 9). The blood flow velocity component contributing to the Doppler shift is a component in the irradiation direction of the signal light LS. Therefore, even if the blood flow velocity is the same, the Doppler shift received by the signal light LS changes according to the angle formed by the blood flow direction (that is, the direction of the blood vessel Db of interest) and the signal light LS, and thus blood obtained Flow information will also change. In order to avoid such inconvenience, it is necessary to obtain the inclination of the target blood vessel Db and reflect this in the blood flow velocity calculation process.

注目血管Dbの傾きの算出方法について図6を参照しつつ説明する。符号G0、G1及びG2は、それぞれ、第1断面C0における第1断層像、第2断面における第2断層像、及び第2断面C2における第2断層像を示す。また、符号V0、V1及びV2は、それぞれ、第1断層像G0の血管領域、第2断層像G1の血管領域、及び第2断層像G2の血管領域を示す。図6において、z座標軸は紙面下方向を向いており、これは信号光LSの照射方向と実質的に一致するものとする。また、隣接する断層像の間隔をdとする。   A method of calculating the inclination of the target blood vessel Db will be described with reference to FIG. Reference numerals G0, G1, and G2 respectively indicate a first tomogram in the first section C0, a second tomogram in the second section, and a second tomogram in the second section C2. Reference numerals V0, V1, and V2 denote a blood vessel region of the first tomographic image G0, a blood vessel region of the second tomographic image G1, and a blood vessel region of the second tomographic image G2, respectively. In FIG. 6, the z coordinate axis is directed downward in the drawing, and this substantially coincides with the irradiation direction of the signal light LS. Also, let d be the interval between adjacent tomographic images.

傾き算出部233は、3つの血管領域V0、V1及びV2の位置関係に基づいて、第1断面C0における注目血管Dbの傾きAを算出する。この位置関係は、たとえば3つの血管領域V0、V1及びV2を結ぶことによって得られる。より具体的には、傾き算出部233は、3つの血管領域V0、V1及びV2のそれぞれの特徴位置を特定し、これら特徴位置を結ぶ。この特徴位置としては、中心位置、重心位置、最上部(z座標値が最小の位置)、最下部(z座標値が最大の位置)などがある。また、これら特徴位置の結び方としては、線分で結ぶ方法、近似曲線(スプライン曲線、ベジェ曲線等)で結ぶ方法などがある。   The inclination calculation unit 233 calculates the inclination A of the target blood vessel Db in the first cross section C0 based on the positional relationship between the three blood vessel regions V0, V1, and V2. This positional relationship is obtained, for example, by connecting three blood vessel regions V0, V1, and V2. More specifically, the inclination calculation unit 233 identifies the feature positions of the three blood vessel regions V0, V1, and V2, and connects these feature positions. Examples of the characteristic position include a center position, a center of gravity position, an uppermost portion (a position having the smallest z coordinate value), and a lowermost portion (a position having the largest z coordinate value). In addition, as a method of connecting these feature positions, there are a method of connecting with a line segment, a method of connecting with an approximate curve (spline curve, Bezier curve, etc.), and the like.

更に、傾き算出部233は、これら特徴位置を結んだ線に基づいて傾きAを算出する。線分で結んだ場合、たとえば、第1断面C0の特徴位置と第2断面C1の特徴位置とを結ぶ第1線分の傾きと、第1断面C0の特徴位置と第2断面C2の特徴位置とを結ぶ第2線分の傾きとに基づき傾きAを算出する。この算出処理の例として、2つの線分の傾きの平均値を求めることができる。また、近似曲線で結ぶ場合の例として、近似曲線と第1断面C0との交差位置における近似曲線の傾きを求めることができる。なお、断面間距離dは、線分や近似曲線を求める処理において、断層像G0〜G2をxyz座標系に埋め込むときに用いられる。   Further, the inclination calculation unit 233 calculates the inclination A based on a line connecting these feature positions. When connected by line segments, for example, the slope of the first line segment connecting the feature position of the first cross section C0 and the feature position of the second cross section C1, the feature position of the first cross section C0, and the feature position of the second cross section C2 The slope A is calculated based on the slope of the second line segment connecting the two. As an example of this calculation process, the average value of the slopes of two line segments can be obtained. Further, as an example of connecting with an approximate curve, the slope of the approximate curve at the intersection position of the approximate curve and the first cross section C0 can be obtained. Note that the cross-sectional distance d is used when embedding the tomographic images G0 to G2 in the xyz coordinate system in the process of obtaining line segments and approximate curves.

この例では、3つの断面における血管領域を考慮しているが、2つの断面を考慮して傾きを求めるように構成することも可能である。その具体例として、上記第1線分又は第2線分の傾きを目的の傾きとすることができる。また、この例では1つの傾きを求めているが、血管領域V0中の2つ以上の位置(又は領域)についてそれぞれ傾きを求めるようにしてもよい。この場合、得られた2つ以上の傾きの値を別々に用いることもできるし、これら傾きの値から統計的に得られる1つの値(たとえば平均値)を傾きAとして用いることもできる。   In this example, the blood vessel region in the three cross sections is considered, but it is also possible to obtain the inclination in consideration of the two cross sections. As a specific example, the inclination of the first line segment or the second line segment can be set as a target inclination. In this example, one inclination is obtained, but the inclination may be obtained for each of two or more positions (or areas) in the blood vessel region V0. In this case, two or more obtained slope values can be used separately, or one value (for example, an average value) statistically obtained from these slope values can be used as the slope A.

(血流速度算出部)
血流速度算出部234は、位相画像として得られる位相差の時系列変化に基づいて、注目血管Db内を流れる血液の第1断面C0における血流速度を算出する。この算出対象は、或る時点における血流速度でもよいし、この血流速度の時系列変化(血流速度変化情報)でもよい。前者の場合、たとえば心電図の所定の時相(たとえばR波の時相)における血流速度を選択的に取得することが可能である。また、後者における時間の範囲は、第1断面C0を走査した時間の全体又は任意の一部である。
(Blood velocity calculation part)
The blood flow velocity calculation unit 234 calculates the blood flow velocity in the first cross section C0 of the blood flowing in the blood vessel Db based on the time series change of the phase difference obtained as the phase image. This calculation target may be a blood flow velocity at a certain point in time, or a time-series change (blood flow velocity change information) of this blood flow velocity. In the former case, for example, it is possible to selectively acquire the blood flow velocity in a predetermined time phase (for example, R wave time phase) of the electrocardiogram. The time range in the latter is the entire time or a part of the time when the first cross section C0 is scanned.

血流速度変化情報が得られた場合、血流速度算出部234は、当該時間の範囲における血流速度の統計値を算出することができる。この統計値としては、平均値、標準偏差、分散、中央値、最大値、最小値、極大値、極小値などがある。また、血流速度の値についてのヒストグラムを作成することもできる。   When the blood flow velocity change information is obtained, the blood flow velocity calculator 234 can calculate a statistical value of the blood flow velocity in the time range. The statistical values include an average value, standard deviation, variance, median value, maximum value, minimum value, maximum value, minimum value, and the like. It is also possible to create a histogram for blood flow velocity values.

血流速度算出部234は、前述のようにドップラーOCTの手法を用いて血流速度を算出する。このとき、傾き算出部233により算出された第1断面C0における注目血管Dbの傾きAが考慮される。具体的には、傾き算出部233は次式を用いる。   The blood flow velocity calculation unit 234 calculates the blood flow velocity using the Doppler OCT method as described above. At this time, the inclination A of the target blood vessel Db in the first cross section C0 calculated by the inclination calculation unit 233 is considered. Specifically, the inclination calculation unit 233 uses the following equation.

Figure 2016040005
Figure 2016040005

ここで:
Δfは、信号光LSの散乱光が受けるドップラーシフトを表す;
nは、媒質の屈折率を表す;
vは、媒質の流速(血流速度)を表す;
θは、信号光LSの照射方向と媒質の流れベクトルとが成す角度を表す;
λは、信号光LSの中心波長を表す。
here:
Δf represents the Doppler shift received by the scattered light of the signal light LS;
n represents the refractive index of the medium;
v represents the flow velocity (blood flow velocity) of the medium;
θ represents the angle formed by the irradiation direction of the signal light LS and the flow vector of the medium;
λ represents the center wavelength of the signal light LS.

この実施形態では、nとλは既知であり、Δfは位相差の時系列変化から得られ、θは傾きAから得られる(又はθは傾きAとして得られる)。これらの値を上記の式に代入することにより、血流速度vが算出される。   In this embodiment, n and λ are known, Δf is obtained from a time-series change in phase difference, and θ is obtained from slope A (or θ is obtained as slope A). By substituting these values into the above formula, the blood flow velocity v is calculated.

(血管径算出部)
血管径算出部235は、第1断面C0における注目血管Dbの径を算出する。この算出方法の例として、眼底像を用いた第1の算出方法と、断層像を用いた第2の算出方法がある。
(Vessel diameter calculator)
The blood vessel diameter calculation unit 235 calculates the diameter of the target blood vessel Db in the first cross section C0. Examples of this calculation method include a first calculation method using a fundus image and a second calculation method using a tomographic image.

