JP2016039492A - Transfer function approximation device, program therefor and method therefor - Google Patents

Transfer function approximation device, program therefor and method therefor Download PDF

Info

Publication number
JP2016039492A
JP2016039492A JP2014161680A JP2014161680A JP2016039492A JP 2016039492 A JP2016039492 A JP 2016039492A JP 2014161680 A JP2014161680 A JP 2014161680A JP 2014161680 A JP2014161680 A JP 2014161680A JP 2016039492 A JP2016039492 A JP 2016039492A
Authority
JP
Japan
Prior art keywords
transfer function
polynomial
unstable
approximating
matched filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014161680A
Other languages
Japanese (ja)
Other versions
JP6361874B2 (en
Inventor
健太郎 松井
Kentaro Matsui
健太郎 松井
修一 足立
Shuichi Adachi
修一 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Keio University
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Keio University, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2014161680A priority Critical patent/JP6361874B2/en
Publication of JP2016039492A publication Critical patent/JP2016039492A/en
Application granted granted Critical
Publication of JP6361874B2 publication Critical patent/JP6361874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a filter approximation device capable of approximating an input transfer function accurately.SOLUTION: A filter approximation device 1 includes transfer function decomposition means 10 for decomposing an input transfer function into an unstable transfer function and a stable transfer function, transfer function division means 20 for dividing the denominator polynomial of an unstable transfer function by a numerator polynomial, determination means 30 for making the transfer function division means 20 execute division, until all coefficients of a remainder polynomial are reduced, matched filter calculation means 40 for calculating a matched filter of a quotient polynomial, and transfer function approximation means 50 for approximating the input transfer function by the product of a matched filter and stable transfer function.SELECTED DRAWING: Figure 1

Description

本願発明は、入力伝達関数を不安定極が含まれないように近似する伝達関数近似装置、そのプログラム及びその方法に関する。   The present invention relates to a transfer function approximating device that approximates an input transfer function so that unstable poles are not included, a program thereof, and a method thereof.

離散時間システムの伝達関数の安定性は、その伝達関数に含まれる極により決定される。伝達関数は、全ての極が複素平面上の単位円内に含まれるとき、安定する。このとき、伝達関数の応答は、ゼロに向けて収束する。一方、伝達関数は、極が一つでも単位円上又は単位円外に存在するとき、不安定となる。図5の例では、極P1〜P3が単位円内に含まれるが、極P4が単位円上に存在し、極P5が単位円外に存在する。このように伝達関数が不安定な場合、その応答が発振する。   The stability of a transfer function of a discrete time system is determined by the poles included in the transfer function. The transfer function is stable when all poles are contained within the unit circle on the complex plane. At this time, the response of the transfer function converges toward zero. On the other hand, the transfer function becomes unstable when even one pole exists on or outside the unit circle. In the example of FIG. 5, the poles P1 to P3 are included in the unit circle, but the pole P4 exists on the unit circle and the pole P5 exists outside the unit circle. When the transfer function is unstable in this way, the response oscillates.

なお、不安定極とは、複素平面上の単位円上又は単位円外に存在する極のことである。
不安定伝達関数とは、不安定極を含み、応答が発振する伝達関数のことである。
安定伝達関数とは、不安定極を含まず、応答が収束する伝達関数のことである。
An unstable pole is a pole that exists on or outside the unit circle on the complex plane.
An unstable transfer function is a transfer function that includes an unstable pole and whose response oscillates.
The stable transfer function is a transfer function that does not include an unstable pole and converges a response.

伝達関数の安定性は、制御システムを構築する際に重要となる。例えば、音場制御システムは、ある音場の特性を補償することや、ノイズや残響をキャンセルすることを目的としており、その音場の伝達関数の逆システムとして設計されることが多い。通常、逆システムは、制御対象となる音場が不安定零点を持つため、不安定極を持つ不安定伝達関数から構成される。そのような制御システムは、実装不可能なため、安定伝達関数により近似される。   The stability of the transfer function is important when constructing a control system. For example, a sound field control system is intended to compensate for characteristics of a certain sound field and cancel noise and reverberation, and is often designed as an inverse system of the transfer function of the sound field. Usually, an inverse system is composed of an unstable transfer function having an unstable pole because the sound field to be controlled has an unstable zero. Since such a control system cannot be implemented, it is approximated by a stable transfer function.

例えば、非特許文献1では、不安定伝達関数を全域通過特性を持つ関数と最小位相関数とに分割し、不安定極を含む全域通過関数を遅延により近似する技術が提案されている。また、非特許文献2では、不安定伝達関数から不安定極を括り出し、除算法と呼ばれる除算と剰余の打ち切り処理とにより、不安定極を安定伝達関数で近似する技術が提案されている。
なお、全域通過特性を持つ関数は、不安定零点及び極又はその何れかと、その複素共役の逆数の関係にある極及び零点とを含む伝達関数である。
For example, Non-Patent Document 1 proposes a technique in which an unstable transfer function is divided into a function having an all-pass characteristic and a minimum phase function, and an all-pass function including an unstable pole is approximated by a delay. Further, Non-Patent Document 2 proposes a technique in which unstable poles are bundled from unstable transfer functions, and the unstable poles are approximated by stable transfer functions by division called a division method and truncation of the remainder.
The function having the all-pass characteristic is a transfer function including an unstable zero point and / or a pole, and a pole and a zero point having a reciprocal complex conjugate thereof.

Matsui et al.,Binaural Reproduction of 22.2 Multichannel Sound over Loudspeakers,presented at AES 129th Conv.,2010.Matsui et al., Binaural Reproduction of 22.2 Multichannel Sound over Loudspeakers, presented at AES 129th Conv., 2010. 呂他,近似逆システムを用いた非最小位相離散時間系のロバストモデル追従制御系,電学論C,121,11,2001.Ro et al., Robust model following control system of non-minimum phase discrete-time system using approximate inverse system, Electrical theory C, 121, 11, 2001.

しかし、非特許文献1に記載の技術は、伝達関数の振幅特性を精度よく近似するが、位相特性が線形位相近似となるため、近似した不安定伝達関数の精度が低下する。また、非特許文献2に記載の技術は、剰余多項式が安定するまで打ち切り処理が繰り返されるため、振幅特性及び位相特性の誤差が増大する。   However, the technique described in Non-Patent Document 1 accurately approximates the amplitude characteristic of the transfer function, but the phase characteristic becomes a linear phase approximation, so that the accuracy of the approximated unstable transfer function is lowered. In the technique described in Non-Patent Document 2, the truncation process is repeated until the remainder polynomial is stabilized, so that the error in the amplitude characteristic and the phase characteristic increases.

