JP2016036764A - Pneumatic pulverization device and low temperature pulverization method using the same - Google Patents

Pneumatic pulverization device and low temperature pulverization method using the same Download PDF

Info

Publication number
JP2016036764A
JP2016036764A JP2014160964A JP2014160964A JP2016036764A JP 2016036764 A JP2016036764 A JP 2016036764A JP 2014160964 A JP2014160964 A JP 2014160964A JP 2014160964 A JP2014160964 A JP 2014160964A JP 2016036764 A JP2016036764 A JP 2016036764A
Authority
JP
Japan
Prior art keywords
pulverization
airflow
temperature
raw material
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014160964A
Other languages
Japanese (ja)
Other versions
JP2016036764A5 (en
JP6446655B2 (en
Inventor
勤 南川
Tsutomu Namikawa
勤 南川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MINAMI SANGYO KK
Original Assignee
MINAMI SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MINAMI SANGYO KK filed Critical MINAMI SANGYO KK
Priority to JP2014160964A priority Critical patent/JP6446655B2/en
Priority to KR1020150009739A priority patent/KR20160018320A/en
Priority to CN201510031286.4A priority patent/CN105855010A/en
Publication of JP2016036764A publication Critical patent/JP2016036764A/en
Publication of JP2016036764A5 publication Critical patent/JP2016036764A5/ja
Application granted granted Critical
Publication of JP6446655B2 publication Critical patent/JP6446655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C11/00Other auxiliary devices or accessories specially adapted for grain mills
    • B02C11/08Cooling, heating, ventilating, conditioning with respect to temperature or water content
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/10Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft and axial flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Crushing And Grinding (AREA)
  • Beans For Foods Or Fodder (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pneumatic pulverization device and a low temperature pulverization method using the same capable of performing pulverization to a prescribed particle size without causing the thermal denaturation of a grain such as a soybean.SOLUTION: A pneumatic pulverization device includes: a pneumatic pulverizer having two rotary vanes 15, 16 rotating at a high speed and being disposed at the inside of a casing 9 consisting of a cylindrical body 7 and a tapered front lid 8; a raw material supplier continuously supplying a raw material from the back side of the cylindrical body; and a suction unit sucking pulverized matter from the front part of the tapered front lid. A cooling means, for example a cooling jacket circulated with a cooling liquid, capable of suppressing pulverization temperature to 55°C or lower is disposed in the casing.SELECTED DRAWING: Figure 2

Description

本発明は、大豆その他の穀類を粉砕するに適した気流粉砕設備及びこれを用いた低温粉砕方法に関するものである。   The present invention relates to an airflow crushing facility suitable for crushing soybeans and other cereals and a low-temperature crushing method using the same.

例えば大豆から飲料用の豆乳を製造するには、大豆を粉砕して温水中に投入し、大豆タンパク等の栄養分を溶出させている。豆乳飲料から粉っぽさやざらつき感を無くすためには、大豆を所定粒度以下に微粉砕することが必要である。   For example, to produce soy milk for beverages from soybeans, soybeans are pulverized and put into warm water to elute nutrients such as soybean protein. In order to eliminate the powdery and rough feeling from the soy milk beverage, it is necessary to pulverize soybeans to a predetermined particle size or less.

従来から大豆その他の穀類の粉砕には、ピンミル、ハンマーミル、軸流ミル等が一般的に使用されてきた。しかしこれらの粉砕機によっては、粗粉の少ないシャープな粒度分布の粉砕物を得ることは難しかった。またこれらの粉砕機によって、生大豆のような脂質を多く含有する原料を微粉砕することはほとんど不可能であった。   Conventionally, pin mills, hammer mills, axial flow mills and the like have been generally used for grinding soybeans and other grains. However, with these pulverizers, it has been difficult to obtain a pulverized product having a sharp particle size distribution with little coarse powder. Moreover, it has been almost impossible to finely pulverize raw materials containing a large amount of lipids such as raw soybeans with these pulverizers.

粒子を微細化する装置としては、高圧の圧縮空気や蒸気を利用したジェットミル等の気流粉砕機(例えば特許文献1)が開発されている。ジェットミルでは高圧の空気や蒸気を利用して粒子を衝突させることによって微細化させている。このような気流粉砕機は、医薬品やトナーの微細化に活用されている。しかしながら、高圧の空気等が大量に必要となるため、大型高圧コンプレッサー等の設備が必要となり、しかも粉砕能力が小さいので粉砕コストが相対的に高くなる。従って医薬品のような高額品の粉砕には適しているが、一般的な食品原料の粉砕には不向きである。   As an apparatus for refining particles, an airflow crusher such as a jet mill using high-pressure compressed air or steam has been developed (for example, Patent Document 1). In jet mills, particles are made fine by colliding particles using high-pressure air or steam. Such an air pulverizer is utilized for miniaturization of pharmaceuticals and toners. However, since a large amount of high-pressure air or the like is required, facilities such as a large-sized high-pressure compressor are required, and the grinding cost is relatively high because the grinding ability is small. Therefore, it is suitable for pulverizing expensive products such as pharmaceuticals, but is not suitable for pulverizing general food materials.