第1の算出方法が適用される場合、第1断面C0の位置を含む眼底Efの部位の撮影があらかじめ行われる。それにより得られる眼底像は、観察画像(のフレーム)でもよいし、撮影画像でもよい。撮影画像がカラー画像である場合には、これを構成する画像(たとえばレッドフリー画像)を用いてもよい。   When the first calculation method is applied, imaging of a part of the fundus oculi Ef including the position of the first cross section C0 is performed in advance. The fundus image obtained thereby may be an observation image (frame) or a captured image. When the captured image is a color image, an image constituting the captured image (for example, a red free image) may be used.

血管径算出部235は、撮影画角(撮影倍率)、ワーキングディスタンス、眼球光学系の情報など、画像上のスケールと実空間でのスケールとの関係を決定する各種ファクターに基づいて、眼底像におけるスケールを設定する。このスケールは実空間における長さを表す。具体例として、このスケールは、隣接する画素の間隔と、実空間におけるスケールとを対応付けたものである(たとえば画素の間隔=10μm)。なお、上記ファクターの様々な値と、実空間でのスケールとの関係をあらかじめ算出し、この関係をテーブル形式やグラフ形式で表現した情報を記憶しておくことも可能である。この場合、血管径算出部235は、上記ファクターに対応するスケールを選択的に適用する。   The blood vessel diameter calculation unit 235 determines the relationship between the scale on the image and the scale in the real space, such as the shooting angle of view (shooting magnification), working distance, and information on the eyeball optical system. Set the scale. This scale represents the length in real space. As a specific example, this scale associates an interval between adjacent pixels with a scale in real space (for example, an interval between pixels = 10 μm). It is also possible to calculate in advance the relationship between various values of the above factor and the scale in the real space, and store information expressing this relationship in a table format or a graph format. In this case, the blood vessel diameter calculation unit 235 selectively applies a scale corresponding to the factor.

更に、血管径算出部235は、このスケールと血管領域V0に含まれる画素とに基づいて、第1断面C0における注目血管Dbの径、つまり血管領域V0の径を算出する。具体例として、血管径算出部235は、血管領域V0の様々な方向の径の最大値や平均値を求める。また、血管領域235は、血管領域V0の輪郭を円近似又は楕円近似し、その円又は楕円の径を求めることができる。なお、血管径が決まれば血管領域V0の面積を(実質的に)決定することができるので(つまり両者を実質的に一対一に対応付けることができるので)、血管径を求める代わりに当該面積を算出するようにしてもよい。   Furthermore, the blood vessel diameter calculation unit 235 calculates the diameter of the target blood vessel Db in the first cross section C0, that is, the diameter of the blood vessel region V0, based on this scale and the pixels included in the blood vessel region V0. As a specific example, the blood vessel diameter calculation unit 235 obtains the maximum value and the average value of the diameters of the blood vessel region V0 in various directions. In addition, the blood vessel region 235 can approximate the outline of the blood vessel region V0 in a circle or an ellipse, and obtain the diameter of the circle or the ellipse. If the blood vessel diameter is determined, the area of the blood vessel region V0 can be (substantially) determined (that is, the two can be substantially associated one-to-one). You may make it calculate.

第2の算出方法について説明する。第2の算出方法では、第1断面C0における眼底Efの断層像が用いられる。この断層像は、第1断層像でもよいし、これとは別個に取得されたものでもよい。   A second calculation method will be described. In the second calculation method, a tomographic image of the fundus oculi Ef in the first cross section C0 is used. This tomographic image may be a first tomographic image or may be obtained separately.

この断層像におけるスケールは、信号光LSの走査態様に応じて決定される。この実施形態では、図5に示すように第1断面C0を走査する。この第1断面の長さは、ワーキングディスタンス、眼球光学系の情報など、画像上のスケールと実空間でのスケールとの関係を決定する各種ファクターに基づいて決定される。血管径算出部235は、たとえば、この長さに基づいて隣接する画素の間隔を求め、第1の算出方法と同様にして第1断面C0における注目血管Dbの径を算出する。   The scale in this tomographic image is determined according to the scanning mode of the signal light LS. In this embodiment, the first cross section C0 is scanned as shown in FIG. The length of the first cross section is determined based on various factors that determine the relationship between the scale on the image and the scale in the real space, such as working distance and information on the eyeball optical system. For example, the blood vessel diameter calculation unit 235 obtains the interval between adjacent pixels based on this length, and calculates the diameter of the blood vessel Db of interest in the first cross section C0 in the same manner as in the first calculation method.

(血流量算出部)
血流量算出部236は、血流速度の算出結果と血管径の算出結果とに基づいて、注目血管Db内を流れる血液の流量を算出する。この処理の一例を以下に説明する。
(Blood flow calculation unit)
The blood flow rate calculation unit 236 calculates the flow rate of the blood flowing in the target blood vessel Db based on the blood flow velocity calculation result and the blood vessel diameter calculation result. An example of this process will be described below.

血管内における血流がハーゲン・ポアズイユ流(Hagen−Poiseuille flow)と仮定する。また、血管径をwとし、血流速度の最大値をVmとすると、血流量Qは次式で表される。   It is assumed that the blood flow in the blood vessel is a Hagen-Poiseille flow. Further, when the blood vessel diameter is w and the maximum value of the blood flow velocity is Vm, the blood flow rate Q is expressed by the following equation.

Figure 2016040005
Figure 2016040005

血流量算出部236は、血管径算出部235による血管径の算出結果wと、血流速度算出部234による血流速度の算出結果に基づく最大値Vmとを、この数式に代入することにより、目的の血流量Qを算出する。   The blood flow rate calculation unit 236 substitutes the calculation result w of the blood vessel diameter by the blood vessel diameter calculation unit 235 and the maximum value Vm based on the calculation result of the blood flow velocity by the blood flow velocity calculation unit 234 into this equation. A target blood flow rate Q is calculated.

(断面設定部)
主制御部211は、表示部240Aに眼底像を表示させる。この眼底像は観察画像でも撮影画像でもよい。また、この眼底像は撮影画像を構成する画像であってもよい。ユーザは、操作部240Bを操作することで、表示された眼底像に第1断面C0を指定する。断面設定部237は、指定された第1断面C0と、この眼底像とに基づいて、第2断面C1及びC2を設定する。なお、前述のように、第1断面COは所望の注目血管Dbを横切るように指定される。
(Cross section setting part)
The main control unit 211 displays a fundus image on the display unit 240A. This fundus image may be an observation image or a captured image. Further, the fundus image may be an image constituting a captured image. The user operates the operation unit 240B to designate the first cross section C0 for the displayed fundus image. The cross section setting unit 237 sets the second cross sections C1 and C2 based on the designated first cross section C0 and the fundus image. As described above, the first cross section CO is designated so as to cross the desired blood vessel Db.

第1断面C0を眼底像に指定する操作は、たとえばポインティングデバイスを用いて行われる。また、表示部240Aがタッチパネルの場合、ユーザは表示された眼底像の所望の位置に触れることで第1断面C0を指定する。この場合において、第1断面C0のパラメータ(向き、長さ等)は、手動又は自動で設定される。   The operation of designating the first cross section C0 as a fundus image is performed using, for example, a pointing device. When the display unit 240A is a touch panel, the user designates the first cross section C0 by touching a desired position of the displayed fundus image. In this case, the parameters (direction, length, etc.) of the first cross section C0 are set manually or automatically.

手動の場合の例として、パラメータを設定するための所定のインターフェイスを用いることができる。このインターフェイスは、スイッチ等のハードウェアでもよいし、グラフィカルユーザインターフェイス(GUI)等のソフトウェアでもよい。   As an example of manual operation, a predetermined interface for setting parameters can be used. This interface may be hardware such as a switch or software such as a graphical user interface (GUI).

自動の場合の例として、断面設定部237は、ユーザが眼底像に指定した位置に基づいてパラメータを設定する。長さの自動設定は、あらかじめ決められた値を適用してもよいし、指定位置及びその近傍の血管の位置を考慮してもよい。前者の値は、たとえば、所定の注目血管とその近傍の血管との間の一般的な距離に基づいて指定される。この距離の情報は、臨床データに基づいて生成できる。後者の場合も同様である。いずれの場合においても、第1断面C0の長さは、注目血管Dbを横切り、かつそれ以外の血管(特に太い血管)を横切らないように設定される。   As an example of an automatic case, the cross-section setting unit 237 sets parameters based on the position designated by the user for the fundus image. For the automatic length setting, a predetermined value may be applied, or the designated position and the position of a blood vessel in the vicinity thereof may be considered. The former value is designated based on, for example, a general distance between a predetermined blood vessel of interest and a blood vessel in the vicinity thereof. This distance information can be generated based on clinical data. The same applies to the latter case. In any case, the length of the first cross section C0 is set so as to cross the target blood vessel Db and not cross the other blood vessels (particularly thick blood vessels).

第1断面C0の向きの自動設定については、あらかじめ決められた向きを適用してもよいし、注目血管Dbの向きを考慮してもよい。前者の場合、所定の注目血管の各位置における傾きを表す情報をあらかじめ生成し、これを参照する。この情報は、臨床データに基づき生成できる。後者の場合、指定位置における注目血管Dbの走行方向を求め、この走行方向に基づいて設定される。この走行方向を求める処理は、たとえば注目血管Dbの細線化処理を用いて行われる。なお、いずれの場合においても、第1断面C0の向きは、走行方向に直交するように設定されることが望ましい。   For automatic setting of the orientation of the first cross section C0, a predetermined orientation may be applied, or the orientation of the target blood vessel Db may be taken into account. In the former case, information indicating the inclination of each position of a predetermined blood vessel of interest is generated in advance and is referred to. This information can be generated based on clinical data. In the latter case, the traveling direction of the target blood vessel Db at the designated position is obtained and set based on the traveling direction. The process for obtaining the traveling direction is performed using, for example, a thinning process for the blood vessel Db of interest. In any case, it is desirable that the direction of the first cross section C0 is set to be orthogonal to the traveling direction.

