JP2016036233A - Vibration type actuator, optical device and imaging device - Google Patents

Vibration type actuator, optical device and imaging device Download PDF

Info

Publication number
JP2016036233A
JP2016036233A JP2014158826A JP2014158826A JP2016036233A JP 2016036233 A JP2016036233 A JP 2016036233A JP 2014158826 A JP2014158826 A JP 2014158826A JP 2014158826 A JP2014158826 A JP 2014158826A JP 2016036233 A JP2016036233 A JP 2016036233A
Authority
JP
Japan
Prior art keywords
pressure
vibrator
vibration
holding
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014158826A
Other languages
Japanese (ja)
Inventor
一治 大澤
Kazuharu Osawa
一治 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014158826A priority Critical patent/JP2016036233A/en
Publication of JP2016036233A publication Critical patent/JP2016036233A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration type actuator which is hard to cause the delamination between a piezoelectric element and an elastic member.SOLUTION: A vibration type actuator comprises: a vibrator 11 having a piezoelectric element 111 and an elastic member 112, which are glued to each other; a driven member 12 which is driven relatively to the vibrator 11; and a pressure-applying member 13 which applies a pressure for pressing the vibrator 11 against the driven member 12. The elastic member 112 has pressed parts 112c each extending along a predetermined direction, to which the pressure is applied by the pressure-applying member 13. The pressure-applying member 13 has: applied pressure-transmit parts 13a connected with the corresponding pressed parts 112c respectively; and pressure-application holding parts 13b. Supposing that in a region of a boundary portion of the elastic member 112 and piezoelectric element 111 glued to each other, an end point close to each pressed part 112c is defined as a point P, a D3 direction in which the pressed part 112c extends when viewed from the point P is defined as a first direction, and a D4 direction opposite to the D3 direction is defined as a second direction, each pressure-application holding part 13b is disposed at a position spaced apart from the point P in the second direction.SELECTED DRAWING: Figure 2

Description

本発明は撮像装置のレンズ鏡筒等に用いる振動型アクチュエータに関するものである。   The present invention relates to a vibration type actuator used for a lens barrel or the like of an image pickup apparatus.

圧電素子の超音波振動を利用した超音波モータは、小型で高出力が得られ、広い速度レンジに対応でき、低振動かつ低騒音であるという特徴を有する。このような特徴を持つ超音波モータは、用途に合わせて様々な原理、形状のものが知られている。被駆動部材との接触部が設けられたチップ型振動子に複数の共振モードを同時に励振する方式では、励振された共振モードにより接触部に楕円運動を発生させる。この楕円運動を被駆動部材に伝達することにより、被駆動部材が駆動される。   An ultrasonic motor using the ultrasonic vibration of a piezoelectric element is characterized by being small and capable of obtaining a high output, capable of supporting a wide speed range, low vibration and low noise. Ultrasonic motors having such characteristics are known in various principles and shapes depending on the application. In a system in which a plurality of resonance modes are simultaneously excited in a chip-type vibrator provided with a contact portion with a driven member, elliptical motion is generated in the contact portion by the excited resonance mode. By transmitting this elliptical motion to the driven member, the driven member is driven.

特許文献1には、チップ型振動子を用いた超音波モータが開示されている。この方式の特徴は、超音波モータの中でも振動子が比較的小型であることと、回転駆動及び直進駆動の両駆動方式への応用が容易なことである。そのため、チップ型振動子を用いた超音波モータは、小型で高い駆動力のモータが求められるカメラのレンズ鏡筒等において、レンズの直進駆動用アクチュエータに適している。   Patent Document 1 discloses an ultrasonic motor using a chip-type vibrator. The features of this method are that the vibrator is relatively small among ultrasonic motors, and that it can be easily applied to both the rotational drive and the straight drive. Therefore, an ultrasonic motor using a chip-type vibrator is suitable as an actuator for linearly driving a lens in a lens barrel or the like of a camera that requires a small and high driving force motor.

特開2011−254587号公報JP 2011-2554587 A

特許文献1に開示された装置は圧電素子と弾性部材を貼り付けた振動子を用いる。振動子上の圧電素子に適切な電圧信号を印加することにより振動子に振動が励振され、被駆動部材が振動子に対して所定の方向に相対駆動される。この装置では、振動子を被駆動部材に対して加圧する必要がある。この場合、振動子を直接加圧すると振動子の振動を阻害してしまう。そこで、振動の阻害を防ぎつつ加圧する方法として、弾性部材において所定の方向に延出した被加圧部を設け、その被加圧部のみを加圧する方法が挙げられる。しかし、被加圧部を加圧することで、圧電素子と弾性部材との貼り付け面の境界部において弾性部材を、圧電素子が貼り付けられた側とは反対側に曲げようとするモーメントが生じる。このモーメントが原因で圧電素子と弾性部材との剥がれが生じる可能性がある。そこで本発明は、圧電素子と弾性部材との剥がれが起きにくい振動型アクチュエータの提供を目的とする。   The apparatus disclosed in Patent Document 1 uses a vibrator on which a piezoelectric element and an elastic member are attached. By applying an appropriate voltage signal to the piezoelectric element on the vibrator, vibration is excited in the vibrator, and the driven member is driven relative to the vibrator in a predetermined direction. In this apparatus, the vibrator needs to be pressurized against the driven member. In this case, when the vibrator is directly pressurized, the vibration of the vibrator is hindered. Therefore, as a method for applying pressure while preventing the inhibition of vibration, there is a method in which an elastic member is provided with a pressurized portion extending in a predetermined direction, and only the pressurized portion is pressurized. However, by applying pressure to the pressurized portion, a moment is generated to bend the elastic member to the side opposite to the side where the piezoelectric element is bonded at the boundary between the piezoelectric element and the elastic member. . This moment may cause the piezoelectric element and the elastic member to peel off. Accordingly, an object of the present invention is to provide a vibration type actuator in which peeling between the piezoelectric element and the elastic member does not easily occur.

本発明に係る振動型アクチュエータは、圧電素子と弾性部材とを貼り付けた振動子と、前記振動子の振動によって前記振動子に対して相対的に移動する被駆動部材と、加圧力により前記振動子を前記被駆動部材に圧接させる加圧部材と、前記振動子を保持する保持部材を備える。前記弾性部材は、前記加圧部材に接続される被加圧部を有し、前記加圧部材は、前記被加圧部に接続される加圧伝達部と、前記加圧部材を前記被駆動部材から離間した位置に保持する保持力を前記保持部材から受ける加圧保持部を有する。前記弾性部材にて前記被加圧部が延出する方向を第1方向とし、前記第1方向とは反対方向を第2方向とするとき、前記第1方向及び第2方向並びに前記加圧力の方向に直交する方向から見た場合、前記弾性部材と前記圧電素子との境界部の端点に対して前記加圧保持部が前記第2方向の側に位置している。   The vibration type actuator according to the present invention includes a vibrator in which a piezoelectric element and an elastic member are bonded, a driven member that moves relative to the vibrator by vibration of the vibrator, and the vibration by pressure. A pressing member that presses a child against the driven member and a holding member that holds the vibrator are provided. The elastic member has a pressurized part connected to the pressurized member, and the pressurized member is a pressurized transmission part connected to the pressurized part, and the driven member is driven. A pressure holding unit configured to receive a holding force from the holding member to hold the member at a position separated from the member; When the direction in which the pressurized portion extends in the elastic member is a first direction and the direction opposite to the first direction is a second direction, the first direction, the second direction, and the applied pressure When viewed from a direction orthogonal to the direction, the pressure holding portion is located on the second direction side with respect to an end point of a boundary portion between the elastic member and the piezoelectric element.

本発明によれば、圧電素子と弾性部材との剥がれが起きにくい振動型アクチュエータを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vibration type actuator with which peeling with a piezoelectric element and an elastic member does not occur easily can be provided.

本発明の第1実施形態に係る超音波モータを表す分解斜視図である。1 is an exploded perspective view illustrating an ultrasonic motor according to a first embodiment of the present invention. 本発明の第1実施形態に係る超音波モータを表す側面図である。It is a side view showing the ultrasonic motor concerning a 1st embodiment of the present invention. 図1の超音波モータの振動子を表す斜視図である。It is a perspective view showing the vibrator | oscillator of the ultrasonic motor of FIG. 図1の超音波モータの振動子について振動状態を表す図である。It is a figure showing a vibration state about the vibrator | oscillator of the ultrasonic motor of FIG. 第1実施形態の効果を説明する図である。It is a figure explaining the effect of a 1st embodiment. 撮像装置を表す斜視図である。It is a perspective view showing an imaging device. 図1の超音波モータを用いたレンズ駆動装置を表す図である。It is a figure showing the lens drive device using the ultrasonic motor of FIG. 本発明の第2実施形態に係る超音波モータを表す分解斜視図である。It is a disassembled perspective view showing the ultrasonic motor concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係る超音波モータを表す側面図である。It is a side view showing the ultrasonic motor concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る超音波モータを表す分解斜視図である。It is a disassembled perspective view showing the ultrasonic motor which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る超音波モータを表す側面図である。It is a side view showing the ultrasonic motor concerning a 3rd embodiment of the present invention. 比較例の超音波モータを表す分解斜視図である。It is a disassembled perspective view showing the ultrasonic motor of a comparative example. 比較例の超音波モータを表す側面図である。It is a side view showing the ultrasonic motor of a comparative example.