そこで、本願発明は、前記した問題に鑑みて、入力伝達関数を精度よく近似できる伝達関数近似装置、そのプログラム及びその方法を提供することを課題とする。   In view of the above problems, it is an object of the present invention to provide a transfer function approximating apparatus, a program thereof, and a method thereof that can accurately approximate an input transfer function.

前記した課題を解決するため、本願発明に係る伝達関数近似装置は、伝達関数分解手段と、伝達関数除算手段と、判定手段と、マッチドフィルタ算出手段と、伝達関数近似手段とを備える構成とした。   In order to solve the above-described problems, a transfer function approximating device according to the present invention is configured to include a transfer function decomposing unit, a transfer function dividing unit, a determining unit, a matched filter calculating unit, and a transfer function approximating unit. .

かかる構成によれば、伝達関数近似装置は、伝達関数分解手段によって、入力伝達関数を、不安定極及び不安定極の複素共役の逆数の関係にある零点が含まれる不安定伝達関数と、不安定伝達関数以外の安定伝達関数とに分解する。このようにして、伝達関数近似装置は、不安定極と複素共役の逆数の関係にある零点とを、不安定伝達関数として一緒に括り出す。また、括り出された不安定伝達関数は、全域通過特性を持つことになる。   According to such a configuration, the transfer function approximating device uses the transfer function decomposing means to convert the input transfer function into an unstable transfer function including an unstable transfer function including an unstable pole and an inverse of the complex conjugate of the unstable pole, and an unstable transfer function. Decompose into stable transfer functions other than the stable transfer function. In this way, the transfer function approximating apparatus bundles together the unstable pole and the zero point having the inverse relation of the complex conjugate as an unstable transfer function. In addition, the unstabilized unstable transfer function has an all-pass characteristic.

伝達関数近似装置は、伝達関数除算手段によって、伝達関数分解手段で分解された不安定伝達関数の分母多項式を分子多項式で除算することで、不安定伝達関数の逆数について商多項式及び剰余多項式を算出する。
ここで、不安定伝達関数の分母多項式を分子多項式で除算することは、不安定伝達関数の逆数をとって除算することと等価である。
The transfer function approximation device calculates the quotient polynomial and the remainder polynomial for the reciprocal of the unstable transfer function by dividing the denominator polynomial of the unstable transfer function decomposed by the transfer function decomposing means by the numerator polynomial by the transfer function dividing means. To do.
Here, dividing the denominator polynomial of the unstable transfer function by the numerator polynomial is equivalent to taking the inverse of the unstable transfer function and dividing.

伝達関数近似装置は、判定手段によって、剰余多項式を扱わずに商多項式のみで近似を行うために、剰余多項式の全係数が小さくなるまで、伝達関数除算手段に除算を実行させる。これにより、不安定伝達関数の逆数は、剰余多項式を無視して、商多項式のみで近似できる。   The transfer function approximating device causes the transfer function dividing unit to execute division until all the coefficients of the remainder polynomial become small so that the determination unit performs approximation using only the quotient polynomial without handling the remainder polynomial. As a result, the reciprocal of the unstable transfer function can be approximated only by the quotient polynomial, ignoring the remainder polynomial.

伝達関数近似装置は、マッチドフィルタ算出手段によって、伝達関数除算手段で算出された商多項式のマッチドフィルタ(matched filter)を算出する。このマッチドフィルタは、整合フィルタとも呼ばれる。そして、伝達関数近似装置は、伝達関数近似手段によって、マッチドフィルタ算出手段で算出されたマッチドフィルタと安定伝達関数との積で入力伝達関数を近似する。
ここで、不安定伝達関数が全域通過特性を持つため、不安定伝達関数の逆数も全域通過特性を持つことになる。そして、不安定伝達関数の逆数が商多項式で近似されることから、商多項式のマッチドフィルタも全域通過特性を持つことになる。
The transfer function approximation device calculates a matched filter of the quotient polynomial calculated by the transfer function division unit by the matched filter calculation unit. This matched filter is also called a matched filter. Then, the transfer function approximating device approximates the input transfer function by the product of the matched filter calculated by the matched filter calculating unit and the stable transfer function by the transfer function approximating unit.
Here, since the unstable transfer function has all-pass characteristics, the inverse of the unstable transfer function also has all-pass characteristics. Since the inverse of the unstable transfer function is approximated by a quotient polynomial, the matched filter of the quotient polynomial also has an all-pass characteristic.

なお、本願発明は、コンピュータを、伝達関数近似装置の各手段として動作させる伝達関数近似プログラムで実現することもできる。また、本願発明は、伝達関数近似装置の各手段が処理を順に実行する伝達関数近似方法で実現することもできる。   The present invention can also be realized by a transfer function approximation program that causes a computer to operate as each means of a transfer function approximation device. The present invention can also be realized by a transfer function approximating method in which each means of the transfer function approximating apparatus sequentially executes processing.

本願発明によれば、括り出された不安定伝達関数が全域通過特性を持つため、不安定伝達関数の逆数も全域通過特性を持つことになり、マッチドフィルタも全域通過特性を持つことになる。従って、本願発明によれば、不安定伝達関数の振幅特性を精度よく近似できる。さらに、本願発明によれば、不安定伝達関数の逆数をとる際に位相が一旦反転するが、マッチドフィルタを算出することで位相が再度反転して元に戻るため、不安定伝達関数の位相特性も精度よく近似できる。このようにして、本願発明によれば、入力伝達関数を精度よく近似できる。   According to the present invention, since the unstabilized unstable transfer function has all-pass characteristics, the reciprocal of the unstable transfer function also has all-pass characteristics, and the matched filter also has all-pass characteristics. Therefore, according to the present invention, the amplitude characteristic of the unstable transfer function can be approximated with high accuracy. Further, according to the present invention, the phase is once inverted when the reciprocal of the unstable transfer function is taken, but the phase is inverted again by calculating the matched filter, so that the phase characteristic of the unstable transfer function is restored. Can be approximated accurately. Thus, according to the present invention, the input transfer function can be approximated with high accuracy.

本願発明の第1実施形態に係るフィルタ近似装置の構成を示すブロック図である。It is a block diagram which shows the structure of the filter approximation apparatus which concerns on 1st Embodiment of this invention. 図1のフィルタ近似装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the filter approximation apparatus of FIG. 本願発明の第2実施形態において、トランスオーラル再生システムの構成を示すブロック図である。In 2nd Embodiment of this invention, it is a block diagram which shows the structure of a trans-oral reproduction | regeneration system. 本願発明の第2実施形態に係るフィルタ近似装置の構成を示すブロック図である。It is a block diagram which shows the structure of the filter approximation apparatus which concerns on 2nd Embodiment of this invention. 従来技術の説明図である。It is explanatory drawing of a prior art.