次に第2断面C1及びC2を設定する処理について説明する。断面設定部237は、第1断面C0から所定距離だけ離れた位置に第2断面C1及びC2を設定する。この距離は、たとえば100μmに設定される。この距離の特定は、たとえば前述のようにして行われる。また、第2断面C1及びC2の長さ及び/又は向きは、第1断面C0の場合と同様にして設定される。   Next, processing for setting the second cross sections C1 and C2 will be described. The cross-section setting unit 237 sets the second cross-sections C1 and C2 at positions separated from the first cross-section C0 by a predetermined distance. This distance is set to 100 μm, for example. This distance is specified as described above, for example. Further, the length and / or orientation of the second cross sections C1 and C2 are set in the same manner as in the case of the first cross section C0.

なお、この実施形態では、眼底像に基づいて断面C0〜C2(つまり信号光LSの走査位置)が設定される。そのためには眼底像を走査位置との間を対応付ける必要がある。この対応付けは、この実施形態のように、眼底撮影用の光学系とOCT計測用の光学系とが互いの光路の一部を共有していることが望ましい。このように同軸構成とすることにより、この光軸を基準として眼底像中の位置と走査位置とを対応付けることができる。ここで、この対応付けにおいて、眼底像の表示倍率(いわゆる光学ズームとデジタルズームの少なくとも一方を含む)を考慮してもよい。   In this embodiment, the cross sections C0 to C2 (that is, the scanning position of the signal light LS) are set based on the fundus image. For this purpose, it is necessary to associate the fundus image with the scanning position. As for this association, as in this embodiment, it is desirable that the fundus imaging optical system and the OCT measurement optical system share a part of each other's optical path. With this coaxial configuration, the position in the fundus image and the scanning position can be associated with each other based on the optical axis. In this association, fundus image display magnification (including at least one of so-called optical zoom and digital zoom) may be taken into consideration.

このような同軸構成でない場合においては、眼底像と、OCT計測で得られるプロジェクション画像とに基づいて、眼底像と走査位置との対応付けを行うことができる。なお、プロジェクション画像とは、後述の3次元スキャンにより得られる3次元画像を深度方向(z方向)に積算して得られる、眼底Efの表面の形態を表す画像である。このようなプロジェクション画像を用いることにより、眼底像とプロジェクション画像との間の位置を、たとえば画像相関等を用いて対応付け、この対応付けを用いて眼底像と走査位置とを対応付けることができる。ただし、被検眼Eの眼球運動(固視微動等)の影響を考慮すると、実質的にタイムラグなく双方の撮影が行える同軸構成の方が望ましいと考えられる。   In the case of such a coaxial configuration, the fundus image and the scanning position can be associated based on the fundus image and the projection image obtained by OCT measurement. Note that the projection image is an image representing the form of the surface of the fundus oculi Ef obtained by integrating three-dimensional images obtained by a three-dimensional scan described later in the depth direction (z direction). By using such a projection image, the position between the fundus image and the projection image can be associated using, for example, image correlation, and the fundus image and the scanning position can be associated using this association. However, in consideration of the influence of eye movement (fixed eye movement, etc.) of the eye E, it is considered that a coaxial configuration capable of performing both imaging substantially without time lag is desirable.

以上のように機能する画像処理部230は、たとえば、前述のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ、回路基板等を含んで構成される。ハードディスクドライブ等の記憶装置には、上記機能をマイクロプロセッサに実行させるコンピュータプログラムが予め格納されている。   The image processing unit 230 that functions as described above includes, for example, the aforementioned microprocessor, RAM, ROM, hard disk drive, circuit board, and the like. In a storage device such as a hard disk drive, a computer program for causing the microprocessor to execute the above functions is stored in advance.

(ユーザインターフェイス)
ユーザインターフェイス240には、表示部240Aと操作部240Bとが含まれる。表示部240Aは、前述した演算制御ユニット200の表示デバイスや表示装置3を含んで構成される。操作部240Bは、前述した演算制御ユニット200の操作デバイスを含んで構成される。操作部240Bには、眼底観察装置1の筐体や外部に設けられた各種のボタンやキーが含まれていてもよい。たとえば眼底カメラユニット2が従来の眼底カメラと同様の筺体を有する場合、操作部240Bは、この筺体に設けられたジョイスティックや操作パネル等を含んでいてもよい。また、表示部240Aは、眼底カメラユニット2の筺体に設けられたタッチパネルなどの各種表示デバイスを含んでいてもよい。
(User interface)
The user interface 240 includes a display unit 240A and an operation unit 240B. The display unit 240A includes the display device of the arithmetic control unit 200 and the display device 3 described above. The operation unit 240B includes the operation device of the arithmetic control unit 200 described above. The operation unit 240B may include various buttons and keys provided on the housing of the fundus oculi observation device 1 or outside. For example, when the fundus camera unit 2 has a housing similar to that of a conventional fundus camera, the operation unit 240B may include a joystick, an operation panel, or the like provided on the housing. The display unit 240 </ b> A may include various display devices such as a touch panel provided on the housing of the fundus camera unit 2.

なお、表示部240Aと操作部240Bは、それぞれ個別のデバイスとして構成される必要はない。たとえばタッチパネルのように、表示機能と操作機能とが一体化されたデバイスを用いることも可能である。その場合、操作部240Bは、このタッチパネルとコンピュータプログラムとを含んで構成される。操作部240Bに対する操作内容は、電気信号として制御部210に入力される。また、表示部240Aに表示されたGUIと、操作部240Bとを用いて、操作や情報入力を行うようにしてもよい。   The display unit 240A and the operation unit 240B do not need to be configured as individual devices. For example, a device in which a display function and an operation function are integrated, such as a touch panel, can be used. In that case, the operation unit 240B includes the touch panel and a computer program. The operation content for the operation unit 240B is input to the control unit 210 as an electrical signal. Further, operations and information input may be performed using the GUI displayed on the display unit 240A and the operation unit 240B.

〔信号光の走査及びOCT画像について〕
ここで、信号光LSの走査及びOCT画像について説明しておく。
[Scanning signal light and OCT images]
Here, the scanning of the signal light LS and the OCT image will be described.

眼底観察装置1による信号光LSの走査態様としては、たとえば、水平スキャン、垂直スキャン、十字スキャン、放射スキャン、円スキャン、同心円スキャン、螺旋(渦巻)スキャンなどがある。これらの走査態様は、眼底の観察部位、解析対象(網膜厚など)、走査に要する時間、走査の精密さなどを考慮して適宜に選択的に使用される。   Examples of scanning modes of the signal light LS by the fundus oculi observation device 1 include horizontal scanning, vertical scanning, cross scanning, radiation scanning, circular scanning, concentric scanning, and spiral (vortex) scanning. These scanning modes are selectively used as appropriate in consideration of the observation site of the fundus, the analysis target (such as retinal thickness), the time required for scanning, the precision of scanning, and the like.

水平スキャンは、信号光LSを水平方向(x方向)に走査させるものである。水平スキャンには、垂直方向(y方向)に配列された複数の水平方向に延びる走査線に沿って信号光LSを走査させる態様も含まれる。この態様においては、走査線の間隔を任意に設定することが可能である。また、隣接する走査線の間隔を十分に狭くすることにより、前述の3次元画像を形成することができる(3次元スキャン)。垂直スキャンについても同様である。   The horizontal scan scans the signal light LS in the horizontal direction (x direction). The horizontal scan also includes an aspect in which the signal light LS is scanned along a plurality of horizontal scanning lines arranged in the vertical direction (y direction). In this aspect, it is possible to arbitrarily set the scanning line interval. Further, the above-described three-dimensional image can be formed by sufficiently narrowing the interval between adjacent scanning lines (three-dimensional scanning). The same applies to the vertical scan.

十字スキャンは、互いに直交する2本の直線状の軌跡(直線軌跡)からなる十字型の軌跡に沿って信号光LSを走査するものである。放射スキャンは、所定の角度を介して配列された複数の直線軌跡からなる放射状の軌跡に沿って信号光LSを走査するものである。なお、十字スキャンは放射スキャンの一例である。   In the cross scan, the signal light LS is scanned along a cross-shaped trajectory composed of two linear trajectories (straight trajectories) orthogonal to each other. In the radiation scan, the signal light LS is scanned along a radial trajectory composed of a plurality of linear trajectories arranged at a predetermined angle. The cross scan is an example of a radiation scan.

円スキャンは、円形状の軌跡に沿って信号光LSを走査させるものである。同心円スキャンは、所定の中心位置の周りに同心円状に配列された複数の円形状の軌跡に沿って信号光LSを走査させるものである。円スキャンは同心円スキャンの一例である。螺旋スキャンは、回転半径を次第に小さく(又は大きく)させながら螺旋状(渦巻状)の軌跡に沿って信号光LSを走査するものである。   In the circle scan, the signal light LS is scanned along a circular locus. In the concentric scan, the signal light LS is scanned along a plurality of circular trajectories arranged concentrically around a predetermined center position. A circle scan is an example of a concentric scan. In the spiral scan, the signal light LS is scanned along a spiral (spiral) locus while the radius of rotation is gradually reduced (or increased).

