JP2016039115A - Short-arc discharge lamp and light source device - Google Patents

Short-arc discharge lamp and light source device Download PDF

Info

Publication number
JP2016039115A
JP2016039115A JP2014163543A JP2014163543A JP2016039115A JP 2016039115 A JP2016039115 A JP 2016039115A JP 2014163543 A JP2014163543 A JP 2014163543A JP 2014163543 A JP2014163543 A JP 2014163543A JP 2016039115 A JP2016039115 A JP 2016039115A
Authority
JP
Japan
Prior art keywords
sealing tube
lamp
light
tube
outer sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014163543A
Other languages
Japanese (ja)
Other versions
JP6395496B2 (en
Inventor
裕介 細木
Yusuke Hosoki
裕介 細木
宏 小平
Hiroshi Kodaira
宏 小平
幸男 塩谷
Yukio Shioya
幸男 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2014163543A priority Critical patent/JP6395496B2/en
Priority to CN201510348951.2A priority patent/CN105374659B/en
Publication of JP2016039115A publication Critical patent/JP2016039115A/en
Application granted granted Critical
Publication of JP6395496B2 publication Critical patent/JP6395496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a short-arc discharge lamp preventing a sealing tube and step-joined glass from being damaged and deformed due to light propagating through the sealing tube.SOLUTION: In a short-arc discharge lamp, a sealing tube 4 provided continuously to an arc tube 3 and an electrode core rod 6 supporting an electrode 5 disposed in the arc tube 3 are sealed via step-joined glass 7. In the short-arc discharge lamp, a light radiation surface and a light reflection surface are provided on the surface of the sealing tube 4, and light propagating through the sealing tube 4 is radiated from the light radiation surface to the outside.SELECTED DRAWING: Figure 2

Description

本発明は、露光装置や投影装置等の光源に好適なショートアーク放電ランプおよびショートアーク放電ランプを用いた光源装置に関するものである。   The present invention relates to a short arc discharge lamp suitable for a light source such as an exposure apparatus and a projection apparatus, and a light source device using the short arc discharge lamp.

従来から投影装置の光源として、図2に示すような発光管3内にキセノンガス等の希ガスを主成分とした放電ガスを封入したショートアーク放電ランプが知られている。   2. Description of the Related Art Conventionally, as a light source for a projection apparatus, a short arc discharge lamp in which a discharge gas mainly composed of a rare gas such as xenon gas is enclosed in an arc tube 3 as shown in FIG.

このショートアーク放電ランプは、石英ガラス製の発光管3の両端に石英ガラス製の封止管4が続いて形成され、発光管3内には、タングステンもしくはモリブデンを主成分とする一対の電極5が配置され、この電極5はタングステンもしくはモリブデンを主成分とする電極芯棒6に接合されることによって保持される。   In this short arc discharge lamp, a quartz glass sealing tube 4 is continuously formed on both ends of a quartz glass arc tube 3, and a pair of electrodes 5 mainly composed of tungsten or molybdenum is formed in the arc tube 3. The electrode 5 is held by being bonded to an electrode core bar 6 mainly composed of tungsten or molybdenum.

また、このショートアーク放電ランプ(以下 ランプ)は、点灯中の発光管内部の放電ガス圧力を非常に高くすることで、輝度を高くしている。あわせて、発光管内部に水銀を封入していないため、ランプ点灯時にランプに流す電流値は、水銀を封入したショートアーク水銀放電ランプよりも高くなる。よって、高い封入ガス圧でも封止管4が破損せず、かつ電極5に大電流を供給するために、電極5に接合されている電極芯棒6を封止管端部から突出させ、封止管4の内部で電極芯棒6と封止管4を段継ぎガラス7を介して封着する段継ガラス封止構造を用いている。   In addition, this short arc discharge lamp (hereinafter referred to as a lamp) increases the brightness by increasing the discharge gas pressure inside the arc tube during operation. In addition, since mercury is not sealed inside the arc tube, the current value flowing through the lamp when the lamp is lit is higher than that of a short arc mercury discharge lamp in which mercury is sealed. Therefore, in order to supply a large current to the electrode 5 without damaging the sealed tube 4 even at a high sealed gas pressure, the electrode core bar 6 joined to the electrode 5 is protruded from the end of the sealed tube and sealed. A step glass sealing structure in which the electrode core 6 and the sealing tube 4 are sealed via a step glass 7 inside the stop tube 4 is used.

封止管4には口金8が設けられる場合がある。さらに口金8は電極芯棒6と電気的に接続されている場合がある。口金8はたとえばランプを保持する、または電極芯棒6に点灯電流を供給する配線を取り付ける等の機能を有する。   A base 8 may be provided in the sealing tube 4. Furthermore, the base 8 may be electrically connected to the electrode core 6. The base 8 has functions such as holding a lamp or attaching a wiring for supplying a lighting current to the electrode core 6.

発光管3に放電ガスとしてキセノンガスが大気圧以上で封入されており、ランプに点灯電力を供給すると、電極間の放電によりアークが発生し、アークより可視光を中心とした紫外光から赤外光までの幅広い領域の光が放射される。図1に示すようにランプ2は、一方が開口しアークを焦点としている楕円状の反射鏡1内に配置される。ランプより放射された光は反射鏡1によって集光されることで利用される。   Xenon gas is sealed as a discharge gas in the arc tube 3 at atmospheric pressure or higher, and when lighting power is supplied to the lamp, an arc is generated by discharge between the electrodes, and ultraviolet light from the arc centered on visible light to infrared light. A wide range of light up to light is emitted. As shown in FIG. 1, the lamp 2 is arranged in an elliptical reflecting mirror 1 which is open at one end and focuses on an arc. The light emitted from the lamp is collected by the reflecting mirror 1 and used.

しかし、アークより放射された光の一部は、発光管3および発光管3と連設した封止管4の内部を、光ファイバーの内部を光が全反射するように伝播する(以下 光ファイバー効果)。また、アークは一定の広がりを有するものであり、反射鏡1の焦点から外れた位置のアークから放射された光は、反射鏡1によって適切に集光されず、発光管3や封止管4に照射されてしまう。照射された光の一部は光ファイバー効果で発光管3および封止管4の内部を伝播する。   However, part of the light emitted from the arc propagates through the arc tube 3 and the sealing tube 4 connected to the arc tube 3 so that the light is totally reflected inside the optical fiber (hereinafter referred to as the optical fiber effect). . Further, the arc has a certain spread, and the light emitted from the arc at a position out of the focus of the reflecting mirror 1 is not properly collected by the reflecting mirror 1, and the arc tube 3 or the sealing tube 4. Will be irradiated. Part of the irradiated light propagates inside the arc tube 3 and the sealing tube 4 by the optical fiber effect.