以下、本願発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各実施形態において、同一の機能を有する手段には同一の符号を付し、説明を省略した。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In each embodiment, means having the same function are denoted by the same reference numerals and description thereof is omitted.

(第1実施形態)
[フィルタ近似装置の構成]
図1を参照し、本願発明の第1実施形態に係るフィルタ近似装置(伝達関数近似装置)1の構成について説明する。
フィルタ近似装置1は、不安定極を含む入力伝達関数Hを、不安定極が含まれないように近似するものである。図1のように、フィルタ近似装置1は、伝達関数分解手段10と、伝達関数除算手段20と、判定手段30と、マッチドフィルタ算出手段40と、伝達関数近似手段50とを備える。
(First embodiment)
[Configuration of filter approximation device]
With reference to FIG. 1, the structure of the filter approximation apparatus (transfer function approximation apparatus) 1 which concerns on 1st Embodiment of this invention is demonstrated.
The filter approximation device 1 approximates the input transfer function H including an unstable pole so that the unstable pole is not included. As shown in FIG. 1, the filter approximation device 1 includes a transfer function decomposition unit 10, a transfer function division unit 20, a determination unit 30, a matched filter calculation unit 40, and a transfer function approximation unit 50.

伝達関数分解手段10は、入力伝達関数Hが入力され、入力された入力伝達関数Hを、不安定伝達関数と安定伝達関数とに分解するものである。
本実施形態では、伝達関数分解手段10は、入力伝達関数Hの係数を有するフィルタが外部(例えば、トランスオーラル再生システム)から入力される。この入力伝達関数Hは、有理関数の比で表されると共に、不安定極を含む不安定伝達関数である。
The transfer function decomposing means 10 receives an input transfer function H and decomposes the input transfer function H into an unstable transfer function and a stable transfer function.
In this embodiment, the transfer function decomposing means 10 receives a filter having a coefficient of the input transfer function H from the outside (for example, a transoral reproduction system). The input transfer function H is an unstable transfer function that is represented by a ratio of rational functions and includes an unstable pole.

下記式(1)のように、入力伝達関数Hは、不安定極及び不安定極の複素共役の逆数の関係にある零点が含まれる不安定伝達関数Hと、不安定伝達関数H以外の安定伝達関数Hとの積で定義される。この不安定伝達関数Hは、全域通過特性を持つことになる。また、伝達関数の分母多項式の根が極に、分子多項式の根が零点となる。このことから、不安定伝達関数Hは、入力伝達関数Hの分母多項式の根のうち不安定なものを極として持ち、その根と複素共役の逆数の関係にある零点を持つことになる。 As in the following equation (1), an input transfer function H is unstable transfer function H that contains the zero point in the relationship between the inverse of the complex conjugate of the unstable poles and unstable poles - and unstable transfer function H - except Is defined as the product of the stable transfer function H + . This unstable transfer function H has an all-pass characteristic. In addition, the root of the denominator polynomial of the transfer function is the pole, and the root of the numerator polynomial is the zero point. From this, the unstable transfer function H has an unstable one of the roots of the denominator polynomial of the input transfer function H as a pole, and has a zero that is in the relationship of the inverse of the complex conjugate.

Figure 2016039492
Figure 2016039492

例えば、入力伝達関数H=1/(0.5−2.25q−1+q−2)の場合を考える。この場合、伝達関数分解手段10は、入力伝達関数Hの分母多項式を“(0.25−q−1)(2−q−1)”に因数分解する。このとき、入力伝達関数Hの極となる根は、それぞれ“4”と“0.5”となる。従って、伝達関数分解手段10は、式(1)を用いて、入力伝達関数Hを、不安定伝達関数H=(q−1−4)/(0.25−q−1)と、安定伝達関数H=1/((q−1−4)(2−q−1))とに分解できる。その後、伝達関数分解手段10は、分解した不安定伝達関数H及び安定伝達関数Hを伝達関数除算手段20に出力する。 For example, consider the case where the input transfer function H = 1 / (0.5-2.25q −1 + q −2 ). In this case, the transfer function decomposing means 10 factors the denominator polynomial of the input transfer function H into “(0.25−q −1 ) (2−q −1 )”. At this time, the roots as the poles of the input transfer function H are “4” and “0.5”, respectively. Therefore, the transfer function decomposing means 10 uses the equation (1) to convert the input transfer function H into an unstable transfer function H = (q −1 -4) / (0.25−q −1 ) and stable. The transfer function H + = 1 / ((q −1 -4) (2-q −1 )). Thereafter, the transfer function decomposing means 10 outputs the decomposed unstable transfer function H and stable transfer function H + to the transfer function dividing means 20.

伝達関数除算手段20は、伝達関数分解手段10から入力された不安定伝達関数Hの分母多項式を分子多項式で除算することで、不安定伝達関数Hの逆数について商多項式及び剰余多項式を算出するものである(1回目の除算)。 The transfer function dividing means 20 calculates a quotient polynomial and a remainder polynomial for the reciprocal of the unstable transfer function H by dividing the denominator polynomial of the unstable transfer function H input from the transfer function decomposing means 10 by the numerator polynomial. (First division).

ここで、下記式(2)のように、不安定伝達関数Hの分子多項式をH 、分母多項式をH とおく。この場合、伝達関数除算手段20は、下記式(3)のように、分子多項式H による分母多項式H の除算を行い、そのときの商及び剰余をそれぞれ商多項式C及び剰余多項式Dとする。その後、伝達関数除算手段20は、伝達関数分解手段10から入力された安定伝達関数Hと、算出した商多項式C及び剰余多項式Dとを判定手段30に出力する。 Here, as shown in the following equation (2), the numerator polynomial of the unstable transfer function H is set as H A and the denominator polynomial is set as H B. In this case, the transfer function dividing means 20, as in the following equation (3), the numerator polynomial H - A by the denominator polynomial H - Divides B, and quotient polynomial quotient and remainder of the time C and the remainder polynomial D And Thereafter, the transfer function dividing unit 20 outputs the stable transfer function H + input from the transfer function decomposing unit 10 and the calculated quotient polynomial C and remainder polynomial D to the determining unit 30.

Figure 2016039492
Figure 2016039492

Figure 2016039492
Figure 2016039492

さらに、伝達関数除算手段20は、後記する除算実行指令が判定手段30から入力される都度、剰余多項式Dの分子多項式H による除算を行う(2回目以降の除算)。つまり、伝達関数除算手段20は、剰余多項式Dの全係数が小さくなるまで、剰余多項式Dを分子多項式H で除算することを繰り返す。 Further, the transfer function dividing means 20, every time the division execution command to be described later is inputted from the judging unit 30, the numerator polynomial H of the remainder polynomial D - performing division by A (the second and subsequent division). In other words, the transfer function dividing means 20, until all coefficients of the remainder polynomial D decreases, the remainder polynomial D numerator polynomial H - repeating dividing by A.