ガルバノスキャナ42は、互いに直交する方向に信号光LSを走査するように構成されているので、信号光LSをx方向及びy方向にそれぞれ独立に走査できる。更に、ガルバノスキャナ42に含まれる2つのガルバノミラーの向きを同時に制御することで、xy面上の任意の軌跡に沿って信号光LSを走査することが可能である。それにより、上記のような各種の走査態様を実現できる。   Since the galvano scanner 42 is configured to scan the signal light LS in directions orthogonal to each other, it can independently scan the signal light LS in the x direction and the y direction, respectively. Further, by simultaneously controlling the directions of the two galvanometer mirrors included in the galvano scanner 42, the signal light LS can be scanned along an arbitrary locus on the xy plane. Thereby, various scanning modes as described above can be realized.

上記のような態様で信号光LSを走査することにより、走査線(走査軌跡)に沿う方向と眼底深度方向(z方向)とにより張られる面における断層像を取得することができる。また、特に走査線の間隔が狭い場合には、前述の3次元画像を取得することができる。   By scanning the signal light LS in the above-described manner, a tomographic image on a plane stretched by the direction along the scanning line (scanning trajectory) and the fundus depth direction (z direction) can be acquired. In addition, the above-described three-dimensional image can be acquired particularly when the scanning line interval is narrow.

上記のような信号光LSの走査対象となる眼底Ef上の領域、つまりOCT計測の対象となる眼底Ef上の領域を走査領域と呼ぶ。3次元スキャンにおける走査領域は、複数の水平スキャンが配列された矩形の領域である。また、同心円スキャンにおける走査領域は、最大径の円スキャンの軌跡により囲まれる円盤状の領域である。また、放射スキャンにおける走査領域は、各スキャンラインの両端位置を結んだ円盤状(或いは多角形状)の領域である。   A region on the fundus oculi Ef to be scanned with the signal light LS as described above, that is, a region on the fundus oculi Ef to be subjected to OCT measurement is referred to as a scanning region. The scanning area in the three-dimensional scan is a rectangular area in which a plurality of horizontal scans are arranged. The scanning area in the concentric scan is a disk-shaped area surrounded by the locus of the circular scan with the maximum diameter. In addition, the scanning area in the radial scan is a disk-shaped (or polygonal) area connecting both end positions of each scan line.

[動作]
眼底観察装置1の動作について説明する。図7は、眼底観察装置1の動作の一例を表す。
[Operation]
The operation of the fundus oculi observation device 1 will be described. FIG. 7 illustrates an example of the operation of the fundus oculi observation device 1.

(S1:計測準備)
OCT計測の準備として、患者IDの入力、本実施形態の動作モード(血流計測モード)の選択指定などを行う。
(S1: Preparation for measurement)
As preparation for OCT measurement, input of a patient ID, selection designation of an operation mode (blood flow measurement mode) of the present embodiment, and the like are performed.

(S2:アライメント、ピント合わせ)
次に、観察光源11からの照明光で眼底Efを連続照明することにより、眼底Efの近赤外動画像(観察画像)を取得する。主制御部211は、この観察画像を表示部240Aに表示させる。
(S2: alignment, focusing)
Next, a near-infrared moving image (observation image) of the fundus oculi Ef is acquired by continuously illuminating the fundus oculi Ef with illumination light from the observation light source 11. The main control unit 211 displays this observation image on the display unit 240A.

このとき、LCD39による固視標と、アライメント光学系50によるアライメント指標と、フォーカス光学系60によるスプリット指標とが被検眼Eに投影される。それにより、表示される観察画像にはアライメント指標とスプリット指標とが描画される。これら指標を用いてアライメントやピント合わせを行う。なお、この実施形態では、視神経乳頭を観察するための固視標が使用される。ここで、視神経乳頭を対象とするトラッキングを開始してもよい。   At this time, a fixation target by the LCD 39, an alignment index by the alignment optical system 50, and a split index by the focus optical system 60 are projected onto the eye E. Thereby, the alignment index and the split index are drawn on the displayed observation image. These indices are used for alignment and focusing. In this embodiment, a fixation target for observing the optic disc is used. Here, tracking for the optic nerve head may be started.

(S3:計測位置の指定)
続いて、ユーザは、表示された眼底像に対して、血流を計測する位置を指定する。ここで指定されるのは第1断面である。なお、この眼底像は観察画像でも撮影画像(これを構成する画像を含む)でもよい。第1断面の指定方法については前述した。
(S3: Designation of measurement position)
Subsequently, the user designates a position where blood flow is measured with respect to the displayed fundus image. The first section is designated here. Note that the fundus image may be an observation image or a captured image (including an image constituting the fundus image). The method for specifying the first cross section has been described above.

(S4:計測位置近傍の断面の設定)
第1断面が指定されると、断面設定部237が、この第1断面に基づいて第2断面を設定する。
(S4: Setting of cross section near measurement position)
When the first cross section is designated, the cross section setting unit 237 sets the second cross section based on the first cross section.

(S5:OCT画像の確認)
主制御部211は、光源ユニット101、ガルバノスキャナ42等を制御してOCT計測を実行する。このOCT計測は、第1断面でも第2断面でもこれら以外の断面でもよい。このOCT画像を参照し、好適な画像が得られているか確認する。この確認は、ユーザが目視で行なってもよいし、眼底観察装置1が自動で行なってもよい。
(S5: Confirmation of OCT image)
The main control unit 211 performs OCT measurement by controlling the light source unit 101, the galvano scanner 42, and the like. This OCT measurement may be performed on the first cross section, the second cross section, or any other cross section. With reference to this OCT image, it is confirmed whether a suitable image is obtained. This confirmation may be performed visually by the user, or may be automatically performed by the fundus oculi observation device 1.

目視で行う場合、主制御部211がこのOCT画像を表示部240Aに表示させる。ユーザは、フレームにおけるOCT画像の表示位置や画質などを評価し、操作部240Bを用いて確認結果を入力する。好適な画像が得られていない場合、計測条件の調整を行う。画像の表示位置が適当でない場合、光路長変更部41により信号光LSの光路長を変更する。また、画質が適当でない場合、光減衰器105や偏波調整器106を調整する。   When performing visually, the main control part 211 displays this OCT image on the display part 240A. The user evaluates the display position and image quality of the OCT image in the frame, and inputs the confirmation result using the operation unit 240B. When a suitable image is not obtained, measurement conditions are adjusted. When the image display position is not appropriate, the optical path length changing unit 41 changes the optical path length of the signal light LS. If the image quality is not appropriate, the optical attenuator 105 and the polarization adjuster 106 are adjusted.

自動で行う場合、画像の表示位置や画質などを所定の評価基準を参照して評価し、その評価結果に基づいて手動の場合と同様にして計測条件を調整する。   When performing automatically, the display position and image quality of an image are evaluated with reference to a predetermined evaluation standard, and the measurement conditions are adjusted based on the evaluation result in the same manner as in the manual case.

(S6:血流計測の開始)
所定のトリガーに対応して血流計測を開始する。
(S6: Start of blood flow measurement)
Blood flow measurement is started in response to a predetermined trigger.

(S7:OCT計測の実行)
血流計測においては、まず、第1断面及び第2断面に対するOCT計測を行うことで、第1断層像、第2断層像及び位相画像を形成する。
(S7: Execution of OCT measurement)
In blood flow measurement, first, a first tomographic image, a second tomographic image, and a phase image are formed by performing OCT measurement on the first cross section and the second cross section.

(S8:血管領域の特定)
血管領域特定部231は、第1断層像、第2断層像及び位相画像のそれぞれについて血管領域を特定する。
(S8: Identification of blood vessel region)
The blood vessel region specifying unit 231 specifies a blood vessel region for each of the first tomographic image, the second tomographic image, and the phase image.

(S9:注目血管の傾きの算出)
傾き算出部233は、断面間距離と血管領域の特定結果とに基づいて、第1断面における注目血管の傾きを算出する。
(S9: Calculation of inclination of target blood vessel)
The inclination calculation unit 233 calculates the inclination of the target blood vessel in the first cross section based on the distance between cross sections and the result of specifying the blood vessel region.

(S10:血流速度の算出)
血流速度算出部234は、位相画像として得られる位相差の時系列変化と、注目血管の傾きとに基づいて、注目血管内を流れる血液の第1断面における血流速度を算出する。
(S10: Calculation of blood flow velocity)
The blood flow velocity calculation unit 234 calculates the blood flow velocity in the first cross section of the blood flowing in the blood vessel of interest based on the time series change of the phase difference obtained as the phase image and the inclination of the blood vessel of interest.

(S11:血管径の算出)
血管径算出部235は、眼底像又は断層像(第1断層像等)に基づいて、第1断面における注目血管の径を算出する。
(S11: Calculation of blood vessel diameter)
The blood vessel diameter calculator 235 calculates the diameter of the target blood vessel in the first cross section based on the fundus image or the tomographic image (first tomographic image or the like).