そこで食品原料の粉砕に適した粉砕機として、高速回転する2枚の回転翼をケーシングの内部に設けた気流粉砕機(例えば特許文献2)が開発されている。この構造の気流粉砕機は、2枚の回転翼の間で強い遠心気流を発生させ、この気流によって粉砕物どうしを激しく衝突させて微粉砕を行ない、粉砕物をケーシングの前端から吸引して取り出すようになっている。   Therefore, an airflow crusher (for example, Patent Document 2) in which two high-speed rotating blades are provided inside a casing has been developed as a crusher suitable for crushing food materials. The airflow pulverizer having this structure generates a strong centrifugal airflow between two rotor blades, and pulverizes the pulverized material by vigorously colliding with the airflow. The pulverized material is sucked out from the front end of the casing. It is like that.

しかし豆乳のざらつき感を無くすために、平均粒径が20〜40μm、100μm95%パス(目開き100μmの篩を95%が通過)程度まで大豆を微粉砕するには、回転翼の回転速度を高めてかなり激しく粒子どうしを衝突させる必要がある。このため衝突による摩擦熱が発生し、粉砕温度が上昇することが避けられない。特に大豆のような脂質の多い穀類を微粉末化しようとする場合には、温度上昇によって脂質の滲みが生じて粉砕が困難になるとともにタンパク質の溶解性が低下し、粘度が上がって粉っぽい風味になってしまうなどの問題があった。   However, in order to eliminate the rough feeling of soy milk, to pulverize soybeans to an average particle size of 20 to 40 μm, 100 μm and 95% pass (95% passes through a sieve with an opening of 100 μm), the rotational speed of the rotary blade is increased. It is necessary to make the particles collide fairly intensely. For this reason, frictional heat due to collision is generated, and it is inevitable that the grinding temperature rises. In particular, when trying to make a fine powder of cereals such as soybeans, lipid oozes due to temperature rise, making it difficult to grind, lowering protein solubility, increasing viscosity and being powdery There was a problem such as becoming a flavor.

なお、生大豆などは脂質の外に水分を含有しているため、粉砕時に水分が蒸発し、蒸発潜熱によってケーシング内部が冷却される。しかし大豆の含水率や、粉砕時の気温・湿度によって蒸発潜熱も大きく変動するため、粉砕物の品質を安定させることは容易ではなかった。   Since raw soybeans contain moisture in addition to lipids, the moisture evaporates during pulverization, and the inside of the casing is cooled by latent heat of evaporation. However, since the latent heat of evaporation varies greatly depending on the moisture content of soybeans and the temperature and humidity during grinding, it has been difficult to stabilize the quality of the ground product.

また、大豆などは品種によって成分が異なるうえ、同一の品種であっても粒の大きさや含有成分のばらつきがある。特に脂質や糖質のばらつきは破砕条件に大きく影響するため、安定した粒度分布となるように微粉砕することは非常に困難であった。   In addition, soy beans and the like have different components depending on the varieties, and even in the same variety, there are variations in grain size and contained components. In particular, since dispersion of lipids and sugars greatly affects the crushing conditions, it was very difficult to finely pulverize so as to obtain a stable particle size distribution.

特開平1−124361号公報JP-A-1-124361 特開2011−206621号公報JP 2011-206621 A

従って本発明の目的は上記した従来の問題点を解決し、大豆のような穀物を熱変性を生じさせることなく所定粒度に微粉砕することができる気流粉砕設備及びこれを用いた低温粉砕方法を提供することである。   Therefore, an object of the present invention is to solve the above-mentioned conventional problems, and to provide an airflow grinding facility capable of finely grinding a grain such as soybean to a predetermined particle size without causing heat denaturation, and a low-temperature grinding method using the same. Is to provide.

上記の課題を解決するためになされた請求項1の気流粉砕設備は、円筒状本体とテーパ状前蓋とからなるケーシングの内部に、高速回転する2枚の回転翼を設けた気流粉砕機と、円筒状本体の背面側から原料を連続的に供給する原料供給機と、テーパ状前蓋の前部から粉砕物を吸引回収する吸引ダクトとを備えた気流粉砕設備であって、前記ケーシングは、粉砕温度を55℃以下に抑制できる冷却手段を備えることを特徴とするものである。なお請求項2のように、冷却手段が、冷却液を循環させる冷却ジャケットとすることができる。   The airflow crushing equipment according to claim 1, which has been made to solve the above-mentioned problems, includes an airflow crusher provided with two rotating blades rotating at high speed inside a casing formed of a cylindrical main body and a tapered front lid. An airflow crushing facility comprising a raw material feeder that continuously feeds the raw material from the back side of the cylindrical main body, and a suction duct that sucks and collects the crushed material from the front part of the tapered front lid, wherein the casing is And a cooling means capable of suppressing the pulverization temperature to 55 ° C. or lower. As in claim 2, the cooling means can be a cooling jacket for circulating the coolant.

また上記の課題を解決するためになされた請求項3の低温粉砕方法は、請求項1または2に記載の気流粉砕設備を用い、気流粉砕機の動力モータの電流値をパラメータとして原料供給機の供給量をフィードバック制御しつつ粉砕することを特徴とするものである。   Further, a low temperature pulverization method according to claim 3, which has been made to solve the above problems, uses the airflow pulverization equipment according to claim 1 or 2, and uses the current value of the power motor of the airflow pulverizer as a parameter. The pulverization is performed while the supply amount is feedback-controlled.