以下、本発明の各実施形態に係る振動型アクチュエータについて説明する。各実施形態に係る振動型アクチュエータは、小型軽量かつ広い駆動速度レンジが要求される電子機器に適用可能である。例えば振動型アクチュエータは、小型で高出力なモータが求められる撮像装置のレンズ鏡筒内において、レンズ駆動等に適用可能である。本発明の技術的範囲には振動型アクチュエータを利用した装置として、レンズやプリズム等の光学素子の駆動装置や、レンズ鏡筒、レンズユニット等の光学機器、撮像装置が含まれる。   Hereinafter, the vibration type actuator according to each embodiment of the present invention will be described. The vibration type actuator according to each embodiment can be applied to an electronic device that is required to be small and light and have a wide driving speed range. For example, the vibration-type actuator can be applied to lens driving or the like in a lens barrel of an imaging apparatus that requires a small and high-output motor. The technical scope of the present invention includes a drive device for an optical element such as a lens or a prism, an optical device such as a lens barrel or a lens unit, and an imaging device as a device using a vibration actuator.

[第1実施形態]
本発明の第1実施形態に係る超音波モータ1について説明する。図1は超音波モータ1の構成例を示す分解斜視図である。超音波モータ1は振動子11、被駆動部材12、加圧部材13、振動子ホルダ14、締結部材15により構成される。
[First Embodiment]
An ultrasonic motor 1 according to a first embodiment of the present invention will be described. FIG. 1 is an exploded perspective view showing a configuration example of the ultrasonic motor 1. The ultrasonic motor 1 includes a vibrator 11, a driven member 12, a pressure member 13, a vibrator holder 14, and a fastening member 15.

図3を参照して振動子11について説明する。図3は振動子11の斜視図である。振動子11は、圧電素子111と弾性部材112を接着剤で貼り付けた構造をもつ。振動子11の長辺方向をD1方向と定義し、この方向に直交する振動子11の厚み方向をD2方向と定義する。   The vibrator 11 will be described with reference to FIG. FIG. 3 is a perspective view of the vibrator 11. The vibrator 11 has a structure in which a piezoelectric element 111 and an elastic member 112 are attached with an adhesive. The long side direction of the vibrator 11 is defined as the D1 direction, and the thickness direction of the vibrator 11 orthogonal to this direction is defined as the D2 direction.

圧電素子111は、例えば矩形板状のPZT(チタン酸ジルコン酸鉛)である。弾性部材112は、例えばプレス成型されたステンレス鋼の平板である。振動子11は駆動対象(超音波モータ1においては図1の被駆動部材12)に圧接された状態で、適切な振動を励振されることで駆動対象を所定の方向に駆動する。弾性部材112は、弾性振動部112aと、複数の接触部112bと、少なくとも1つの被加圧部112cを有しており、各部が成形されている。弾性振動部112aは、圧電素子111の伸縮により圧電素子111と共に振動する。複数の接触部112bは、弾性振動部112aに設けられた突起部(脚部)であり、駆動対象に圧接される。被加圧部112cは、弾性振動部112aから所定の方向に延出しており、駆動対象へ圧接するための加圧力を受ける部位である。本実施形態では、D1方向において2つの被加圧部112cが弾性振動部112aの端部に形成されている。弾性振動部112a、接触部112b、被加圧部112cは例えば、1枚のステンレス鋼板にプレス成型を施すことにより成形される。   The piezoelectric element 111 is, for example, rectangular plate-shaped PZT (lead zirconate titanate). The elastic member 112 is, for example, a press-molded stainless steel flat plate. The vibrator 11 is driven in a predetermined direction by being excited by an appropriate vibration while being pressed against a drive target (the driven member 12 of FIG. 1 in the ultrasonic motor 1). The elastic member 112 has an elastic vibration part 112a, a plurality of contact parts 112b, and at least one pressed part 112c, and each part is molded. The elastic vibration part 112 a vibrates together with the piezoelectric element 111 due to expansion and contraction of the piezoelectric element 111. The plurality of contact portions 112b are protrusions (leg portions) provided on the elastic vibration portion 112a, and are in pressure contact with the drive target. The pressurized portion 112c extends from the elastic vibration portion 112a in a predetermined direction, and is a portion that receives a pressing force for being pressed against the driving target. In the present embodiment, two pressed parts 112c are formed at the end of the elastic vibration part 112a in the D1 direction. The elastic vibration part 112a, the contact part 112b, and the pressurized part 112c are formed by, for example, pressing a single stainless steel plate.

超音波モータ1で駆動対象を駆動する場合、駆動部は圧電素子111に適切な電気信号を印加する。圧電素子111の伸縮により、振動子11には2つの異なる振動が励振される。第1の振動を「送り振動」と呼び、第2の振動を「突き上げ振動」と呼ぶことにする。図4(A)は、送り振動が励振されている状態の振動子11を表す模式図である。図4(B)は突き上げ振動が励振されている状態の振動子11を表す模式図である。   When driving the driving target with the ultrasonic motor 1, the driving unit applies an appropriate electrical signal to the piezoelectric element 111. Two different vibrations are excited in the vibrator 11 by the expansion and contraction of the piezoelectric element 111. The first vibration is referred to as “feed vibration” and the second vibration is referred to as “push-up vibration”. FIG. 4A is a schematic diagram showing the vibrator 11 in a state where the feed vibration is excited. FIG. 4B is a schematic diagram showing the vibrator 11 in a state where the push-up vibration is excited.

図4(A)に示すように、振動子11にて送り振動として屈曲2次振動モードを用いる。屈曲2次振動モードでは、接触部112bの先端が描く軌跡R2は、駆動対象の駆動方向(図中D1方向)と略平行である。また、図4(B)に示すように、振動子11にて突き上げ振動として屈曲1次共振振動モードを用いる。屈曲1次共振振動モードでは、接触部112bの先端が描く軌跡R3は、駆動対象への加圧方向(図中D2方向)と略平行である。図4(A)に示す送り振動と、図4(B)に示す突き上げ振動とを、適切な位相差をもたせて振動子11に励振することで、図3の軌跡R1で示すように、接触部112bが楕円軌道を描く。接触部112bが駆動対象に圧接している状態で、軌跡R1で示す楕円運動を行う。これにより、駆動対象を繰り返し送り出して、D1方向に相対的に駆動することができる。なお、超音波モータ1では、駆動対象を相対駆動するために、送り振動である屈曲2次振動モード及び突き上げ振動である屈曲1次振動モードを用いている。被駆動部材12を相対駆動できるのであれば、前記の振動モードに限定されず、また必ずしも2つの振動モードを用いなくてもよい。   As shown in FIG. 4A, the vibrator 11 uses a bending secondary vibration mode as a feed vibration. In the bending secondary vibration mode, the locus R2 drawn by the tip of the contact portion 112b is substantially parallel to the drive direction (D1 direction in the drawing) of the drive target. Further, as shown in FIG. 4B, the bending primary resonance vibration mode is used as the push-up vibration in the vibrator 11. In the bending primary resonance vibration mode, the trajectory R3 drawn by the tip of the contact portion 112b is substantially parallel to the pressurizing direction (D2 direction in the figure) to the drive target. By exciting the vibrator 11 with an appropriate phase difference between the feed vibration shown in FIG. 4 (A) and the push-up vibration shown in FIG. 4 (B), as shown by the locus R1 in FIG. The part 112b draws an elliptical orbit. The elliptical motion indicated by the locus R1 is performed in a state where the contact portion 112b is in pressure contact with the drive target. Thereby, a drive object can be sent out repeatedly and can be driven relatively in the D1 direction. Note that the ultrasonic motor 1 uses a bending secondary vibration mode that is a feed vibration and a bending primary vibration mode that is a push-up vibration in order to relatively drive the drive target. As long as the driven member 12 can be relatively driven, the vibration mode is not limited to the above, and the two vibration modes may not necessarily be used.