図4は従来の封止管4と電極芯棒6とを段継ガラス7を介して接合した段継ガラス封止構造の断面図である。封止管4はランプ軸方向外側に弧を描くような突出部9を介して段継ガラス7と接合する。一般にこのような封止管の形状は、熔融等により加工、変形して製造するため、製造時に微小な加工歪みが封止管4の突出部9に残留する。   FIG. 4 is a cross-sectional view of a conventional step glass sealing structure in which a sealing tube 4 and an electrode core rod 6 are joined via a step glass 7. The sealing tube 4 is joined to the step glass 7 via a protruding portion 9 that draws an arc outside the lamp axis. In general, since the shape of such a sealing tube is processed and deformed by melting or the like, a minute processing distortion remains in the protruding portion 9 of the sealing tube 4 at the time of manufacturing.

アークより放射された光の一部L1は、封止管4の内部をランプ軸方向端部に向かって伝播し、封止管4の突出部9に集中する。放電によって発生する光は紫外線から赤外線までの幅広い領域の光であり、紫外線は、封止管4を構成する石英ガラスの分子結合を切ってしまい、石英ガラスを劣化させる。特に封止管4の突出部9のような歪のある部分に紫外線が集中することによって、歪部分の分子結合が切れ、石英ガラスが脆化することで、やがてクラックが発生する。クラックが発生した状態でランプを点灯させると、高圧状態の放電ガスによってクラックを起点としてランプが破裂する恐れがある。   A part L1 of the light emitted from the arc propagates inside the sealing tube 4 toward the end in the lamp axial direction and concentrates on the protruding portion 9 of the sealing tube 4. The light generated by the discharge is light in a wide range from ultraviolet rays to infrared rays, and the ultraviolet rays break the molecular bonds of the quartz glass constituting the sealing tube 4 and degrade the quartz glass. In particular, when ultraviolet rays concentrate on a strained portion such as the protruding portion 9 of the sealing tube 4, the molecular bond in the strained portion is cut and the quartz glass becomes brittle, and cracks are eventually generated. If the lamp is lit in a cracked state, the lamp may burst starting from the crack by the high-pressure discharge gas.

同様に赤外線が封止管4の突出部9に集中し、封止管の突出部9が加熱される。これにより突出部9にさらに熱による歪が発生し、上記の紫外線集中によるクラックが発生しやすくなる。また、突出部9を含む封止管が加熱されることによって、電極芯棒6を保持している段継ガラス7も加熱される。段継ガラス7の温度が歪点を上回ると、段継ガラス7に歪が発生し、併せて段継ガラス7の温度が長時間にわたって歪点を上回ることによって、段継ガラス7は僅かずつ変形する。さらに段継ガラス7の温度が軟化点を上回ると、短時間で段継ガラス7は大きく変形する。段継ガラス7は点灯中の高圧状態の放電ガスによってランプ軸方向外側に変形し、電極芯棒が支持している電極の位置も段継ガラスに伴って移動してしまう。このため、アークの位置が反射鏡の焦点からずれ、放射する光の利用効率が低下してしまう。併せて電極間距離の変動によるランプの点灯電力の特性の変化によって、ランプが正常に点灯できなくなる場合がある。   Similarly, infrared rays concentrate on the protruding portion 9 of the sealing tube 4 and the protruding portion 9 of the sealing tube is heated. As a result, the protrusion 9 is further distorted by heat, and cracks due to the concentration of ultraviolet rays are likely to occur. In addition, when the sealing tube including the protruding portion 9 is heated, the step glass 7 holding the electrode core bar 6 is also heated. When the temperature of the step glass 7 exceeds the strain point, distortion occurs in the step glass 7, and the temperature of the step glass 7 exceeds the strain point for a long time. To do. Further, when the temperature of the step glass 7 exceeds the softening point, the step glass 7 is greatly deformed in a short time. The step glass 7 is deformed to the outside in the lamp axis direction by the discharge gas in a high pressure state during lighting, and the position of the electrode supported by the electrode core rod is also moved along with the step glass. For this reason, the position of the arc deviates from the focal point of the reflecting mirror, and the utilization efficiency of the emitted light decreases. In addition, there is a case where the lamp cannot be normally lit due to a change in the characteristic of the lighting power of the lamp due to the variation in the distance between the electrodes.

これに対し、封止管4の外表面に光反射部材を備えることによって、封止管4に光が照射されることを防止することができる。しかし、封止管4はランプ点灯中において数100度に加熱される。その結果、たとえば封止管4と光反射部材とのによる熱膨張差によって封止管4に応力が加わることで封止管4が破損する、または光反射部材の成分が封止管4と反応し、封止管4の強度が劣化することで封止管4が破損する等の弊害が生じる可能性があった。加えて、光反射部材では封止管内部を伝播する光を防ぐことはできない。さらに、このような数100度の温度環境に耐久できる光反射部材を封止管表面に備えるとランプ製造コストが上昇してしまう。   On the other hand, by providing a light reflecting member on the outer surface of the sealing tube 4, it is possible to prevent the sealing tube 4 from being irradiated with light. However, the sealing tube 4 is heated to several hundred degrees during lamp operation. As a result, for example, stress is applied to the sealing tube 4 due to a difference in thermal expansion between the sealing tube 4 and the light reflecting member, so that the sealing tube 4 is damaged, or components of the light reflecting member react with the sealing tube 4. However, the strength of the sealing tube 4 may be deteriorated, which may cause a problem such as the sealing tube 4 being damaged. In addition, the light reflecting member cannot prevent light propagating inside the sealing tube. Furthermore, if a light reflecting member that can withstand such a temperature environment of several hundred degrees is provided on the surface of the sealing tube, the lamp manufacturing cost increases.