判定手段30は、剰余多項式Dを扱わずに商多項式Cのみで近似を行うために、剰余多項式Dの全係数が小さくなるまで、伝達関数除算手段20に除算を実行させるものである。
本実施形態では、判定手段30は、剰余多項式Dの全係数に対する閾値判定により、剰余多項式Dの全係数が小さいか否かを判定する。例えば、判定手段30は、閾値Tが予め設定され、剰余多項式Dの全係数が閾値T未満であるか否かを判定する。
The determination unit 30 causes the transfer function division unit 20 to perform division until all coefficients of the remainder polynomial D become small in order to perform approximation using only the quotient polynomial C without handling the remainder polynomial D.
In the present embodiment, the determination unit 30 determines whether or not all the coefficients of the remainder polynomial D are small by threshold determination for all the coefficients of the remainder polynomial D. For example, the determination unit 30 determines whether or not the threshold T is preset and all the coefficients of the remainder polynomial D are less than the threshold T.

剰余多項式Dの全係数が閾値T未満でない場合、判定手段30は、伝達関数除算手段20に除算の実行を指令する(除算実行指令)。このとき、判定手段30は、除算実行指令の出力回数を、除算反復回数Nとして算出(カウント)する。
なお、伝達関数除算手段20が除算を繰り返すと、近似精度が向上する一方、除算反復回数Nが多くなるため、近似による遅延(モデリングディレイ)が増大する。
When all the coefficients of the remainder polynomial D are not less than the threshold value T, the determination unit 30 instructs the transfer function division unit 20 to execute division (division execution command). At this time, the determination unit 30 calculates (counts) the number of division execution command outputs as the number of division iterations N.
When the transfer function dividing means 20 repeats the division, the approximation accuracy is improved, but the number of division iterations N is increased, so that a delay due to approximation (modeling delay) increases.

剰余多項式Dの全係数が閾値T未満の場合、判定手段30は、伝達関数除算手段20から入力された安定伝達関数Hと、算出した商多項式C及び除算反復回数Nとをマッチドフィルタ算出手段40に出力する。 When all the coefficients of the remainder polynomial D are less than the threshold value T, the determination unit 30 matches the stable transfer function H + input from the transfer function division unit 20 with the calculated quotient polynomial C and the number of division iterations N. Output to 40.

<除算及び閾値判定の具体例>
ここでは、分母多項式H =3q−1+4q−2+5q−3を、分子多項式H =q−1で除算する具体例をあげて、伝達関数除算手段20による除算及び判定手段30による閾値判定を説明する。
<Specific examples of division and threshold determination>
Here, a specific example of dividing the denominator polynomial H B = 3q −1 + 4q −2 + 5q −3 by the numerator polynomial H A = q −1 will be given, and the division by the transfer function division unit 20 and the determination unit 30 The threshold determination will be described.

1回目の除算では、伝達関数除算手段20が分母多項式H =3q−1+4q−2+5q−3を“q−1”で除算するので、商が“3”、剰余が“4q−2+5q−3”となる。この場合、判定手段30は、剰余多項式Dの係数“4,5”のそれぞれに対し、閾値判定を行う。ここでは、剰余多項式Dの係数“4,5”が閾値T未満でないため、伝達関数除算手段20が2回目の除算を行うこととする。 In the first division, the transfer function dividing means 20 divides the denominator polynomial H B = 3q −1 + 4q −2 + 5q −3 by “q −1 ”, so that the quotient is “3” and the remainder is “4q −2 ”. + 5q −3 ”. In this case, the determination unit 30 performs threshold determination for each of the coefficients “4, 5” of the remainder polynomial D. Here, since the coefficients “4, 5” of the remainder polynomial D are not less than the threshold value T, the transfer function dividing unit 20 performs the second division.

2回目の除算では、伝達関数除算手段20が1回目の除算で発生した剰余多項式D=4q−2+5q−3を“q−1”で除算するので、商が“3+4q−1”、剰余が“5q−3”となる。この場合、判定手段30は、剰余多項式Dの係数“5”に対し、閾値判定を行う。
剰余多項式Dの係数の全てが閾値T未満になるまで、伝達関数除算手段20による除算及び判定手段30による閾値判定が繰り返されることになる。
In the second division, the transfer function dividing means 20 divides the remainder polynomial D = 4q −2 + 5q −3 generated by the first division by “q −1 ”, so that the quotient is “3 + 4q −1 ” and the remainder is “5q −3 ”. In this case, the determination unit 30 performs threshold determination on the coefficient “5” of the remainder polynomial D.
Until all the coefficients of the remainder polynomial D are less than the threshold value T, the division by the transfer function dividing unit 20 and the threshold value determination by the determining unit 30 are repeated.

以下、フィルタ近似装置の構成について、説明を続ける。
マッチドフィルタ算出手段40は、判定手段30から入力された商多項式CのマッチドフィルタCを算出するものである。
Hereinafter, the description of the configuration of the filter approximation device will be continued.
Matched filter calculating means 40 is for calculating the matched filter C M of the input from the judgment unit 30 quotient polynomial C.

ここで、商多項式Cのマッチドフィルタについて考える。マッチドフィルタは、その周波数伝達関数が対象信号の周波数伝達関数の複素共役となる。つまり、対象信号の時間軸反転と等価になる。そこで、商多項式Cは、下記式(4)で記述できる。この場合、マッチドフィルタCは、下記式(5)のようになる。この商多項式C及びマッチドフィルタCは、同一の振幅特性を有し、位相特性が遅延を伴って逆に進む。
なお、c,…,cN−1が商多項式Cの係数を表し、qがシフトオペレータを表す。
Now consider a matched filter of the quotient polynomial C. The frequency transfer function of the matched filter is a complex conjugate of the frequency transfer function of the target signal. That is, this is equivalent to the time axis inversion of the target signal. Therefore, the quotient polynomial C can be described by the following formula (4). In this case, the matched filter C M is expressed by the following formula (5). The quotient polynomial C and matched filter C M have the same amplitude characteristic, phase characteristic proceeds in reverse with a delay.
Note that c 0 ,..., C N−1 represent coefficients of the quotient polynomial C, and q represents a shift operator.

Figure 2016039492
Figure 2016039492

Figure 2016039492
Figure 2016039492

つまり、マッチドフィルタ算出手段40は、式(5)を用いて、反復除算で得られた商多項式CのマッチドフィルタCを算出する。そして、マッチドフィルタ算出手段40は、判定手段30から入力された安定伝達関数Hと、算出したマッチドフィルタCとを伝達関数近似手段50に出力する。 That is, the matched filter calculating means 40, using equation (5) to calculate the matched filter C M of the quotient polynomial C obtained in repeated division. Then, the matched filter calculating means 40 outputted a stable transfer function H + input from deciding section 30, the calculated and matched filter C M to the transfer function approximation unit 50.