次に、超音波モータ1の全体構成を説明する。
図1に示す被駆動部材12は、例えばステンレス製の角材であり、振動子11の振動によって振動子11に対して所定の方向に相対駆動される。複数の加圧部材13は、例えばステンレス製の板ばねである。加圧部材13の弾性変形により、振動子11を被駆動部材12に圧接するための加圧力が生じる。加圧部材13の一部と振動子11の被加圧部112cは、例えば溶接により接続される。加圧部材13のうち、被加圧部112cと接続されて振動子11に加圧力を伝達する部位を加圧伝達部13aとする。加圧伝達部13aとは異なる部分と振動子ホルダ14は、締結部材15により保持されている。振動子ホルダ14は、例えば樹脂製部材である。振動子ホルダ14は、加圧部材13を介して振動子11と接続されて振動子11を保持する保持部材である。加圧部材13のうち、振動子ホルダ14に保持される円環形状の部位を加圧保持部13bとする。
Next, the overall configuration of the ultrasonic motor 1 will be described.
The driven member 12 shown in FIG. 1 is, for example, a stainless steel square, and is driven relative to the vibrator 11 in a predetermined direction by the vibration of the vibrator 11. The plurality of pressure members 13 are, for example, stainless plate springs. Due to the elastic deformation of the pressing member 13, a pressing force for pressing the vibrator 11 against the driven member 12 is generated. A part of the pressing member 13 and the pressed part 112c of the vibrator 11 are connected, for example, by welding. A portion of the pressurizing member 13 that is connected to the pressurized portion 112c and transmits the pressure to the vibrator 11 is referred to as a pressurizing transmission portion 13a. A portion different from the pressure transmission unit 13 a and the vibrator holder 14 are held by a fastening member 15. The vibrator holder 14 is, for example, a resin member. The vibrator holder 14 is a holding member that is connected to the vibrator 11 via the pressure member 13 and holds the vibrator 11. An annular portion of the pressure member 13 that is held by the vibrator holder 14 is referred to as a pressure holding portion 13b.

振動子ホルダ14は、加圧部材13を弾性変形させることで、弾性力により適切な加圧力が生じるように被駆動部材12に対して所定の距離だけ離れた位置で保持される。図2(A)は、振動子ホルダ14が被駆動部材12に対して所定の距離で離間した位置に保持された状態の超音波モータ1を示す側面図である(一部を断面で示す)。この状態で加圧部材13は図2(A)の下方に凸形状で弾性変形し、彎曲している。この時、加圧伝達部13aから被加圧部112cに対して加圧力F1が作用している。また、振動子ホルダ14が被駆動部材12から所定の距離で離間した位置で保持されることにより、加圧保持部13bは加圧力F1と略平行な方向への移動が規制される。振動子ホルダ14から加圧保持部13bに対して加圧力F1と略平行な方向の保持力F2が作用している。この保持力F2が働くため、加圧部材13は加圧力F1の反力の作用で移動せず、被駆動部材12の側から見た場合、所定の距離で離れた位置に保持される。被加圧部112cに作用する加圧力F1により、振動子11の接触部112bはそれぞれ、被駆動部材12に対して圧接される。   The vibrator holder 14 is held at a position away from the driven member 12 by a predetermined distance so that an appropriate pressure is generated by elastic force by elastically deforming the pressing member 13. FIG. 2A is a side view showing the ultrasonic motor 1 in a state where the vibrator holder 14 is held at a position separated from the driven member 12 by a predetermined distance (a part is shown in cross section). . In this state, the pressurizing member 13 is elastically deformed and bent in a convex shape downward in FIG. At this time, the pressurizing force F1 is applied to the pressurized portion 112c from the pressure transmitting portion 13a. Further, when the vibrator holder 14 is held at a position separated from the driven member 12 by a predetermined distance, the pressurization holding portion 13b is restricted from moving in a direction substantially parallel to the pressing force F1. A holding force F2 in a direction substantially parallel to the applied pressure F1 is applied from the vibrator holder 14 to the pressure holding portion 13b. Since the holding force F2 works, the pressurizing member 13 does not move due to the reaction force of the pressurizing force F1, and is held at a predetermined distance when viewed from the driven member 12 side. The contact portions 112b of the vibrator 11 are brought into pressure contact with the driven member 12 by the applied pressure F1 acting on the pressurized portion 112c.

次に、超音波モータ1にてそれぞれの被加圧部112cが満たす条件を説明する。
図2(B)に拡大して示すように、弾性部材112と圧電素子111が貼り付けられている領域のうち、弾性振動部112aにてそれぞれの被加圧部112cが隣接する部位に最も近い点を、点Pと記す(図2(B)には片側の点Pのみを示す)。また、点Pから見た場合、弾性振動部112aから該当する被加圧部112cが延出する第1方向をD3方向とする。加圧部材13の加圧保持部13bは、点Pから見て第1方向とは反対側(D4方向の側)に配置されている。以下、D4方向を第2方向とする。
Next, the conditions which each to-be-pressurized part 112c satisfy | fills with the ultrasonic motor 1 are demonstrated.
As shown in an enlarged view in FIG. 2B, in the region where the elastic member 112 and the piezoelectric element 111 are attached, the portion to be pressed 112c is closest to the adjacent portion in the elastic vibration portion 112a. The point is described as a point P (FIG. 2B shows only the point P on one side). Further, when viewed from the point P, the first direction in which the corresponding pressurized part 112c extends from the elastic vibration part 112a is defined as a D3 direction. The pressure holding portion 13b of the pressure member 13 is disposed on the side opposite to the first direction (the side in the D4 direction) when viewed from the point P. Hereinafter, the D4 direction is the second direction.

図2(A)に示すように、接触部112bはそれぞれ被駆動部材12に対して圧接され、この状態で振動子11を励振すると、被駆動部材12が相対的に移動する。超音波モータ1では、加圧部材13として板ばねを用いるが、板ばねに限らず、例えばコイルばねや磁石等でもよい。また、加圧部材13を用いて振動子ホルダ14と振動子11との間の保持を行っているが、加圧部材13については、振動子11を被駆動部材12に圧接するための加圧力を発生させることができればよい。そのため、振動子11と振動子ホルダ14の保持には別の機構を用いてもよい。   As shown in FIG. 2A, each of the contact portions 112b is in pressure contact with the driven member 12, and when the vibrator 11 is excited in this state, the driven member 12 relatively moves. In the ultrasonic motor 1, a leaf spring is used as the pressure member 13. Further, the pressure member 13 is used to hold the vibrator holder 14 and the vibrator 11, but the pressure member 13 is applied with pressure to press the vibrator 11 against the driven member 12. As long as it can be generated. Therefore, another mechanism may be used for holding the vibrator 11 and the vibrator holder 14.

それぞれの被加圧部112cの近傍に位置する点Pから見た場合、加圧部材13の加圧保持部13bは、第2方向(D4方向)の側に配置されているが、本構成による作用を説明するため、比較例を挙げる。図12及び図13に示す比較例では、加圧保持部が、点Pから見て第1方向の側に配置された構造である。この構造を説明した上で、超音波モータ1と比較する。   When viewed from the point P located in the vicinity of each pressurized portion 112c, the pressure holding portion 13b of the pressure member 13 is disposed on the second direction (D4 direction) side. In order to explain the action, a comparative example is given. The comparative example shown in FIGS. 12 and 13 has a structure in which the pressure holding unit is disposed on the first direction side when viewed from the point P. After explaining this structure, it will be compared with the ultrasonic motor 1.

図12は、比較例の超音波モータ5の構成を表す分解斜視図である。超音波モータ5は振動子51、被駆動部材52、加圧部材53、振動子ホルダ54、締結部材55により構成される。   FIG. 12 is an exploded perspective view showing the configuration of the ultrasonic motor 5 of the comparative example. The ultrasonic motor 5 includes a vibrator 51, a driven member 52, a pressure member 53, a vibrator holder 54, and a fastening member 55.

振動子51は圧電素子511と弾性部材512を貼り付けた構造である。弾性部材512は弾性振動部512aと複数の接触部512bを備え、2つの被加圧部512cが形成されている。被駆動部材52は、振動子51の振動により所定の方向に相対駆動される。複数の加圧部材53は、それらの弾性変形により振動子51を被駆動部材52に圧接させる。各加圧部材53は、加圧伝達部53aが被加圧部512cに接続され、加圧保持部53bが振動子ホルダ54に保持されている。締結部材55は加圧保持部53bと振動子ホルダ54の保持に用いられる。振動子ホルダ54は加圧部材53を介して振動子51を保持する。図13(B)に示すように、それぞれの被加圧部512cの近傍にて圧電素子511と弾性部材512との境界部に端点Pを設定し、加圧部材53に近づくD3方向を第1方向と定義する。第2方向はD4方向であり、D3方向の反対方向と定義する。   The vibrator 51 has a structure in which a piezoelectric element 511 and an elastic member 512 are attached. The elastic member 512 includes an elastic vibration part 512a and a plurality of contact parts 512b, and two pressed parts 512c are formed. The driven member 52 is relatively driven in a predetermined direction by the vibration of the vibrator 51. The plurality of pressure members 53 press the vibrator 51 against the driven member 52 by elastic deformation thereof. Each pressurizing member 53 has a pressurizing transmission portion 53 a connected to the pressed portion 512 c and a pressurizing holding portion 53 b held by the vibrator holder 54. The fastening member 55 is used to hold the pressure holding portion 53 b and the vibrator holder 54. The vibrator holder 54 holds the vibrator 51 via the pressure member 53. As shown in FIG. 13B, an end point P is set at the boundary between the piezoelectric element 511 and the elastic member 512 in the vicinity of each pressed part 512c, and the D3 direction approaching the pressing member 53 is the first. Defined as direction. The second direction is the D4 direction and is defined as the direction opposite to the D3 direction.