上記課題を解決するために、請求項1に記載のショートアーク放電ランプは、内部に一対の電極を備えた発光管と、前記電極を支持する電極芯棒と、前記発光管に連設して前記電極棒に対して封着する封止管とからなり、前記封止管は、前記発光管に連設する外側封止管と、前記外側封止管に連設し、外径がランプ軸方向外側に向けて縮径する外側封止管縮径部と、前記外側封止管縮径部に連設し、前記外側封止管縮径部の電極芯棒側にランプ径方向に沿った外側封止管端部と、前記外側封止管端部の発光管側に連設する内側封止管と、前記内側封止管に連設して前記電極棒と封着する段継ぎガラスとからなるショートアーク放電ランプにおいて、前記外側封止管端部のランプ軸方向外側端面には、前記外側封止管の内径よりもランプ径方向内側にランプ径方向に沿った第1の平坦面を有し、前記外側封止管端部の電極芯棒側内周面の一部には、前記外側封止管端部のランプ軸方向外側端面の内径より大きい内径を有したランプ軸方向内側に拡径する拡径部を有することを特徴とする。   In order to solve the above-mentioned problem, a short arc discharge lamp according to claim 1 includes an arc tube having a pair of electrodes therein, an electrode core that supports the electrode, and an arc tube connected to the arc tube. A sealing tube that seals against the electrode rod, the sealing tube being connected to the outer sealing tube and the outer sealing tube, and having an outer diameter of the lamp shaft. An outer sealing tube diameter-reducing portion that is reduced in diameter toward the outer side, and the outer sealing tube diameter-reducing portion that is continuously provided along the lamp radial direction on the electrode core rod side of the outer sealing tube diameter-reducing portion. An outer sealing tube end, an inner sealing tube connected to the arc tube side of the outer sealing tube end, and a step glass that is connected to the inner sealing tube and sealed to the electrode rod; A short arc discharge lamp comprising: an outer end surface of the outer sealing tube at an end surface in a lamp axial direction; A first flat surface along the radial direction of the lamp on the side, and a portion of the inner peripheral surface on the electrode core bar side of the outer sealing tube end is on the outer side in the lamp axial direction of the outer sealing tube end It has a diameter-expanding part that expands inward in the lamp axial direction and has an inner diameter larger than the inner diameter of the end face.

請求項2に記載のショートアーク放電ランプは、請求項1に記載のショートアーク放電ランプであって、前記第1の平坦面は、前記外側封止管の内部を伝播する光を前記封止管外部へ放射する第1の光放射面であり、前記拡径部は、前記外側封止管端部の内部をランプ径方向内側に向かって伝播する光をランプ軸方向に反射する光反射面であることを特徴とする。   The short arc discharge lamp according to claim 2 is the short arc discharge lamp according to claim 1, wherein the first flat surface transmits light propagating through the outer sealing tube. A first light-emitting surface that radiates to the outside, wherein the enlarged-diameter portion is a light-reflecting surface that reflects light propagating inward in the radial direction of the lamp through the inside of the outer sealing tube end in the lamp axis direction. It is characterized by being.

請求項3に記載のショートアーク放電ランプは、請求項2に記載のショートアーク放電ランプであって、前記外側封止管端部のランプ端側には、前記電極芯棒側内周面と内表面が連続する管状の光誘導部を有し、前記管状の光誘導部のランプ軸方向外側端面には、ランプ径方向に沿った第2の平坦面を有し、前記第2の平坦面は、前記光反射面で反射され、前記光誘導部の内部を伝播する光を外部に放射する第2の光放射面であることを特徴とする。   The short arc discharge lamp according to claim 3 is the short arc discharge lamp according to claim 2, wherein the outer end of the outer sealing tube has an inner peripheral surface and an inner peripheral surface on the lamp end side. A tubular light guiding portion having a continuous surface, and a second flat surface along a radial direction of the lamp at a lamp axial direction outer end surface of the tubular light guiding portion, wherein the second flat surface is The second light emitting surface is characterized in that it is a second light emitting surface that emits the light reflected by the light reflecting surface and propagating through the light guiding portion to the outside.

請求項4に記載のショートアーク放電ランプは、請求項2または請求項3に記載のショートアーク放電ランプであって、前記拡径部の最大内径を有する部分が、前記外側封止管端部のランプ軸方向中心より前記発光管側にあることを特徴とする。   The short arc discharge lamp according to claim 4 is the short arc discharge lamp according to claim 2 or 3, wherein a portion having the maximum inner diameter of the enlarged diameter portion is an end portion of the outer sealed tube. It is characterized in that it is on the arc tube side from the center in the lamp axial direction.

請求項5に記載の光源装置は、請求項1乃至請求項4に記載のショートアーク放電ランプを備えた光源装置であって、前記ショートアーク放電ランプと、前記ショートアーク放電ランプを囲むように配置され、一方が開口している楕円状の反射鏡とよりなり、前記反射鏡の開口側に、前記外側封止管端部のランプ軸方向外側端面に平坦面を有する前記封止管を有するようにショートアーク放電ランプを備えたことを特徴とする。   A light source device according to claim 5 is a light source device including the short arc discharge lamp according to claim 1, and is disposed so as to surround the short arc discharge lamp and the short arc discharge lamp. The sealing tube having a flat surface on the outer end surface in the lamp axis direction of the end portion of the outer sealing tube on the opening side of the reflecting mirror. Is provided with a short arc discharge lamp.

本発明によれば、封止管の内部を伝播する光が封止管の端部に集中することを抑制するとともに、封止管の内部を光ファイバー効果で伝播する光をランプ軸方向外側に放射することができ、光に含まれる紫外線および赤外線によって、ランプが破損する、もしくは電極の位置がずれることを防止することができる。   According to the present invention, the light propagating through the inside of the sealing tube is prevented from concentrating on the end of the sealing tube, and the light propagating through the inside of the sealing tube by the optical fiber effect is emitted outward in the lamp axis direction. It is possible to prevent the lamp from being damaged or the electrode from being displaced due to ultraviolet rays and infrared rays contained in the light.

本発明のランプおよび反射鏡の概略断面図Schematic sectional view of the lamp and reflector of the present invention 本発明のランプの概略断面図Schematic sectional view of the lamp of the present invention 本発明の実施形態の封止構造断面図Cross-sectional view of a sealing structure according to an embodiment of the present invention 従来のランプの封止構造断面説明図Cross-sectional illustration of a conventional lamp sealing structure 外側封止管端部に平坦面を有するランプの封止構造断面説明図Cross-sectional explanatory drawing of the sealing structure of a lamp having a flat surface at the end of the outer sealing tube 外側封止管縮径部を有するランプの封止構造断面説明図Cross-sectional explanatory drawing of a sealing structure of a lamp having a reduced diameter portion of the outer sealing tube 本発明の実施形態である拡径部を有する封止構造断面説明図Cross-sectional explanatory drawing of a sealing structure having an enlarged diameter portion according to an embodiment of the present invention 本発明の実施形態である光誘導部を有する封止構造断面説明図Cross-sectional explanatory diagram of a sealing structure having a light guiding portion according to an embodiment of the present invention

以下に、図面に基づいて本発明の実施形態を具体的に説明する。図2は本発明のランプの構造を示す概略断面図である。   Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 2 is a schematic sectional view showing the structure of the lamp of the present invention.