また請求項4の低温粉砕方法は、請求項1または2に記載の気流粉砕設備を用い、ケーシングの内部温度をパラメータとして原料供給機の供給量をフィードバック制御しつつ粉砕することを特徴とするものである。また請求項5の低温粉砕方法は、請求項1または2に記載の気流粉砕設備を用い、原料とともに冷風または除湿空気を供給しつつ粉砕することを特徴とするものである。また請求項6に記載したように、吸引ダクトの吸引風量が一定となるようにフィードバック制御を行なうことが好ましい。   According to a fourth aspect of the present invention, there is provided a low-temperature pulverization method using the airflow pulverization equipment according to the first or second aspect, wherein the pulverization is performed while feedback control of the supply amount of the raw material feeder using the internal temperature of the casing as a parameter. It is. A low-temperature pulverization method according to a fifth aspect is characterized by using the airflow pulverization equipment according to the first or second aspect and pulverizing while supplying cold air or dehumidified air together with the raw material. In addition, as described in claim 6, it is preferable to perform feedback control so that the suction air volume of the suction duct is constant.

本発明の気流粉砕設備は、粉砕温度を55℃以下に抑制できる冷却手段をケーシングに設けたので、大豆のような穀物を熱変性を生じさせることなく所定粒度に微粉砕することができる。特に請求項2のように、冷却手段として冷却液を循環させる冷却ジャケットを用い、例えば10℃以下の冷却水や不凍液を循環させることにより、熱変性を効果的に抑制することができる。   Since the airflow pulverization equipment of the present invention is provided with a cooling means that can suppress the pulverization temperature to 55 ° C. or less in the casing, it is possible to finely pulverize grains such as soybeans to a predetermined particle size without causing thermal denaturation. In particular, as in the second aspect, the heat denaturation can be effectively suppressed by using a cooling jacket for circulating the cooling liquid as the cooling means and circulating the cooling water or the antifreezing liquid at 10 ° C. or less, for example.

また本発明の低温粉砕方法は、粉砕温度を55℃以下に抑制できる冷却手段をケーシングに設けた気流粉砕機を用いるとともに、気流粉砕機の動力モータの電流値をパラメータとして、あるいはケーシングの内部温度をパラメータとして原料供給機の供給量をフィードバック制御する。この制御によって粉砕時の摩擦熱の発生量を抑制し、熱変性をより効果的に抑制することができるとともに、最適量の原料を供給することによって粉砕効率を向上させることができる。   The low-temperature pulverization method of the present invention uses an airflow pulverizer in which a cooling means capable of suppressing the pulverization temperature to 55 ° C. or less is provided in the casing, and uses the current value of the power motor of the airflow pulverizer as a parameter or the internal temperature of the casing. As a parameter, the feed amount of the raw material feeder is feedback controlled. With this control, the amount of frictional heat generated during pulverization can be suppressed, heat denaturation can be suppressed more effectively, and pulverization efficiency can be improved by supplying an optimal amount of raw material.

また請求項5のように、原料とともに冷風または除湿空気を供給しつつ粉砕を行なうことによって、外気温の影響を受けることなく原料を低温粉砕することが可能である。何れの場合にも、吸引ダクトの吸引風量が一定となるようにフィードバック制御を行なうことにより、粉砕粒度を一定とすることができる。   Further, as in claim 5, by performing pulverization while supplying cold air or dehumidified air together with the raw material, the raw material can be pulverized at a low temperature without being affected by the outside air temperature. In either case, the pulverization particle size can be made constant by performing feedback control so that the suction air volume of the suction duct is constant.

本発明の第1の実施形態を示す全体図である。1 is an overall view showing a first embodiment of the present invention. 気流粉砕機の水平断面図である。It is a horizontal sectional view of an airflow crusher. 本発明の第2の実施形態を示す全体図である。It is a general view which shows the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す全体図である。It is a general view which shows the 3rd Embodiment of this invention.

以下に本発明の実施形態を説明する。
図1は本発明の実施形態の説明図であり、1は原料ホッパー、2は原料供給機、3は気流粉砕機、4は吸引ダクト、5は粉砕物回収ホッパーである。なお各実施形態で用いた原料は大豆であるが、小豆、米等のその他の穀類であってもよい。
Embodiments of the present invention will be described below.
FIG. 1 is an explanatory diagram of an embodiment of the present invention, wherein 1 is a raw material hopper, 2 is a raw material supply machine, 3 is an airflow crusher, 4 is a suction duct, and 5 is a pulverized material collection hopper. In addition, although the raw material used by each embodiment is a soybean, other cereals, such as a red bean and rice, may be sufficient.

原料である大豆は原料ホッパー1からその下方に設置された原料供給機2に投入され、さらに気流粉砕機3に供給される。原料供給機2は振動式の定量供給装置であり、後述するようにその原料供給量は制御装置6によって制御されている。   The soybean as a raw material is fed from a raw material hopper 1 into a raw material supply machine 2 installed below the raw material hopper 1 and further supplied to an airflow crusher 3. The raw material supply machine 2 is a vibration type quantitative supply device, and the raw material supply amount is controlled by a control device 6 as described later.

図2に気流粉砕機3の詳細を示す。この気流粉砕機3は、円筒状本体7とテーパ状前蓋8とからなるケーシング9を備えている。ケーシング9の内部には片持ち構造の回転軸10が設けられており、その端部にはプーリー11が固定されている。12は動力モータであり、その出力軸に固定された駆動プーリー13とプーリー11との間にベルト14を巻き掛けることによって、回転軸10を駆動している。   FIG. 2 shows details of the airflow crusher 3. The airflow crusher 3 includes a casing 9 including a cylindrical main body 7 and a tapered front lid 8. A rotating shaft 10 having a cantilever structure is provided inside the casing 9, and a pulley 11 is fixed to an end portion of the rotating shaft 10. A power motor 12 drives the rotating shaft 10 by winding a belt 14 between a driving pulley 13 and a pulley 11 fixed to the output shaft.