振動子ホルダ54は、加圧部材53を弾性変形させることで弾性力により適切な加圧力が生じるように、被駆動部材52に対して所定の距離だけ離れた位置で保持される。図13(A)は、振動子ホルダ54が被駆動部材52に対して所定の距離で離間した位置に保持された状態の超音波モータ5を示す側面図である。この状態では加圧伝達部53aから被加圧部512cへ加圧力F1が作用している。また、振動子ホルダ54が被駆動部材52から所定の距離で離間した位置に保持されることにより、加圧保持部53bは加圧力F1と略平行な方向への移動が規制される。振動子ホルダ54から加圧保持部53bに加圧力F1と略平行な方向の保持力F2が作用している。この保持力F2により、加圧部材53は加圧力F1の反力の作用で移動せず、被駆動部材53から見て所定の距離だけ離間した位置に保持される。このように比較例の超音波モータ5が超音波モータ1と相違する点は、加圧部材53の加圧保持部53bが、点Pから見て第1方向(D3方向)に配置されていることである。   The vibrator holder 54 is held at a position away from the driven member 52 by a predetermined distance so that an appropriate pressure is generated by elastic force by elastically deforming the pressing member 53. FIG. 13A is a side view showing the ultrasonic motor 5 in a state where the vibrator holder 54 is held at a position separated from the driven member 52 by a predetermined distance. In this state, the pressurizing force F1 is applied from the pressurizing transmission portion 53a to the pressurized portion 512c. Further, when the vibrator holder 54 is held at a position separated from the driven member 52 by a predetermined distance, the pressurization holding portion 53b is restricted from moving in a direction substantially parallel to the pressing force F1. A holding force F2 in a direction substantially parallel to the applied pressure F1 is applied from the vibrator holder 54 to the pressure holding portion 53b. By this holding force F2, the pressing member 53 does not move due to the reaction force of the pressing force F1, but is held at a position separated by a predetermined distance when viewed from the driven member 53. As described above, the ultrasonic motor 5 of the comparative example is different from the ultrasonic motor 1 in that the pressure holding portion 53b of the pressure member 53 is arranged in the first direction (D3 direction) when viewed from the point P. That is.

図2(B)と図13(B)を対比して、超音波モータ1と超音波モータ5を比較する。図2(B)は超音波モータ1の点Pの近傍を示す拡大図である。図13(B)は超音波モータ5の点Pの近傍を示す拡大図である。   The ultrasonic motor 1 and the ultrasonic motor 5 are compared by comparing FIG. 2 (B) and FIG. 13 (B). FIG. 2B is an enlarged view showing the vicinity of the point P of the ultrasonic motor 1. FIG. 13B is an enlarged view showing the vicinity of the point P of the ultrasonic motor 5.

まず、加圧保持部13b、53bには、力F2とモーメントM1が作用する。力F2とモーメントM1の方向は、図2(B)、図13(B)にそれぞれ示す通りである。力F2とモーメントM1により点PにはモーメントM2が生じる。点Pと加圧保持部13b、53bとの距離をLとすると、モーメントM2の大きさは式(1)で表される。
M2=F2×L−M1 式(1)
モーメントM1の大きさは、加圧保持部13b、53bと振動子ホルダ14、54との接続方法や、加圧部材13、53の形状及び剛性に依存する。加圧部材13、53が板ばねのように、加圧力に略平行な方向に変形し易い部材の場合、モーメントM1が小さい。この場合、力F2、モーメントM1、距離Lの関係は式(2)を満たすことが多い。
M1<F2×L 式(2)
そのため、超音波モータ1において、モーメントM2の方向は図2(B)にて時計回り方向の矢印で示す方向となり、また超音波モータ5において、モーメントM2の方向は図13(B)にて反時計回り方向の矢印で示す方向となる。
First, the force F2 and the moment M1 act on the pressure holding parts 13b and 53b. The directions of the force F2 and the moment M1 are as shown in FIGS. 2B and 13B, respectively. A moment M2 is generated at the point P by the force F2 and the moment M1. Assuming that the distance between the point P and the pressure holding portions 13b and 53b is L, the magnitude of the moment M2 is expressed by Expression (1).
M2 = F2 × L-M1 Formula (1)
The magnitude of the moment M1 depends on the connection method between the pressure holding portions 13b and 53b and the vibrator holders 14 and 54, and the shape and rigidity of the pressure members 13 and 53. When the pressure members 13 and 53 are members that are easily deformed in a direction substantially parallel to the applied pressure, such as leaf springs, the moment M1 is small. In this case, the relationship between the force F2, the moment M1, and the distance L often satisfies the expression (2).
M1 <F2 × L Formula (2)
Therefore, in the ultrasonic motor 1, the direction of the moment M2 is the direction indicated by the clockwise arrow in FIG. 2B, and in the ultrasonic motor 5, the direction of the moment M2 is opposite to that in FIG. 13B. The direction is indicated by a clockwise arrow.

比較例の超音波モータ5において、図13(B)に示すモーメントM2は弾性部材512を圧電素子511が貼り付けられた側とは反対側に曲げようとし、点Pには剥がれ方向の応力σが集中する。このため、圧電素子511と弾性部材512は、点Pから剥がれる可能性がある。   In the ultrasonic motor 5 of the comparative example, the moment M2 shown in FIG. 13B tries to bend the elastic member 512 to the side opposite to the side where the piezoelectric element 511 is attached, and the stress P in the peeling direction is applied to the point P. Concentrate. For this reason, the piezoelectric element 511 and the elastic member 512 may be peeled off from the point P.

これに対して、超音波モータ1では、図2(B)に示すモーメントM2が超音波モータ5の場合と逆方向に働く。この場合、弾性部材112は圧電素子111が貼り付けられている側に曲げられるため、点Pに圧縮方向の応力σが集中する。よって、超音波モータ5と比べて、超音波モータ1は振動子111と弾性部材112との剥がれが起きにくくなる効果を奏する。ここで、図5を参照して、超音波モータ1の構造が有する作用を具体的に説明する。FEM(Finite Element Method)のシミュレーションによる計算結果を以下に説明する。   On the other hand, in the ultrasonic motor 1, the moment M2 shown in FIG. In this case, since the elastic member 112 is bent to the side where the piezoelectric element 111 is attached, the stress σ in the compression direction concentrates on the point P. Therefore, compared with the ultrasonic motor 5, the ultrasonic motor 1 has an effect that the vibrator 111 and the elastic member 112 are less likely to be peeled off. Here, with reference to FIG. 5, the operation | movement which the structure of the ultrasonic motor 1 has is demonstrated concretely. The calculation result by the FEM (Finite Element Method) simulation will be described below.

図5(A)は超音波モータ1の上面図であり、振動子11と加圧部材13を表している。点Pと、第1方向(D3方向)及び第2方向(D4方向)の定義については前記した通りである。図5(B)は超音波モータ1の点Pの近傍を拡大して示す側面図である。図5(C)はシミュレーションの結果を表すグラフである。横軸は点Pを基準とする接続部の座標Xを表す。接続部とは、加圧保持部13bと振動子ホルダ14との接続部である。縦軸は点Pに作用する応力σを表す。点Pを原点とし、第2方向の側の位置Xに加圧保持部13bがある時、点Pに生じる応力σを計算したグラフを例示する。応力σの符号は圧縮方向を正とする。ただし、本実施形態の構造に関係する作用のみを観察するために、加圧保持部13bに働くモーメントM1の値をゼロに設定して計算した。なお、加圧保持部13bに働くモーメントを変化させる方法に関しては後述の実施形態で説明する。   FIG. 5A is a top view of the ultrasonic motor 1 and shows the vibrator 11 and the pressure member 13. The definition of the point P and the first direction (D3 direction) and the second direction (D4 direction) are as described above. FIG. 5B is an enlarged side view showing the vicinity of the point P of the ultrasonic motor 1. FIG. 5C is a graph showing the result of simulation. The horizontal axis represents the coordinates X of the connecting portion with respect to the point P. The connection part is a connection part between the pressure holding part 13 b and the vibrator holder 14. The vertical axis represents the stress σ acting on the point P. The graph which calculated the stress (sigma) which arises in the point P when the point P is made into the origin and the pressurization holding part 13b exists in the position X of the 2nd direction side is illustrated. The sign of the stress σ is positive in the compression direction. However, in order to observe only the action related to the structure of the present embodiment, the calculation was performed with the value of the moment M1 acting on the pressure holding unit 13b set to zero. Note that a method of changing the moment acting on the pressurizing and holding unit 13b will be described in an embodiment described later.