このランプは内部に一対の電極5を備えた発光管3と、電極5と接合され、電極5を支持する電極芯棒6と、発光管3の両端に連設し、段継ガラス7を介して電極芯棒6を封着する封止管4とから構成される。封止管の端部には口金8が設けられる場合がある。発光管3には放電ガスとしてキセノンガスが大気圧以上で封入されているショートアーク放電ランプである。   This lamp has an arc tube 3 having a pair of electrodes 5 inside, an electrode core 6 that is joined to the electrode 5 and supports the electrode 5, and is connected to both ends of the arc tube 3. And a sealing tube 4 for sealing the electrode core 6. A base 8 may be provided at the end of the sealing tube. The arc tube 3 is a short arc discharge lamp in which xenon gas is enclosed as a discharge gas at atmospheric pressure or higher.

本発明のランプの封止構造について、本発明の実施形態の封止構造断面図を示した図3を用いて説明する。   The sealing structure of the lamp of the present invention will be described with reference to FIG. 3 showing a sectional view of the sealing structure of the embodiment of the present invention.

封止管4は発光管3に連設する外側封止管401と、外側封止管401に連設し、外径がランプ軸方向外側に向けて縮径する外側封止管縮径部402と、外側封止管縮径部402に連設し、外側封止管縮径部402の電極芯棒側にランプ径方向に沿った外側封止管端部403と、一端を外側封止管端部403の発光管側に連設し、もう一端を段継ガラス7と連設する内側封止管404で構成される。   The sealing tube 4 is provided continuously with the outer sealing tube 401 connected to the arc tube 3, and the outer sealing tube reduced diameter portion 402 is provided continuously with the outer sealing tube 401 and the outer diameter thereof is reduced toward the outside in the lamp axis direction. The outer sealing tube diameter-reduced portion 402, the outer sealing tube diameter-reduced portion 402 on the electrode core rod side of the outer sealing tube end portion 403 along the lamp radial direction, and one end of the outer sealing tube diameter-reduced portion 402 The inner sealing tube 404 is connected to the arc tube side of the end 403 and connected to the step glass 7 at the other end.

外側封止管端部403のランプ軸方向外側端面には、外側封止管の内径よりも内側に、後述する外側封止管の内部を伝播する光を外部へ放射する光放射面として、ランプ径方向に沿った平坦面(第1の光放射面)405を有する。外側封止管端部403の電極芯棒側内周面406の一部には、後述する外側封止管端部403の内部をランプ径方向内側に向かって伝播する光をランプ軸方向に反射する光反射面として、外側封止管端部403のランプ軸方向外側端面の内径R1より大きい内径R2を有したランプ軸方向内側に拡径する拡径部407を有し、この拡径部407の最大内径を有する部分は、外側封止管端部403のランプ軸方向中心M1より発光管側に有する。ランプ軸方向中心M1は、第1の光放射面405を有する外側封止管端部403のもっとも肉厚が薄い部分のランプ軸方向における肉厚中間である。   On the outer end surface in the lamp axial direction of the outer sealing tube end 403, a lamp is used as a light emitting surface for radiating light propagating through the inside of the outer sealing tube, which will be described later, inside the inner diameter of the outer sealing tube. It has a flat surface (first light emitting surface) 405 along the radial direction. A part of the inner peripheral surface 406 on the electrode core rod side of the outer sealing tube end 403 reflects light propagating inward in the radial direction of the lamp in the outer side of the outer sealing tube 403, which will be described later, in the lamp axial direction. As the light reflecting surface, there is an enlarged diameter portion 407 that has an inner diameter R2 that is larger than an inner diameter R1 of the outer end surface in the lamp axis direction of the outer sealing tube end portion 403. The portion having the maximum inner diameter is provided on the arc tube side from the center M1 of the outer sealing tube end 403 in the lamp axis direction. The lamp axis direction center M1 is the middle thickness in the lamp axis direction of the thinnest portion of the outer sealing tube end 403 having the first light emission surface 405.

外側封止管端部403のランプ軸方向外側には、電極芯棒側内周面406と内表面が連続する管状の光誘導部408を有し、管状の光誘導部408のランプ軸方向外側端面には、後述する光反射面である拡径部407で反射され、光誘導部408の内部を伝播する光を外部に放射する光放射面として、ランプ径方向に沿った平坦面(第2の光放射面)409を有する。   On the outer side in the lamp axial direction of the outer sealing tube end 403, there is a tubular light guiding portion 408 in which the inner surface of the electrode core rod side and the inner surface are continuous, and the outer side of the tubular light guiding portion 408 in the lamp axial direction. A flat surface (second surface) along the lamp radial direction is formed on the end surface as a light emitting surface that is reflected by a diameter-enlarged portion 407 that is a light reflecting surface to be described later and radiates light propagating through the light guiding portion 408 to the outside. Light emitting surface) 409.

図1および図2より、ランプに点灯電力を供給すると、電極5間の放電によりアークが発生し、アークより可視光を中心とした紫外光から赤外光までの幅広い領域の光が放射される。放射された光は発光管3より外部に放射され、ランプ周辺にアークを焦点にするように備えられた反射鏡1によって、集光することで利用される。しかし、アークより放射された光の一部は、光ファイバー効果によって発光管3および封止管4の内部を伝播する。併せて反射鏡1の焦点から外れた位置のアークから放射された光の一部は、反射鏡によって発光管3や封止管4に照射され、光ファイバー効果によって発光管3および封止管4の内部を伝播する。   1 and 2, when lighting power is supplied to the lamp, an arc is generated by the discharge between the electrodes 5, and light in a wide range from ultraviolet light to infrared light centering on visible light is emitted from the arc. . The emitted light is emitted from the arc tube 3 to the outside, and is collected by the reflecting mirror 1 provided so as to focus the arc around the lamp. However, part of the light emitted from the arc propagates inside the arc tube 3 and the sealing tube 4 due to the optical fiber effect. At the same time, part of the light emitted from the arc at a position off the focal point of the reflecting mirror 1 is applied to the arc tube 3 and the sealing tube 4 by the reflecting mirror, and the arc tube 3 and the sealing tube 4 are irradiated by the optical fiber effect. Propagate inside.