この回転軸10には、2枚の回転翼が取付けられている。第1の回転翼15はケーシング9の円筒状本体7の内部に配置され、第2の回転翼16はケーシング9のテーパ状前蓋8の内部に配置されている。図2に示すように円筒状本体7の端部はテーパ状前蓋8の反対方向のテーパ部17となっており、第1の回転翼15の先端面はこのテーパ部17と同一角度の傾斜面とされている。同様に、第2の回転翼16の先端面はテーパ状前蓋8のテーパ部18と同一角度の傾斜面とされている。なおこれらの回転翼15,16は何れも先端側が周方向に分割された分割羽根であり、その分割数は3〜8が好ましい。   Two rotary blades are attached to the rotary shaft 10. The first rotary blade 15 is disposed inside the cylindrical main body 7 of the casing 9, and the second rotary blade 16 is disposed inside the tapered front lid 8 of the casing 9. As shown in FIG. 2, the end of the cylindrical body 7 is a tapered portion 17 in the opposite direction of the tapered front lid 8, and the tip surface of the first rotary blade 15 is inclined at the same angle as the tapered portion 17. It is considered as a surface. Similarly, the tip surface of the second rotor blade 16 is inclined with the same angle as the tapered portion 18 of the tapered front lid 8. Each of the rotary blades 15 and 16 is a divided blade whose tip side is divided in the circumferential direction, and the number of divided blades is preferably 3-8.

円筒状本体7の側壁には原料供給口19が形成されており、原料供給機2の出側に配置された小ホッパー20から原料がケーシング9の内部に供給される。原料は3000〜8000rpmで高速回転する第1の回転翼15によって粗粉砕され、第1の回転翼15と第2の回転翼16とに挟まれた空間21に入る。この空間21には強い遠心気流が形成されており、粗粉砕された粒子は互いに激しく衝突して気流粉砕が行われる。その結果粒子は微粉末となり、第2の回転翼16とテーパ状前蓋8との間隙からテーパ状前蓋8の内部に移動する。図1に示すように、テーパ状前蓋8の先端には吸引ダクト4が接続されており、微粉末は吸引ダクト4を通じて吸引され、粉砕物回収ホッパー5に回収される。   A raw material supply port 19 is formed in the side wall of the cylindrical main body 7, and the raw material is supplied into the casing 9 from a small hopper 20 disposed on the outlet side of the raw material supply machine 2. The raw material is coarsely pulverized by the first rotary blade 15 rotating at a high speed of 3000 to 8000 rpm, and enters the space 21 sandwiched between the first rotary blade 15 and the second rotary blade 16. A strong centrifugal airflow is formed in the space 21, and the coarsely pulverized particles collide violently with each other and the airflow pulverization is performed. As a result, the particles become fine powder and move into the tapered front lid 8 from the gap between the second rotary blade 16 and the tapered front lid 8. As shown in FIG. 1, a suction duct 4 is connected to the tip of the tapered front lid 8, and fine powder is sucked through the suction duct 4 and collected in the pulverized material collection hopper 5.

なお、この実施形態の気流粉砕機3においては、テーパ状前蓋8がヒンジ22を中心として開閉可能となっている。ヒンジ22の反対側にはロックねじ23が設けられており、テーパ状前蓋8を閉鎖状態で固定できる構造となっている。なおテーパ状前蓋8はスライドピン24を介して円筒状本体7に接続され、軸線方向に小距離を移動可能となっている。またヒンジ22も軸線方向にスライド可能となっている。このため、テーパ状前蓋8と円筒状本体7との間にスペーサ25を介在させることによって、テーパ状前蓋8の固定位置を円筒状本体7に対して僅かに軸線方向に動かすことができる。この結果、第2の回転翼16とテーパ状前蓋8の内周面との間隙を変え、分級性能を調整することが可能となる。   In the airflow crusher 3 of this embodiment, the tapered front lid 8 can be opened and closed around the hinge 22. A lock screw 23 is provided on the opposite side of the hinge 22 so that the tapered front lid 8 can be fixed in a closed state. The tapered front lid 8 is connected to the cylindrical main body 7 via a slide pin 24 and can move a small distance in the axial direction. The hinge 22 is also slidable in the axial direction. For this reason, by interposing the spacer 25 between the tapered front lid 8 and the cylindrical main body 7, the fixing position of the tapered front lid 8 can be moved slightly in the axial direction with respect to the cylindrical main body 7. . As a result, it is possible to adjust the classification performance by changing the gap between the second rotor blade 16 and the inner peripheral surface of the tapered front lid 8.

以上に説明した気流粉砕機3の構造は、特許文献2に開示されたものと基本的に同一である。しかし本発明では低温粉砕を行なうために、以下の工夫が加えられている。   The structure of the airflow crusher 3 described above is basically the same as that disclosed in Patent Document 2. However, in the present invention, in order to perform low temperature pulverization, the following devices are added.