図5(C)の点線枠S1内に示すように、座標Xが負値の時には応力σが負値となる。これは、超音波モータ5において点Pから見て加圧保持部53bが第1方向の側にある場合の応力σを表す。すなわち、点Pに生じるモーメントM2により、圧電素子511と弾性部材512とが剥がれる方向に応力σが作用していることを表す。これに対して、図5(C)の点線枠S2内に示すように、座標Xが正値の時には応力σは正値となる。これは、超音波モータ1において点Pから見て加圧保持部13bが第2方向の側にある場合の応力σを表す。すなわち、点Pに生じるモーメントM2により、圧電素子111と弾性部材112には圧縮される方向に応力σが作用していることを表す。このシミュレーション結果から、超音波モータ1の構造のもつ作用が具体的に裏付けられる。   As shown in a dotted frame S1 in FIG. 5C, when the coordinate X is a negative value, the stress σ is a negative value. This represents the stress σ when the pressure holding portion 53b is on the first direction side when viewed from the point P in the ultrasonic motor 5. That is, the stress σ acts in the direction in which the piezoelectric element 511 and the elastic member 512 are peeled off by the moment M2 generated at the point P. On the other hand, as shown in the dotted frame S2 in FIG. 5C, when the coordinate X is a positive value, the stress σ is a positive value. This represents the stress σ when the pressure holding portion 13b is on the second direction side when viewed from the point P in the ultrasonic motor 1. That is, the stress M is acting on the piezoelectric element 111 and the elastic member 112 in the compression direction by the moment M2 generated at the point P. From this simulation result, the action of the structure of the ultrasonic motor 1 is concretely supported.

本実施形態では、それぞれの被加圧部112cに対して点Pと第1方向及び第2方向を定義した時、点Pから見て加圧保持部13bが第2方向の側に配置されている。これにより、弾性部材112を圧電素子111の貼り付けられた側に曲げようとするモーメントM2が生じる。つまり、モーメントM2により点Pには圧縮方向の応力が働く(圧電素子111と弾性部材112との間に圧縮方向の応力が生じる)ので、圧電素子111と弾性部材112とが剥がれにくくなるという効果を得ることができる。   In the present embodiment, when the point P and the first direction and the second direction are defined for each pressurized portion 112c, the pressure holding portion 13b is disposed on the second direction side when viewed from the point P. Yes. As a result, a moment M2 is generated which tends to bend the elastic member 112 to the side where the piezoelectric element 111 is attached. That is, the stress in the compression direction acts on the point P due to the moment M2 (the stress in the compression direction is generated between the piezoelectric element 111 and the elastic member 112), so that the piezoelectric element 111 and the elastic member 112 are hardly separated. Can be obtained.

本実施形態で説明した超音波モータ1は、加圧部材13として板ばねを用いており、加圧部材13を介して振動子11と振動子ホルダ14を保持できる。この場合、振動子11と振動子ホルダ14を保持するための機構を別途に配置する必要がないので、部品点数の削減とコスト低減及び小型化に寄与する。   The ultrasonic motor 1 described in the present embodiment uses a leaf spring as the pressure member 13 and can hold the vibrator 11 and the vibrator holder 14 via the pressure member 13. In this case, there is no need to separately provide a mechanism for holding the vibrator 11 and the vibrator holder 14, which contributes to a reduction in the number of parts, cost reduction, and size reduction.

[適用例]
以下、光学素子の駆動装置への適用例として、超音波モータ1を用いてレンズの直進駆動を行う鏡筒について説明する。
[Application example]
Hereinafter, as an example of application to a drive device for an optical element, a lens barrel that drives a lens straightly using an ultrasonic motor 1 will be described.

図6は、鏡筒91を備えたカメラ9の斜視図である。鏡筒91の内部では、超音波モータ1により、フォーカスレンズが光軸(a軸)方向に駆動される。図7(A)は、鏡筒91の光軸を通る切断面Cにおけるフォーカスレンズ駆動部の断面図である。図7(B)は、光軸と垂直な切断面(図7(A)のD―D断面)でのフォーカスレンズ駆動部の断面図である。   FIG. 6 is a perspective view of the camera 9 provided with the lens barrel 91. Inside the lens barrel 91, the focus lens is driven in the optical axis (a-axis) direction by the ultrasonic motor 1. FIG. 7A is a cross-sectional view of the focus lens driving unit at a cutting plane C passing through the optical axis of the lens barrel 91. FIG. 7B is a cross-sectional view of the focus lens driving unit at a cross section perpendicular to the optical axis (cross section DD in FIG. 7A).

鏡筒91内にはフォーカスレンズ911が光軸に沿って移動可能に支持されている。フォーカスレンズ911はレンズホルダ912に固定されている。レンズホルダ912には、丸穴部912aと長穴部912bが設けられており、それぞれの穴部に棒状のガイド部材913が挿通されている。これにより、フォーカスレンズ911及びレンズホルダ912は光軸方向にのみ移動可能に支持されている。   A focus lens 911 is supported in the lens barrel 91 so as to be movable along the optical axis. The focus lens 911 is fixed to the lens holder 912. The lens holder 912 is provided with a round hole portion 912a and a long hole portion 912b, and a rod-shaped guide member 913 is inserted into each hole portion. Accordingly, the focus lens 911 and the lens holder 912 are supported so as to be movable only in the optical axis direction.

レンズホルダ912に隣接して超音波モータ1が配置されている。超音波モータ1は振動子11、被駆動部材12、加圧部材13、振動子ホルダ14を備える。被駆動部材12は鏡筒外装部材918に固定されているため、振動子11が被駆動部材12に対して移動可能である。鏡筒外装部材918は被駆動部材12に対する固定部材である。一方、振動子ホルダ14は、複数の転動部材915を介して鏡筒外装部材918に対して光軸方向にのみ移動可能に支持されている。転動部材915は球形状であり、鏡筒外装部材918の内側部分に形成された溝部と振動子ホルダ14との間で挟持されている。   The ultrasonic motor 1 is disposed adjacent to the lens holder 912. The ultrasonic motor 1 includes a vibrator 11, a driven member 12, a pressure member 13, and a vibrator holder 14. Since the driven member 12 is fixed to the lens barrel exterior member 918, the vibrator 11 can move relative to the driven member 12. The lens barrel exterior member 918 is a fixing member for the driven member 12. On the other hand, the vibrator holder 14 is supported so as to be movable only in the optical axis direction with respect to the lens barrel exterior member 918 via a plurality of rolling members 915. The rolling member 915 has a spherical shape, and is sandwiched between the groove formed in the inner portion of the lens barrel exterior member 918 and the vibrator holder 14.

この状態で駆動部が振動子11を励振すると、振動子11は被駆動部材12に対して相対的に移動する。すなわち、被駆動部材12は鏡筒外装部材918に固定されているので、振動子11、加圧部材13、振動子ホルダ14が光軸方向に移動する。振動子ホルダ14には突起状の連結部14aが設けられている。連結部14aは、レンズホルダ912に形成された穴部に嵌合することで連結される。よって、レンズホルダ912及びフォーカスレンズ911は、振動子11の移動に同期して光軸方向に移動することができる。
超音波モータ1を用いてレンズ駆動を行う鏡筒91では、振動子11にて圧電素子と弾性部材との剥がれが起きにくい構造である。よって、光学機器や撮像装置にて信頼性の高いレンズ駆動を実現できる。
When the drive unit excites the vibrator 11 in this state, the vibrator 11 moves relative to the driven member 12. That is, since the driven member 12 is fixed to the lens barrel exterior member 918, the vibrator 11, the pressure member 13, and the vibrator holder 14 move in the optical axis direction. The vibrator holder 14 is provided with a projecting connection portion 14a. The connecting portion 14 a is connected by being fitted into a hole formed in the lens holder 912. Therefore, the lens holder 912 and the focus lens 911 can move in the optical axis direction in synchronization with the movement of the vibrator 11.
The lens barrel 91 that drives the lens using the ultrasonic motor 1 has a structure in which the piezoelectric element and the elastic member are unlikely to peel off in the vibrator 11. Therefore, highly reliable lens driving can be realized with an optical apparatus or an imaging apparatus.

[第2実施形態]
次に図8を参照して、第2実施形態に係る超音波モータ2を説明する。図8は、超音波モータ2の構成を表す分解斜視図である。超音波モータ2は振動子21、被駆動部材22、加圧部材23、振動子ホルダ24、締結部材25により構成される。
[Second Embodiment]
Next, the ultrasonic motor 2 according to the second embodiment will be described with reference to FIG. FIG. 8 is an exploded perspective view showing the configuration of the ultrasonic motor 2. The ultrasonic motor 2 includes a vibrator 21, a driven member 22, a pressure member 23, a vibrator holder 24, and a fastening member 25.