伝達関数近似手段50は、マッチドフィルタ算出手段40から入力されたマッチドフィルタCと安定伝達関数Hとの積で入力伝達関数Hを近似するものである。
以下、マッチドフィルタと安定伝達関数との積で近似した伝達関数を「近似伝達関数」と呼ぶ。
Transfer function approximation unit 50 is an approximation of the input transfer function H in the product of the matched filter C M inputted from the matched filter calculating means 40 and stable transfer function H +.
Hereinafter, the transfer function approximated by the product of the matched filter and the stable transfer function is referred to as an “approximate transfer function”.

ここで、伝達関数除算手段20が除算を繰り返したので、剰余多項式Dが無視できる程小さくなる。そこで、式(3)より、不安定伝達関数Hを商多項式Cで近似できる。その結果、不安定伝達関数Hは、マッチドフィルタCを用いて、下記式(6)のように近似できる。さらに、式(1)及び式(6)により、伝達関数近似手段50は、下記式(7)を用いて、近似伝達関数Cで入力伝達関数Hを近似できる。その後、伝達関数近似手段50は、近似伝達関数Cを外部(例えば、トランスオーラル再生システム)に出力する。 Here, since the transfer function dividing means 20 repeats the division, the remainder polynomial D becomes so small that it can be ignored. Therefore, the unstable transfer function H can be approximated by a quotient polynomial C from Equation (3). As a result, unstable transfer function H - uses a matched filter C M, can be approximated as the following equation (6). Further, according to the equations (1) and (6), the transfer function approximating means 50 can approximate the input transfer function H with the approximate transfer function C M H + using the following equation (7). Thereafter, the transfer function approximating means 50 outputs the approximate transfer function C M H + to the outside (for example, a transoral reproduction system).

Figure 2016039492
Figure 2016039492

Figure 2016039492
Figure 2016039492

[フィルタ近似装置の動作]
図2を参照し、フィルタ近似装置1の動作について説明する(適宜図1参照)。
フィルタ近似装置1は、伝達関数分解手段10によって、式(1)を用いて、入力伝達関数Hを不安定伝達関数Hと安定伝達関数Hとに分解する(ステップS1)。
[Operation of filter approximation device]
The operation of the filter approximation device 1 will be described with reference to FIG. 2 (see FIG. 1 as appropriate).
The filter approximating apparatus 1 decomposes the input transfer function H into the unstable transfer function H and the stable transfer function H + by using the transfer function decomposition means 10 using the equation (1) (step S1).

フィルタ近似装置1は、伝達関数除算手段20によって、式(3)を用いて、不安定伝達関数Hの分母多項式H を分子多項式H で除算する(ステップS2)。
フィルタ近似装置1は、判定手段30によって、剰余多項式Dの全係数が閾値T未満であるか否かを判定する(ステップS3)。
Filter approximation device 1, the transfer function division means 20, using equation (3), unstable transfer function H - the denominator polynomial H - the B numerator polynomial H - dividing by A (Step S2).
The filter approximation device 1 determines whether or not all the coefficients of the remainder polynomial D are less than the threshold value T by the determination unit 30 (step S3).

剰余多項式Dの全係数が閾値T未満でない場合(ステップS3でNo)、フィルタ近似装置1は、ステップS2の処理に戻り、伝達関数除算手段20によって、剰余多項式Dを分子多項式H で更に除算することになる。 If all the coefficients of the remainder polynomial D is not less than the threshold value T (No in step S3), and the filter approximation device 1 returns to the process in step S2, the transfer function division means 20, the remainder polynomial D numerator polynomial H - still A Will divide.

剰余多項式Dの全係数が閾値T未満の場合(ステップS3でYes)、フィルタ近似装置1は、マッチドフィルタ算出手段40によって、式(5)を用いて、商多項式CのマッチドフィルタCを算出する(ステップS4)。
フィルタ近似装置1は、伝達関数近似手段50によって、式(7)を用いて、マッチドフィルタCにより入力伝達関数Hを近似する(ステップS5)。
When all the coefficients of the remainder polynomial D are less than the threshold value T (Yes in step S3), the filter approximation device 1 calculates the matched filter C M of the quotient polynomial C by using the matched filter calculation means 40 using the equation (5). (Step S4).
Filter approximation device 1, the transfer function approximation unit 50, using equation (7) approximates the input transfer function H by matched filter C M (step S5).

[作用・効果]
本願発明の第1実施形態に係るフィルタ近似装置1は、括り出された不安定伝達関数Hが全域通過特性を持つため、不安定伝達関数Hの逆数も全域通過特性を持つことになり、マッチドフィルタも全域通過特性を持つことになる。従って、フィルタ近似装置1は、不安定伝達関数Hの振幅特性を精度よく近似できる。さらに、フィルタ近似装置1は、不安定伝達関数Hの逆数をとる際に位相が一旦反転するが、マッチドフィルタを算出することで遅延は伴うものの位相再度が反転して元に戻るため、不安定伝達関数Hの位相特性も精度よく近似できる。このように、フィルタ近似装置1は、一定の遅延を伴うものの、不安定伝達関数Hの振幅特性及び位相特性を精度よく近似し、入力伝達関数Hの安定化を図ることができる。
[Action / Effect]
In the filter approximating device 1 according to the first embodiment of the present invention, since the unstabilized unstable transfer function H has an all-pass characteristic, the reciprocal of the unstable transfer function H also has an all-pass characteristic. The matched filter also has an all-pass characteristic. Therefore, the filter approximation device 1 is unstable transfer function H - amplitude characteristics can be accurately approximated in. Further, the filter approximating device 1 temporarily inverts the phase when taking the reciprocal of the unstable transfer function H , but calculating the matched filter causes the phase to invert and return to the original state although there is a delay. stable transfer function H - phase characteristic can be accurately approximated. As described above, the filter approximating apparatus 1 can accurately approximate the amplitude characteristic and the phase characteristic of the unstable transfer function H and stabilize the input transfer function H, although with a certain delay.

(第2実施形態)
図3,図4を参照し、本願発明の第2実施形態に係るフィルタ近似装置1について説明する。この第2実施形態では、フィルタ近似装置1が、トランスオーラル再生システム100に用いられる。
(Second Embodiment)
A filter approximation device 1 according to a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the filter approximation device 1 is used in the transoral reproduction system 100.