先ず、ケーシング9は粉砕温度を55℃以下に抑制できる冷却手段を備えている。すなわち、円筒状本体7の外周部には冷却ジャケット26が形成され、テーパ状前蓋8の外周部にも冷却ジャケット27が形成されている。これらの冷却ジャケット26、27の内部にはそれぞれ冷却液が循環される。冷却液は10℃以下の水を用いることができるが、冷却液の温度を0℃以下としたい場合には不凍液を用いるものとする。このような構成とすることによって、ケーシング9内の粉砕温度を55℃以下に維持する。この温度が55℃を超えると大豆の熱変性が開始されるので好ましくない。ケーシング9の内部温度は温度センサ30によって測定され、冷却液の循環量をフィードバック制御している。   First, the casing 9 is provided with a cooling means that can suppress the pulverization temperature to 55 ° C. or lower. That is, a cooling jacket 26 is formed on the outer peripheral portion of the cylindrical main body 7, and a cooling jacket 27 is also formed on the outer peripheral portion of the tapered front lid 8. A coolant is circulated in the cooling jackets 26 and 27, respectively. As the cooling liquid, water of 10 ° C. or lower can be used. However, when the temperature of the cooling liquid is desired to be 0 ° C. or lower, an antifreeze liquid is used. By setting it as such a structure, the grinding | pulverization temperature in the casing 9 is maintained at 55 degrees C or less. When this temperature exceeds 55 ° C., heat denaturation of soybean is started, which is not preferable. The internal temperature of the casing 9 is measured by the temperature sensor 30 and feedback control is performed on the circulating amount of the coolant.

なお、冷却ジャケット26、27による抜熱はケーシング9の壁面を通じて行われるため、壁面の熱伝導率及び熱伝達率が冷却効果に影響を与える。このため冷却ジャケット26、27の近傍のケーシング9を熱伝導率の大きい金属で形成することができる。また、ケーシング9の内面に粉砕された微粉末が付着して断熱層を形成することを避けるため、定期的に振動やエアジェットなどを加えて付着物を除去することもできる。また所定時間運転したときには運転を停止してテーパ状前蓋8を開き、その内面の付着物を箆などで掻き取ることが好ましい。   In addition, since the heat removal by the cooling jackets 26 and 27 is performed through the wall surface of the casing 9, the heat conductivity and heat transfer coefficient of the wall surface influence the cooling effect. For this reason, the casing 9 in the vicinity of the cooling jackets 26 and 27 can be formed of a metal having a high thermal conductivity. Further, in order to avoid the formation of a heat insulating layer due to the pulverized fine powder adhering to the inner surface of the casing 9, the adhering matter can be removed by periodically applying vibration, air jet or the like. Further, it is preferable that the operation is stopped when the operation is performed for a predetermined time, the tapered front lid 8 is opened, and the deposit on the inner surface is scraped off with a scissors or the like.

図1に示す第1の実施形態においては、気流粉砕機3の動力モータ12の電流値を制御盤28から取出し、制御装置6はこの電流値をパラメータとして原料供給機2の供給量をフィードバック制御している。すなわち、原料の成分、水分含有率、粉砕温度などの変動は粉砕の負荷変動となり、この負荷変動は動力モータ12の電流値の変動として表われる。このため、上記のようにケーシング9内の粉砕温度を55℃以下に維持するのみならず、電流値が増加したときには原料供給機2の供給量を減少させて粉砕の負荷を減少させる制御を行なうことにより、安定した低温粉砕が可能となる。   In the first embodiment shown in FIG. 1, the current value of the power motor 12 of the airflow crusher 3 is taken out from the control panel 28, and the control device 6 feedback-controls the supply amount of the raw material feeder 2 using this current value as a parameter. doing. That is, fluctuations in the raw material components, moisture content, pulverization temperature, and the like become pulverization load fluctuations, and these load fluctuations appear as fluctuations in the current value of the power motor 12. For this reason, not only the pulverization temperature in the casing 9 is maintained at 55 ° C. or lower as described above, but also the control is performed to reduce the pulverization load by decreasing the supply amount of the raw material supplier 2 when the current value increases. Thus, stable low-temperature pulverization becomes possible.

図3に示す第2の実施形態では、温度センサ30によって測定されたケーシング9の内部温度をパラメータとして原料供給機2の供給量をフィードバック制御している。すなわち、温度センサ30によって測定されたケーシング9の内部温度が設定値を超えたときには、冷却液の循環量をフィードバック制御するのみならず、原料供給機2の供給量もフィードバック制御することにより、原料供給量を最適量となるようにしている。この第2の実施形態は第1の実施形態と組み合わせて実施することができる。   In the second embodiment shown in FIG. 3, the feed amount of the raw material feeder 2 is feedback-controlled using the internal temperature of the casing 9 measured by the temperature sensor 30 as a parameter. That is, when the internal temperature of the casing 9 measured by the temperature sensor 30 exceeds the set value, not only the circulation amount of the coolant is feedback-controlled, but also the supply amount of the material supply machine 2 is feedback-controlled. The supply amount is set to an optimum amount. This second embodiment can be implemented in combination with the first embodiment.

図4に示す第3の実施形態では、原料とともに冷風または除湿空気を気流粉砕機3に供給しつつ粉砕を行なう。図4では冷風発生器29から供給された冷風または除湿空気を原料ホッパー1と原料供給機2に供給しているが、原料供給機2の出側に配置された小ホッパー20から供給することもできる。これによって低温雰囲気中での粉砕が可能となる。この第3の実施形態も、第1の実施形態や第2の実施形態と組み合わせて実施することができる。なお、冷風としては気流粉砕機3が設置された室内の温度よりも10℃以上低温の空気を用いることが好ましい。また冷風に替えて除湿された空気を用いることも可能である。除湿された空気をケーシング9の内部に供給すれば、蒸発潜熱による冷却効果を安定させることができる。   In 3rd Embodiment shown in FIG. 4, it grind | pulverizes, supplying cold air or dehumidified air to the airflow grinder 3 with a raw material. In FIG. 4, cold air or dehumidified air supplied from the cold air generator 29 is supplied to the raw material hopper 1 and the raw material supply machine 2, but may be supplied from a small hopper 20 disposed on the outlet side of the raw material supply machine 2. it can. This enables grinding in a low temperature atmosphere. This third embodiment can also be implemented in combination with the first embodiment or the second embodiment. As the cold air, it is preferable to use air having a temperature of 10 ° C. or more lower than the temperature in the room where the airflow crusher 3 is installed. It is also possible to use dehumidified air instead of cold air. If the dehumidified air is supplied to the inside of the casing 9, the cooling effect by the latent heat of vaporization can be stabilized.