振動子21は圧電素子211と弾性部材212を接着剤で貼り付けた構造である。弾性部材212には弾性振動部212a、接触部212b、2つの被加圧部212cが形成されている。被駆動部材22は振動子21の振動により所定の方向に相対駆動される。加圧部材23は弾性変形により振動子21を被駆動部材22に圧接させる。加圧部材23は加圧伝達部23aと加圧保持部23bを有する。加圧伝達部23aは屈曲した形状部として形成され、被加圧部212cに接続される。加圧保持部23b及びその近傍部分はS字クランク状に形成され、振動子ホルダ24に保持されている。締結部材25は加圧保持部23bの環状部に挿通されて振動子ホルダ24に締結されることで保持に用いられる。振動子ホルダ24は加圧部材23を介して振動子21を保持する。図9(B)に示すように、第1実施形態の場合と同様にそれぞれの被加圧部212cの近傍において、圧電素子211と弾性部材212との境界部に端点Pを設定し、D3方向を第1方向、D4方向を第2方向と定義する。   The vibrator 21 has a structure in which a piezoelectric element 211 and an elastic member 212 are attached with an adhesive. The elastic member 212 is formed with an elastic vibration part 212a, a contact part 212b, and two pressed parts 212c. The driven member 22 is relatively driven in a predetermined direction by the vibration of the vibrator 21. The pressing member 23 presses the vibrator 21 against the driven member 22 by elastic deformation. The pressure member 23 includes a pressure transmission part 23a and a pressure holding part 23b. The pressure transmission part 23a is formed as a bent shape part and is connected to the pressurized part 212c. The pressure holding part 23 b and the vicinity thereof are formed in an S-shaped crank shape and are held by the vibrator holder 24. The fastening member 25 is inserted into the annular part of the pressure holding part 23 b and fastened to the vibrator holder 24 to be used for holding. The vibrator holder 24 holds the vibrator 21 via the pressure member 23. As shown in FIG. 9B, as in the case of the first embodiment, an end point P is set at the boundary between the piezoelectric element 211 and the elastic member 212 in the vicinity of each pressed part 212c, and the direction D3 is set. Is defined as the first direction, and the D4 direction is defined as the second direction.

振動子ホルダ24は、加圧部材23を弾性変形させ、弾性力により適切な加圧力が生じるように、被駆動部材22に対して所定の距離だけ離間した位置で保持される。図9(A)は、振動子ホルダ24が被駆動部材22に対して所定の距離で離間した位置に保持された状態の超音波モータ2を示す側面図である。この状態では、加圧伝達部23aから被加圧部212cへ加圧力F1が作用している。振動子ホルダ24が被駆動部材22から所定の距離で離間した位置に保持されることにより、加圧保持部23bは加圧力F1と略平行な方向への移動が規制される。振動子ホルダ24から加圧保持部23bに加圧力F1と略平行な方向の保持力F2が作用している。この保持力F2により、加圧部材23は加圧力F1の反力の作用により移動せず、被駆動部材23から見た場合に所定の距離だけ離間した位置に保持される。超音波モータ2では、それぞれの被加圧部212cと点Pとの位置関係において、点Pから見て加圧部材23の加圧保持部23bが第2方向(D4方向)の側に配置されている。さらに、加圧保持部23bから加圧伝達部23aへと加圧部材23を辿ったときの経路上で、加圧保持部23bから第2方向に延出した部位23cを経た後に加圧伝達部23aに至る形状となっている。つまり、加圧部材23には、加圧保持部23bの環状部(締結部材25の挿通部)から、D4方向に延在する第1の部分と、この部分からD3方向に反転して当該方向に延在する第2の部分が設けられている。第2の部分からさらにクランク状の形状部が連続して加圧伝達部23aに繋がっている。   The vibrator holder 24 is held at a position spaced apart from the driven member 22 by a predetermined distance so that the pressing member 23 is elastically deformed and an appropriate pressure is generated by the elastic force. FIG. 9A is a side view showing the ultrasonic motor 2 in a state where the vibrator holder 24 is held at a position separated from the driven member 22 by a predetermined distance. In this state, the pressurizing force F1 is applied from the pressurizing transmission portion 23a to the pressurized portion 212c. By holding the vibrator holder 24 at a position separated from the driven member 22 by a predetermined distance, the pressurization holding portion 23b is restricted from moving in a direction substantially parallel to the applied pressure F1. A holding force F2 in a direction substantially parallel to the pressing force F1 is applied from the vibrator holder 24 to the pressure holding portion 23b. By this holding force F2, the pressing member 23 does not move due to the reaction force of the pressing force F1, but is held at a position separated by a predetermined distance when viewed from the driven member 23. In the ultrasonic motor 2, the pressurization holding portion 23 b of the pressurizing member 23 is arranged on the second direction (D4 direction) side when viewed from the point P in the positional relationship between each pressed portion 212 c and the point P. ing. Further, after passing through the part 23c extending in the second direction from the pressure holding part 23b on the path when the pressure member 23 is traced from the pressure holding part 23b to the pressure transmission part 23a, the pressure transmission part The shape reaches 23a. In other words, the pressure member 23 has a first portion extending in the D4 direction from the annular portion of the pressure holding portion 23b (insertion portion of the fastening member 25), and the direction reversed from this portion in the D3 direction. A second portion is provided that extends to. A crank-shaped portion is further continuously connected to the pressurizing transmission portion 23a from the second portion.

図9(B)に拡大して示すように、点Pの近傍では第1実施形態の場合と同様に、加圧保持部23bに力F2とモーメントM1が作用する。ただし、力F2、モーメントM1の方向は、図9(B)に示すとおりであり、図2(B)に示す超音波モータ1と比べてモーメントM1の方向が逆である。その理由は、加圧保持部23bから加圧伝達部23aまで加圧部材23を辿る経路上に、D4方向へ延出した部位23cが形成されているからである。この時、力F2とモーメントM1により、点PにはモーメントM2が生じる。モーメントM2の大きさは式(3)で表される。Lは点Pと加圧保持部23bとの距離を表す。
M2=F2×L+M1 式(3)
本実施形態では、式(1)の「M2=F2×L−M1」と比較すれば分かるように、弾性部材212を、圧電素子211が貼り付けられた側へと曲げようとする方向に、より大きなモーメントが作用する。
As shown in an enlarged view in FIG. 9B, in the vicinity of the point P, as in the case of the first embodiment, the force F2 and the moment M1 act on the pressure holding portion 23b. However, the directions of the force F2 and the moment M1 are as shown in FIG. 9B, and the direction of the moment M1 is opposite to that of the ultrasonic motor 1 shown in FIG. The reason is that a portion 23c extending in the D4 direction is formed on a path that follows the pressure member 23 from the pressure holding portion 23b to the pressure transmission portion 23a. At this time, the moment M2 is generated at the point P by the force F2 and the moment M1. The magnitude of the moment M2 is expressed by Expression (3). L represents the distance between the point P and the pressure holding part 23b.
M2 = F2 × L + M1 Formula (3)
In this embodiment, as can be seen by comparing with “M2 = F2 × L−M1” in Expression (1), the elastic member 212 is bent in the direction to which the piezoelectric element 211 is attached. A larger moment acts.

以上のように、超音波モータ2では、それぞれの被加圧部112cと点Pとの位置関係において、点Pから見て加圧保持部23bが第2方向(D4方向)の側に配置されている。さらに、加圧保持部23bからS字クランク状に屈曲した部分には、第2方向に延出した部位23cが形成されている。これにより弾性部材212を圧電素子211の貼り付けられた側に曲げようとするモーメントM2が発生し、M2の大きさは第1実施形態に比べて大きい。このモーメントM2により点Pには圧縮方向の応力が働く。圧電素子211と弾性部材212との間に圧縮方向の応力が生じることにより、圧電素子211と弾性部材212が剥がれにくくなるという効果が得られる。なお、本実施形態に係る超音波モータ2を用いたレンズ駆動装置の構成については、第1実施形態と同様であるため、その説明を省略する。   As described above, in the ultrasonic motor 2, in the positional relationship between each pressurized portion 112c and the point P, the pressure holding portion 23b is disposed on the second direction (D4 direction) side as viewed from the point P. ing. Further, a portion 23c extending in the second direction is formed at a portion bent from the pressure holding portion 23b into an S-shaped crank shape. As a result, a moment M2 is generated to bend the elastic member 212 to the side where the piezoelectric element 211 is attached, and the magnitude of M2 is larger than that of the first embodiment. A stress in the compression direction acts on the point P by the moment M2. When a stress in the compression direction is generated between the piezoelectric element 211 and the elastic member 212, an effect that the piezoelectric element 211 and the elastic member 212 are hardly peeled off can be obtained. Note that the configuration of the lens driving device using the ultrasonic motor 2 according to the present embodiment is the same as that of the first embodiment, and a description thereof will be omitted.