[トランスオーラル再生の概略]
図3を参照し、トランスオーラル再生システム100の概略について、説明する。
頭部伝達関数(HRTF:Head-Related Transfer Function)は、自由音場において、頭がない状態での頭部中心に相当する位置から、頭外音源位置を経て両耳鼓膜位置もしくは外耳道入口までの音響伝達関数として定義される。このHRTFには、両耳間時間差やレベル差、周波数特性上のスペクトラルキューなど、音像定位知覚に関連した多くの特徴量が含まれている。そのため、HRTFを音源信号に作用させる、言い換えると、HRTF領域表現である頭部インパルス応答を音源信号に畳み込むことにより、任意の方位に音像を定位知覚させることができる。このように生成される信号をバイノーラル信号、という。また、バイノーラル信号をヘッドホンにより再生する再生方式をバイノーラル再生方式という。
[Outline of transoral playback]
With reference to FIG. 3, the outline of the trans-oral reproduction system 100 will be described.
The head-related transfer function (HRTF) from the position corresponding to the center of the head in the free sound field to the binaural tympanic membrane position or the ear canal entrance through the position of the external sound source. Defined as acoustic transfer function. The HRTF includes many feature quantities related to sound image localization perception such as interaural time difference, level difference, and spectral cue on frequency characteristics. For this reason, the sound image can be localized in an arbitrary direction by causing the HRTF to act on the sound source signal, in other words, by convolving the head impulse response, which is an HRTF region representation, with the sound source signal. The signal generated in this way is called a binaural signal. A reproduction method for reproducing binaural signals using headphones is called a binaural reproduction method.

スピーカによりバイノーラル信号を再生する場合、スピーカから同側耳までの信号の伝搬に加え、対側耳への漏洩(クロストーク)も発生する。従って、このクロストークを抑圧し、所望信号のみをそれぞれの耳に伝送する補償処理が必要となる。この処理をクロストークキャンセレーションという。また、この処理により実現されるスピーカを用いた3次元音響再生方式を、トランスオーラル再生という。   When a binaural signal is reproduced by a speaker, leakage (crosstalk) to the opposite ear also occurs in addition to signal propagation from the speaker to the same ear. Therefore, it is necessary to perform compensation processing for suppressing the crosstalk and transmitting only a desired signal to each ear. This process is called crosstalk cancellation. A three-dimensional sound reproduction method using a speaker realized by this processing is referred to as transoral reproduction.

図3のように、トランスオーラル再生システム100では、制御点数m(1≦i≦m)及び2次音源数n(1≦j≦n)である。Gij(q)は、j番目の2次音源からi番目の制御点への音響伝達関数、すなわちHRTFを表す。X(q)は、各制御点での所望伝達関数を表す。Hij(q)は、各制御点でのクロストークキャンセレーション用の制御器120として働く。
図3では、X(q)及びGij(q)にそれぞれ符号110,140を付した。また、符号130がスピーカを表し、符号150が頭部位置を表し、符号160が音源を表す。
As shown in FIG. 3, in the transoral reproduction system 100, the number of control points is m (1 ≦ i ≦ m) and the number of secondary sound sources is n (1 ≦ j ≦ n). G ij (q) represents an acoustic transfer function from the j-th secondary sound source to the i-th control point, that is, HRTF. X i (q) represents a desired transfer function at each control point. H ij (q) serves as a controller 120 for crosstalk cancellation at each control point.
In FIG. 3, X i (q) and G ij (q) are denoted by reference numerals 110 and 140, respectively. Reference numeral 130 represents a speaker, reference numeral 150 represents a head position, and reference numeral 160 represents a sound source.

トランスオーラル再生システム100の入出力信号は、下記式(8)〜式(12)の関係で表される。ここで、u(k)がトランスオーラル再生システム100の入力信号を表す。また、y(k)がトランスオーラル再生システム100の出力信号を表す。また、Tが転置を表す。   Input / output signals of the trans-oral reproduction system 100 are expressed by the following expressions (8) to (12). Here, u (k) represents an input signal of the transoral reproduction system 100. Further, y (k) represents an output signal of the transoral reproduction system 100. T represents transposition.

Figure 2016039492
Figure 2016039492

Figure 2016039492
Figure 2016039492

Figure 2016039492
Figure 2016039492

Figure 2016039492
Figure 2016039492

Figure 2016039492
Figure 2016039492

出力信号y(k)は、入力信号u(k)に伝達関数X(q)が作用された信号となるため、下記式(13)で表すことができる。このように、シフトオペレータqを用いると、時間領域での畳み込み演算が行列積の形で記述可能となる。このため、下記式(14)のような代数学的な逆行列演算により、制御器120を設計することができる。   Since the output signal y (k) is a signal obtained by applying the transfer function X (q) to the input signal u (k), it can be expressed by the following formula (13). As described above, when the shift operator q is used, the convolution operation in the time domain can be described in the form of a matrix product. For this reason, the controller 120 can be designed by an algebraic inverse matrix operation like the following formula (14).

Figure 2016039492
Figure 2016039492

Figure 2016039492
Figure 2016039492

ただし、式(14)は不安定となるため、そのままの実装が不可能である。そこで、一旦不安定な制御器120を設計した後、フィルタ近似装置1が、各制御器120を構成する伝達関数H(q)から不安定伝達関数Hを括り出す。そして、フィルタ近似装置1が、この不安定伝達関数Hを遅れ逆システムとして近似することで、安定した制御器120を実現できる。 However, since Expression (14) becomes unstable, it cannot be mounted as it is. Therefore, after designing the unstable controller 120 once, the filter approximating device 1 ties up the unstable transfer function H from the transfer functions H (q) constituting each controller 120. Then, the filter approximating device 1 approximates the unstable transfer function H as a delayed inverse system, whereby a stable controller 120 can be realized.

<フィルタ近似装置の利用例>
図4を参照し、図1のフィルタ近似装置1の利用例について説明する(適宜図3参照)。
この図4では、図面を見やすくするため、制御器120及びスピーカ130を1個だけ図示した。
<Usage example of filter approximation device>
With reference to FIG. 4, the usage example of the filter approximation apparatus 1 of FIG. 1 is demonstrated (refer FIG. 3 suitably).
In FIG. 4, only one controller 120 and one speaker 130 are shown for easy understanding of the drawing.

図4のように、フィルタ近似装置1は、トランスオーラル再生システム100で用いられる伝達関数H(q)を近似するものである。
具体的には、フィルタ近似装置1は、入力伝達関数として、各制御器120を構成する伝達関数H(q)をそれぞれ入力し、第1実施形態と同様の処理を行う。そして、フィルタ近似装置1は、伝達関数H(q)の近似伝達関数を各制御器120に出力する。その後、各制御器120は、フィルタ近似装置1から入力された近似伝達関数を用いて、トランスオーラル再生を行う。
As shown in FIG. 4, the filter approximation device 1 approximates the transfer function H (q) used in the transoral reproduction system 100.
Specifically, the filter approximating apparatus 1 inputs the transfer function H (q) constituting each controller 120 as an input transfer function, and performs the same processing as in the first embodiment. Then, the filter approximation device 1 outputs an approximate transfer function of the transfer function H (q) to each controller 120. Thereafter, each controller 120 performs transoral reproduction using the approximate transfer function input from the filter approximation device 1.