図5に外側封止管端部に平坦面を有するランプの封止構造断面説明図を示す。図5に示すように外側封止管端部403のランプ軸方向外側端面すべてを平坦面(第1の光放射面)405とすることで、外側封止管401内を伝播する光L1の全反射を抑制して、光L1を外部に放射させることができる。しかし、外側封止管端部403において封止管の厚さが極端に厚くなる部分10ができ、この部分に、ランプ点灯消灯時の加熱冷却具合の差によって熱歪が発生してしまう。その結果、外側封止管401内を伝播してきた光L1が第1の光放射面405から放射されるまえに、熱歪の発生している部分10に伝播し、光L1に含まれる紫外線によって熱歪の分子結合を切断してしまう。その結果、熱歪が生じた部分10にクラックが発生し、最終的にランプが破損する恐れがあった。   FIG. 5 shows a cross-sectional explanatory view of a sealing structure of a lamp having a flat surface at the end of the outer sealing tube. As shown in FIG. 5, all the outer end surfaces in the lamp axis direction of the outer sealing tube end portion 403 are flat surfaces (first light emitting surfaces) 405, so that all of the light L1 propagating in the outer sealing tube 401 is obtained. The reflection can be suppressed and the light L1 can be emitted to the outside. However, a portion 10 where the thickness of the sealing tube becomes extremely thick is formed at the outer sealing tube end portion 403, and thermal distortion occurs in this portion due to a difference in heating and cooling conditions when the lamp is turned on and off. As a result, before the light L1 propagating in the outer sealing tube 401 is radiated from the first light emitting surface 405, it propagates to the portion 10 where the thermal strain is generated and is caused by the ultraviolet rays contained in the light L1. It breaks molecular bonds of thermal strain. As a result, there was a risk that a crack occurred in the portion 10 where the thermal strain occurred, and the lamp was eventually damaged.

そのため、図6に示すように、外側封止管401の外径を外側封止管401の内径以下に縮径する外側封止管縮径部402を、外側封止管401と外側封止管端部403の間に設け、外側封止管401の内径よりランプ径方向内側に第1の光放射面405を設ける。これにより、外側封止管端部403の極端な肉厚増加による熱歪の発生が抑制され、かつ外側封止管401内を伝播する光L1を外部に放射することができる。   Therefore, as shown in FIG. 6, the outer sealing tube 401 and the outer sealing tube have an outer sealing tube reduced diameter portion 402 that reduces the outer diameter of the outer sealing tube 401 to be equal to or smaller than the inner diameter of the outer sealing tube 401. A first light emitting surface 405 is provided between the end portions 403 and on the inner side in the lamp radial direction from the inner diameter of the outer sealing tube 401. Thereby, generation | occurrence | production of the thermal distortion by the extreme thickness increase of the outer side sealing tube edge part 403 is suppressed, and the light L1 which propagates the inside of the outer side sealing tube 401 can be radiated | emitted outside.

しかし、外側封止管縮径部402の外表面は曲面であり、これによって外側封止管401内を伝播してきた一部の光L2は第1の光放射面405から外部に放射されずに、外側封止管端部403内をランプ径方向内側に向かって伝播し、外側封止管端部403の電極芯棒側内周面406から放射され、電極芯棒6に照射される。これにより光L2に含まれる赤外線によって、電極芯棒6の赤外線が照射された部分601が加熱され、温度が上昇する。   However, the outer surface of the outer sealing tube diameter-reduced portion 402 is a curved surface, so that a part of the light L2 propagating through the outer sealing tube 401 is not emitted from the first light emitting surface 405 to the outside. Then, it propagates inside the outer sealing tube end 403 toward the inside in the radial direction of the lamp, radiates from the electrode core rod side inner peripheral surface 406 of the outer sealing tube end 403, and irradiates the electrode core 6. Thereby, the portion 601 irradiated with the infrared rays of the electrode core 6 is heated by the infrared rays contained in the light L2, and the temperature rises.

本発明のショートアーク放電ランプに用いられる電極芯棒6と段継ぎガラス7を封着する段継ガラス封止構造は、電極芯棒に金属箔を溶接し金属箔を封止管で封着する金属箔封止構造と比較して、電極芯棒の温度に弱い封止構造である。これは、段継ガラスが封止管に使用されている石英管と比較して歪点および軟化点が低く、耐熱性が低いためである。   In the step glass sealing structure for sealing the electrode core 6 and the step glass 7 used in the short arc discharge lamp of the present invention, a metal foil is welded to the electrode core and the metal foil is sealed with a sealing tube. Compared with the metal foil sealing structure, the sealing structure is weak against the temperature of the electrode core bar. This is because the stepped glass has a lower strain point and softening point and lower heat resistance than a quartz tube used as a sealing tube.

段継ガラス7は、点灯によって電極が加熱され、その熱が電極から電極芯棒を介して伝わることによって加熱される。電極芯棒6の赤外線が照射された部分601の温度が上昇すると、電極からだけでなく、赤外線が照射された部分601側からも熱が伝わることで段継ガラス7はさらに加熱され、より高温になる。   The step glass 7 is heated when the electrodes are heated by lighting and the heat is transmitted from the electrodes through the electrode core rod. When the temperature of the portion 601 irradiated with infrared rays of the electrode core 6 rises, not only from the electrode but also from the portion 601 side irradiated with infrared rays, the step glass 7 is further heated, resulting in a higher temperature. become.

発光管3内には放電ガスとしてキセノンが大気圧以上に封入されており、放電ガスと接している段継ガラス7は、ランプ点灯および消灯中に関わらず、常に発光管内側から外側に向けて圧力を受けている。そのため、赤外線が照射された部分601側からも熱が伝わることで段継ガラス7がさらに加熱され、温度が歪点さらには軟化点を上回ると、段継ガラス7は発光管外側に膨れるように変形し、段継ガラス7に保持される電極芯棒6、および電極芯棒6に支持される電極5の位置が移動する。この結果、電極間距離が増えることによるランプの点灯電力特性の変化や、電極に発生するアークが反射鏡1の焦点からずれることによる照度低下等の不具合が生じる。さらに、アークが反射鏡1の焦点からずれると、反射鏡1によって封止管4に照射される光の量が増加し、さらに上記不具合が深刻化する場合がある。   The arc tube 3 is filled with xenon as a discharge gas at atmospheric pressure or higher, and the step glass 7 in contact with the discharge gas always faces from the inside to the outside of the arc tube regardless of whether the lamp is on or off. Under pressure. Therefore, when the heat is transmitted also from the portion 601 irradiated with infrared rays, the step glass 7 is further heated, and when the temperature exceeds the strain point and further the softening point, the step glass 7 swells outside the arc tube. The electrode core bar 6 held by the step glass 7 and the position of the electrode 5 supported by the electrode core bar 6 are moved. As a result, problems such as a change in lamp lighting power characteristics due to an increase in the distance between the electrodes and a decrease in illuminance due to an arc generated in the electrodes deviating from the focus of the reflecting mirror 1 occur. Further, when the arc deviates from the focal point of the reflecting mirror 1, the amount of light applied to the sealing tube 4 by the reflecting mirror 1 increases, and the above-mentioned problem may become more serious.