[第3実施形態]
次に、図10を参照して第3実施形態に係る超音波モータ3を説明する。図10は超音波モータ3の構成を表す分解斜視図である。超音波モータ3は振動子31、被駆動部材32、加圧部材33、振動子ホルダ34により構成される。
[Third Embodiment]
Next, the ultrasonic motor 3 according to the third embodiment will be described with reference to FIG. FIG. 10 is an exploded perspective view showing the configuration of the ultrasonic motor 3. The ultrasonic motor 3 includes a vibrator 31, a driven member 32, a pressure member 33, and a vibrator holder 34.

振動子31は圧電素子311と弾性部材312を接着剤で貼り付けた構造である。弾性部材312には弾性振動部312a、接触部312b、2つの被加圧部312cが形成されている。被駆動部材32は振動子31の振動により所定の方向に相対駆動される。加圧部材33は弾性変形により振動子31を被駆動部材32に圧接させる。複数の加圧部材33は加圧伝達部33aと加圧保持部33bを有する。加圧伝達部33aは屈曲した形状部として形成され、被加圧部312cに接続される。加圧保持部33bはV字形状に形成され、振動子ホルダ34に接続されている。振動子ホルダ34には、加圧保持部33bを保持するための複数の曲面部34aが設けられている。加圧部材33の加圧保持部33bは、振動子ホルダ34の曲面部34に嵌合するために曲げ加工が施されている。振動子11が被駆動部材12に圧接された状態で、曲面部34aと加圧保持部33aとが嵌合して接続される。振動子ホルダ34は加圧部材33を介して振動子31を保持する。図11(B)に示すように、第1実施形態の場合と同様にそれぞれの被加圧部312cの近傍において、圧電素子311と弾性部材312との境界部に端点Pを設定し、D3方向を第1方向、D4方向を第2方向と定義する。   The vibrator 31 has a structure in which a piezoelectric element 311 and an elastic member 312 are attached with an adhesive. The elastic member 312 is formed with an elastic vibration part 312a, a contact part 312b, and two pressed parts 312c. The driven member 32 is relatively driven in a predetermined direction by the vibration of the vibrator 31. The pressure member 33 presses the vibrator 31 against the driven member 32 by elastic deformation. The plurality of pressure members 33 include a pressure transmission part 33a and a pressure holding part 33b. The pressure transmission part 33a is formed as a bent shape part, and is connected to the pressurized part 312c. The pressure holding portion 33 b is formed in a V shape and is connected to the vibrator holder 34. The vibrator holder 34 is provided with a plurality of curved surface portions 34a for holding the pressure holding portion 33b. The pressurizing and holding part 33 b of the pressurizing member 33 is bent so as to be fitted to the curved surface part 34 of the vibrator holder 34. In a state where the vibrator 11 is in pressure contact with the driven member 12, the curved surface portion 34a and the pressure holding portion 33a are fitted and connected. The vibrator holder 34 holds the vibrator 31 via the pressure member 33. As shown in FIG. 11 (B), the end point P is set at the boundary between the piezoelectric element 311 and the elastic member 312 in the vicinity of each pressurized part 312c as in the case of the first embodiment, and the direction D3 is set. Is defined as the first direction, and the D4 direction is defined as the second direction.

振動子ホルダ34は、加圧部材33を弾性変形させ、弾性力により適切な加圧力が生じるように、被駆動部材32に対して所定の距離だけ離れた位置で保持される。図11(A)は、振動子ホルダ34が被駆動部材32に対して所定の距離で離間した位置に保持された状態の超音波モータ3の側面図である。この状態では、加圧伝達部33aから被加圧部312cへ加圧力F1が作用している。振動子ホルダ34が被駆動部材32から所定の距離で離間した位置に保持されることにより、加圧保持部33bは加圧力F1と略平行な方向への移動が規制される。振動子ホルダ34から加圧保持部33bに加圧力F1と略平行な方向の保持力F2が作用している。この保持力F2により、加圧部材33は加圧力F1の反力の作用により移動せず、被駆動部材33から見た場合に所定の距離だけ離間した位置に保持される。超音波モータ3では、それぞれの被加圧部312cと点Pとの位置関係において、点Pから見て加圧部材33の加圧保持部33bが第2方向(D4方向)の側に配置されている。また、曲面部34aと加圧保持部33bは、図11(A)及び図11(B)の紙面に垂直なD5方向と略平行な方向の軸回りに回転自在に保持される。D5方向は、第1方向(D3方向)及び加圧力の方向(D2方向)に対して直交する方向である。   The vibrator holder 34 is held at a position away from the driven member 32 by a predetermined distance so that the pressing member 33 is elastically deformed and an appropriate pressure is generated by the elastic force. FIG. 11A is a side view of the ultrasonic motor 3 in a state where the transducer holder 34 is held at a position separated from the driven member 32 by a predetermined distance. In this state, the pressurizing force F1 is applied from the pressurizing transmission portion 33a to the pressurized portion 312c. When the vibrator holder 34 is held at a position separated from the driven member 32 by a predetermined distance, the pressurization holding portion 33b is restricted from moving in a direction substantially parallel to the applied pressure F1. A holding force F2 in a direction substantially parallel to the pressing force F1 is applied from the vibrator holder 34 to the pressure holding portion 33b. Due to the holding force F <b> 2, the pressing member 33 does not move due to the reaction force of the pressing force F <b> 1 but is held at a position separated by a predetermined distance when viewed from the driven member 33. In the ultrasonic motor 3, in the positional relationship between each pressurized portion 312 c and the point P, the pressure holding portion 33 b of the pressure member 33 is arranged on the second direction (D4 direction) side as viewed from the point P. ing. In addition, the curved surface portion 34a and the pressure holding portion 33b are rotatably held around an axis in a direction substantially parallel to the D5 direction perpendicular to the paper surface of FIGS. 11 (A) and 11 (B). The D5 direction is a direction orthogonal to the first direction (D3 direction) and the direction of applied pressure (D2 direction).

図11(B)に拡大して示すように、加圧保持部33bには力F2が作用する。加圧保持部33bと曲面部34aは、D5方向の軸回りに回転自在に保持されており、加圧保持部33bにモーメントM1は作用しない。この時、力F2により点PにはモーメントM2が生じる。モーメントM2の大きさは式(4)で表される。Lは点Pと加圧保持部33bとの距離を表す。
M2=F2×L 式(4)
本実施形態では、式(1)の「M2=F2×L−M1」と比較すれば分かるように、弾性部材312を、圧電素子311が貼り付けられた側に曲げようとする方向に、より大きなモーメントが作用する。
As shown in an enlarged view in FIG. 11B, a force F2 is applied to the pressure holding portion 33b. The pressure holding portion 33b and the curved surface portion 34a are held rotatably around the axis in the direction D5, and the moment M1 does not act on the pressure holding portion 33b. At this time, a moment M2 is generated at the point P by the force F2. The magnitude of the moment M2 is expressed by equation (4). L represents the distance between the point P and the pressure holding part 33b.
M2 = F2 × L Formula (4)
In the present embodiment, as can be seen by comparing with “M2 = F2 × L−M1” in Expression (1), the elastic member 312 is more bent in the direction in which the piezoelectric element 311 is to be bent. A big moment acts.

以上のように、超音波モータ3では、それぞれの被加圧部312cと点Pとの位置関係において、点Pから見て加圧保持部33bが第2方向(D4方向)の側に配置されている。さらに、加圧保持部33bは振動子ホルダ34により、第1方向(D3方向)及び加圧力の方向(D2方向)に直交する方向と略平行な方向の軸を中心に回転自在に保持されている。これにより弾性部材312を圧電素子311の貼り付けられた側に曲げようとするモーメントM2が発生する。このモーメントM2により点Pには圧縮方向の応力が働く。圧電素子311と弾性部材312との間に圧縮方向の応力が生じることにより、圧電素子311と弾性部材312が剥がれにくくなる効果が得られる。なお、本実施形態に係る超音波モータ3を用いたレンズ駆動装置の構成については、第1実施形態と同様であるため、その説明を省略する。   As described above, in the ultrasonic motor 3, in the positional relationship between each pressed part 312c and the point P, the pressure holding part 33b is disposed on the second direction (D4 direction) side as viewed from the point P. ing. Further, the pressurizing and holding unit 33b is held by the vibrator holder 34 so as to be rotatable about an axis in a direction substantially parallel to the direction orthogonal to the first direction (D3 direction) and the direction of the applied pressure (D2 direction). Yes. As a result, a moment M2 is generated to bend the elastic member 312 to the side where the piezoelectric element 311 is attached. A stress in the compression direction acts on the point P by the moment M2. When stress in the compression direction is generated between the piezoelectric element 311 and the elastic member 312, an effect is obtained in which the piezoelectric element 311 and the elastic member 312 are not easily separated. Note that the configuration of the lens driving device using the ultrasonic motor 3 according to the present embodiment is the same as that of the first embodiment, and a description thereof will be omitted.