なお、気流粉砕機3の分級性能は吸引ダクト4の吸引条件によって左右される。このため何れの実施形態においても、図4に示したように粉砕物回収ホッパー5に接続された吸引用ブロワ31の手前に風量計または風圧計32を配置して風量の変動を検知し、風量制御器33によって吸引風量が一定となるように吸引用ブロワ31をフィードバック制御することが好ましい。なお図4では粉砕物回収ホッパー5の内部にバグフィルタ34が設置されており、その上側室と吸引用ブロワ31とを結ぶダクト35の内部に風量計または風圧計32を配置してある。このような配置とすれば、風量計やダクト35内に微粉が付着することもなく、粉砕された微粉末を下方の容器36に回収することができる。   The classification performance of the airflow crusher 3 depends on the suction conditions of the suction duct 4. Therefore, in any embodiment, as shown in FIG. 4, an air flow meter or an air pressure meter 32 is arranged in front of the suction blower 31 connected to the pulverized material collection hopper 5 to detect a change in the air flow. The suction blower 31 is preferably feedback-controlled by the controller 33 so that the suction air volume is constant. In FIG. 4, a bag filter 34 is installed inside the pulverized material collection hopper 5, and an air flow meter or an air pressure meter 32 is arranged inside a duct 35 connecting the upper chamber and the suction blower 31. With such an arrangement, the pulverized fine powder can be collected in the lower container 36 without the fine powder adhering to the air flow meter or the duct 35.

以上に説明した本発明の気流粉砕設備及びこれを用いた低温粉砕方法によれば、大豆のような穀物を熱変性を生じさせることなく所定粒度に微粉砕することができる。具体的には、例えば生大豆をメディアン径が20〜40μm、粒径が100μm以下の割合が95%以上となるように、効率よく微粉砕することができる。   According to the airflow crushing equipment of the present invention described above and the low-temperature crushing method using the same, a grain such as soybean can be finely pulverized to a predetermined particle size without causing thermal denaturation. Specifically, for example, raw soybean can be efficiently pulverized so that the ratio of median diameter is 20 to 40 μm and the particle diameter is 100 μm or less is 95% or more.

1 原料ホッパー
2 原料供給機
3 気流粉砕機
4 吸引ダクト
5 粉砕物回収ホッパー
6 制御装置
7 円筒状本体
8 テーパ状前蓋
9 ケーシング
10 回転軸
11 プーリー
12 動力モータ
13 駆動プーリー
14 ベルト
15 第1の回転翼
16 第2の回転翼
17 テーパ部
18 テーパ部
19 原料供給口
20 小ホッパー
21 空間
22 ヒンジ
23 ロックねじ
24 スライドピン
25 スペーサ
26 冷却ジャケット
27 冷却ジャケット
28 制御盤
29 冷風発生器
30 温度センサ
31 吸引用ブロワ
32 風量計または風圧計
33 風量制御器
34 バグフィルタ
35 ダクト
36 容器
DESCRIPTION OF SYMBOLS 1 Raw material hopper 2 Raw material supply machine 3 Airflow crusher 4 Suction duct 5 Ground material collection | recovery hopper 6 Control apparatus 7 Cylindrical main body 8 Tapered front lid 9 Casing 10 Rotating shaft 11 Pulley 12 Power motor 13 Drive pulley 14 Belt 15 1st Rotary blade 16 Second rotary blade 17 Tapered portion 18 Tapered portion 19 Raw material supply port 20 Small hopper 21 Space 22 Hinge 23 Lock screw 24 Slide pin 25 Spacer 26 Cooling jacket 27 Cooling jacket 28 Control panel 29 Cold air generator 30 Temperature sensor 31 Suction blower 32 Air flow meter or air pressure meter 33 Air flow controller 34 Bag filter 35 Duct 36 Container

Claims (6)

円筒状本体とテーパ状前蓋とからなるケーシングの内部に、高速回転する2枚の回転翼を設けた気流粉砕機と、円筒状本体の背面側から原料を連続的に供給する原料供給機と、テーパ状前蓋の前部から粉砕物を吸引回収する吸引ダクトとを備えた気流粉砕設備であって、
前記ケーシングは、粉砕温度を55℃以下に抑制できる冷却手段を備えたものであることを特徴とする気流粉砕設備。
An airflow crusher provided with two rotating blades rotating at high speed inside a casing composed of a cylindrical main body and a tapered front lid, and a raw material supply machine for continuously supplying raw materials from the back side of the cylindrical main body , An airflow crushing equipment comprising a suction duct for sucking and collecting the crushed material from the front part of the tapered front lid,
The casing is provided with a cooling means capable of suppressing the pulverization temperature to 55 ° C. or less, and the airflow pulverization equipment is characterized in that
冷却手段が、冷却液を循環させる冷却ジャケットであることを特徴とする気流粉砕設備。   An airflow crushing facility, wherein the cooling means is a cooling jacket for circulating a coolant. 請求項1または2に記載の気流粉砕設備を用い、気流粉砕機の動力モータの電流値をパラメータとして原料供給機の供給量をフィードバック制御しつつ粉砕することを特徴とする低温粉砕方法。   A low-temperature pulverization method using the airflow pulverization equipment according to claim 1 or 2, wherein the pulverization is performed while feedback-controlling the supply amount of the raw material supplier using the current value of the power motor of the airflow pulverizer as a parameter. 請求項1または2に記載の気流粉砕設備を用い、ケーシングの内部温度をパラメータとして原料供給機の供給量をフィードバック制御しつつ粉砕することを特徴とする低温粉砕方法。   A low-temperature pulverization method using the airflow pulverization equipment according to claim 1 or 2, wherein the pulverization is performed while feedback-controlling the supply amount of the raw material supplier using the internal temperature of the casing as a parameter. 請求項1または2に記載の気流粉砕設備を用い、原料とともに冷風または除湿空気を供給しつつ粉砕することを特徴とする低温粉砕方法。   A low-temperature pulverization method, wherein the air pulverization equipment according to claim 1 or 2 is used for pulverization while supplying cold air or dehumidified air together with raw materials. 吸引ダクトの吸引風量が一定となるようにフィードバック制御を行なうことを特徴とする請求項3〜5の何れかに記載の低温粉砕方法。   6. The low-temperature pulverization method according to claim 3, wherein feedback control is performed so that the suction air volume of the suction duct is constant.
JP2014160964A 2014-08-07 2014-08-07 Soybean cold pulverization method Active JP6446655B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014160964A JP6446655B2 (en) 2014-08-07 2014-08-07 Soybean cold pulverization method
KR1020150009739A KR20160018320A (en) 2014-08-07 2015-01-21 Airstream grinding facilities and low temperature grinding method utilizing the same
CN201510031286.4A CN105855010A (en) 2014-08-07 2015-01-22 Pneumatic pulverization device and low temperature pulverization method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014160964A JP6446655B2 (en) 2014-08-07 2014-08-07 Soybean cold pulverization method

Publications (3)

Publication Number Publication Date
JP2016036764A true JP2016036764A (en) 2016-03-22
JP2016036764A5 JP2016036764A5 (en) 2017-07-20
JP6446655B2 JP6446655B2 (en) 2019-01-09

Family

ID=55457578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014160964A Active JP6446655B2 (en) 2014-08-07 2014-08-07 Soybean cold pulverization method

Country Status (3)

Country Link
JP (1) JP6446655B2 (en)
KR (1) KR20160018320A (en)
CN (1) CN105855010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018187379A (en) * 2017-04-28 2018-11-29 グルッポ チンバリ ソチエタ ペル アツィオニ Refrigerated grinder
CN117599676A (en) * 2024-01-19 2024-02-27 长沙绿丰源生物有机肥料有限公司 Organic fertilizer preparation device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115254308B (en) * 2022-06-22 2023-08-29 常州市佳华机械科技有限公司 Starch-rich raw material pulverizing process

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB103963A (en) * 1916-07-03 1917-02-15 Raymond Brothers Impact Pulver Improvements in Pulverizing Mills.
JPH07255404A (en) * 1994-03-25 1995-10-09 Maikaru Sogo Kenkyusho:Kk Grain flake-producing apparatus and its production
JPH086290A (en) * 1994-06-20 1996-01-12 Mitsubishi Chem Corp Production of toner for developing electrostatic charge image
JPH09155222A (en) * 1995-12-08 1997-06-17 Nittetsu Mining Co Ltd Method of controlling pneumatic pulverizer with built-in classifier and device therefor
JPH1094734A (en) * 1996-07-30 1998-04-14 Canon Inc Device and method for treating surface of solid particle, and production of toner
JPH1128377A (en) * 1997-07-14 1999-02-02 N K K Plant Kensetsu Kk Operation control of rotary crusher
JP2002233787A (en) * 2001-12-20 2002-08-20 Hosokawa Micron Corp Apparatus and method for treating powder
JP2004188248A (en) * 2002-12-09 2004-07-08 Shinryo Corp Method and apparatus for crushing organic waste
JP2005144444A (en) * 2003-10-20 2005-06-09 Hosokawa Micron Corp Treatment apparatus for powder and treatment method for powder
JP2005270893A (en) * 2004-03-26 2005-10-06 Kubota Corp Crusher
JP2006061811A (en) * 2004-08-26 2006-03-09 Taiyo Flour Milling Co Ltd Milling method and mill
JP2009095790A (en) * 2007-10-18 2009-05-07 Canon Inc Crushing apparatus and apparatus and method for manufacturing toner
JP2010051875A (en) * 2008-08-27 2010-03-11 Ricoh Co Ltd Method for preparing micro powder
JP2011526538A (en) * 2008-07-02 2011-10-13 ビューラー・アクチエンゲゼルシャフト Apparatus and method for producing fine flour and / or coarse flour
JP2011206621A (en) * 2010-03-29 2011-10-20 Minami Sangyo Kk Pneumatic crusher
WO2012036113A1 (en) * 2010-09-13 2012-03-22 増幸産業株式会社 Pneumatic pulverizing device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124361A (en) 1987-11-06 1989-05-17 Daichi Sangyo Kk Production of soybean raw flour for producing tofu soybean curd)
JPH06206003A (en) * 1993-01-12 1994-07-26 Taabo Kogyo Kk Method and apparatus for preparation of fine powder of thermoplastic synthetic resin
JP4467157B2 (en) * 1999-09-08 2010-05-26 忠史 二宮 Cereal classifier
JP2006255563A (en) * 2005-03-16 2006-09-28 Toho Gas Co Ltd Grinder
CN1903443A (en) * 2005-07-29 2007-01-31 上海建设路桥机械设备有限公司 Feeding machine-crushing machine automatic control system
JP5319131B2 (en) * 2008-02-05 2013-10-16 古河産機システムズ株式会社 Fine powder production equipment
CN101229525B (en) * 2008-02-27 2010-06-02 东南大学 Raymond mill crashing auto control method and equipment thereof
KR101803026B1 (en) * 2010-05-06 2017-11-29 호소가와미크론 가부시키가이샤 Grinding mill
KR101047138B1 (en) * 2011-02-17 2011-07-07 문경화 Pulverizer of low material temperature and air current type
JP5921172B2 (en) * 2011-12-09 2016-05-24 アシザワ・ファインテック株式会社 Horizontal dry crusher

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB103963A (en) * 1916-07-03 1917-02-15 Raymond Brothers Impact Pulver Improvements in Pulverizing Mills.
JPH07255404A (en) * 1994-03-25 1995-10-09 Maikaru Sogo Kenkyusho:Kk Grain flake-producing apparatus and its production
JPH086290A (en) * 1994-06-20 1996-01-12 Mitsubishi Chem Corp Production of toner for developing electrostatic charge image
JPH09155222A (en) * 1995-12-08 1997-06-17 Nittetsu Mining Co Ltd Method of controlling pneumatic pulverizer with built-in classifier and device therefor
JPH1094734A (en) * 1996-07-30 1998-04-14 Canon Inc Device and method for treating surface of solid particle, and production of toner
JPH1128377A (en) * 1997-07-14 1999-02-02 N K K Plant Kensetsu Kk Operation control of rotary crusher
JP2002233787A (en) * 2001-12-20 2002-08-20 Hosokawa Micron Corp Apparatus and method for treating powder
JP2004188248A (en) * 2002-12-09 2004-07-08 Shinryo Corp Method and apparatus for crushing organic waste
JP2005144444A (en) * 2003-10-20 2005-06-09 Hosokawa Micron Corp Treatment apparatus for powder and treatment method for powder
JP2005270893A (en) * 2004-03-26 2005-10-06 Kubota Corp Crusher
JP2006061811A (en) * 2004-08-26 2006-03-09 Taiyo Flour Milling Co Ltd Milling method and mill
JP2009095790A (en) * 2007-10-18 2009-05-07 Canon Inc Crushing apparatus and apparatus and method for manufacturing toner
JP2011526538A (en) * 2008-07-02 2011-10-13 ビューラー・アクチエンゲゼルシャフト Apparatus and method for producing fine flour and / or coarse flour
JP2010051875A (en) * 2008-08-27 2010-03-11 Ricoh Co Ltd Method for preparing micro powder
JP2011206621A (en) * 2010-03-29 2011-10-20 Minami Sangyo Kk Pneumatic crusher
WO2012036113A1 (en) * 2010-09-13 2012-03-22 増幸産業株式会社 Pneumatic pulverizing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018187379A (en) * 2017-04-28 2018-11-29 グルッポ チンバリ ソチエタ ペル アツィオニ Refrigerated grinder
CN117599676A (en) * 2024-01-19 2024-02-27 长沙绿丰源生物有机肥料有限公司 Organic fertilizer preparation device and method
CN117599676B (en) * 2024-01-19 2024-04-16 长沙绿丰源生物有机肥料有限公司 Organic fertilizer preparation device and method

Also Published As

Publication number Publication date
CN105855010A (en) 2016-08-17
JP6446655B2 (en) 2019-01-09
KR20160018320A (en) 2016-02-17

Similar Documents

Publication Publication Date Title
JP6446655B2 (en) Soybean cold pulverization method
KR101085543B1 (en) Closed loop classification and shattering equipment
JP2014176829A5 (en)
CN101700505B (en) Cellulose finished product grinder
JP6158856B2 (en) Pregelatinized flour production equipment
KR101247309B1 (en) Device for milling grain and device for manufacturing grain flour using the same
KR101941109B1 (en) Apparatus for manufacturing mushroom powder
JP2006061811A (en) Milling method and mill
KR20110109802A (en) Air flow type pulverizer
JP6317392B2 (en) Rice flour production equipment
KR101789027B1 (en) Air flow type pulverizer for food material
JP6518607B2 (en) Pulverizer
JP5319131B2 (en) Fine powder production equipment
KR101047138B1 (en) Pulverizer of low material temperature and air current type
JP5215257B2 (en) Method and apparatus for reusing unused food resources
CN205008081U (en) Super little rubbing crusher of centrifugation water -cooled
KR101371560B1 (en) Processing machine of powdering green tea for anti-oxidation
KR101932391B1 (en) Coffee bean milling device
KR101364955B1 (en) Cyclone mill
KR101615729B1 (en) Continuous type mill and classification equipment
JPH07185372A (en) High-speed pulverizing method and device therefor
KR20190111435A (en) A crusher including a gas-vaporized raw material cooling device
JP2002027936A (en) Pulverized product of solid, its processed product, method for pulverizing solid, and installation therefor
JP2006255563A (en) Grinder
JP7009349B2 (en) Crushing device with classification function and crushing method of the object to be processed

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181102

R150 Certificate of patent or registration of utility model

Ref document number: 6446655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250