[作用・効果]
本願発明の第2実施形態に係るフィルタ近似装置1は、第1実施形態と同様の理由により、伝達関数H(q)を精度よく近似することができる。従って、フィルタ近似装置1を用いると、制御器120を容易に実装することができる。
[Action / Effect]
The filter approximation device 1 according to the second embodiment of the present invention can accurately approximate the transfer function H (q) for the same reason as in the first embodiment. Therefore, if the filter approximation device 1 is used, the controller 120 can be easily mounted.

なお、前記した各実施形態では、フィルタ近似装置1を独立したハードウェアとして説明したが、本願発明は、これに限定されない。例えば、フィルタ近似装置1は、コンピュータが備えるCPU、メモリ、ハードディスク等のハードウェア資源を、前記した各手段として協調動作させるフィルタ近似プログラムで実現することもできる。このプログラムは、通信回線を介して配布してもよく、CD−ROMやフラッシュメモリ等の記録媒体に書き込んで配布してもよい。   In each of the above-described embodiments, the filter approximation device 1 has been described as independent hardware, but the present invention is not limited to this. For example, the filter approximating apparatus 1 can also be realized by a filter approximating program that causes hardware resources such as a CPU, a memory, and a hard disk included in a computer to operate cooperatively as the above-described units. This program may be distributed through a communication line, or may be distributed by writing in a recording medium such as a CD-ROM or a flash memory.

本願発明は、逆システムを利用した制御システム全般で利用することができる。例えば、本願発明は、音場再生技術、ノイズキャンセリング処理等の音響制御システムで利用することができる。   The present invention can be used in general control systems using the reverse system. For example, the present invention can be used in an acoustic control system such as a sound field reproduction technique and a noise canceling process.

1 フィルタ近似装置(伝達関数近似装置)
10 伝達関数分解手段
20 伝達関数除算手段
30 判定手段
40 マッチドフィルタ算出手段
50 伝達関数近似手段
1 Filter approximation device (transfer function approximation device)
DESCRIPTION OF SYMBOLS 10 Transfer function decomposition means 20 Transfer function division means 30 Determination means 40 Matched filter calculation means 50 Transfer function approximation means

Claims (5)

有理関数の比で表される不安定極を含む入力伝達関数を、前記不安定極が含まれないように近似する伝達関数近似装置であって、
前記入力伝達関数を、前記不安定極及び当該不安定極の複素共役の逆数の関係にある零点が含まれる不安定伝達関数と、当該不安定伝達関数以外の安定伝達関数とに分解する伝達関数分解手段と、
前記伝達関数分解手段で分解された不安定伝達関数の分母多項式を分子多項式で除算することで、前記不安定伝達関数の逆数について商多項式及び剰余多項式を算出する伝達関数除算手段と、
前記剰余多項式を扱わずに前記商多項式のみで近似を行うために、前記剰余多項式の全係数が小さくなるまで、前記伝達関数除算手段に除算を実行させる判定手段と、
前記伝達関数除算手段で算出された商多項式のマッチドフィルタを算出するマッチドフィルタ算出手段と、
前記マッチドフィルタ算出手段で算出されたマッチドフィルタと前記安定伝達関数との積で前記入力伝達関数を近似する伝達関数近似手段と、
を備えることを特徴とする伝達関数近似装置。
A transfer function approximating device for approximating an input transfer function including an unstable pole represented by a ratio of rational functions so as not to include the unstable pole,
A transfer function that decomposes the input transfer function into an unstable transfer function including a zero that is in the relationship of the inverse of the unstable pole and the complex conjugate of the unstable pole, and a stable transfer function other than the unstable transfer function Decomposition means;
A transfer function dividing means for calculating a quotient polynomial and a remainder polynomial for the reciprocal of the unstable transfer function by dividing the denominator polynomial of the unstable transfer function decomposed by the transfer function decomposing means by a numerator polynomial;
In order to perform approximation only with the quotient polynomial without dealing with the remainder polynomial, determination means for causing the transfer function division means to perform division until all the coefficients of the remainder polynomial are reduced,
Matched filter calculating means for calculating a matched filter of a quotient polynomial calculated by the transfer function dividing means;
Transfer function approximating means for approximating the input transfer function by the product of the matched filter calculated by the matched filter calculating means and the stable transfer function;
A transfer function approximating device comprising:
前記判定手段は、前記剰余多項式の全係数に対する閾値判定により、前記剰余多項式の全係数が小さいか否かを判定することを特徴とする請求項1に記載の伝達関数近似装置。   The transfer function approximating apparatus according to claim 1, wherein the determination unit determines whether or not all coefficients of the remainder polynomial are small by threshold determination for all coefficients of the remainder polynomial. 前記伝達関数分解手段は、前記入力伝達関数として、クロストークキャンセレーション用の伝達関数を分解することを特徴とする請求項1又は請求項2に記載の伝達関数近似装置。   The transfer function approximating device according to claim 1, wherein the transfer function decomposing means decomposes a transfer function for crosstalk cancellation as the input transfer function. コンピュータを、請求項1から請求項3の何れか一項に記載の伝達関数近似装置として機能させるための伝達関数近似プログラム。   A transfer function approximating program for causing a computer to function as the transfer function approximating device according to any one of claims 1 to 3. 有理関数の比で表される不安定極を含む入力伝達関数を、前記不安定極が含まれないように近似する伝達関数近似方法であって、
前記入力伝達関数を、前記不安定極及び当該不安定極の複素共役の逆数の関係にある零点が含まれる不安定伝達関数と、当該不安定伝達関数以外の安定伝達関数とに分解する伝達関数分解ステップと、
前記伝達関数分解ステップで分解された不安定伝達関数の分母多項式を分子多項式で除算することで、前記不安定伝達関数の逆数について商多項式及び剰余多項式を算出する伝達関数除算ステップと、
前記剰余多項式の全係数に対する閾値判定により、前記剰余多項式の全係数が小さいか否かを判定し、前記剰余多項式を扱わずに前記商多項式のみで近似を行うために、前記剰余多項式の全係数が小さくなるまで、前記伝達関数除算ステップの処理に戻る判定ステップと、
前記伝達関数除算ステップで算出された商多項式のマッチドフィルタを算出するマッチドフィルタ算出ステップと、
前記マッチドフィルタ算出ステップで算出されたマッチドフィルタと前記安定伝達関数との積で前記入力伝達関数を近似する伝達関数近似ステップと、
を順に実行することを特徴とする伝達関数近似方法。
A transfer function approximation method for approximating an input transfer function including an unstable pole represented by a ratio of rational functions so as not to include the unstable pole,
A transfer function that decomposes the input transfer function into an unstable transfer function including a zero that is in the relationship of the inverse of the unstable pole and the complex conjugate of the unstable pole, and a stable transfer function other than the unstable transfer function A decomposition step;
A transfer function division step of calculating a quotient polynomial and a remainder polynomial for the reciprocal of the unstable transfer function by dividing the denominator polynomial of the unstable transfer function decomposed in the transfer function decomposition step by a numerator polynomial;
In order to determine whether or not all the coefficients of the remainder polynomial are small by threshold determination for all the coefficients of the remainder polynomial, and to perform approximation only with the quotient polynomial without treating the remainder polynomial, all the coefficients of the remainder polynomial A determination step for returning to the transfer function division step until
A matched filter calculating step for calculating a matched filter of the quotient polynomial calculated in the transfer function dividing step;
A transfer function approximating step for approximating the input transfer function by a product of the matched filter calculated in the matched filter calculating step and the stable transfer function;
The transfer function approximation method characterized by performing sequentially.
JP2014161680A 2014-08-07 2014-08-07 Transfer function approximating device, program thereof and method thereof Active JP6361874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014161680A JP6361874B2 (en) 2014-08-07 2014-08-07 Transfer function approximating device, program thereof and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014161680A JP6361874B2 (en) 2014-08-07 2014-08-07 Transfer function approximating device, program thereof and method thereof

Publications (2)

Publication Number Publication Date
JP2016039492A true JP2016039492A (en) 2016-03-22
JP6361874B2 JP6361874B2 (en) 2018-07-25

Family

ID=55530254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014161680A Active JP6361874B2 (en) 2014-08-07 2014-08-07 Transfer function approximating device, program thereof and method thereof

Country Status (1)

Country Link
JP (1) JP6361874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425969B (en) * 2022-09-14 2023-09-08 深圳市华智芯联科技有限公司 Method and device for designing compensation filter of phase-locked loop and computer equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310348A (en) * 2004-03-23 2005-11-04 Nippon Hoso Kyokai <Nhk> Tracking control device, tracking control method, burst disturbance estimating device, and burst disturbance estimating method
JP2007104601A (en) * 2005-10-07 2007-04-19 Matsushita Electric Ind Co Ltd Apparatus for supporting header transport function in multi-channel encoding
JP2008027575A (en) * 2007-09-14 2008-02-07 Nippon Hoso Kyokai <Nhk> Tracking control device
US20110268281A1 (en) * 2010-04-30 2011-11-03 Microsoft Corporation Audio spatialization using reflective room model
JP2013110633A (en) * 2011-11-22 2013-06-06 Nippon Telegr & Teleph Corp <Ntt> Transoral system
JP2014081822A (en) * 2012-10-17 2014-05-08 Kobe Steel Ltd Control device for inverse response system
JP2015111384A (en) * 2013-11-08 2015-06-18 国立大学法人大阪大学 System parameter identification method
JP2016039493A (en) * 2014-08-07 2016-03-22 日本放送協会 Modeling apparatus of head-related transfer function, method and program thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310348A (en) * 2004-03-23 2005-11-04 Nippon Hoso Kyokai <Nhk> Tracking control device, tracking control method, burst disturbance estimating device, and burst disturbance estimating method
JP2007104601A (en) * 2005-10-07 2007-04-19 Matsushita Electric Ind Co Ltd Apparatus for supporting header transport function in multi-channel encoding
JP2008027575A (en) * 2007-09-14 2008-02-07 Nippon Hoso Kyokai <Nhk> Tracking control device
US20110268281A1 (en) * 2010-04-30 2011-11-03 Microsoft Corporation Audio spatialization using reflective room model
JP2013110633A (en) * 2011-11-22 2013-06-06 Nippon Telegr & Teleph Corp <Ntt> Transoral system
JP2014081822A (en) * 2012-10-17 2014-05-08 Kobe Steel Ltd Control device for inverse response system
JP2015111384A (en) * 2013-11-08 2015-06-18 国立大学法人大阪大学 System parameter identification method
JP2016039493A (en) * 2014-08-07 2016-03-22 日本放送協会 Modeling apparatus of head-related transfer function, method and program thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.SUGAYA, ET AL.: ""Low-Order Modeling of Head-Related Transfer Function for Binaural Reproduction"", SICE JOURNAL OF CONTROL, MEASUREMENT, AND SYSTEM INTEGRATION, vol. 8, no. 2, JPN6018019496, March 2015 (2015-03-01), pages 108 - 113, ISSN: 0003804948 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425969B (en) * 2022-09-14 2023-09-08 深圳市华智芯联科技有限公司 Method and device for designing compensation filter of phase-locked loop and computer equipment

Also Published As

Publication number Publication date
JP6361874B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
US11778406B2 (en) Audio processing device and method therefor
JP7139409B2 (en) Generating binaural audio in response to multichannel audio using at least one feedback delay network
JP7183467B2 (en) Generating binaural audio in response to multichannel audio using at least one feedback delay network
JP2019503097A (en) Spectral correction of audio signal
CN111295896B (en) Virtual rendering of object-based audio on arbitrary sets of speakers
JP6254142B2 (en) Apparatus and method for calculating loudspeaker signals for multiple loudspeakers using delay in the frequency domain
EP3075072A1 (en) Audio signal processing
US9264838B2 (en) System and method for variable decorrelation of audio signals
JP2020501448A (en) Voice pre-compensation filter optimized for bright and dark zones
JP6361874B2 (en) Transfer function approximating device, program thereof and method thereof
JP6399864B2 (en) Controller design apparatus, controller design method and program
JP6343771B2 (en) Head related transfer function modeling apparatus, method and program thereof
JP6304643B2 (en) Nonlinear distortion reduction apparatus, method, and program for speaker
JP6518661B2 (en) Acoustic spaceization with spatial effects, optimized in terms of complexity
JP4306815B2 (en) Stereophonic sound processor using linear prediction coefficients
JP2010217268A (en) Low delay signal processor generating signal for both ears enabling perception of direction of sound source
JP2019047460A (en) Controller design apparatus for acoustic signal, and program
JP2010256817A (en) Reverberation impulse response generating device, reverberation adding device and program
Nelson et al. Recent Developments in Virtual Acoustic Imaging Systems
JP2018201125A (en) Multiple input multiple output system direct reverse identification method and device and program and storage medium, multiple input multiple output inverse filter device and method
JP2021022861A (en) Adaptive identification system, adaptive identification device, and adaptive identification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180612

R150 Certificate of patent or registration of utility model

Ref document number: 6361874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250