(S12:血流量の算出)
血流量算出部236は、血流速度の算出結果と血管径の算出結果とに基づいて、注目血管内を流れる血液の流量を算出する。
(S12: Calculation of blood flow)
The blood flow rate calculation unit 236 calculates the flow rate of the blood flowing in the target blood vessel based on the blood flow velocity calculation result and the blood vessel diameter calculation result.

(S13:計測結果の表示及び保存)
主制御部211は、血流速度の算出結果、血流量の算出結果等を含む血流情報を表示部240Aに表示させる。また、主制御部211は、患者IDに関連付けて血流情報を記憶部212に記憶させる。以上で、この実施形態の血流計測に関する処理は終了となる。
(S13: Display and storage of measurement results)
The main control unit 211 causes the display unit 240A to display blood flow information including a blood flow velocity calculation result, a blood flow volume calculation result, and the like. In addition, the main control unit 211 stores blood flow information in the storage unit 212 in association with the patient ID. This is the end of the processing related to blood flow measurement in this embodiment.

[効果]
眼底観察装置1の効果について説明する。
[effect]
The effect of the fundus oculi observation device 1 will be described.

眼底観察装置1は、OCT計測用の光学系と、ガルバノスキャナ42と、画像形成部220と、血管領域特定部231と、血流情報生成部232とを有する。   The fundus oculi observation device 1 includes an optical system for OCT measurement, a galvano scanner 42, an image forming unit 220, a blood vessel region specifying unit 231, and a blood flow information generating unit 232.

OCT計測用の光学系は、光源ユニット101からの光を信号光LSと参照光LRとに分割し、眼底Efによる信号光LSの散乱光と参照光路を経由した参照光LRとの干渉光LCを検出する。   The optical system for OCT measurement divides the light from the light source unit 101 into the signal light LS and the reference light LR, and the interference light LC between the scattered light of the signal light LS by the fundus oculi Ef and the reference light LR via the reference light path. Is detected.

ガルバノスキャナ42は第1走査を行う。第1走査は、眼底Efの注目血管に交差する第1断面を信号光LSで反復的に走査するものである。   The galvano scanner 42 performs the first scan. In the first scan, the first cross section intersecting the target blood vessel of the fundus oculi Ef is repeatedly scanned with the signal light LS.

画像形成部220は、第1断層像と位相画像とを形成する。第1断層像は、第1断面における形態の時系列変化を表す画像であり、第1走査において光学系により得られる干渉光LCの検出結果に基づいて形成される。位相画像は、第1断面における位相差の時系列変化を表す画像であり、第1走査において光学系により得られる干渉光LCの検出結果に基づいて形成される。   The image forming unit 220 forms a first tomographic image and a phase image. The first tomographic image is an image representing a time-series change in the form in the first cross section, and is formed based on the detection result of the interference light LC obtained by the optical system in the first scanning. The phase image is an image representing a time-series change of the phase difference in the first cross section, and is formed based on the detection result of the interference light LC obtained by the optical system in the first scan.

血管領域特定部231は、第1断層像及び位相画像のそれぞれについて、注目血管に対応する血管領域を特定する。   The blood vessel region specifying unit 231 specifies a blood vessel region corresponding to the target blood vessel for each of the first tomographic image and the phase image.

血流情報生成部232は、第1断層像の血管領域と位相画像の血管領域における位相差の時系列変化とに基づいて、注目血管に関する血流情報を生成する。以上が、この実施形態の基本的な作用である。   The blood flow information generation unit 232 generates blood flow information related to the target blood vessel based on the time-series change of the phase difference between the blood vessel region of the first tomogram and the blood vessel region of the phase image. The above is the basic operation of this embodiment.

ガルバノスキャナ42は、第1走査に加えて第2走査を行ってもよい。第2走査では、注目血管に交差しかつ第1断面の近傍に位置する第2断面を信号光LSで走査する。この場合、画像形成部220は、第1断層像及び位相画像に加えて第2断層像を形成する。第2断層像は、第2断面における形態を表す画像であり、第2走査において光学系により得られる干渉光LCの検出結果に基づいて形成される。更に、血管領域特定部231は、この第2断層像についても、注目血管に対応する血管領域の特定を行う。血流情報生成部232は、第1断面と第2断面との間の距離と、第1断層像の血管領域と、第2断層像の血管領域と、位相画像が表す位相差の時系列変化とに基づいて、血流情報の生成を行う。   The galvano scanner 42 may perform the second scan in addition to the first scan. In the second scan, the second cross section that intersects the target blood vessel and is located in the vicinity of the first cross section is scanned with the signal light LS. In this case, the image forming unit 220 forms a second tomographic image in addition to the first tomographic image and the phase image. The second tomographic image is an image representing the form in the second cross section, and is formed based on the detection result of the interference light LC obtained by the optical system in the second scanning. Furthermore, the blood vessel region specifying unit 231 also specifies a blood vessel region corresponding to the blood vessel of interest for this second tomographic image. The blood flow information generation unit 232 changes the distance between the first cross section and the second cross section, the blood vessel region of the first tomographic image, the blood vessel region of the second tomographic image, and the phase difference represented by the phase image over time. Based on the above, blood flow information is generated.

血流情報生成部232は、次のように構成されていてもよい:(1)第1断面と第2断面との間の距離と、第1断層像の血管領域と、第2断層像の血管領域とに基づいて、第1断面における注目血管の傾きを算出する傾き算出部233を含む;(2)この傾きの算出結果と位相差の時系列変化とに基づいて血流情報を生成する。   The blood flow information generation unit 232 may be configured as follows: (1) the distance between the first cross section and the second cross section, the blood vessel region of the first tomogram, and the second tomogram An inclination calculating unit 233 for calculating the inclination of the target blood vessel in the first cross section based on the blood vessel region; (2) generating blood flow information based on the calculation result of the inclination and the time-series change of the phase difference. .

第2断面は、第1断面に対して注目血管の上流側の断面と下流側の断面とを含んでいてもよい。   The second cross section may include an upstream cross section and a downstream cross section of the target blood vessel with respect to the first cross section.

傾き算出部233は、第1断層像における血管領域の位置と第2断層像における血管領域の位置とに基づいて、第1断面における注目血管の傾きを算出するように構成されていてもよい。   The inclination calculation unit 233 may be configured to calculate the inclination of the target blood vessel in the first cross section based on the position of the blood vessel region in the first tomographic image and the position of the blood vessel region in the second tomographic image.

血流情報生成部232は、傾き算出部233による注目血管の傾きの算出結果と、位相差の時系列変化とに基づいて、注目血管内を流れる血液の第1断面における血流速度を算出する血流速度算出部234を含んでいてもよい。   The blood flow information generation unit 232 calculates the blood flow velocity in the first cross section of the blood flowing in the blood vessel of interest based on the calculation result of the inclination of the blood vessel of interest by the inclination calculation unit 233 and the time-series change of the phase difference. A blood flow velocity calculation unit 234 may be included.

血流速度算出部234は、位相差の時系列変化に基づいて、血流速度の時系列変化を表す血流速度変化情報を生成するように構成されていてもよい。   The blood flow velocity calculation unit 234 may be configured to generate blood flow velocity change information representing a time-series change in blood flow velocity based on a time-series change in phase difference.

血流速度算出部234は、血流速度変化情報に基づいて血流速度の統計値を算出するように構成されていてもよい。   The blood flow velocity calculation unit 234 may be configured to calculate a statistical value of the blood flow velocity based on the blood flow velocity change information.

眼底カメラユニット2は、第1断面の位置を含む眼底Efの部位を撮影する。この場合、血流情報生成部232の血管径算出部235と血流量算出部236が次のように機能する。つまり、血管径算出部235は、眼底カメラユニット2による撮影画像に基づいて、第1断面における注目血管の径を算出する。また、血流量算出部236は、血流速度変化情報と径の算出結果とに基づいて、注目血管内を流れる血液の流量を算出する。   The fundus camera unit 2 photographs a part of the fundus oculi Ef including the position of the first cross section. In this case, the blood vessel diameter calculation unit 235 and the blood flow rate calculation unit 236 of the blood flow information generation unit 232 function as follows. That is, the blood vessel diameter calculation unit 235 calculates the diameter of the target blood vessel in the first cross section based on the image captured by the fundus camera unit 2. In addition, the blood flow rate calculation unit 236 calculates the flow rate of blood flowing in the target blood vessel based on the blood flow velocity change information and the diameter calculation result.

これに代えて、血流量算出部235が、第1断層像に基づいて、第1断面における注目血管の径を算出し、血流量算出部236が、血流速度変化情報と径の算出結果とに基づいて、注目血管内を流れる血液の流量を算出するように構成されていてもよい。   Instead, the blood flow rate calculation unit 235 calculates the diameter of the blood vessel of interest in the first cross section based on the first tomogram, and the blood flow rate calculation unit 236 calculates the blood flow rate change information and the diameter calculation result. Based on the above, the flow rate of the blood flowing in the blood vessel of interest may be calculated.

血管領域特定部231は、第1断層像を解析して血管領域を特定し、第1断層像における血管領域の位置に対応する位相画像の画像領域を特定し、これを位相画像の血管領域に設定するように構成されていてもよい。   The blood vessel region specifying unit 231 analyzes the first tomographic image to specify the blood vessel region, specifies the image region of the phase image corresponding to the position of the blood vessel region in the first tomographic image, and uses this as the blood vessel region of the phase image. It may be configured to set.