図7に本発明の実施形態である拡径部を有する封止構造断面説明図を示す。
図7のように、外側封止管端部403の電極芯棒側内周面406の一部に、ランプ径方向内側に向かって伝播する光L2をランプ軸方向に反射させる反射面として、外側封止管端部のランプ軸方向外側端面の内径R1より大きい内径R2を有したランプ軸方向内側に拡径する拡径部407を設ける。これにより光L2が電極芯棒側内周面406から電極芯棒6に向かって放射されることを抑制し、電極芯棒601の加熱を防止できる。
FIG. 7 is an explanatory cross-sectional view of a sealing structure having an enlarged diameter portion according to an embodiment of the present invention.
As shown in FIG. 7, a part of the inner surface 406 on the electrode core rod side of the outer sealing tube end 403 has an outer surface as a reflecting surface that reflects light L <b> 2 propagating inward in the lamp radial direction in the lamp axial direction. A diameter-enlarged portion 407 that has an inner diameter R2 that is larger than an inner diameter R1 of the lamp axial direction outer end face of the end portion of the sealing tube is provided on the inner side in the lamp axial direction. Thereby, it can suppress that the light L2 is radiated | emitted from the electrode core-rod side internal peripheral surface 406 toward the electrode core rod 6, and can prevent the electrode core rod 601 from being heated.

ただし、光反射面である拡径部407を設けることによって、光L2の一部がランプ軸方向内側、すなわち発光管側に反射され、反射された光L2の一部は内側封止管404内を伝播する。これにより光L2が段継ガラス7まで伝播し段継ガラス7の温度を上昇させる、または光L2が内側封止管404から電極芯棒6に放射され、電極芯棒6の温度を上昇させる。この結果、上記の段継ガラス7の温度が歪点さらには軟化点を上回ることに起因する不具合が発生する恐れがある。   However, by providing the enlarged diameter portion 407 which is a light reflecting surface, a part of the light L2 is reflected to the inside in the lamp axis direction, that is, the arc tube side, and a part of the reflected light L2 is inside the inner sealing tube 404. To propagate. Thereby, the light L2 propagates to the step glass 7 and raises the temperature of the step glass 7, or the light L2 is radiated from the inner sealing tube 404 to the electrode core 6 and raises the temperature of the electrode core 6. As a result, there is a possibility that a problem may occur due to the temperature of the above-mentioned step glass 7 exceeding the strain point and further the softening point.

そこで拡径部407において最も拡径している、つまり最も内径が大きい部分を外側封止管端部403のランプ軸方向中心M1より発光管側に設ける。これにより、外側封止管端部403をランプ径方向内側に向かって伝播する光L2の大部分をランプ軸方向外側に反射することができ、段継ガラス7の温度上昇を抑制することができる。このように、電極芯棒601側に光L2を放射させずに、ランプ軸方向外側に光を反射させるには、拡径部407を有する電極芯棒側内周面406のランプ軸方向断面形状が略V字状になることが望ましい。   Therefore, the diameter-expanded portion 407 has the largest diameter, that is, the largest inner diameter is provided on the arc tube side from the center M1 of the outer sealing tube end 403 in the lamp axis direction. Thereby, most of the light L2 propagating through the outer sealing tube end 403 toward the inner side in the lamp radial direction can be reflected outward in the lamp axial direction, and the temperature rise of the step glass 7 can be suppressed. . As described above, in order to reflect the light outward in the lamp axis direction without radiating the light L2 to the electrode core bar 601 side, the sectional shape of the electrode core bar side inner peripheral surface 406 having the enlarged diameter portion 407 in the lamp axis direction. Is preferably substantially V-shaped.

図8に本発明の実施形態である光誘導部を有する封止構造断面説明図を示す。
図8に示すように、外側封止管端部403のランプ軸方向外側端面に電極芯棒側内周面406と内表面が連続する管状の光誘導部408を備え、光誘導部408のランプ軸方向外側端面には平坦面409(第2の光放射面)を設ける。外側封止管端部403をランプ径方向内側に向かって伝播する光L2は光反射面である拡径部407によってランプ軸方向外側に向かって反射され、光誘導部408内を伝播する。光誘導部408内を伝播した光L2は第2の光放射面409より外部に放射される。
FIG. 8 is a cross-sectional explanatory view of a sealing structure having a light guiding portion according to an embodiment of the present invention.
As shown in FIG. 8, a tubular light guiding portion 408 having an inner surface continuous with the electrode core rod inner peripheral surface 406 is provided on the outer end surface in the lamp axial direction of the outer sealing tube end portion 403, and the lamp of the light guiding portion 408 is provided. A flat surface 409 (second light emitting surface) is provided on the axially outer end surface. The light L2 propagating through the outer sealing tube end 403 toward the inner side in the lamp radial direction is reflected toward the outer side in the lamp axis direction by the enlarged diameter portion 407 that is a light reflecting surface, and propagates through the light guiding portion 408. The light L2 that has propagated through the light guiding portion 408 is emitted from the second light emitting surface 409 to the outside.

光誘導部408が無いと、第1の光放射面405から放射された光が電極芯棒601近辺に照射される場合がある。しかし、光誘導部408内に光L2を伝播させ、外側封止管端部403から離れた第2の光放射面409から放射させることによって、外部に放射された光が電極芯棒601近辺に照射させることを防止し、電極芯棒6に放射された光を照射させない、もしくは電極芯棒のよりランプ軸方向外側に照射させることができる。これにより、封止管4より放射された光に起因した段継ガラス7の温度上昇を抑制することができる。   Without the light guiding portion 408, the light emitted from the first light emitting surface 405 may be irradiated near the electrode core bar 601. However, the light L2 propagates in the light guiding portion 408 and is emitted from the second light emitting surface 409 away from the outer sealing tube end 403, so that the light emitted to the outside is near the electrode core rod 601. Irradiation can be prevented, and light emitted to the electrode core 6 can be prevented from being irradiated, or the electrode core can be irradiated more outward in the lamp axis direction. Thereby, the temperature rise of the step glass 7 resulting from the light radiated | emitted from the sealing tube 4 can be suppressed.