1,2,3 超音波モータ
11,21,31 振動子
111,211,311 圧電素子
112,212,312 弾性部材
112a,212a,312a 弾性振動部
112b,212b,312b 接触部
112c,212c,312c 被加圧部
12,22,32 被駆動部材
13,23,33 加圧部材
14,24,34 振動子ホルダ
1, 2, 3 Ultrasonic motor 11, 21, 31 Vibrator 111, 211, 311 Piezoelectric element 112, 212, 312 Elastic member 112a, 212a, 312a Elastic vibration part 112b, 212b, 312b Contact part 112c, 212c, 312c Covered Pressure member 12, 22, 32 Driven member 13, 23, 33 Pressure member 14, 24, 34 Vibrator holder

Claims (10)

圧電素子と弾性部材とを貼り付けた振動子と、
前記振動子の振動によって前記振動子に対して相対的に移動する被駆動部材と、
加圧力により前記振動子を前記被駆動部材に圧接させる加圧部材と、
前記振動子を保持する保持部材を備える振動型アクチュエータであって、
前記弾性部材は、前記加圧部材に接続される被加圧部を有し、
前記加圧部材は、前記被加圧部に接続される加圧伝達部と、前記加圧部材を前記被駆動部材から離間した位置に保持する保持力を前記保持部材から受ける加圧保持部を有しており、
前記弾性部材にて前記被加圧部が延出する方向を第1方向とし、前記第1方向とは反対方向を第2方向とするとき、前記第1方向及び第2方向並びに前記加圧力の方向に直交する方向から見た場合、前記弾性部材と前記圧電素子との境界部の端点に対して前記加圧保持部が前記第2方向の側に位置していることを特徴とする振動型アクチュエータ。
A vibrator on which a piezoelectric element and an elastic member are attached;
A driven member that moves relative to the vibrator by vibration of the vibrator;
A pressure member that presses the vibrator against the driven member by an applied pressure; and
A vibration type actuator comprising a holding member for holding the vibrator,
The elastic member has a pressurized portion connected to the pressure member,
The pressurizing member includes a pressurizing transmission unit connected to the pressurized member, and a pressurizing holding unit that receives from the holding member a holding force for holding the pressurizing member at a position separated from the driven member. Have
When the direction in which the pressurized portion extends in the elastic member is a first direction and the direction opposite to the first direction is a second direction, the first direction, the second direction, and the applied pressure When viewed from a direction orthogonal to the direction, the vibration holding type is characterized in that the pressure holding part is located on the second direction side with respect to an end point of a boundary part between the elastic member and the piezoelectric element. Actuator.
前記弾性部材は、前記圧電素子とともに振動する弾性振動部と、前記被駆動部材に圧接する接触部を有することを特徴とする請求項1に記載の振動型アクチュエータ。   2. The vibration type actuator according to claim 1, wherein the elastic member includes an elastic vibration part that vibrates together with the piezoelectric element, and a contact part that press-contacts the driven member. 前記弾性部材と前記圧電素子との境界部の端点は、前記弾性部材と前記圧電素子が貼り付けられている領域のうち、前記弾性振動部にて前記第1方向の側に位置し、前記端点から前記第2方向へ離間した位置に前記加圧保持部が配置されていることを特徴とする請求項2に記載の振動型アクチュエータ。   The end point of the boundary between the elastic member and the piezoelectric element is located on the first direction side in the elastic vibration part in the region where the elastic member and the piezoelectric element are attached, and the end point The vibration type actuator according to claim 2, wherein the pressurizing and holding unit is disposed at a position separated from the first direction in the second direction. 前記保持部材が前記被駆動部材から離間して位置することにより、前記加圧保持部は、前記加圧力と平行な方向への移動が規制されることを特徴とする請求項1から3のいずれか1項に記載の振動型アクチュエータ。   4. The movement of the pressurizing and holding portion in a direction parallel to the pressurizing force is restricted by the holding member being positioned away from the driven member. The vibration type actuator according to claim 1. 前記加圧部材は板ばねであることを特徴とする請求項1から4のいずれか1項に記載の振動型アクチュエータ。   The vibration type actuator according to any one of claims 1 to 4, wherein the pressure member is a leaf spring. 前記加圧部材は、前記加圧保持部から前記第2方向に延在する第1の部分と、前記第1の部分から前記第1方向に反転して当該方向に延在する第2の部分を有しており、前記第2の部分から前記加圧伝達部に繋がることを特徴とする請求項1から5のいずれか1項に記載の振動型アクチュエータ。   The pressure member includes a first portion extending from the pressure holding portion in the second direction, and a second portion extending from the first portion to the first direction and extending in the direction. 6. The vibration type actuator according to claim 1, wherein the vibration type actuator is connected to the pressurizing transmission portion from the second portion. 前記加圧保持部は、前記保持部材によって、前記第1方向及び前記加圧力の方向に直交する方向と平行な方向の軸を中心に回転自在に保持されることを特徴とする請求項1から5のいずれか1項に記載の振動型アクチュエータ。   The pressurizing and holding portion is held by the holding member so as to be rotatable about an axis in a direction parallel to the first direction and a direction orthogonal to the direction of the applied pressure. 6. The vibration type actuator according to any one of 5 above. 請求項1から7のいずれか1項に記載の振動型アクチュエータを備え、
前記振動型アクチュエータにより光学素子を駆動することを特徴とする光学機器。
A vibration type actuator according to any one of claims 1 to 7,
An optical device, wherein an optical element is driven by the vibration actuator.
被駆動部材に対して相対的に移動する前記振動子によって、前記光学素子を駆動することを特徴とする請求項8に記載の光学機器。   The optical apparatus according to claim 8, wherein the optical element is driven by the vibrator that moves relative to a driven member. 請求項1から7のいずれか1項に記載の振動型アクチュエータを備え、
前記振動型アクチュエータにより光学素子を駆動することを特徴とする撮像装置。
A vibration type actuator according to any one of claims 1 to 7,
An imaging apparatus, wherein an optical element is driven by the vibration actuator.
JP2014158826A 2014-08-04 2014-08-04 Vibration type actuator, optical device and imaging device Pending JP2016036233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014158826A JP2016036233A (en) 2014-08-04 2014-08-04 Vibration type actuator, optical device and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014158826A JP2016036233A (en) 2014-08-04 2014-08-04 Vibration type actuator, optical device and imaging device

Publications (1)

Publication Number Publication Date
JP2016036233A true JP2016036233A (en) 2016-03-17

Family

ID=55523800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014158826A Pending JP2016036233A (en) 2014-08-04 2014-08-04 Vibration type actuator, optical device and imaging device

Country Status (1)

Country Link
JP (1) JP2016036233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017200361A (en) * 2016-04-28 2017-11-02 キヤノン株式会社 Vibration wave motor and electronic apparatus mounting vibration wave motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017200361A (en) * 2016-04-28 2017-11-02 キヤノン株式会社 Vibration wave motor and electronic apparatus mounting vibration wave motor

Similar Documents

Publication Publication Date Title
US11063205B2 (en) Vibration actuator and method for manufacturing the same
JP2009017735A (en) Ultrasonic motor
JP6463951B2 (en) Drive device
US11527704B2 (en) Actuator and tactile sensation providing apparatus
JP2014018027A (en) Vibration type actuator, imaging apparatus, and stage
JP2016086619A (en) Vibration type drive device, barrel, imaging apparatus and stage device
JP5544504B2 (en) Linear drive device, lens drive device, camera and mobile phone with camera
JP2007325466A (en) Driving apparatus
JP6576214B2 (en) Vibration type actuator, lens barrel, imaging device and stage device
JP6675245B2 (en) Actuator and tactile sensation presentation device
KR101601871B1 (en) Displacement member, driving member, actuator, and driving apparatus
US8520329B2 (en) Piezoelectric actuator, lens barrel and optical device
JP6765849B2 (en) Vibration type actuators and electronic devices
JP2016140180A (en) Vibration type driving device and apparatus using the same as driving source
JP2019103371A (en) Vibration wave motor and lens driving apparatus using vibration wave motor
JP5273915B2 (en) Vibration type linear drive device and camera lens
JP2016036233A (en) Vibration type actuator, optical device and imaging device
US20220099915A1 (en) Vibration-type driving apparatus and apparatus having the same
US11533002B2 (en) Vibration type motor, optical apparatus, and driving apparatus using damper to suppress noise
JP6253261B2 (en) Vibration actuator and optical equipment
WO2016002917A1 (en) Vibration-type actuator, lens barrel, image-capturing device, and automatic stage
JP7313909B2 (en) vibration wave motors and electronics.
JP6948102B2 (en) Linear drive, camera and electronic equipment
JP2016054578A (en) Vibration type actuator, optical instrument and imaging apparatus
CN102629840A (en) Oscillation motor and lens driving mechanism