患者の少なくとも1心周期の間にわたって第1走査を行うように構成することが可能である。特に、血流量の算出において上記[数2]を用いる場合、1心周期の間に得られた血流速度の最大値が用いられる。   The first scan can be configured to occur during at least one cardiac cycle of the patient. In particular, when the above [Equation 2] is used in the calculation of the blood flow, the maximum value of the blood flow velocity obtained during one cardiac cycle is used.

第1断面及び第2断面を眼底の視神経乳頭の近傍に設定することができる。従来のレーザドップラーを用いた血流計測では、その特性上、視神経乳頭から乳頭径(以上の距離)だけ離れた位置で注目血管を計測していた。しかし、この実施形態のようにOCTを用いる場合には、視神経乳頭により近い位置で計測を行うことができる。それにより、より高確度、高精度での計測が可能になると考えられる。   The first cross section and the second cross section can be set in the vicinity of the optic disc on the fundus. In blood flow measurement using a conventional laser Doppler, due to its characteristics, the blood vessel of interest is measured at a position away from the optic nerve head by the diameter of the nipple (more than the distance). However, when OCT is used as in this embodiment, measurement can be performed at a position closer to the optic nerve head. Thereby, it is considered that measurement with higher accuracy and higher accuracy becomes possible.

このような実施形態に係る眼底観察装置1によれば、位相画像と同じ断面の第1断層像と位相差の時系列変化とを用いて血流計測を行うように構成されているので、高い確度の血流計測を実現することが可能である。   The fundus oculi observation device 1 according to such an embodiment is configured to perform blood flow measurement using the first tomographic image having the same cross section as the phase image and the time-series change of the phase difference. Accurate blood flow measurement can be realized.

また、眼底観察装置1は次のような特徴を有するものである。すなわち、眼底観察装置1は、OCT計測用の光学系と、ガルバノスキャナ42と、画像形成部220と、眼底カメラユニット2と、血管領域特定部231と、血流速度算出部234と、血管径算出部235と、血流量算出部236とを有する。   The fundus oculi observation device 1 has the following characteristics. That is, the fundus oculi observation device 1 includes an OCT measurement optical system, a galvano scanner 42, an image forming unit 220, a fundus camera unit 2, a blood vessel region specifying unit 231, a blood flow velocity calculating unit 234, and a blood vessel diameter. A calculation unit 235 and a blood flow rate calculation unit 236 are included.

OCT計測用の光学系は、光源ユニット101からの光を信号光LSと参照光LRとに分割し、眼底Efによる信号光LSの散乱光と参照光路を経由した参照光LRとの干渉光LCを検出する。   The optical system for OCT measurement divides the light from the light source unit 101 into the signal light LS and the reference light LR, and the interference light LC between the scattered light of the signal light LS by the fundus oculi Ef and the reference light LR via the reference light path. Is detected.

ガルバノスキャナ42は第1走査と第2走査を行う。第1走査は、眼底Efの注目血管に交差する第1断面を信号光LSで反復的に走査するものである。第2走査は、注目血管に交差しかつ第1断面の近傍に位置する第2断面を信号光LSで走査するものである。   The galvano scanner 42 performs a first scan and a second scan. In the first scan, the first cross section intersecting the target blood vessel of the fundus oculi Ef is repeatedly scanned with the signal light LS. In the second scan, the second cross section that intersects the target blood vessel and is located near the first cross section is scanned with the signal light LS.

画像形成部220は、第1断層像と位相画像と第2断層像とを形成する。第1断層像は、第1断面における形態の時系列変化を表す画像であり、第1走査において光学系により得られる干渉光LCの検出結果に基づいて形成される。位相画像は、第1断面における位相差の時系列変化を表す画像であり、第1走査において光学系により得られる干渉光LCの検出結果に基づいて形成される。第2断層像は、第2断面における形態を表す画像であり、第2走査において光学系により得られる干渉光LCの検出結果に基づいて形成される。   The image forming unit 220 forms a first tomographic image, a phase image, and a second tomographic image. The first tomographic image is an image representing a time-series change in the form in the first cross section, and is formed based on the detection result of the interference light LC obtained by the optical system in the first scanning. The phase image is an image representing a time-series change of the phase difference in the first cross section, and is formed based on the detection result of the interference light LC obtained by the optical system in the first scan. The second tomographic image is an image representing the form in the second cross section, and is formed based on the detection result of the interference light LC obtained by the optical system in the second scanning.

眼底カメラユニット2は、第1断面の位置を含む眼底Efの部位を撮影する。   The fundus camera unit 2 photographs a part of the fundus oculi Ef including the position of the first cross section.

血管領域特定部231は、第1断層像、位相画像及び第2断層像のそれぞれについて、注目血管に対応する血管領域を特定する。   The blood vessel region specifying unit 231 specifies a blood vessel region corresponding to the target blood vessel for each of the first tomographic image, the phase image, and the second tomographic image.

血流速度算出部234は、位相差の時系列変化と、血管領域の特定結果(から得られた注目血管の傾き)とに基づいて、注目血管内を流れる血液の第1断面における血流速度を算出する。   The blood flow velocity calculation unit 234 calculates the blood flow velocity in the first cross section of the blood flowing in the blood vessel of interest based on the time-series change of the phase difference and the result of specifying the blood vessel region (the inclination of the blood vessel of interest obtained from the blood vessel region). Is calculated.

血管径算出部235は、眼底カメラユニット2による眼底Efの撮影画像に基づいて、第1断面における注目血管の径を算出する。   The blood vessel diameter calculation unit 235 calculates the diameter of the blood vessel of interest in the first cross section based on the captured image of the fundus oculi Ef by the fundus camera unit 2.

血流量算出部236は、血流速度の算出結果と血管径の算出結果とに基づいて、注目血管内を流れる血液の流量を算出する。以上が、この実施形態の基本的な作用である。   The blood flow rate calculation unit 236 calculates the flow rate of the blood flowing in the target blood vessel based on the blood flow velocity calculation result and the blood vessel diameter calculation result. The above is the basic operation of this embodiment.

患者の少なくとも1心周期の間にわたって第1走査を行うように構成することが可能である。特に、血流量の算出において上記[数2]を用いる場合、1心周期の間に得られた血流速度の最大値が用いられる。   The first scan can be configured to occur during at least one cardiac cycle of the patient. In particular, when the above [Equation 2] is used in the calculation of the blood flow, the maximum value of the blood flow velocity obtained during one cardiac cycle is used.

第1断面及び第2断面を眼底の視神経乳頭の近傍に設定することができる。従来のレーザドップラーを用いた血流計測では、その特性上、視神経乳頭から乳頭径(以上の距離)だけ離れた位置で注目血管を計測していた。しかし、この実施形態のようにOCTを用いる場合には、視神経乳頭により近い位置で計測を行うことができる。それにより、より高確度、高精度での計測が可能になると考えられる。   The first cross section and the second cross section can be set in the vicinity of the optic disc on the fundus. In blood flow measurement using a conventional laser Doppler, due to its characteristics, the blood vessel of interest is measured at a position away from the optic nerve head by the diameter of the nipple (more than the distance). However, when OCT is used as in this embodiment, measurement can be performed at a position closer to the optic nerve head. Thereby, it is considered that measurement with higher accuracy and higher accuracy becomes possible.

眼底カメラユニット2の撮影光学系30は、OCT計測用の光学系と光路の一部を共有している。表示部240Aには、眼底カメラユニット2による撮影画像が表示される。ユーザが操作部240Bを用いて、表示された撮影画像に第1断面を指定すると、断面設定部237は、指定された第1断面と撮影画像とに基づいて第2断面を設定する。ガルバノスキャナ42は、指定された第1断面に対して第1走査を行い、設定された第2断面に対して第2走査を行う。   The photographing optical system 30 of the fundus camera unit 2 shares a part of the optical path with the OCT measurement optical system. An image captured by the fundus camera unit 2 is displayed on the display unit 240A. When the user uses the operation unit 240B to specify the first cross section for the displayed captured image, the cross section setting unit 237 sets the second cross section based on the specified first cross section and the captured image. The galvano scanner 42 performs the first scan on the designated first cross section, and performs the second scan on the set second cross section.

このような実施形態に係る眼底観察装置1によれば、位相画像と同じ断面の第1断層像と位相差の時系列変化とを用いて血流計測を行うことができる。更に、眼底観察装置1は、位相差の時系列変化と血管領域の特定結果とに基づいて血流速度を算出し、撮影画像に基づいて注目血管の径を算出し、血流速度の算出結果と血管径の算出結果とに基づいて血流量を算出するように機能する。したがって、高い確度の血流計測を実現することが可能である。   According to the fundus oculi observation device 1 according to such an embodiment, blood flow measurement can be performed using the first tomographic image having the same cross section as the phase image and the time-series change of the phase difference. Further, the fundus oculi observation device 1 calculates the blood flow velocity based on the time-series change of the phase difference and the result of specifying the blood vessel region, calculates the diameter of the target blood vessel based on the captured image, and calculates the blood flow velocity. The blood flow rate is calculated based on the calculation result of the blood vessel diameter. Therefore, it is possible to realize blood flow measurement with high accuracy.

[変形例]
以上に説明した構成は、この発明を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形(省略、置換、付加等)を適宜に施すことが可能である。
[Modification]
The configuration described above is merely an example for favorably implementing the present invention. Therefore, arbitrary modifications (omitted, replacement, addition, etc.) within the scope of the present invention can be made as appropriate.

血流量の算出方法の変形例を説明する。この変形例では、血流速度算出部234は、位相画像の血管領域に含まれる各画素について、血流速度の時系列変化を表す情報(血流速度変化情報)を生成する。この処理は、たとえば、時系列に沿う複数の位相画像の画素を画素位置毎に対応付けする処理と、各画素位置に対応する時系列に沿う複数の画素に基づいて血流速度変化情報を生成する処理とを含むように構成できる。この処理により、第1断面の血管領域における血流速度を位置ごとに求めることができる。   A modified example of the blood flow calculation method will be described. In this modification, the blood flow velocity calculation unit 234 generates information (blood flow velocity change information) that represents a time-series change in blood flow velocity for each pixel included in the blood vessel region of the phase image. In this process, for example, a process of associating a plurality of phase image pixels along the time series for each pixel position, and generating blood flow velocity change information based on the plurality of pixels along the time series corresponding to each pixel position. And processing to be performed. By this processing, the blood flow velocity in the blood vessel region of the first cross section can be obtained for each position.

血流量算出部236は、血管領域に含まれる各画素の血流速度変化情報を時系列に沿って積分することにより、各画素についての血流量を算出する。この処理により、第1断面の血管領域における血流量を位置ごとに求めることができる。   The blood flow rate calculation unit 236 calculates the blood flow rate for each pixel by integrating the blood flow rate change information of each pixel included in the blood vessel region along a time series. By this process, the blood flow rate in the blood vessel region of the first cross section can be obtained for each position.

更に、血流量算出部236は、これら画素についての血流量を加算することにより、注目血管を流れる血液の流量を算出する。この処理により、前段の処理で求めた位置ごとの血流量が加算され、第1断面の血管領域を流れる血液の総量が得られる。   Furthermore, the blood flow rate calculation unit 236 calculates the flow rate of blood flowing through the target blood vessel by adding the blood flow rates for these pixels. By this process, the blood flow volume at each position obtained in the previous process is added, and the total amount of blood flowing through the blood vessel region of the first cross section is obtained.

上記の実施形態においては、光路長変更部41の位置を変更することにより、信号光LSの光路と参照光LRの光路との光路長差を変更しているが、この光路長差を変更する手法はこれに限定されるものではない。たとえば、参照光の光路に反射ミラー(参照ミラー)を配置し、この参照ミラーを参照光の進行方向に移動させて参照光の光路長を変更することによって、当該光路長差を変更することが可能である。また、被検眼Eに対して眼底カメラユニット2やOCTユニット100を移動させて信号光LSの光路長を変更することにより当該光路長差を変更するようにしてもよい。また、特に被測定物体が生体部位でない場合などには、被測定物体を深度方向(z方向)に移動させることにより光路長差を変更することも可能である。   In the above embodiment, the optical path length difference between the optical path of the signal light LS and the optical path of the reference light LR is changed by changing the position of the optical path length changing unit 41, but this optical path length difference is changed. The method is not limited to this. For example, it is possible to change the optical path length difference by disposing a reflection mirror (reference mirror) in the optical path of the reference light and moving the reference mirror in the traveling direction of the reference light to change the optical path length of the reference light. Is possible. Further, the optical path length difference may be changed by moving the fundus camera unit 2 or the OCT unit 100 with respect to the eye E to change the optical path length of the signal light LS. In particular, when the measured object is not a living body part, the optical path length difference can be changed by moving the measured object in the depth direction (z direction).

上記の実施形態を実現するためのコンピュータプログラムを、コンピュータによって読み取り可能な任意の記録媒体に記憶させることができる。この記録媒体としては、たとえば、半導体メモリ、光ディスク、光磁気ディスク(CD−ROM/DVD−RAM/DVD−ROM/MO等)、磁気記憶媒体(ハードディスク/フロッピー(登録商標)ディスク/ZIP等)などを用いることが可能である。   A computer program for realizing the above embodiment can be stored in any recording medium readable by a computer. Examples of the recording medium include a semiconductor memory, an optical disk, a magneto-optical disk (CD-ROM / DVD-RAM / DVD-ROM / MO, etc.), a magnetic storage medium (hard disk / floppy (registered trademark) disk / ZIP, etc.), and the like. Can be used.

また、インターネットやLAN等のネットワークを通じてこのプログラムを送受信することも可能である。   It is also possible to transmit / receive this program through a network such as the Internet or a LAN.

1 眼底観察装置(光画像計測装置)
2 眼底カメラユニット
10 照明光学系
30 撮影光学系
31 合焦レンズ
31A 合焦駆動部
41 光路長変更部
42 ガルバノスキャナ
50 アライメント光学系
60 フォーカス光学系
100 OCTユニット
101 光源ユニット
105 光減衰器
106 偏波調整器
115 CCDイメージセンサ
200 演算制御ユニット
210 制御部
211 主制御部
212 記憶部
220 画像形成部
221 断層像形成部
222 位相画像形成部
230 画像処理部
231 血管領域特定部
232 血流情報生成部
233 傾き算出部
234 血流速度算出部
235 血管径算出部
236 血流量算出部
237 断面設定部
240A 表示部
240B 操作部
E 被検眼
Ef 眼底
LS 信号光
LR 参照光
LC 干渉光
1 Fundus observation device (optical image measurement device)
2 fundus camera unit 10 illumination optical system 30 photographing optical system 31 focusing lens 31A focusing drive unit 41 optical path length changing unit 42 galvano scanner 50 alignment optical system 60 focus optical system 100 OCT unit 101 light source unit 105 optical attenuator 106 polarization Adjuster 115 CCD image sensor 200 Arithmetic control unit 210 Control unit 211 Main control unit 212 Storage unit 220 Image forming unit 221 Tomographic image forming unit 222 Phase image forming unit 230 Image processing unit 231 Blood vessel region specifying unit 232 Blood flow information generating unit 233 Inclination calculator 234 Blood flow velocity calculator 235 Blood vessel diameter calculator 236 Blood flow rate calculator 237 Cross-section setting unit 240A Display unit 240B Operation unit E Eye to be examined Ef Fundus LS Signal light LR Reference light LC Interference light

Claims (7)

生体の注目血管に交差する断面に対して光コヒーレンストモグラフィ(OCT)を実行することにより形成された、前記断面における形態の時系列変化を表す断層像と位相差の時系列変化を表す位相画像とを取得する取得部と、
前記断層像及び前記位相画像のそれぞれについて、前記注目血管に対応する血管領域を特定する血管領域特定部と、
前記断層像の前記血管領域と前記位相画像の前記血管領域における位相差の時系列変化とに基づいて、前記注目血管に関する血流情報を生成する血流情報生成部と
を有する血流情報生成装置。
A tomographic image representing a time-series change in morphology in the cross-section and a phase image representing a time-series change in phase difference, which are formed by performing optical coherence tomography (OCT) on a cross-section intersecting a target blood vessel of a living body And an acquisition unit for acquiring
For each of the tomographic image and the phase image, a blood vessel region specifying unit that specifies a blood vessel region corresponding to the blood vessel of interest;
A blood flow information generation device including: a blood flow information generation unit that generates blood flow information related to the blood vessel of interest based on a time-series change in phase difference between the blood vessel region of the tomographic image and the blood vessel region of the phase image .
生体の注目血管に交差する断面に対して光コヒーレンストモグラフィ(OCT)を実行することにより得られたデータを取得する取得部と、
前記取得部により取得された前記データに基づいて、前記断面における形態の時系列変化を表す断層像と位相差の時系列変化を表す位相画像とを形成する画像形成部と、
前記断層像及び前記位相画像のそれぞれについて、前記注目血管に対応する血管領域を特定する血管領域特定部と、
前記断層像の前記血管領域と前記位相画像の前記血管領域における位相差の時系列変化とに基づいて、前記注目血管に関する血流情報を生成する血流情報生成部と
を有する血流情報生成装置。
An acquisition unit that acquires data obtained by performing optical coherence tomography (OCT) on a cross section that intersects a target blood vessel of a living body;
Based on the data acquired by the acquisition unit, an image forming unit that forms a tomographic image representing a time-series change in form in the cross section and a phase image representing a time-series change in phase difference;
For each of the tomographic image and the phase image, a blood vessel region specifying unit that specifies a blood vessel region corresponding to the blood vessel of interest;
A blood flow information generation device including: a blood flow information generation unit that generates blood flow information related to the blood vessel of interest based on a time-series change in phase difference between the blood vessel region of the tomographic image and the blood vessel region of the phase image .
前記血管領域特定部は、前記断層像を解析して前記血管領域を特定し、前記断層像における当該血管領域の位置に対応する前記位相画像の画像領域を特定し、該画像領域を前記位相画像の前記血管領域とする
ことを特徴とする請求項1又は2に記載の血流情報生成装置。
The blood vessel region specifying unit analyzes the tomographic image to specify the blood vessel region, specifies an image region of the phase image corresponding to a position of the blood vessel region in the tomographic image, and determines the image region as the phase image. The blood flow information generation device according to claim 1, wherein the blood flow region is the blood vessel region.
生体の血流情報を生成する方法であって、
生体の注目血管に交差する断面に対して光コヒーレンストモグラフィ(OCT)を実行することにより形成された、前記断面における形態の時系列変化を表す断層像と位相差の時系列変化を表す位相画像とを取得し、
前記断層像及び前記位相画像のそれぞれについて、前記注目血管に対応する血管領域を特定し、
前記断層像の前記血管領域と前記位相画像の前記血管領域における位相差の時系列変化とに基づいて、前記注目血管に関する血流情報を生成する
血流情報生成方法。
A method for generating blood flow information of a living body,
A tomographic image representing a time-series change in morphology in the cross-section and a phase image representing a time-series change in phase difference, which are formed by performing optical coherence tomography (OCT) on a cross-section intersecting a target blood vessel of a living body And get the
For each of the tomographic image and the phase image, specify a blood vessel region corresponding to the blood vessel of interest,
A blood flow information generation method for generating blood flow information related to the blood vessel of interest based on a time-series change in phase difference between the blood vessel region of the tomographic image and the blood vessel region of the phase image.
生体の血流情報を生成する方法であって、
生体の注目血管に交差する断面に対して光コヒーレンストモグラフィ(OCT)を実行することにより得られたデータを取得し、
取得された前記データに基づいて、前記断面における形態の時系列変化を表す断層像と位相差の時系列変化を表す位相画像とを取得し、
前記断層像及び前記位相画像のそれぞれについて、前記注目血管に対応する血管領域を特定し、
前記断層像の前記血管領域と前記位相画像の前記血管領域における位相差の時系列変化とに基づいて、前記注目血管に関する血流情報を生成する
血流情報生成方法。
A method for generating blood flow information of a living body,
Acquire data obtained by performing optical coherence tomography (OCT) on a cross section intersecting the target blood vessel of the living body,
Based on the acquired data, obtain a tomographic image representing a time-series change in morphology in the cross section and a phase image representing a time-series change in phase difference,
For each of the tomographic image and the phase image, specify a blood vessel region corresponding to the blood vessel of interest,
A blood flow information generation method for generating blood flow information related to the blood vessel of interest based on a time-series change in phase difference between the blood vessel region of the tomographic image and the blood vessel region of the phase image.
光コヒーレンストモグラフィ(OCT)を用いて形成された画像を処理するコンピュータを、
生体の注目血管に交差する断面に対してOCTを実行することにより形成された、前記断面における形態の時系列変化を表す断層像と位相差の時系列変化を表す位相画像とを取得する取得部、
前記断層像及び前記位相画像のそれぞれについて、前記注目血管に対応する血管領域を特定する血管領域特定部、及び、
前記断層像の前記血管領域と前記位相画像の前記血管領域における位相差の時系列変化とに基づいて、前記注目血管に関する血流情報を生成する血流情報生成部
として機能させるプログラム。
A computer for processing images formed using optical coherence tomography (OCT);
An acquisition unit that acquires a tomographic image representing a time-series change in morphology and a phase image representing a time-series change in phase difference formed by executing OCT on a cross-section intersecting a target blood vessel of a living body ,
For each of the tomographic image and the phase image, a blood vessel region specifying unit that specifies a blood vessel region corresponding to the blood vessel of interest, and
A program that functions as a blood flow information generation unit that generates blood flow information related to the blood vessel of interest based on a time-series change in phase difference between the blood vessel region of the tomographic image and the blood vessel region of the phase image.
光コヒーレンストモグラフィ(OCT)を用いて形成された画像を処理するコンピュータを、
生体の注目血管に交差する断面に対してOCTを実行することにより得られたデータを取得する取得部、
前記取得部により取得された前記データに基づいて、前記断面における形態の時系列変化を表す断層像と位相差の時系列変化を表す位相画像とを形成する画像形成部、
前記断層像及び前記位相画像のそれぞれについて、前記注目血管に対応する血管領域を特定する血管領域特定部、及び、
前記断層像の前記血管領域と前記位相画像の前記血管領域における位相差の時系列変化とに基づいて、前記注目血管に関する血流情報を生成する血流情報生成部
として機能させるプログラム。
A computer for processing images formed using optical coherence tomography (OCT);
An acquisition unit for acquiring data obtained by executing OCT on a cross section intersecting a target blood vessel of a living body;
Based on the data acquired by the acquisition unit, an image forming unit that forms a tomographic image representing a time-series change in form in the cross section and a phase image representing a time-series change in phase difference,
For each of the tomographic image and the phase image, a blood vessel region specifying unit that specifies a blood vessel region corresponding to the blood vessel of interest, and
A program that functions as a blood flow information generation unit that generates blood flow information related to the blood vessel of interest based on a time-series change in phase difference between the blood vessel region of the tomographic image and the blood vessel region of the phase image.
JP2015248099A 2015-12-21 2015-12-21 Blood flow information generation device, blood flow information generation method, and program Active JP6021289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015248099A JP6021289B2 (en) 2015-12-21 2015-12-21 Blood flow information generation device, blood flow information generation method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248099A JP6021289B2 (en) 2015-12-21 2015-12-21 Blood flow information generation device, blood flow information generation method, and program

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012053911A Division JP5867719B2 (en) 2012-03-12 2012-03-12 Optical image measuring device

Publications (2)

Publication Number Publication Date
JP2016040005A true JP2016040005A (en) 2016-03-24
JP6021289B2 JP6021289B2 (en) 2016-11-09

Family

ID=55540603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248099A Active JP6021289B2 (en) 2015-12-21 2015-12-21 Blood flow information generation device, blood flow information generation method, and program

Country Status (1)

Country Link
JP (1) JP6021289B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188772A1 (en) * 2016-04-28 2017-11-02 한국과학기술원 Method for performing oct imaging while avoiding systole, and devices for performing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523286A (en) * 2007-04-10 2010-07-15 ユニヴァーシティー オブ サザン カリフォルニア Method and system for blood flow measurement using Doppler optical coherence tomography
JP2010259698A (en) * 2009-05-11 2010-11-18 Canon Inc Information processing apparatus in oct system
WO2010143601A1 (en) * 2009-06-11 2010-12-16 国立大学法人筑波大学 Two-beam optical coherence tomography apparatus
JP2012176093A (en) * 2011-02-25 2012-09-13 Canon Inc Image processing apparatus, photographing system, image processing method, and program
JP2013525035A (en) * 2010-04-29 2013-06-20 マサチューセッツ インスティテュート オブ テクノロジー Method and apparatus for motion correction and image improvement for optical coherence tomography

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523286A (en) * 2007-04-10 2010-07-15 ユニヴァーシティー オブ サザン カリフォルニア Method and system for blood flow measurement using Doppler optical coherence tomography
JP2010259698A (en) * 2009-05-11 2010-11-18 Canon Inc Information processing apparatus in oct system
WO2010143601A1 (en) * 2009-06-11 2010-12-16 国立大学法人筑波大学 Two-beam optical coherence tomography apparatus
JP2013525035A (en) * 2010-04-29 2013-06-20 マサチューセッツ インスティテュート オブ テクノロジー Method and apparatus for motion correction and image improvement for optical coherence tomography
JP2012176093A (en) * 2011-02-25 2012-09-13 Canon Inc Image processing apparatus, photographing system, image processing method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188772A1 (en) * 2016-04-28 2017-11-02 한국과학기술원 Method for performing oct imaging while avoiding systole, and devices for performing same
KR101851058B1 (en) * 2016-04-28 2018-04-20 한국과학기술원 Method of performing oct imaging by avoiding systole, and apparatuses performing the same
CN109414185A (en) * 2016-04-28 2019-03-01 韩国科学技术院 Avoid the method and its executive device of systole phase execution OCT image

Also Published As

Publication number Publication date
JP6021289B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP5867719B2 (en) Optical image measuring device
JP5916110B2 (en) Image display device, image display method, and program
JP5912358B2 (en) Fundus observation device
JP6045895B2 (en) Ophthalmic observation device
JP5937163B2 (en) Fundus analysis apparatus and fundus observation apparatus
JP5543171B2 (en) Optical image measuring device
JP5941761B2 (en) Ophthalmic photographing apparatus and ophthalmic image processing apparatus
JP5936254B2 (en) Fundus observation apparatus and fundus image analysis apparatus
JP6411728B2 (en) Ophthalmic observation device
JP6633468B2 (en) Blood flow measurement device
JP5514026B2 (en) Fundus image processing apparatus and fundus observation apparatus
JP6159454B2 (en) Ophthalmic observation device
JP6099782B2 (en) Ophthalmic imaging equipment
JP6469436B2 (en) Blood flow measuring device
JP6021289B2 (en) Blood flow information generation device, blood flow information generation method, and program
JP2018023818A (en) Ophthalmological observation device
JP2018023816A (en) Ophthalmological observation device
WO2016039188A1 (en) Ocular fundus analyzing device and ocular fundus observation device
JP6254729B2 (en) Ophthalmic imaging equipment
JP6404431B2 (en) Ophthalmic observation device
JP6453191B2 (en) Blood flow measuring device
JP6106300B2 (en) Ophthalmic imaging equipment
JP6106299B2 (en) Ophthalmic photographing apparatus and ophthalmic image processing apparatus
JP2018023815A (en) Ophthalmological observation device
JP2018023819A (en) Ophthalmological observation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6021289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250