また、外側封止管端部401内を伝播する光L1が外側封止管端部403の発光管側端面410から内側封止管404や段継ガラス7に照射されることを抑制するために、発光管側端面410は曲面であることが望ましい。ただし、外側封止管端部403の肉厚差を抑制するために、発光管側端面410にもランプ径方向に沿った平坦面を設ける必要がある場合には、その平坦面の面積は少なくとも第1の光放射面405より小さいことが望ましい。   In addition, in order to suppress the light L1 propagating through the outer sealing tube end 401 from being irradiated from the arc tube side end surface 410 of the outer sealing tube end 403 to the inner sealing tube 404 or the step glass 7. The arc tube side end surface 410 is preferably a curved surface. However, if it is necessary to provide a flat surface along the lamp radial direction on the arc tube side end surface 410 in order to suppress the thickness difference of the outer sealing tube end portion 403, the area of the flat surface is at least It is desirable that it is smaller than the first light emitting surface 405.

図1に示すようにランプは一方が開口し、アークを焦点としている楕円状の反射鏡1の内部に配置される。そのため反射鏡の開口側の封止管は、反射鏡の焦点から外れた位置のアークから放射された光が反射鏡1によって照射されることによって、もう一方の封止管と比較して封止管内部を伝播する光による封止管の破損や、段継ガラスの変形等の不具合の発生率が高くなる。そのため、上記に記載した封止管内部を伝播する光を外部に放射する構造を有する封止管は、少なくとも反射鏡の開口側の封止管に用いられることが望ましい。   As shown in FIG. 1, one of the lamps is open, and is arranged inside an elliptical reflecting mirror 1 having an arc as a focal point. Therefore, the sealing tube on the opening side of the reflecting mirror is sealed as compared with the other sealing tube by irradiating the reflecting mirror 1 with light emitted from the arc at a position off the focal point of the reflecting mirror. The incidence of problems such as breakage of the sealing tube due to light propagating inside the tube and deformation of the step glass is increased. Therefore, it is desirable that the above-described sealing tube having a structure that radiates light propagating through the sealing tube described above is used at least for the sealing tube on the opening side of the reflecting mirror.

1:反射鏡
2:ランプ
3:発光管
4:封止管
401:外側封止管
402:外側封止管縮径部
403:外側封止管端部
404:内側封止管
405:平坦面(第1の光放射面)
406:電極芯棒側内周面
407:拡径部
408:管状の光誘導部
409:平坦面(第2の光放射面)
5:電極
6:電極芯棒
7:段継ガラス
8:口金
9:封止管の突出部
10:熱歪が生じた部分
M1:外側封止管端部のランプ軸方向中心
R1:ランプ軸方向外側端面の内径
R2:拡径部の最大内径
1: Reflector 2: Lamp 3: Arc tube 4: Sealing tube 401: Outer sealing tube 402: Outer sealing tube reduced diameter portion 403: Outer sealing tube end 404: Inner sealing tube 405: Flat surface ( First light emitting surface)
406: Electrode core side inner peripheral surface 407: Expanded diameter portion 408: Tubular light guiding portion 409: Flat surface (second light emitting surface)
5: Electrode 6: Electrode core rod 7: Step glass 8: Base 9: Protruding portion 10 of the sealing tube 10: Thermal strained portion M1: Lamp axial direction center R1 of the outer sealing tube end R1: Lamp axial direction Inner diameter R2 of the outer end surface: Maximum inner diameter of the expanded portion

Claims (5)

内部に一対の電極を備えた発光管と、
前記電極を支持する電極芯棒と、
前記発光管に連設して前記電極棒に対して封着する封止管とからなり、
前記封止管は、
前記発光管に連設する外側封止管と、
前記外側封止管に連設し、外径がランプ軸方向外側に向けて縮径する外側封止管縮径部と、
前記外側封止管縮径部に連設し、
前記外側封止管縮径部の電極芯棒側にランプ径方向に沿った外側封止管端部と、
前記外側封止管端部の発光管側に連設する内側封止管と、
前記内側封止管に連設して前記電極棒と封着する段継ぎガラスと
からなるショートアーク放電ランプにおいて、
前記外側封止管端部のランプ軸方向外側端面には、
前記外側封止管の内径よりもランプ径方向内側にランプ径方向に沿った第1の平坦面を有し、
前記外側封止管端部の電極芯棒側内周面の一部には、
前記外側封止管端部のランプ軸方向外側端面の内径より大きい内径を有したランプ軸方向内側に拡径する拡径部を有する
ことを特徴とするショートアーク放電ランプ。
An arc tube with a pair of electrodes inside;
An electrode core rod supporting the electrode;
It consists of a sealing tube that is connected to the arc tube and is sealed to the electrode rod,
The sealing tube is
An outer sealing tube connected to the arc tube;
An outer sealing tube diameter-reduced portion connected to the outer sealing tube and having an outer diameter reduced toward the outside in the lamp axis direction;
Continuing to the outer sealing tube diameter reducing portion,
An outer sealing tube end along the lamp radial direction on the electrode core rod side of the outer sealing tube diameter-reduced portion; and
An inner sealing tube connected to the arc tube side of the outer sealing tube end; and
In a short arc discharge lamp comprising a step glass that is connected to the inner sealing tube and sealed with the electrode rod,
On the outer end surface of the outer sealing tube end in the lamp axial direction,
A first flat surface along the lamp radial direction inside the lamp radial direction from the inner diameter of the outer sealing tube,
In a part of the electrode core bar side inner peripheral surface of the outer sealing tube end,
A short arc discharge lamp having a diameter-expanding portion having an inner diameter larger than an inner diameter of an outer end surface in the lamp axial direction of the outer sealing tube end portion and expanding inward in the lamp axial direction.
前記第1の平坦面は、
前記外側封止管の内部を伝播する光を前記封止管外部へ放射する第1の光放射面であり、
前記拡径部は、前記外側封止管端部の内部をランプ径方向内側に向かって伝播する光を
ランプ軸方向に反射する光反射面である
ことを特徴とする請求項1に記載のショートアーク放電ランプ。
The first flat surface is
A first light emitting surface for radiating light propagating inside the outer sealing tube to the outside of the sealing tube;
2. The short according to claim 1, wherein the enlarged-diameter portion is a light reflecting surface that reflects light propagating inward in the lamp radial direction inside the outer sealing tube end in the lamp axial direction. Arc discharge lamp.
前記外側封止管端部のランプ軸方向外側には、
前記電極芯棒側内周面と内表面が連続する管状の光誘導部を有し、
前記管状の光誘導部のランプ軸方向外側端面には、
ランプ径方向に沿った第2の平坦面を有し、
前記第2の平坦面は、
前記光反射面で反射され、前記光誘導部の内部を伝播する光を外部に放射する第2の光放射面である
ことを特徴とする請求項2に記載のショートアーク放電ランプ。
On the outer side of the outer sealing tube end in the lamp axial direction,
The electrode core rod side inner peripheral surface and the inner surface has a tubular light guide portion that is continuous,
On the outer end surface in the lamp axis direction of the tubular light guiding portion,
A second flat surface along the lamp radial direction;
The second flat surface is
3. The short arc discharge lamp according to claim 2, wherein the short arc discharge lamp is a second light emitting surface that radiates light that is reflected by the light reflecting surface and propagates inside the light guiding portion.
前記拡径部の最大内径を有する部分が、
前記外側封止管端部のランプ軸方向中心より前記発光管側にある
ことを特徴とする請求項2乃至3に記載のショートアーク放電ランプ。
The portion having the maximum inner diameter of the expanded portion is
The short arc discharge lamp according to any one of claims 2 to 3, wherein the short arc discharge lamp is located closer to the arc tube than the center of the outer sealing tube end in the lamp axial direction.
前記ショートアーク放電ランプと、
前記ショートアーク放電ランプを囲むように配置され、
一方が開口している楕円状の反射鏡とよりなり、
前記反射鏡の開口側に、
前記外側封止管端部のランプ軸方向外側端面に平坦面を有する前記封止管を有するように請求項1乃至4に記載のショートアーク放電ランプを備えた
ことを特徴とする光源装置。
The short arc discharge lamp;
Arranged to surround the short arc discharge lamp,
It consists of an elliptical mirror with one open,
On the opening side of the reflector,
5. A light source device comprising the short arc discharge lamp according to claim 1, wherein the sealing tube having a flat surface is provided on an outer end surface in the lamp axial direction of the end portion of the outer sealing tube.
JP2014163543A 2014-08-11 2014-08-11 Short arc discharge lamp and light source device Expired - Fee Related JP6395496B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014163543A JP6395496B2 (en) 2014-08-11 2014-08-11 Short arc discharge lamp and light source device
CN201510348951.2A CN105374659B (en) 2014-08-11 2015-06-23 Short arc discharge lamp and light supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014163543A JP6395496B2 (en) 2014-08-11 2014-08-11 Short arc discharge lamp and light source device

Publications (2)

Publication Number Publication Date
JP2016039115A true JP2016039115A (en) 2016-03-22
JP6395496B2 JP6395496B2 (en) 2018-09-26

Family

ID=55376749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014163543A Expired - Fee Related JP6395496B2 (en) 2014-08-11 2014-08-11 Short arc discharge lamp and light source device

Country Status (2)

Country Link
JP (1) JP6395496B2 (en)
CN (1) CN105374659B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057177A (en) * 1999-08-20 2001-02-27 Yumex Inc Short arc lamp
US20010010447A1 (en) * 2000-02-01 2001-08-02 Takumi Yamane Short-arc type discharge lamp
JP2004022452A (en) * 2002-06-19 2004-01-22 Ushio Inc Short arc type discharge lamp

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2891997B1 (en) * 1998-05-28 1999-05-17 ウシオ電機株式会社 UV lamp
JP3858718B2 (en) * 2002-02-13 2006-12-20 ウシオ電機株式会社 Short arc discharge lamp
JP2005063899A (en) * 2003-08-19 2005-03-10 Ushio Inc Discharge lamp
JP4259282B2 (en) * 2003-11-07 2009-04-30 ウシオ電機株式会社 High pressure discharge lamp
JP4305152B2 (en) * 2003-12-04 2009-07-29 ウシオ電機株式会社 Xenon lamp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057177A (en) * 1999-08-20 2001-02-27 Yumex Inc Short arc lamp
US20010010447A1 (en) * 2000-02-01 2001-08-02 Takumi Yamane Short-arc type discharge lamp
JP2001216938A (en) * 2000-02-01 2001-08-10 Ushio Inc Short arc type discharge lamp and light source device
JP2004022452A (en) * 2002-06-19 2004-01-22 Ushio Inc Short arc type discharge lamp

Also Published As

Publication number Publication date
JP6395496B2 (en) 2018-09-26
CN105374659A (en) 2016-03-02
CN105374659B (en) 2018-07-24

Similar Documents

Publication Publication Date Title
US20080185950A1 (en) Electric Lamp With Electrode Rods Having Longitudinal Grooves
JP4681668B2 (en) Foil seal lamp
JP4626708B2 (en) Light source device
JP4494224B2 (en) Seal for lamp and discharge lamp
JP6395496B2 (en) Short arc discharge lamp and light source device
JP5800189B2 (en) Short arc type discharge lamp
JP2007157513A (en) Structure of sealed part of short arc type discharge lamp, and manufacturing method of the same
WO2008023492A1 (en) High-pressure discharge lamp manufacturing method, high-pressure discharge lamp, lamp unit, and projection image display
JP5186823B2 (en) High pressure discharge lamp and light irradiation device using high pressure discharge lamp
JP5918811B2 (en) High pressure discharge lamp manufacturing method and high pressure discharge lamp sealing structure
JP2010061816A (en) Discharge lamp with reflecting mirror
JP5145919B2 (en) High pressure discharge lamp
JP6020619B2 (en) Both ends sealed short arc flash lamp
KR20170011992A (en) Short arc type flash lamp with both ends sealed
JP5160290B2 (en) Super high pressure mercury discharge lamp
WO2022172579A1 (en) Flash lamp, flash lamp unit, and light source device
JP6671591B2 (en) Short arc discharge lamp
JP5640838B2 (en) Discharge lamp device
JP6295776B2 (en) Discharge lamp and discharge lamp manufacturing method
JP2011228037A (en) Ultra-high pressure mercury vapor lamp
JP2010027528A (en) Extra-high pressure mercury lamp
WO2014073253A1 (en) Discharge lamp and method for manufacturing same
JP6153062B2 (en) Discharge lamp and discharge lamp manufacturing method
JP2022162391A (en) Flash lamp unit, light source device, and flash lamp reflector
JP2021022503A (en) Discharge lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180828

R150 Certificate of patent or registration of utility model

Ref document number: 6395496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees