JP2016035282A - Tripod type constant velocity joint - Google Patents

Tripod type constant velocity joint Download PDF

Info

Publication number
JP2016035282A
JP2016035282A JP2014157871A JP2014157871A JP2016035282A JP 2016035282 A JP2016035282 A JP 2016035282A JP 2014157871 A JP2014157871 A JP 2014157871A JP 2014157871 A JP2014157871 A JP 2014157871A JP 2016035282 A JP2016035282 A JP 2016035282A
Authority
JP
Japan
Prior art keywords
inner member
holding member
rolling element
tripod
fitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014157871A
Other languages
Japanese (ja)
Inventor
啓志 小畠
Keiji Obata
啓志 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2014157871A priority Critical patent/JP2016035282A/en
Priority to DE102015112483.1A priority patent/DE102015112483A1/en
Priority to US14/813,543 priority patent/US20160032984A1/en
Priority to CN201510479281.8A priority patent/CN105317859A/en
Publication of JP2016035282A publication Critical patent/JP2016035282A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tripod type constant velocity joint capable of downsizing itself while adopting its rolling element circulation type which has a reduced sliding resistance against a raceway groove on the opposite side to a power transmission side.SOLUTION: The tripod type constant velocity joint includes an outer ring 10, a tripod 20, an inside member 31, rolling elements 32, and a holding member 33, the inside member including a non-cylindrical fitted part 35, the holding member having a non-cylindrical inner peripheral face and including a fitting part 37 for engaging with the fitted part. The fitting part engages with the fitted part to make the holding member non-rotatable relative to the inside member.SELECTED DRAWING: Figure 3

Description

本発明は、トリポード型等速ジョイントに関する。   The present invention relates to a tripod type constant velocity joint.

特許文献1に記載のトリポード型等速ジョイントは、内周面に3本の軌道溝が形成された筒状の外輪と、各軌道溝に挿入される3本のトリポード軸部を有するトリポードと、各軌道溝に挿入された外ローラと、各トリポード軸部に外嵌される内ローラと、外ローラと内ローラとの間に転動可能に介在された転動体(ニードル)と、を備える。この構成において、トリポードと外輪との相対角度であるジョイント角が所定量となるようトリポードを傾動させた状態で、トリポードと外輪との間で動力を伝達させると、外ローラと軌道溝とは、動力伝達側だけでなく、動力伝達側の反対側でも接触する虞がある。このため、動力伝達側の反対側で軌道溝と接触した外ローラの接触部分には、軌道溝との間で滑り摩擦が発生し大きな抵抗が発生する虞がある。   The tripod type constant velocity joint described in Patent Document 1 includes a cylindrical outer ring having three raceway grooves formed on the inner peripheral surface, a tripod having three tripod shaft portions inserted into the raceway grooves, An outer roller inserted into each raceway groove, an inner roller fitted on each tripod shaft portion, and a rolling element (needle) interposed between the outer roller and the inner roller so as to allow rolling. In this configuration, when power is transmitted between the tripod and the outer ring in a state where the tripod is tilted so that the joint angle that is a relative angle between the tripod and the outer ring becomes a predetermined amount, the outer roller and the raceway groove are There is a risk of contact not only on the power transmission side but also on the opposite side of the power transmission side. For this reason, there is a possibility that sliding friction occurs between the outer roller and the contact portion of the outer roller that is in contact with the raceway groove on the side opposite to the power transmission side, and a large resistance is generated.

また、特許文献2に記載のトリポード型等速ジョイントは、上記の外ローラを排除して、軸状の転動体が軌道溝を転動するようにし、且つその転動体が環状の内側部材の外周を循環可能に保持部材によって支持されるように構成される。これにより、動力伝達側とは反対側に位置する転動体による軌道溝に対する摩擦力が小さくなる。従って、転動体と軌道溝との間の滑り摩擦による抵抗が大幅に低減される。   Further, the tripod constant velocity joint described in Patent Document 2 excludes the outer roller so that the shaft-like rolling element rolls in the raceway groove, and the rolling element is an outer periphery of the annular inner member. It is comprised so that it may be supported by the holding member so that circulation is possible. Thereby, the frictional force with respect to the raceway groove by the rolling element located on the opposite side to the power transmission side is reduced. Therefore, resistance due to sliding friction between the rolling elements and the raceway grooves is greatly reduced.

特開2014−88889号公報JP 2014-88889 A 特表平7−501126号公報Japanese National Patent Publication No. 7-501126

ここで、特許文献2に記載の等速ジョイントは、内側部材が外輪に対して相対回転不能に設けられるため、保持部材も内側部材に対して相対回転不能に設けられる。しかし、保持部材は内側部材に対して、転動体を介して相対回転不能となる構成である。つまり、保持部材は、複数の転動体の一部を覆うように保持部材に一体形成される壁部(カバー)の内周側面を、内側部材の外周側に配置される転動体の外周側に当接させることで、内側部材に対し相対回転不能としている。このように、内側部材と転動体と壁部とが、内側部材の径方向外方に向かって並んで配置されるため、保持部材は大型化し、延いては等速ジョイントが大型化する。   Here, in the constant velocity joint described in Patent Document 2, since the inner member is provided so as not to rotate relative to the outer ring, the holding member is also provided so as not to rotate relative to the inner member. However, the holding member is configured to be relatively unrotatable with respect to the inner member via the rolling elements. That is, the holding member has the inner peripheral side surface of the wall (cover) integrally formed with the holding member so as to cover a part of the plurality of rolling elements, on the outer peripheral side of the rolling element arranged on the outer peripheral side of the inner member. By making contact, it is impossible to rotate relative to the inner member. Thus, since the inner member, the rolling element, and the wall portion are arranged side by side toward the radially outer side of the inner member, the holding member is increased in size, and the constant velocity joint is accordingly increased in size.

本発明は、上記事情に鑑みてなされたものであり、動力伝達側とは反対側の軌道溝との滑りによる抵抗が小さくなる転動体循環タイプを採用しつつ、小型化可能なトリポード型等速ジョイントを提供することを目的とする。   The present invention has been made in view of the above circumstances, and employs a rolling element circulation type in which resistance due to slippage with a raceway groove on the side opposite to the power transmission side is reduced, and a tripod type constant velocity that can be reduced in size. The purpose is to provide joints.

上記課題を解決するため、請求項1に係るトリポード型等速ジョイントは、筒状からなり、内周面に外輪回転軸方向に延びる複数の軌道溝が形成された外輪と、シャフトに連結されるボス部、及び前記ボス部の外周面からそれぞれ前記ボス部の径方向外方に延びるように設けられる複数のトリポード軸部を備えるトリポードと、環状に形成され、前記トリポード軸部の外周に前記トリポード軸部に対して傾動可能に設けられる内側部材と、前記内側部材の外周に循環可能に設けられ、且つ、前記軌道溝の側面に沿って転動可能に設けられる複数の転動体と、前記転動体が前記内側部材に対して、前記内側部材の軸線方向へ移動することを規制し、且つ、前記転動体が前記内側部材に対して、前記内側部材の径方向外方へ移動することを規制する保持部材と、を備え、前記内側部材は、非円筒状の外周面を有する被嵌合部を備え、前記保持部材は、非円筒状の内周面を有し、前記被嵌合部に嵌合される嵌合部を備え、前記被嵌合部と前記嵌合部との嵌合によって、前記保持部材は、前記内側部材に対して相対回転不能とされる。   In order to solve the above problems, a tripod type constant velocity joint according to claim 1 is connected to a shaft and an outer ring having a cylindrical shape and a plurality of raceway grooves formed in an inner peripheral surface extending in the direction of the outer ring rotation axis. A tripod having a boss portion and a plurality of tripod shaft portions provided so as to extend radially outward of the boss portion from the outer peripheral surface of the boss portion, and an annular tripod, and the tripod on the outer periphery of the tripod shaft portion An inner member provided to be tiltable with respect to the shaft, a plurality of rolling elements provided to be circulated on an outer periphery of the inner member, and provided to be rollable along a side surface of the raceway groove; The moving body is restricted from moving in the axial direction of the inner member with respect to the inner member, and the rolling element is restricted from moving outward in the radial direction of the inner member relative to the inner member. You A holding member, and the inner member includes a fitted portion having a non-cylindrical outer peripheral surface, and the holding member has a non-cylindrical inner peripheral surface and is fitted into the fitted portion. The holding member is provided with a mating portion to be fitted, and the holding member is made non-rotatable relative to the inner member by fitting between the fitted portion and the fitting portion.

上記トリポード型等速ジョイントは、いわゆる転動体循環タイプである。これにより、動力伝達側とは反対側に位置する転動体による軌道溝に対する摩擦力が小さくなり、転動体と軌道溝との間の滑り摩擦による抵抗が大幅に低減される。また、保持部材の非円筒状の内周面を有する嵌合部と、内側部材の非円筒状の外周面を有する被嵌合部とを嵌合させることによって、保持部材は、転動体を良好に保持しながら簡易に内側部材に対する相対回転を抑制される。つまり、保持部材は、内側部材に対して直接的に相対回転を抑制される。従って、従来技術のように保持部材に壁部(カバー)を設け、壁部の内周側面を転動体の外周側に当接させることによって、内側部材に対する保持部材の相対回転を不能とする必要がない。これにより、保持部材の壁部が、内側部材及び転動体と、内側部材の径方向外方に向かって並んで配置されることはない。よって、保持部材は小型化し、延いては等速ジョイントが小型化する。   The tripod constant velocity joint is a so-called rolling element circulation type. Thereby, the frictional force with respect to the raceway groove by the rolling element located on the side opposite to the power transmission side is reduced, and the resistance due to the sliding friction between the rolling element and the raceway groove is greatly reduced. In addition, the holding member has a good rolling element by fitting the fitting portion having the non-cylindrical inner peripheral surface of the holding member and the fitted portion having the non-cylindrical outer peripheral surface of the inner member. The relative rotation with respect to the inner member can be easily suppressed while being held in place. That is, the holding member is directly restrained from rotating relative to the inner member. Therefore, it is necessary to disable relative rotation of the holding member with respect to the inner member by providing the holding member with a wall (cover) as in the prior art and bringing the inner peripheral side surface of the wall into contact with the outer peripheral side of the rolling element. There is no. Thereby, the wall part of a holding member is not arrange | positioned along with the inner side member, a rolling element, and radial direction outward of an inner side member. Therefore, the holding member is downsized, and the constant velocity joint is downsized.

(請求項2)また、前記トリポード型等速ジョイントは、前記保持部材の前記内側部材の前記軸線方向への移動を規制する止め輪を備え、前記内側部材は、前記外周面に前記止め輪が嵌合される円弧溝を有し、前記内側部材の前記被嵌合部の前記非円筒状の外周面は、内側部材円弧部を有し、前記保持部材の前記嵌合部の前記非円筒状の内周面は、前記被嵌合部の前記内側部材円弧部に対応する保持部材円弧部を有し、前記円弧溝と前記内側部材円弧部とは、同軸に形成されてもよい。   (Claim 2) The tripod constant velocity joint includes a retaining ring for restricting movement of the inner member of the holding member in the axial direction, and the inner member has the retaining ring on the outer peripheral surface. The non-cylindrical outer peripheral surface of the fitted portion of the inner member has an inner member arc portion and the non-cylindrical shape of the fitting portion of the holding member. The inner peripheral surface may have a holding member arc portion corresponding to the inner member arc portion of the fitted portion, and the arc groove and the inner member arc portion may be formed coaxially.

このように、円弧溝と内側部材円弧部とは同軸であるので、旋盤に内側部材の素材を一度セットすることのみによって、その後に段取り替えを行うことなく、円弧溝及び内側部材円弧部が旋削加工される。その結果、加工コストが低減する。また、止め輪が設けられることにより、保持部材の抜け止め固定がより確実なものとなり信頼性が向上する。   Thus, since the arc groove and the inner member arc portion are coaxial, the arc groove and the inner member arc portion can be turned only by setting the material of the inner member on the lathe once and without changing the setup thereafter. Processed. As a result, the processing cost is reduced. In addition, by providing the retaining ring, the retaining member is more securely fixed and the reliability is improved.

(請求項3)また、前記止め輪の内周面は、円筒状であり、前記内側部材の前記円弧溝は、前記内側部材の前記外周面における周方向の位相のうち前記軌道溝の前記側面と対向する位相の部位とは異なる位相の部位に設けられてもよい。   (Claim 3) Moreover, the inner peripheral surface of the retaining ring is cylindrical, and the arc groove of the inner member is the side surface of the raceway groove in the circumferential phase of the outer peripheral surface of the inner member. It may be provided in a part having a phase different from the part having the phase opposite to.

このように、円筒状の止め輪を嵌合させるにも関わらず、止め輪が嵌合される内側部材の溝は、円周全周に設けられず、軌道溝の側面と対向する位相の部位とは異なる位相の部位にのみ円弧溝で設けられる。これにより、内側部材の幅のうち円弧溝が設けられない位相の部位の幅が、溝を円周全周に配置した場合と比較して短くなる。従って、内側部材が小型化される。   As described above, the groove of the inner member into which the retaining ring is fitted is not provided on the entire circumference, although the cylindrical retaining ring is fitted, and the phase portion facing the side surface of the raceway groove Are provided with arc grooves only in portions of different phases. Thereby, the width | variety of the site | part of the phase where an arc groove is not provided among the width | variety of an inner member becomes short compared with the case where a groove | channel is arrange | positioned to the perimeter of a circumference. Therefore, the inner member is reduced in size.

(請求項4)また、前記内側部材の前記被嵌合部の前記非円筒の外周面は、平面部を有し、前記内側部材は、前記転動体を転動させる平面状転走面を有し、前記被嵌合部の前記平面部と前記平面状転走面は、同一平面上に形成されてもよい。これにより、内側部材の平面部、及び平面状転走面は、簡易な平面研削によって同時に形成でき低コストとなる。   (Claim 4) Further, the non-cylindrical outer peripheral surface of the fitted portion of the inner member has a flat surface, and the inner member has a planar rolling surface for rolling the rolling element. And the said plane part and the said planar rolling surface of the said to-be-fitted part may be formed on the same plane. Thereby, the plane part of an inner member and a planar rolling surface can be formed simultaneously by simple surface grinding, and it becomes low-cost.

(請求項5)また、前記内側部材の前記被嵌合部の前記平面部及び前記内側部材の前記平面状転走面は、前記軌道溝の前記側面と対向する面であってもよい。これにより、内側部材の平面部及び平面状転走面は、トリポード軸の回転駆動力を、転動体を介して軌道溝の側面に伝達する伝達面も兼ねることとなるので、伝達面をわざわざ設ける必要がなく低コストに精度のよい伝達面が得られる。   (Claim 5) Further, the planar portion of the fitted portion of the inner member and the planar rolling surface of the inner member may be a surface facing the side surface of the raceway groove. As a result, the planar portion and the planar rolling surface of the inner member also serve as a transmission surface that transmits the rotational driving force of the tripod shaft to the side surface of the raceway groove via the rolling elements. This eliminates the need for an accurate transmission surface at low cost.

(請求項6)また、前記内側部材は、前記外周において背向する2対の平行な平面のうち前記周方向の辺の長さが長い長辺側の一対の平面と、前記周方向の辺の長さが前記長辺側の平面の前記辺の長さより短い短辺側の一対の平面とを有して直方体状に形成され、前記内側部材の前記被嵌合部のうち前記保持部材の前記嵌合部に対して周方向に係止される部位は、前記内側部材の前記長辺側の前記平面に設けられ、前記長辺側の前記平面は、前記軌道溝の前記側面に対向する面であってもよい。   (Claim 6) In addition, the inner member includes a pair of planes on a long side having a long side in the circumferential direction among two pairs of parallel planes facing away from each other on the outer periphery, and sides in the circumferential direction. And a pair of planes on the short side shorter than the length of the side of the plane on the long side, and are formed in a rectangular parallelepiped shape, and of the holding member of the fitting member of the inner member The portion locked in the circumferential direction with respect to the fitting portion is provided on the flat surface on the long side of the inner member, and the flat surface on the long side faces the side surface of the raceway groove. It may be a surface.

このように、内側部材の長辺側の平面に、嵌合部のうち保持部材の被嵌合部に対して周方向に係止される部位が設けられるので、短辺側の平面に係止される部位を設ける場合と比較して、係止される部位が長くなる。これにより、内側部材に対する保持部材の周方向への回転規制が精度よく行なわれる。   As described above, since a portion of the fitting portion that is locked in the circumferential direction with respect to the fitted portion of the holding member is provided on the flat surface on the long side of the inner member, the flat portion on the short side is locked. Compared with the case where the site | part to be provided is provided, the site | part latched becomes long. Thereby, the rotation control of the holding member in the circumferential direction with respect to the inner member is accurately performed.

(請求項7)また、前記直方体状の前記内側部材の前記長辺側の前記1対の平面は研削面であり、前記短辺側の前記1対の平面は非研削面であってもよい。これにより、内側部材が低コストとなる。   (Claim 7) Further, the pair of planes on the long side of the rectangular parallelepiped inner member may be a grinding surface, and the pair of planes on the short side may be a non-grinding surface. . Thereby, an inner member becomes low cost.

また、非研削面の平面が軌道溝の側面に対向する向き、すなわち、非研削面の平面が動力伝達面となる向きに、内側部材が軌道溝に挿入されないようにする必要がある。ここで、内側部材は直方体状とし、長辺側の平面が研削面とされ、短辺側の平面が非研削面とされる。つまり、作業者が、短辺側の平面が軌道溝の側面に対向するように、内側部材を軌道溝に挿入しようとしても、内側部材を軌道溝に挿入できない。従って、確実に、研削面である長辺側が軌道溝の側面に対向するように、内側部材が軌道溝に組み付けられる。   Further, it is necessary to prevent the inner member from being inserted into the raceway groove in a direction in which the plane of the non-ground surface faces the side surface of the raceway groove, that is, in a direction in which the plane of the non-grind surface becomes the power transmission surface. Here, the inner member has a rectangular parallelepiped shape, and the long side plane is a ground surface and the short side plane is a non-ground surface. That is, even if the operator tries to insert the inner member into the raceway groove so that the short side plane faces the side surface of the raceway groove, the inner member cannot be inserted into the raceway groove. Therefore, the inner member is securely assembled to the raceway groove so that the long side, which is the ground surface, faces the side surface of the raceway groove.

(請求項8)また、前記内側部材の前記軸線方向の両端側に、前記保持部材をそれぞれ備えてもよい。このように、トリポード型等速ジョイントは、簡素で低コストな保持部材を内側部材の両端に備えて、両側の保持部材が転動体を保持する。従って、内側部材の形状が簡易な形状となるため、内側部材が低コストとなる。   (Claim 8) In addition, the holding members may be provided on both ends of the inner member in the axial direction. Thus, the tripod constant velocity joint includes a simple and low-cost holding member at both ends of the inner member, and the holding members on both sides hold the rolling elements. Therefore, since the shape of the inner member becomes a simple shape, the inner member becomes low in cost.

(請求項9)また、前記保持部材は、環状で板状に形成され、外周部に前記転動体の端部に当接する転動体当接部を備え、前記保持部材の前記嵌合部の板厚は、前記転動体当接部の板厚のうち少なくとも一部の板厚より大きくてもよい。これにより、保持部材が、転動体当接部で軽量化されつつ、嵌合部では所定の強度で内側部材と確実に嵌合される。   (Claim 9) Further, the holding member is formed in an annular plate shape, and includes a rolling element abutting portion that abuts an end of the rolling element on an outer peripheral portion, and the plate of the fitting portion of the holding member The thickness may be larger than at least a part of the plate thickness of the rolling element contact portion. Thereby, the holding member is securely fitted to the inner member with a predetermined strength at the fitting portion while being reduced in weight at the rolling element contact portion.

等速ジョイント1の斜視図であり、外輪10を軸方向に切断した状態の斜視図である。It is a perspective view of the constant velocity joint 1, and is a perspective view of the state where the outer ring 10 is cut in the axial direction. シャフト2のジョイント角が0degの状態における、外輪回転軸と直交する断面図である。It is sectional drawing orthogonal to an outer ring | wheel rotation axis in the state whose joint angle of the shaft 2 is 0deg. ローラユニット30の上面図である。4 is a top view of the roller unit 30. FIG. 図3の4−4矢視断面図である。FIG. 4 is a sectional view taken along arrow 4-4 in FIG. 3. 内側部材31の上面図である。4 is a top view of an inner member 31. FIG. 図5の6−6矢視断面図である。FIG. 6 is a cross-sectional view taken along arrow 6-6 in FIG. 5. 図5の7−7矢視断面拡大図である。FIG. 7 is an enlarged cross-sectional view taken along arrow 7-7 in FIG. 5. 保持部材33の上面図である。3 is a top view of a holding member 33. FIG. 保持部材33の9−9矢視断面図である。FIG. 9 is a cross-sectional view of the holding member 33 taken along arrow 9-9. 図9のE部の拡大図である。It is an enlarged view of the E section of FIG. 変形例1を説明する図である。It is a figure explaining the modification 1. FIG. 変形例2を説明する図である。It is a figure explaining the modification 2. FIG.

以下、本発明のトリポード型等速ジョイント(以下、単に「等速ジョイント」と称する)を具体化した実施形態について図1〜図10を参照しつつ説明する。ここで、本実施形態の等速ジョイントは、車両の動力伝達シャフトの連結に用いる場合を例に挙げて説明する。その場合とは、例えば、ディファレンシャルギヤに連結された軸部とドライブシャフトの中間シャフトとの連結部位に用いる場合である。   Hereinafter, an embodiment in which a tripod type constant velocity joint of the present invention (hereinafter simply referred to as “constant velocity joint”) is embodied will be described with reference to FIGS. Here, the case where the constant velocity joint of this embodiment is used for connection of a power transmission shaft of a vehicle will be described as an example. The case is, for example, a case where the shaft portion connected to the differential gear is used as a connecting portion between the intermediate shaft of the drive shaft.

図1,図2に示すように、等速ジョイント1は、外輪10と、トリポード20と、転動体ユニット30とから構成される。なお、図1は、2点鎖線で描くシャフト2の回転軸が外輪10の外輪回転軸に対して所定のジョイント角だけ傾動した状態を示している。また、図2は、シャフト2の回転軸と外輪10の外輪回転軸とのジョイント角が0degの状態において、外輪回転軸と直交し、且つ後述するトリポード20が有するトリポード軸部22の軸線を通る面で切断した、外輪10の開口側から見た断面の一部を示している。   As shown in FIGS. 1 and 2, the constant velocity joint 1 includes an outer ring 10, a tripod 20, and a rolling element unit 30. 1 shows a state in which the rotation axis of the shaft 2 drawn by a two-dot chain line is tilted by a predetermined joint angle with respect to the outer ring rotation axis of the outer ring 10. Further, FIG. 2 shows an axis of a tripod shaft portion 22 that is orthogonal to the outer ring rotation axis and has a tripod 20 described later when the joint angle between the rotation axis of the shaft 2 and the outer ring rotation axis of the outer ring 10 is 0 deg. A part of a cross section viewed from the opening side of the outer ring 10 taken along a plane is shown.

外輪10は、筒状(例えば、有底筒状)に形成され、図1において、外輪10のA側がディファレンシャルギヤ(図示せず)に連結される。図1,図2に示すように、外輪10の筒状部分の内周面には、外輪10の回転軸(外輪回転軸)方向に延びる軌道溝16が、周方向に等間隔に3本(複数に相当)形成される。各軌道溝16における溝延伸方向に直交する断面形状は、外輪10の回転軸中心に向かって開口するコの字形をなしている。つまり、各軌道溝16は、ほぼ平面状に形成された溝底面16aと、溝底面16aに直交するようなほぼ平面状に形成され且つそれぞれ平行に対向する側面16b、16cとを備える。   The outer ring 10 is formed in a cylindrical shape (for example, a bottomed cylindrical shape), and in FIG. 1, the A side of the outer ring 10 is connected to a differential gear (not shown). As shown in FIGS. 1 and 2, three track grooves 16 extending in the direction of the rotation axis (outer ring rotation axis) of the outer ring 10 are formed on the inner circumferential surface of the cylindrical portion of the outer ring 10 at equal intervals in the circumferential direction ( (Corresponding to a plurality). The cross-sectional shape orthogonal to the groove extending direction in each raceway groove 16 is a U-shape that opens toward the center of the rotation axis of the outer ring 10. That is, each track groove 16 includes a groove bottom surface 16a formed in a substantially planar shape, and side surfaces 16b and 16c formed in a substantially planar shape orthogonal to the groove bottom surface 16a and facing each other in parallel.

トリポード20は、外輪10の内側に配置される。トリポード20は、外輪10に対して、回転軸方向に移動可能であると共に、傾動可能である。また、トリポード20は、シャフト2に一体的に連結される。トリポード20は、シャフト2に連結される円筒形のボス部21と、3本(複数に相当)のトリポード軸部22とを備える。   The tripod 20 is disposed inside the outer ring 10. The tripod 20 can move in the direction of the rotation axis with respect to the outer ring 10 and can tilt. The tripod 20 is integrally connected to the shaft 2. The tripod 20 includes a cylindrical boss portion 21 connected to the shaft 2 and three (corresponding to a plurality) tripod shaft portions 22.

3本のトリポード軸部22は、ボス部21の円筒外周面からそれぞれボス部21の径方向外方に向かって延びるように立設される(図2には、一本のトリポード軸部22のみ示す)。これらのトリポード軸部22は、ボス部21の周方向に等間隔(120deg間隔)に形成される。各トリポード軸部22は、外周面が球面凸状に形成された球面凸状部22aと、球面凸状部22aのボス部21側に形成された根元首部22bとを備える。そして、トリポード軸部22の球面凸状部22aの先端部は、外輪10のそれぞれの軌道溝16内に挿入される。   The three tripod shaft portions 22 are erected so as to extend from the cylindrical outer peripheral surface of the boss portion 21 toward the radially outward direction of the boss portion 21 (FIG. 2 shows only one tripod shaft portion 22. Show). These tripod shaft portions 22 are formed at equal intervals (120 deg intervals) in the circumferential direction of the boss portion 21. Each tripod shaft portion 22 includes a spherical convex portion 22a having an outer peripheral surface formed into a spherical convex shape, and a root neck portion 22b formed on the boss portion 21 side of the spherical convex portion 22a. The tip of the spherical convex portion 22 a of the tripod shaft portion 22 is inserted into each raceway groove 16 of the outer ring 10.

(転動体ユニット30)
図1〜図4に示す3つの転動体ユニット30は、全体形状としては矩形環状である。各転動体ユニット30は、各トリポード軸部22の外周側に回転可能であり、各トリポード軸部22の軸線方向に移動可能であり、且つ各トリポード軸部22の軸線に対して傾動可能に支持される。そして、各転動体ユニット30は、トリポード軸部22に対して等速ジョイント1の回転方向で係合される。このようにして、各転動体ユニット30は、各トリポード軸部22と外輪10との間で回転駆動力を伝達する。図3,図4に示すように、各転動体ユニット30は、内側部材31と、複数の転動体32と、2個の保持部材33,33と、2個の止め輪34,34とを備える。なお、本実施形態では、転動体32は、軸状である。
(Rolling body unit 30)
The three rolling element units 30 shown in FIGS. 1 to 4 have a rectangular ring shape as a whole. Each rolling element unit 30 is rotatable to the outer peripheral side of each tripod shaft portion 22, is movable in the axial direction of each tripod shaft portion 22, and is supported to be tiltable with respect to the axis line of each tripod shaft portion 22. Is done. Each rolling element unit 30 is engaged with the tripod shaft portion 22 in the rotation direction of the constant velocity joint 1. In this way, each rolling element unit 30 transmits a rotational driving force between each tripod shaft portion 22 and the outer ring 10. As shown in FIGS. 3 and 4, each rolling element unit 30 includes an inner member 31, a plurality of rolling elements 32, two holding members 33 and 33, and two retaining rings 34 and 34. . In the present embodiment, the rolling element 32 has an axial shape.

(内側部材31)
図5,図6に示すように、内側部材31の外形形状は、直方体状に形成される。また、内側部材31は、後述する両端面31a,31b間を貫通する貫通孔31gを備えて環状に形成される。内側部材31の素材は、例えば冷間鍛造によって成形される。そして、内側部材31の素材に対して必要な部分のみに加工を加え、内側部材31が形成される。
(Inner member 31)
As shown in FIGS. 5 and 6, the outer shape of the inner member 31 is formed in a rectangular parallelepiped shape. The inner member 31 is formed in an annular shape with a through hole 31g penetrating between both end faces 31a and 31b described later. The material of the inner member 31 is formed by cold forging, for example. The inner member 31 is formed by processing only the necessary portions of the material of the inner member 31.

内側部材31は、両端面31a,31bと、両端面31a,31b間を接続する各側面31c〜31fと、貫通孔31gと、を有する。両端面31a,31bは、内側部材31がトリポード軸部22に組付けられた状態において、トリポード軸部22の軸線方向で背向する1対の平面である。   The inner member 31 has both end surfaces 31a and 31b, side surfaces 31c to 31f connecting the both end surfaces 31a and 31b, and a through hole 31g. Both end surfaces 31 a and 31 b are a pair of planes facing away from each other in the axial direction of the tripod shaft portion 22 in a state where the inner member 31 is assembled to the tripod shaft portion 22.

また、各側面31c〜31fによって、背向する2対の平面が形成される。背向する2対の平面のうち、側面31c、31dが直方体の長辺側の側面を形成する。また、背向する2対の平面のうち、側面31e、31fが直方体の短辺側の側面を形成する。なお、直方体の長辺側の側面とは、内側部材31の外周面における各側面31c〜31fの背向する2対の平面のうち、周方向の辺の長さが長い側の1対の平面をいい、周方向の辺の長さが短い側の1対の平面を短辺側の側面と称す。また、本実施形態においては、長辺側の側面である側面31c、31dは、研削加工を行なう研削面とする。また、短辺側の側面である側面31e、31fは、研削を行なわない非研削面とする。内側部材31が有する各側面31c〜31fのうち隣接する側面同士は、それぞれ任意の大きさのRで接続される。内側部材31は、外輪10の各軌道溝16に、直方体の長辺側の各側面31c、31dが各軌道溝16の各側面16b、16cとそれぞれ対向するよう挿入される(図2参照)。   Moreover, two pairs of planes facing away are formed by the side surfaces 31c to 31f. Of the two pairs of planes facing away, the side surfaces 31c and 31d form the side surface on the long side of the rectangular parallelepiped. Of the two pairs of planes facing away from each other, the side surfaces 31e and 31f form a side surface on the short side of the rectangular parallelepiped. In addition, the side surface on the long side of the rectangular parallelepiped is a pair of planes on the side where the length of the side in the circumferential direction is long among the two pairs of back surfaces of the side surfaces 31c to 31f on the outer circumferential surface of the inner member 31. A pair of planes on the side with a short side in the circumferential direction is referred to as a side surface on the short side. In the present embodiment, the side surfaces 31c and 31d, which are the long side surfaces, are ground surfaces for grinding. Further, the side surfaces 31e and 31f, which are side surfaces on the short side, are non-ground surfaces that are not ground. Adjacent side surfaces of the side surfaces 31c to 31f of the inner member 31 are connected to each other with an R of an arbitrary size. The inner member 31 is inserted into the raceway grooves 16 of the outer ring 10 such that the side surfaces 31c and 31d on the long side of the rectangular parallelepiped face the side surfaces 16b and 16c of the raceway grooves 16 (see FIG. 2).

図5,図6に示すように、貫通孔31gは、両端面31a,31bの中央部に両端面31a,31b間を貫通して設けられる。貫通孔31gと両端面31a,31bとの間には、各テーパ面31h,31iが設けられる。各テーパ面31h,31iは、貫通孔31gの軸線を中心として両端面31a,31b上にそれぞれ設けられた仮想円Cr1の各周線から貫通孔31gの軸線に向かって、それぞれ所定のテーパ角度で延在し形成される。仮想円Cr1の直径は、φD1とする。各仮想円Cr1の直径φD1は、直方体(内側部材31)の長辺側の長さL1よりも小さいか若しくは等しく、短辺側の長さL2よりも大きい。これにより、内側部材31の長辺側の側面31c、31dでは、図6のB部に示すように、各テーパ面31h,31iと側面31c、31dとが交差した部分が、両端面31a,31b側からそれぞれR状に窪んだ形状となる。   As shown in FIGS. 5 and 6, the through hole 31 g is provided in the center of both end faces 31 a and 31 b so as to penetrate between both end faces 31 a and 31 b. The tapered surfaces 31h and 31i are provided between the through hole 31g and the both end surfaces 31a and 31b. Each taper surface 31h, 31i has a predetermined taper angle from each circumferential line of the virtual circle Cr1 provided on both end surfaces 31a, 31b around the axis of the through hole 31g toward the axis of the through hole 31g. Extended and formed. The diameter of the virtual circle Cr1 is φD1. The diameter φD1 of each imaginary circle Cr1 is smaller than or equal to the long side length L1 of the rectangular parallelepiped (inner member 31) and larger than the short side length L2. Thereby, in the side surfaces 31c and 31d on the long side of the inner member 31, as shown in part B of FIG. 6, the portions where the tapered surfaces 31h and 31i intersect the side surfaces 31c and 31d are both end surfaces 31a and 31b. It becomes the shape which became depressed in the R shape from the side, respectively.

貫通孔31gには、トリポード軸部22の球面凸状部22aが挿入される。これにより、内側部材31の貫通孔31gの軸線は、トリポード軸部22の軸線に対して傾動可能となる。このとき、上述した各テーパ面31h,31iは、各トリポード軸部22が、内側部材31に対して所定のジョイント角だけ傾動したとき、トリポード軸部22又はボス部21が内側部材31と接触しないよう設けられるものである。従って、テーパ面31h,31iの所定の角度は、トリポード軸部22又はボス部21と内側部材31との干渉が防止可能なように任意に設定すればよい。なお、以降において、特別な説明がなく内側部材31の軸線とのみいった場合には、内側部材31の貫通孔31gの軸線のことをいう。   The spherical convex portion 22a of the tripod shaft portion 22 is inserted into the through hole 31g. Thereby, the axis of the through hole 31 g of the inner member 31 can be tilted with respect to the axis of the tripod shaft 22. At this time, the taper surfaces 31 h and 31 i described above are such that the tripod shaft portion 22 or the boss portion 21 does not contact the inner member 31 when each tripod shaft portion 22 tilts by a predetermined joint angle with respect to the inner member 31. It is provided as follows. Therefore, the predetermined angles of the tapered surfaces 31h and 31i may be arbitrarily set so that interference between the tripod shaft portion 22 or the boss portion 21 and the inner member 31 can be prevented. In the following, when there is no special description and only the axis of the inner member 31 is used, it means the axis of the through hole 31g of the inner member 31.

(内側部材31の被嵌合部35及び円弧溝36)
図5,図6に示すように、内側部材31は、非円筒状の外周面を有する被嵌合部35と、止め輪34が嵌合される円弧溝36と、を備える。被嵌合部35は、内側部材円弧部35aと平面部35bとを有している。
(Fitted portion 35 and arc groove 36 of inner member 31)
As shown in FIGS. 5 and 6, the inner member 31 includes a fitted portion 35 having a non-cylindrical outer peripheral surface and an arc groove 36 into which the retaining ring 34 is fitted. The fitted portion 35 has an inner member arc portion 35a and a flat portion 35b.

内側部材円弧部35aは、内側部材31の貫通孔31gの軸線を中心に形成された円弧面である。つまり、内側部材円弧部35aは、内側部材31を貫通孔31gの軸線周りに回転させながら所定の直径φD2で、両端面31a,31b側からそれぞれ所定の深さd1まで旋削加工されて形成される外周面である(図7、断面図参照)。このとき、直径φD2は、内側部材31の長辺側の長さL1よりも若干大きい。このため、内側部材円弧部35aは、内側部材31の長辺側の側面31c、31d、及び短辺側の側面31e、31fの途中で途切れている。なお、図6は、内側部材円弧部35aが途切れた部分の断面を示している。また、図7は、内側部材円弧部35aが途切れない部分の断面を示している。   The inner member arc portion 35 a is an arc surface formed around the axis of the through hole 31 g of the inner member 31. That is, the inner member arc portion 35a is formed by turning from the both end faces 31a, 31b to a predetermined depth d1 with a predetermined diameter φD2 while rotating the inner member 31 around the axis of the through hole 31g. It is an outer peripheral surface (see FIG. 7, cross-sectional view). At this time, the diameter φD2 is slightly larger than the length L1 on the long side of the inner member 31. For this reason, the inner member arc portion 35a is interrupted in the middle of the side surfaces 31c and 31d on the long side and the side surfaces 31e and 31f on the short side. FIG. 6 shows a cross section of a portion where the inner member arc portion 35a is interrupted. FIG. 7 shows a cross section of a portion where the inner member arc portion 35a is not interrupted.

このとき、図7に示す両端面31a,31b側から内側部材円弧部35aが加工される所定の深さd1は、図4に示すように、前述した各テーパ面31h,31iと側面31c、31dとが交差し、両端面31a,31b側からそれぞれR状に窪んだ窪み部のうち最も各端面31a,31bから離間した窪み部の位置Pよりも若干、各端面31a,31bからさらに離間した位置にすることが好ましい。   At this time, as shown in FIG. 4, the predetermined depth d1 at which the inner member arcuate portion 35a is processed from the both end faces 31a, 31b shown in FIG. 7 is the tapered surfaces 31h, 31i and the side faces 31c, 31d described above. Are slightly spaced from the end surfaces 31a and 31b slightly more than the position P of the recessed portion that is the most spaced from the end surfaces 31a and 31b among the recessed portions that are recessed in an R shape from the both end surfaces 31a and 31b. It is preferable to make it.

図5に示す平面部35bは、内側部材31の被嵌合部35のうち、後に詳述する保持部材33の嵌合部37の平面部37bに対して周方向で係止される部位である。平面部35bは、内側部材31の各側面31c,31dと同一平面上に設けられる。平面部35b及び各側面31c,31dは前述したとおり共に研削によって形成される。平面部35bは、内側部材31の短辺側に設けられる内側部材円弧部35aの端部同士を各側面31c,31dを介して接続すると仮定した場合に各側面31c,31d上に形成される外周面である。また、平面部35bと同一面には、転動体32を転動させる平面状転走面38を有している。つまり、平面状転走面38も研削面である。   The flat portion 35b shown in FIG. 5 is a portion that is locked in the circumferential direction with respect to the flat portion 37b of the fitting portion 37 of the holding member 33, which will be described in detail later, in the fitted portion 35 of the inner member 31. . The flat surface portion 35b is provided on the same plane as the side surfaces 31c and 31d of the inner member 31. The flat portion 35b and the side surfaces 31c and 31d are both formed by grinding as described above. The flat portion 35b is an outer periphery formed on the side surfaces 31c and 31d when it is assumed that the end portions of the inner member arc portion 35a provided on the short side of the inner member 31 are connected to each other through the side surfaces 31c and 31d. Surface. In addition, a planar rolling surface 38 for rolling the rolling element 32 is provided on the same surface as the flat portion 35b. That is, the planar rolling surface 38 is also a grinding surface.

円弧溝36は、円弧状の外周面35cから、外周面35cの径方向内方に向かい、外周面35cと同軸で形成される所定深さの溝である(図5中の破線及び図6参照)。円弧溝36の円弧中心は、内側部材31の貫通孔31gの軸線と一致する。外周面35cは、図6に示すように、両端面31a,31b側からそれぞれ所定の深さd2まで旋削加工されて得られる外周面である。外周面35cは、貫通孔31gの軸線を中心に、所定の直径φD3となるよう形成される。即ち、直径φD3の外周面35cは、直径φD2の内側部材円弧部35aと同軸である。よって、外周面35cとそれぞれ同軸関係にある円弧溝36と内側部材円弧部35aも同軸である。   The arc groove 36 is a groove having a predetermined depth that is formed radially inward of the outer peripheral surface 35c from the arc-shaped outer peripheral surface 35c and is coaxial with the outer peripheral surface 35c (see the broken line in FIG. 5 and FIG. 6). ). The arc center of the arc groove 36 coincides with the axis of the through hole 31 g of the inner member 31. As shown in FIG. 6, the outer peripheral surface 35c is an outer peripheral surface obtained by turning from the both end surfaces 31a and 31b side to a predetermined depth d2. The outer peripheral surface 35c is formed to have a predetermined diameter φD3 around the axis of the through hole 31g. That is, the outer peripheral surface 35c having the diameter φD3 is coaxial with the inner member arcuate portion 35a having the diameter φD2. Therefore, the arc groove 36 and the inner member arc portion 35a that are coaxial with the outer peripheral surface 35c are also coaxial.

本実施形態においては、円弧溝36が設けられる外周面35cの直径φD3と、内側部材円弧部35aの直径φD2の各大きさの関係は、φD2>φD3となる。ただし、この態様には限らず、φD2=φD3でもよい。上記より、外周面35cから形成される円弧溝36は、内側部材31の長辺側の側面31c、31dと交差する部分で途切れた状態となり円周溝とはならない(図5中、破線参照)。つまり、止め輪34を嵌合する溝は、全周が連続した円周溝としては形成されず、内側部材31の短辺側、つまり長辺の両端に2箇所の円弧溝36のみが形成される。   In the present embodiment, the relationship between the diameter φD3 of the outer peripheral surface 35c provided with the arc groove 36 and the diameter φD2 of the inner member arc portion 35a is φD2> φD3. However, it is not limited to this aspect, and φD2 = φD3 may be used. From the above, the circular arc groove 36 formed from the outer peripheral surface 35c is in a state where it is interrupted at the portion intersecting the side surfaces 31c and 31d on the long side of the inner member 31 and does not become a circumferential groove (see the broken line in FIG. 5). . That is, the groove for fitting the retaining ring 34 is not formed as a circumferential groove having a continuous entire circumference, but only two arc grooves 36 are formed on the short side of the inner member 31, that is, on both ends of the long side. The

言い換えると、内側部材31の2箇所の円弧溝36は、内側部材31の外周面35cのうち軌道溝16の各側面16b,16cと対向する位相の部位(長辺側)とは異なる位相の部位(短辺側)に設けられる。なお、上記でいう位相とは、外周面35cの周方向における位相のことをいう。これにより、側面31e、31fを有する内側部材31の短辺側の長さL2を、短くすることができ、内側部材31が小型化される。   In other words, the two circular arc grooves 36 of the inner member 31 are different in phase from the phase portions (long sides) facing the side surfaces 16b and 16c of the raceway groove 16 in the outer peripheral surface 35c of the inner member 31. Provided on the short side. The phase mentioned above refers to the phase in the circumferential direction of the outer peripheral surface 35c. Thereby, the length L2 on the short side of the inner member 31 having the side surfaces 31e and 31f can be shortened, and the inner member 31 is downsized.

(保持部材33)
図8に示すように保持部材33は、例えば金属によって形成された板状部材によって、長方形形状に形成される。保持部材33は、内周側に空間を有して環状に形成される。板状部材は、例えば冷間圧延鋼板であるSPCC(JIS G 3141)等である。保持部材33は、板状部材をプレス成型して形成される。ただし、この態様に限らず、板状部材は、他の冷間圧延鋼板である例えばSPCD,SPCE等であってもよい。また、別の金属でもよい。保持部材33は、内側部材31の貫通孔31gの軸線方向において両端面31a、31b側に設けられる。平面視における保持部材33の長方形の角部は、所定のRで接続される。所定のRは任意に設定すればよい。保持部材33は、嵌合部37と転動体当接部42とを有している。
(Holding member 33)
As shown in FIG. 8, the holding member 33 is formed in a rectangular shape by a plate-like member made of, for example, metal. The holding member 33 has a space on the inner peripheral side and is formed in an annular shape. The plate-like member is, for example, SPCC (JIS G 3141) which is a cold rolled steel plate. The holding member 33 is formed by press-molding a plate-like member. However, the present invention is not limited to this mode, and the plate member may be another cold rolled steel plate such as SPCD, SPCE, or the like. Another metal may be used. The holding member 33 is provided on the both end surfaces 31 a and 31 b side in the axial direction of the through hole 31 g of the inner member 31. The rectangular corners of the holding member 33 in plan view are connected by a predetermined R. The predetermined R may be set arbitrarily. The holding member 33 has a fitting part 37 and a rolling element contact part 42.

(保持部材33の嵌合部37)
本実施形態においては、嵌合部37は、保持部材33をプレスに加工によって成型した際に得られたプレスせん断面である。嵌合部37は、内側部材31の被嵌合部35に嵌合される部位である。図8に示すように、嵌合部37は、保持部材33の非円筒状の内周面33cに設けられる。嵌合部37は、4箇所の保持部材円弧部37a(複数の円弧面に相当)と2箇所の平面部37bとを有している。本実施形態では、保持部材円弧部37a及び平面部37bは、保持部材33の素材となった板部材の厚みをそのまま有して形成される。
(Fitting portion 37 of holding member 33)
In the present embodiment, the fitting portion 37 is a press shear surface obtained when the holding member 33 is molded into a press by processing. The fitting part 37 is a part fitted to the fitted part 35 of the inner member 31. As shown in FIG. 8, the fitting portion 37 is provided on the non-cylindrical inner peripheral surface 33 c of the holding member 33. The fitting portion 37 has four holding member arc portions 37a (corresponding to a plurality of arc surfaces) and two plane portions 37b. In the present embodiment, the holding member arcuate portion 37 a and the flat portion 37 b are formed with the thickness of the plate member that is the material of the holding member 33 as it is.

保持部材円弧部37aは、内側部材31の被嵌合部35の4箇所の内側部材円弧部35aにそれぞれ嵌合(対応)する円弧面である。また、2箇所の平面部37bは、内側部材31の被嵌合部35の2箇所の平面部35bにそれぞれ嵌合(対応)し、周方向で係止する平面である。つまり、内側部材31に対し保持部材33が相対回転しようとした場合に、内側部材31の2箇所の平面部35bが、周方向で保持部材33の2箇所の平面部37bを相対的に係止して相互の相対回転が不能となるように規制する。   The holding member arcuate portion 37 a is an arcuate surface that fits (corresponds) to the four inner member arcuate portions 35 a of the fitted portion 35 of the inner member 31. The two plane portions 37b are planes that are fitted (corresponding) to the two plane portions 35b of the fitted portion 35 of the inner member 31 and locked in the circumferential direction. That is, when the holding member 33 is about to rotate relative to the inner member 31, the two flat portions 35b of the inner member 31 relatively lock the two flat portions 37b of the holding member 33 in the circumferential direction. Thus, the relative rotation is restricted so as to be impossible.

なお、被嵌合部35と、嵌合部37との嵌合は、圧入でもよいし、若干の隙間を有していてもよい。本実施形態では、被嵌合部35と、嵌合部37との嵌合は、若干の隙間を有している。   Note that the fitting between the fitted portion 35 and the fitting portion 37 may be press-fitting or may have a slight gap. In the present embodiment, the fitting between the fitted portion 35 and the fitting portion 37 has a slight gap.

保持部材33の4箇所の保持部材円弧部37aのうち、長方形の短辺側に、それぞれ設けられた2箇所ずつの保持部材円弧部37aは、長方形の短辺側の直線部と平行な直線部37cでそれぞれ接続される。直線部37cは、内側部材31の短辺側の各側面31e,31fと対向する。   Of the four holding member arc portions 37a of the holding member 33, the two holding member arc portions 37a respectively provided on the short side of the rectangle are parallel to the straight portion on the short side of the rectangle. 37c is connected. The straight line portion 37 c faces the side surfaces 31 e and 31 f on the short side of the inner member 31.

ただし、本実施形態では、内側部材31に対し保持部材33が相対回転しようとした場合に、内側部材31の側面31e,31fが保持部材33の直線部37cを周方向で相対的に係止する、又は内側部材31の保持部材円弧部37aが直線部37cを周方向で相対的に係止する等して相互の相対回転規制を行なう寸法関係にはなっていない。しかし、この態様に限らず、内側部材31に対し保持部材33が相対回転しようとした場合に、側面31e,31fが、直線部37cを周方向で相対的に係止する、又は内側部材31の保持部材円弧部37aが直線部37cを周方向で相対的に係止して相対回転規制をするようにしてもよい。保持部材33の各保持部材円弧部37aと平面部37bとは、図8に示す所定のRで接続される。所定のRは任意に設定すればよい。   However, in this embodiment, when the holding member 33 tries to rotate relative to the inner member 31, the side surfaces 31e and 31f of the inner member 31 relatively lock the linear portion 37c of the holding member 33 in the circumferential direction. Alternatively, the holding member arcuate portion 37a of the inner member 31 is not in a dimensional relationship that restricts relative rotation by relatively locking the linear portion 37c in the circumferential direction. However, not limited to this aspect, when the holding member 33 is about to rotate relative to the inner member 31, the side surfaces 31e and 31f relatively lock the linear portion 37c in the circumferential direction, or the inner member 31 The holding member arcuate portion 37a may relatively lock the linear portion 37c in the circumferential direction to restrict relative rotation. Each holding member arcuate portion 37a and the flat portion 37b of the holding member 33 are connected by a predetermined R shown in FIG. The predetermined R may be set arbitrarily.

(保持部材33の転動体当接部42)
図9,図10の断面図に示すように、転動体当接部42は、軸方向移動規制部43、及び径方向移動規制部44を備える。軸方向移動規制部43は、嵌合部37から内側部材31の径方向外方に向かって延在し形成される。軸方向移動規制部43は、転動体32側に軸方向規制面43aを備える。図10に示すように、嵌合部37の板厚t1は、軸方向移動規制部43の板厚t2に対して、厚くなるよう形成される。
(Rolling member contact portion 42 of holding member 33)
As shown in the cross-sectional views of FIGS. 9 and 10, the rolling element contact portion 42 includes an axial direction movement restricting portion 43 and a radial direction movement restricting portion 44. The axial movement restricting portion 43 is formed to extend from the fitting portion 37 toward the radially outer side of the inner member 31. The axial movement restricting portion 43 includes an axial restricting surface 43a on the rolling element 32 side. As shown in FIG. 10, the thickness t <b> 1 of the fitting portion 37 is formed to be thicker than the thickness t <b> 2 of the axial direction movement restricting portion 43.

具体的には、保持部材33は、軸方向規制面43aから嵌合部37側に向かって板厚が転動体32の中央部側に向かって大きくなるよう形成される。嵌合部37の図9,図10における上側の面と軸方向移動規制部43の上側の面とは同一面である。図4に示すように、軸方向規制面33aは、転動体32の突起部41(端部)の端面と当接して転動体32の軸線方向への移動を規制する。   Specifically, the holding member 33 is formed so that the plate thickness increases from the axial direction regulating surface 43 a toward the fitting portion 37 side toward the center portion side of the rolling element 32. The upper surface of the fitting portion 37 in FIGS. 9 and 10 and the upper surface of the axial movement restricting portion 43 are the same surface. As shown in FIG. 4, the axial restriction surface 33 a abuts against the end surface of the protrusion 41 (end portion) of the rolling element 32 and restricts the movement of the rolling element 32 in the axial direction.

径方向移動規制部44は、軸方向移動規制部43よりも外周側の部位が転動体32側に例えば直角に屈曲されて形成される。径方向移動規制部44は、転動体32の突起部41側に径方向規制面44aを備える。図4に示すように、径方向規制面44aは、転動体32の突起部41の側面と当接して転動体32の内側部材31外方への移動を規制する。このように、保持部材33の外周部全周において転動体当接部42は、転動体32の突起部41を覆うように、つまり転動体32の軸線を覆うように設けられる。   The radial direction movement restricting portion 44 is formed by bending a portion on the outer peripheral side with respect to the axial direction movement restricting portion 43 to the rolling element 32 side, for example, at a right angle. The radial movement restricting portion 44 includes a radial restricting surface 44 a on the protrusion 41 side of the rolling element 32. As shown in FIG. 4, the radial restriction surface 44 a abuts against the side surface of the protrusion 41 of the rolling element 32 and restricts the movement of the rolling element 32 to the outside of the inner member 31. As described above, the rolling element abutting portion 42 is provided so as to cover the protrusion 41 of the rolling element 32, that is, to cover the axis of the rolling element 32, in the entire outer periphery of the holding member 33.

また、径方向移動規制部44は、図9における下方端部に保持部材33の径方向外方に向かって広がる鍔部45を外周部全周に有している。鍔部45は、図3に示す方向からみたときに、各転動体32の円筒部39(後述する)の一部が鍔部45の外周より外周側に配置されるように設けられる。径方向移動規制部44及び径方向移動規制部44の鍔部45の板厚は、軸方向移動規制部43の板厚t2と同等であってもよいし、嵌合部37の板厚t1と同等であってもよい。本実施形態においては、径方向移動規制部44及び径方向移動規制部44の鍔部45の板厚は、板厚t1及び板厚t2の間の所定の板厚となっている。   Further, the radial movement restricting portion 44 has a flange portion 45 that extends outward in the radial direction of the holding member 33 at the lower end portion in FIG. The flange portion 45 is provided so that a part of a cylindrical portion 39 (described later) of each rolling element 32 is arranged on the outer peripheral side of the outer periphery of the flange portion 45 when viewed from the direction shown in FIG. The plate thickness of the radial direction movement restricting portion 44 and the flange portion 45 of the radial direction movement restricting portion 44 may be equal to the plate thickness t2 of the axial direction movement restricting portion 43, or the thickness t1 of the fitting portion 37. It may be equivalent. In this embodiment, the plate | board thickness of the collar part 45 of the radial direction movement control part 44 and the radial direction movement control part 44 is a predetermined | prescribed board thickness between board thickness t1 and board thickness t2.

(転動体32)
転動体32は、円筒部39と、円筒部39の中心軸線と同軸に形成された突起部41(端部に相当)とを備える。転動体32は、軸状である。突起部41は、円筒部39の両端から突設される。円筒部39は円筒状に形成され、円筒部39の円筒径(内側部材の軸線方向における転動体の中央部の太さに相当)が突起部41の円柱径(軸線方向における端部の太さに相当)よりも大きくなるよう構成される。
(Rolling body 32)
The rolling element 32 includes a cylindrical portion 39 and a protrusion 41 (corresponding to an end portion) formed coaxially with the central axis of the cylindrical portion 39. The rolling element 32 has a shaft shape. The protrusion 41 protrudes from both ends of the cylindrical portion 39. The cylindrical portion 39 is formed in a cylindrical shape, and the cylindrical diameter of the cylindrical portion 39 (corresponding to the thickness of the central portion of the rolling element in the axial direction of the inner member) is the cylindrical diameter of the protrusion 41 (the thickness of the end portion in the axial direction). It is comprised so that it may become larger than.

転動体32は、図4に示すように、ニードルである。そして、図1,図3に示すように、複数の転動体32が、内側部材31の外周を循環するように設けられる。具体的には、上述したように複数の転動体32は、突起部41,41が、内側部材31の軸線方向の両端面31a,31b側に設けられた保持部材33,33の転動体当接部42によって支持される。詳細には、転動体32の両端の突起部41が、保持部材33,33の軸方向規制面43a,43a及び径方向規制面44a,44aに転動可能に支持される。   The rolling element 32 is a needle as shown in FIG. As shown in FIGS. 1 and 3, a plurality of rolling elements 32 are provided so as to circulate around the outer periphery of the inner member 31. Specifically, as described above, the plurality of rolling elements 32 have the protrusions 41 and 41 that are in contact with the rolling elements of the holding members 33 and 33 provided on the both end surfaces 31 a and 31 b side in the axial direction of the inner member 31. Supported by part 42. Specifically, the protrusions 41 at both ends of the rolling element 32 are supported by the axial restriction surfaces 43a and 43a and the radial restriction surfaces 44a and 44a of the holding members 33 and 33 so as to be able to roll.

複数の転動体32のうち一部(本実施形態においては、全部で6〜7個)は、軌道溝16の各側面16b,16cと内側部材31の長辺側の各側面31c,31dとの間に、各側面16b,16c,31c,31dに沿って転動可能に設けられる。転動体32を介して各側面31c,31dと軌道溝16の各側面16b,16cとの間で回転駆動力が伝達される。なお、内側部材31の各側面31c,31dのうち、転動体32が転動可能に設けられている平面を平面状転走面38と称す。つまり、各側面31c,31dと平面状転走面38とは、同一面に形成される。また、内側部材31の被嵌合部35の平面部35bも各側面31c,31dと同一面に形成される。これにより、平面状転走面38と被嵌合部35の平面部35bも同一面に形成される。   Some of the plurality of rolling elements 32 (6 to 7 in total in the present embodiment) are formed between the side surfaces 16b and 16c of the raceway groove 16 and the side surfaces 31c and 31d on the long side of the inner member 31. In between, it is provided so that it can roll along each side surface 16b, 16c, 31c, 31d. A rotational driving force is transmitted between the side surfaces 31 c and 31 d and the side surfaces 16 b and 16 c of the raceway groove 16 via the rolling element 32. Of the side surfaces 31 c and 31 d of the inner member 31, the plane on which the rolling elements 32 are provided so as to be able to roll is referred to as a planar rolling surface 38. That is, the side surfaces 31c and 31d and the planar rolling surface 38 are formed on the same surface. Further, the flat portion 35b of the fitted portion 35 of the inner member 31 is also formed on the same surface as the side surfaces 31c and 31d. Thereby, the planar rolling surface 38 and the planar part 35b of the to-be-fitted part 35 are also formed in the same surface.

(止め輪34)
円弧溝36には円筒状の内周面を備えたC型止め輪である止め輪34が嵌合される(図4参照)。図4に示すように、所定深さの円弧溝36に嵌合された止め輪34の外周部では、外周面35cから径方向外方に、予め設定された量だけはみ出す。このとき予め設定された量とは、軌道溝16の各側面16b,16cと内側部材31の長辺側の各側面31c,31dとの間に配置された転動体32のうち、少なくとも1つの転動体32の軸線(または突起部41)を覆う位置まで延在するよう設けられる。図3においては、Dで示す転動体32の軸線Lを覆うよう止め輪34が設けられている。これにより、止め輪34は、回転駆動力の伝達のため、大きな力を受ける転動体32(D)の軸線L方向への移動(抜け)を、保持部材33の軸方向移動規制部43とともに規制する。
(Retaining ring 34)
A retaining ring 34 which is a C-shaped retaining ring having a cylindrical inner peripheral surface is fitted into the arc groove 36 (see FIG. 4). As shown in FIG. 4, at the outer peripheral portion of the retaining ring 34 fitted in the arc groove 36 of a predetermined depth, a predetermined amount protrudes radially outward from the outer peripheral surface 35c. The amount set in advance at this time is at least one rolling element 32 among the rolling elements 32 arranged between the side faces 16b, 16c of the raceway groove 16 and the side faces 31c, 31d on the long side of the inner member 31. It is provided so as to extend to a position covering the axis (or projection 41) of the moving body 32. In FIG. 3, a retaining ring 34 is provided so as to cover the axis L of the rolling element 32 indicated by D. Accordingly, the retaining ring 34 restricts the movement (disengagement) of the rolling elements 32 (D) receiving a large force in the direction of the axis L together with the axial movement restricting portion 43 of the holding member 33 for transmission of the rotational driving force. To do.

(作用)
上述した等速ジョイント1の作用について説明する。上述したように、等速ジョイント1においては、保持部材33の内周面に形成された嵌合部37の保持部材円弧部37aが、内側部材31の外周面に形成された被嵌合部35の内側部材円弧部35aに嵌合する(図5,図8参照)。前述したように、本実施形態においては、被嵌合部35と嵌合部37との嵌合は、若干の隙間を有している。また、保持部材円弧部37aと内側部材円弧部35aとは、それぞれ嵌合状態において同軸となるよう形成される。このため、保持部材円弧部37aと内側部材円弧部35aとの嵌合だけでは、各円弧部37a,35aの軸線回りにおける内側部材31に対する保持部材33の相対回転を不能にするよう規制することはできない。
(Function)
The operation of the constant velocity joint 1 described above will be described. As described above, in the constant velocity joint 1, the holding member arcuate portion 37 a of the fitting portion 37 formed on the inner peripheral surface of the holding member 33 is the fitted portion 35 formed on the outer peripheral surface of the inner member 31. To the inner member arc portion 35a (see FIGS. 5 and 8). As described above, in the present embodiment, the fitting between the fitted portion 35 and the fitting portion 37 has a slight gap. The holding member arc portion 37a and the inner member arc portion 35a are formed so as to be coaxial in the fitted state. For this reason, it is impossible to restrict the relative rotation of the holding member 33 with respect to the inner member 31 around the axis of each arc portion 37a, 35a only by fitting the holding member arc portion 37a and the inner member arc portion 35a. Can not.

しかし、内側部材31の被嵌合部35は、非円筒状を為す平面部35bを備える。また、保持部材33の嵌合部37は、平面部35bに嵌合可能な平面部37bを備える。このため、内側部材31と保持部材33とが、各円弧部37a,35aの軸線周りで相対回転しようとすると、相対的に平面部35bが周方向で平面部37bに係止され、内側部材31に対する保持部材33の相対回転が相対回転不能に規制される。   However, the fitted portion 35 of the inner member 31 includes a flat portion 35b having a non-cylindrical shape. The fitting portion 37 of the holding member 33 includes a flat portion 37b that can be fitted to the flat portion 35b. Therefore, when the inner member 31 and the holding member 33 try to rotate relative to each other around the axis of each arc portion 37a, 35a, the flat portion 35b is relatively locked to the flat portion 37b in the circumferential direction, and the inner member 31 The relative rotation of the holding member 33 with respect to is restricted so that the relative rotation is impossible.

また、内側部材31の貫通孔31gの軸線方向において、保持部材33に対し内側部材31側と反対側には、止め輪34が、保持部材33の内側部材31と反対側の面と当接するよう外周面35cに形成された円弧溝36に嵌合して設けられる。これにより、止め輪34によって内側部材31の軸線方向における、保持部材33の内側部材31からの離脱が規制され抜けが規制される。   Further, in the axial direction of the through hole 31 g of the inner member 31, the retaining ring 34 is in contact with the surface of the holding member 33 opposite to the inner member 31 on the side opposite to the inner member 31 side. A circular groove 36 formed on the outer peripheral surface 35c is fitted and provided. Thus, the retaining ring 34 restricts the separation of the holding member 33 from the inner member 31 in the axial direction of the inner member 31 and restricts the omission.

(実施形態の構成による効果)
上記実施形態によれば、トリポード型等速ジョイント1は、いわゆる転動体循環タイプである。これにより、動力伝達側とは反対側に位置する転動体32による軌道溝に対する摩擦力が小さくなる。従って、転動体32と軌道溝16との間の滑り摩擦による抵抗が大幅に低減される。また、保持部材33の非円筒状の内周面を有する嵌合部37と、内側部材31の非円筒状の外周面を有する被嵌合部35とを嵌合させることによって、保持部材33は、転動体32を良好に保持しながら簡易に内側部材31に対する相対回転を抑制される。つまり、保持部材33は、内側部材31に対して直接的に相対回転を規制される。従って、従来技術のように保持部材33に壁部(カバー)を設け、壁部の内周側面を転動体32の外周側に当接させることによって、内側部材31に対する保持部材33の相対回転を不能とする必要がない。これにより、保持部材33の壁部が、内側部材31及び転動体32と、内側部材31の径方向外方に向かって並んで配置されることはない。よって、保持部材33は小型、軽量化し、延いては等速ジョイントが小型、軽量化する。
(Effects of the configuration of the embodiment)
According to the embodiment, the tripod constant velocity joint 1 is a so-called rolling element circulation type. Thereby, the frictional force with respect to the raceway groove by the rolling element 32 located on the opposite side to the power transmission side is reduced. Therefore, resistance due to sliding friction between the rolling element 32 and the raceway groove 16 is greatly reduced. Further, the holding member 33 is fitted by fitting the fitting portion 37 having the non-cylindrical inner peripheral surface of the holding member 33 and the fitted portion 35 having the non-cylindrical outer peripheral surface of the inner member 31. The relative rotation with respect to the inner member 31 is easily suppressed while holding the rolling element 32 well. That is, the relative rotation of the holding member 33 with respect to the inner member 31 is directly restricted. Accordingly, the holding member 33 is provided with a wall portion (cover) as in the prior art, and the inner peripheral side surface of the wall portion is brought into contact with the outer peripheral side of the rolling element 32, whereby the holding member 33 is relatively rotated with respect to the inner member 31. There is no need to disable it. Thereby, the wall part of the holding member 33 is not arranged side by side toward the outer side in the radial direction of the inner member 31 and the rolling element 32 and the inner member 31. Therefore, the holding member 33 is reduced in size and weight, and as a result, the constant velocity joint is reduced in size and weight.

また、上記実施形態によれば、円弧溝36と内側部材円弧部35aとは同軸であるので、旋盤に内側部材31の素材を一度セットすることのみによって、その後に段取り替えを行なうことなく、円弧溝36及び内側部材円弧部35aが旋削加工される。その結果、加工コストが低減する。また、止め輪34が設けられることにより、保持部材33の抜け止め固定がより確実なものとなり信頼性が向上する。   Moreover, according to the said embodiment, since the circular arc groove 36 and the inner member circular arc part 35a are coaxial, only by setting the material of the inner member 31 on a lathe once, without performing a setup change after that, it is circular arc. The groove 36 and the inner member arc portion 35a are turned. As a result, the processing cost is reduced. In addition, by providing the retaining ring 34, the retaining member 33 is more securely prevented from coming off and reliability is improved.

また、上記実施形態によれば、止め輪34の内周面は、円筒状であり、内側部材31は、止め輪34が嵌合される溝として円弧溝36のみを有し、内側部材31の円弧溝36は、内側部材31の外周面のうち軌道溝16の側面16b,16cと対向する位相の部位とは異なる位相の部位に設けられる。   Further, according to the above embodiment, the inner peripheral surface of the retaining ring 34 is cylindrical, and the inner member 31 has only the arc groove 36 as a groove into which the retaining ring 34 is fitted. The arc groove 36 is provided at a portion of the outer peripheral surface of the inner member 31 having a phase different from the portion of the phase facing the side surfaces 16 b and 16 c of the raceway groove 16.

このように、円筒状の止め輪34を嵌合させるにも関わらず、止め輪34が嵌合される内側部材31の溝は、円周全周に設けられず、軌道溝16の側面16b,16cと対向する円周方向における位相の部位とは異なる位相の部位にのみ円弧溝36で設けられる。これにより、内側部材31の幅のうち円弧溝36が設けられない位相の部位の幅が、溝を円周全周に配置した場合と比較して短くなる。従って、内側部材31が小型化される。   Thus, although the cylindrical retaining ring 34 is fitted, the groove of the inner member 31 into which the retaining ring 34 is fitted is not provided on the entire circumference, and the side surfaces 16b and 16c of the raceway groove 16 are provided. The circular arc groove 36 is provided only in a portion having a phase different from the portion in the circumferential direction facing the. Thereby, the width | variety of the site | part of the phase in which the circular arc groove 36 is not provided among the width | variety of the inner side member 31 becomes short compared with the case where a groove | channel is arrange | positioned in the perimeter. Therefore, the inner member 31 is reduced in size.

また、上記実施形態によれば、内側部材31の被嵌合部35の非円筒の外周面は、平面部35bを有し、内側部材31は、転動体32を転動させる平面状転走面38を有し、被嵌合部35の平面部35bと平面状転走面38は、同一平面上に形成される。これにより、内側部材31の平面部35b、及び平面状転走面38は、簡易な平面研削によって同時に形成でき低コスト化が図られる。   Moreover, according to the said embodiment, the non-cylindrical outer peripheral surface of the to-be-fitted part 35 of the inner member 31 has the plane part 35b, and the inner member 31 is the planar rolling surface which rolls the rolling element 32. 38, the flat part 35b of the fitting part 35 and the planar rolling surface 38 are formed on the same plane. Thereby, the plane part 35b and the planar rolling surface 38 of the inner member 31 can be simultaneously formed by simple surface grinding, and cost reduction is achieved.

また、上記実施形態によれば、内側部材31の被嵌合部35の平面部35b及び内側部材31の平面状転走面38は、軌道溝16の各側面16b,16cと対向する面である。これにより、内側部材31の平面部35b及び平面状転走面38は、トリポード軸の回転駆動力を、転動体32を介して軌道溝16の側面16b,16cに伝達する伝達面も兼ねることとなるので、伝達面をわざわざ設ける必要がなく低コストに精度のよい伝達面を得ることができる。   Further, according to the above embodiment, the flat portion 35 b of the fitted portion 35 of the inner member 31 and the planar rolling surface 38 of the inner member 31 are surfaces facing the side surfaces 16 b and 16 c of the raceway groove 16. . As a result, the planar portion 35b and the planar rolling surface 38 of the inner member 31 also serve as a transmission surface that transmits the rotational driving force of the tripod shaft to the side surfaces 16b and 16c of the raceway groove 16 via the rolling elements 32. Therefore, there is no need to bother to provide a transmission surface, and an accurate transmission surface can be obtained at low cost.

また、上記実施形態によれば、内側部材31は、外周において背向する平行な2対の平面を有して直方体状に形成され、内側部材31の被嵌合部35のうち保持部材33の嵌合部37に対して周方向に係止される部位は、直方体状の内側部材31の背向する2対の平面のうち、内側部材31の外周面における周方向の長さが長い側の1対の平面である長辺側の平面(側面31c,31d)に設けられ、長辺側の平面(側面31c,31d)は、軌道溝16の各側面16b,16cに対向する面である。   Further, according to the above embodiment, the inner member 31 is formed in a rectangular parallelepiped shape with two parallel planes facing away from each other on the outer periphery, and the holding member 33 of the fitted portion 35 of the inner member 31 is formed. The part latched in the circumferential direction with respect to the fitting part 37 is the long side in the circumferential direction on the outer circumferential surface of the inner member 31 among the two pairs of planes facing the back of the rectangular parallelepiped inner member 31. The long side planes (side surfaces 31 c and 31 d), which are a pair of planes, are provided on the long side planes (side surfaces 31 c and 31 d) that face the side surfaces 16 b and 16 c of the raceway groove 16.

このように、内側部材31の長辺側の平面(側面31c,31d)に、被嵌合部35のうち保持部材33の嵌合部37に対して周方向に係止される部位が設けられるので、短辺側の平面(側面31e,31f)に係止される部位を設ける場合と比較して、係止される部位を長くすることができる。これにより、内側部材31に対する保持部材33の周方向への回転規制が精度よく行なわれる。   As described above, a portion of the fitted portion 35 that is locked in the circumferential direction with respect to the fitting portion 37 of the holding member 33 is provided on the long side plane (side surfaces 31 c and 31 d) of the inner member 31. Therefore, compared with the case where the site | part latched by the plane (side surface 31e, 31f) of a short side is provided, the site | part latched can be lengthened. Thereby, rotation control of the holding member 33 in the circumferential direction with respect to the inner member 31 is performed with high accuracy.

また、上記実施形態によれば、直方体状の内側部材31の背向する2対の平面のうち長辺側の一対の平面(側面31c,31d)は研削面であり、短辺側の一対の平面(側面31e,31f)は非研削面である。このように、回転駆動力を伝達するために面精度が必要な、軌道溝16の側面と対向する内側部材の長辺側の平面に対してのみ研削加工を行ない、高精度な研削面が不要な短辺側の平面は研削加工を行なわない。これにより、低コストに内側部材が得られる。   Moreover, according to the said embodiment, a pair of plane (side surface 31c, 31d) by the side of a long side is a grinding surface among two pairs of planes which the inner side member 31 of a rectangular parallelepiped shape faces back, and a pair of short side is a pair. The flat surfaces (side surfaces 31e and 31f) are non-ground surfaces. As described above, grinding is performed only on the long side plane of the inner member facing the side surface of the raceway groove 16 that requires surface accuracy to transmit the rotational driving force, and a highly accurate grinding surface is not required. The flat surface on the short side is not ground. Thereby, an inner member is obtained at low cost.

また、非研削面の平面(側面31e,31f)が軌道溝16の側面16b,16cに対向する向き、すなわち、非研削面の平面(側面31e,31f)が動力伝達面となる向きに、内側部材31が軌道溝16に挿入されないようにする必要がある。ここで、内側部材31は直方体状とし、長辺側が研削面とされ、短辺側が非研削面とされる。つまり、作業者が、短辺側の平面(側面31e,31f)が軌道溝16の側面16b,16cに対向するように、内側部材31を軌道溝16に挿入しようとしても、内側部材31を軌道溝16に挿入できない。従って、確実に、研削面である長辺側が軌道溝16の側面16b,16cに対向するように、内側部材31が軌道溝16に組み付けられる。   Further, the inner surface is oriented in such a direction that the flat surfaces (side surfaces 31e and 31f) of the non-ground surface face the side surfaces 16b and 16c of the raceway groove 16, that is, the direction in which the flat surfaces (side surfaces 31e and 31f) of the non-ground surface become power transmission surfaces. It is necessary to prevent the member 31 from being inserted into the raceway groove 16. Here, the inner member 31 has a rectangular parallelepiped shape, and the long side is a ground surface and the short side is a non-ground surface. That is, even if the operator tries to insert the inner member 31 into the raceway groove 16 so that the short side planes (side surfaces 31e and 31f) face the side surfaces 16b and 16c of the raceway groove 16, the inner member 31 is caused to track. It cannot be inserted into the groove 16. Therefore, the inner member 31 is assembled to the raceway groove 16 so that the long side, which is the grinding surface, faces the side surfaces 16b, 16c of the raceway groove 16.

また、上記実施形態によれば、内側部材31の軸線方向の両端側に、保持部材33をそれぞれ備えた。このように、トリポード型等速ジョイント1は、簡素で低コストな保持部材33を内側部材31の両端に備えて、両側の保持部材33が転動体32を保持する。従って、内側部材31の形状が簡易な形状となるため、内側部材31が低コストとなる。   Moreover, according to the said embodiment, the holding member 33 was provided in the both ends of the axial direction of the inner member 31, respectively. As described above, the tripod constant velocity joint 1 includes the simple and low-cost holding members 33 at both ends of the inner member 31, and the holding members 33 on both sides hold the rolling elements 32. Therefore, since the shape of the inner member 31 becomes a simple shape, the inner member 31 becomes low cost.

また、上記実施形態によれば、保持部材33は、外周部に転動体32の突起部41(端部)を保持する転動体当接部42を備え、保持部材33の嵌合部37の板厚t1は、転動体当接部42の少なくとも一部である軸方向移動規制部43の板厚t2より大きい。これにより、保持部材33が、転動体当接部42で軽量化されつつ、嵌合部37によって確保された強度を有して内側部材31と確実に嵌合される。   Further, according to the embodiment, the holding member 33 includes the rolling element abutting portion 42 that holds the protrusion 41 (end portion) of the rolling element 32 on the outer peripheral portion, and the plate of the fitting portion 37 of the holding member 33. The thickness t1 is larger than the plate thickness t2 of the axial movement restricting portion 43 that is at least a part of the rolling element abutting portion. Accordingly, the holding member 33 is securely fitted to the inner member 31 with the strength secured by the fitting portion 37 while being reduced in weight by the rolling element contact portion 42.

また、上記実施形態によれば、保持部材33の嵌合部は37の板厚t1は、転動体当接部42の板厚t2より大きい。このため、嵌合部37では大きな板厚t1によって強度が確保されつつ内側部材31に嵌合されるとともに、転動体当接部42は軽量化される。従って、保持部材33は軽量化され、延いては等速ジョイント1が軽量化される。   Further, according to the embodiment, the fitting portion of the holding member 33 has a plate thickness t1 of 37 larger than the plate thickness t2 of the rolling element contact portion 42. For this reason, in the fitting part 37, while ensuring intensity | strength by big board thickness t1, while being fitted to the inner member 31, the rolling element contact part 42 is reduced in weight. Therefore, the holding member 33 is reduced in weight, and thus the constant velocity joint 1 is reduced in weight.

また、上記実施形態によれば、軸方向移動規制部43の軸方向規制面43aから嵌合部37側に向かって行くに従い保持部材33の板厚が転動体32の中央部側に向かって大きくなるよう形成される。つまり、転動体32の円筒部39の外径と転動体32の突起部41の外径との差によって生じた隙間に向かって嵌合部37の厚みが大きくなるよう形成される。このため、嵌合部37の厚みt1を転動体32とは反対側に大きくなるよう形成した場合と比べて軸線方向における、内側部材31と嵌合部37の組付け時の長さが抑制できるのでトリポード型等速ジョイント1が小型化、且つ軽量化する。   Further, according to the above embodiment, the plate thickness of the holding member 33 increases toward the central portion side of the rolling element 32 as it goes from the axial direction regulating surface 43 a of the axial direction movement regulating portion 43 toward the fitting portion 37 side. Formed to be. That is, the fitting portion 37 is formed so that the thickness of the fitting portion 37 increases toward the gap generated by the difference between the outer diameter of the cylindrical portion 39 of the rolling element 32 and the outer diameter of the protrusion 41 of the rolling element 32. For this reason, compared with the case where it forms so that thickness t1 of the fitting part 37 may become large on the opposite side to the rolling element 32, the length at the time of the assembly | attachment of the inner member 31 and the fitting part 37 in an axial direction can be suppressed. Therefore, the tripod type constant velocity joint 1 is reduced in size and weight.

また、上記実施形態によれば、転動体当接部42は、軸方向移動規制部43の外周部を転動体32方向に向けて直角に屈曲し形成した、転動体32が内側部材31の径方向外方へ移動することを規制する径方向移動規制部44を備えている。これにより、転動体当接部42によって転動体32が良好に保持できる。   Further, according to the above embodiment, the rolling element abutting portion 42 is formed by bending the outer peripheral portion of the axial movement restricting portion 43 at a right angle toward the rolling element 32, and the rolling element 32 has a diameter of the inner member 31. A radial movement restricting portion 44 that restricts movement outward is provided. Thereby, the rolling element 32 can be favorably held by the rolling element contact portion 42.

また、上記実施形態によれば、径方向移動規制部44は、端部に外周方向に広がる鍔部45を有している。これにより、転動体当接部42の強度が向上する。   Moreover, according to the said embodiment, the radial direction movement control part 44 has the collar part 45 extended in an outer peripheral direction in an edge part. Thereby, the intensity | strength of the rolling-element contact part 42 improves.

また、上記実施形態によれば、内側部材31は、外周面に円弧溝36を有し、円弧溝36には、軸方向移動規制部43の転動体32側とは反対側の面と当接することで、保持部材33の内側部材31の軸線方向への移動を規制する止め輪34が嵌合されている。これにより、転動体32が内側部材31の軸線方向に移動し、軸方向移動規制部43を押圧しても、止め輪34によって、転動体32の押圧力を受けることができるので、保持部材33とともに、転動体32を良好に保持できる。   Further, according to the above embodiment, the inner member 31 has the arc groove 36 on the outer peripheral surface, and the arc groove 36 contacts the surface of the axial movement restricting portion 43 on the side opposite to the rolling element 32 side. Thus, the retaining ring 34 that restricts the movement of the inner member 31 of the holding member 33 in the axial direction is fitted. Accordingly, even if the rolling element 32 moves in the axial direction of the inner member 31 and presses the axial movement restricting portion 43, the retaining member 33 can receive the pressing force of the rolling element 32 by the retaining ring 34. At the same time, the rolling elements 32 can be favorably retained.

また、上記実施形態によれば、止め輪34は、軌道溝16の側面16b,16cに対向して配置される少なくとも1つの転動体32の突起部41(端部)の先端、即ち転動体32の中心軸線を覆う位置で、軸方向移動規制部43の転動体32側とは反対側の面と当接する。このように、複数ある転動体32のうち、回転駆動力を伝達する転動体であるため、大きな力が軸線方向に発生する虞のある軌道溝16の側面16b,16cに対向して配置される少なくとも1つの転動体32に対して、転動体32の軸線を覆う位置に止め輪34が設けられる。これにより、転動体32が内側部材31の軸線方向に移動し、大きな力で保持部材33の軸方向移動規制部43を押圧しても、軸方向移動規制部43において転動体32とは反対側に設けられた止め輪34によって、転動体32の押圧力を受けることができるので、転動体32は良好に保持される。このため、軸方向移動規制部43の板厚を更に薄くでき、保持部材33がさらに軽量となる。   In addition, according to the above embodiment, the retaining ring 34 is the tip of the protrusion 41 (end) of the at least one rolling element 32 arranged to face the side surfaces 16 b and 16 c of the raceway groove 16, that is, the rolling element 32. Is in contact with the surface of the axial movement restricting portion 43 opposite to the rolling element 32 side. Thus, since it is a rolling element which transmits rotational driving force among a plurality of rolling elements 32, it arranges facing side 16b, 16c of track groove 16 which may generate big power in the direction of an axis. A retaining ring 34 is provided at a position covering the axis of the rolling element 32 with respect to at least one rolling element 32. Thereby, even if the rolling element 32 moves in the axial direction of the inner member 31 and presses the axial movement restricting portion 43 of the holding member 33 with a large force, the axial movement restricting portion 43 is opposite to the rolling element 32. Since the pressing force of the rolling element 32 can be received by the retaining ring 34 provided on the rolling element 32, the rolling element 32 is held well. For this reason, the plate | board thickness of the axial direction movement control part 43 can be made still thinner, and the holding member 33 becomes still lighter.

また、上記実施形態によれば、保持部材33は、板部材をプレス加工して成形され、嵌合部37はプレスせん断面である。これにより、嵌合部37は加工の必要がなく、保持部材33が低コストとなる。   Moreover, according to the said embodiment, the holding member 33 is shape | molded by pressing a board member, and the fitting part 37 is a press shear surface. Thereby, the fitting part 37 does not need a process and the holding member 33 becomes low cost.

<変形例1>
次に、変形例1について説明する。変形例1は、一部を除いて上記実施形態と同様である。よって、変更点についてのみ説明し、同様部分については、詳細な説明を省略する。また、同様の部品については、同じ符号を付して説明する。また、変形例1については、保持部材と転動体との関係についてのみ説明する。後に説明する変形例2,3についても同様である。図11に示すように、変形例1は、保持部材133、及び転動体132を備える。転動体132は、軸状である。転動体132は、軸線方向において円筒中央部が膨らんだ樽型の円筒部139と、円筒部139の端面(図11破線参照)から円筒部139の軸線方向に突設された端部141と、を有している。平面である端部141の端面141aの径φD5は、円筒部139の円筒中央部の外径φD4(最大外径に相当)より小さな径で形成される。
<Modification 1>
Next, Modification 1 will be described. The modification 1 is the same as that of the said embodiment except for a part. Therefore, only the changes will be described, and detailed description of similar parts will be omitted. In addition, the same parts are described with the same reference numerals. Moreover, about the modification 1, only the relationship between a holding member and a rolling element is demonstrated. The same applies to Modifications 2 and 3 described later. As shown in FIG. 11, Modification 1 includes a holding member 133 and rolling elements 132. The rolling element 132 has a shaft shape. The rolling element 132 includes a barrel-shaped cylindrical portion 139 whose cylindrical central portion swells in the axial direction, an end portion 141 projecting in the axial direction of the cylindrical portion 139 from the end surface of the cylindrical portion 139 (see the broken line in FIG. 11), have. A diameter φD5 of the end surface 141a of the flat end portion 141 is formed to be smaller than an outer diameter φD4 (corresponding to the maximum outer diameter) of the cylindrical central portion of the cylindrical portion 139.

保持部材133は、内周部に非円筒状及び板厚t1で形成された嵌合部137と、外周部に転動体132の端面141と当接する、少なくとも一部が板厚t1より小さな板厚t2で形成される転動体当接部142を備える。転動体当接部142は、軸方向移動規制部143、径方向移動規制部144を備える。軸方向移動規制部143は、嵌合部137から径方向外方に向かって延在し形成される。軸方向移動規制部143は、転動体132側に軸方向規制面143aを備える。嵌合部137の板厚t1に対して軸方向移動規制部143の板厚t2は、薄くなるよう形成される。   The holding member 133 includes a fitting portion 137 formed in a non-cylindrical shape and a plate thickness t1 on the inner peripheral portion, and a plate thickness at least partially in contact with the end surface 141 of the rolling element 132 on the outer peripheral portion, which is smaller than the plate thickness t1. A rolling element contact portion 142 formed at t2 is provided. The rolling element contact portion 142 includes an axial direction movement restricting portion 143 and a radial direction movement restricting portion 144. The axial movement restricting portion 143 is formed to extend radially outward from the fitting portion 137. The axial movement restricting portion 143 includes an axial restricting surface 143a on the rolling element 132 side. The plate thickness t2 of the axial movement restricting portion 143 is formed to be thinner than the plate thickness t1 of the fitting portion 137.

具体的には、嵌合部137は、軸方向規制面143aに対して転動体132の中央部側に向かって厚みが大きくなるよう形成される。つまり、円筒部139の外径φD4と端面141aの径φD5との径差によって生じた隙間に向かって嵌合部137の厚みが大きくなるよう形成される。嵌合部137の図11における上側の面と軸方向移動規制部143の上側の面とは同一面である。軸方向規制面143aは、転動体132の端面141aと当接して転動体132の軸線方向への移動を規制する。   Specifically, the fitting part 137 is formed so that the thickness increases toward the central part side of the rolling element 132 with respect to the axial direction regulating surface 143a. That is, the fitting portion 137 is formed so that the thickness of the fitting portion 137 increases toward the gap generated by the difference in diameter between the outer diameter φD4 of the cylindrical portion 139 and the diameter φD5 of the end surface 141a. The upper surface of the fitting portion 137 in FIG. 11 and the upper surface of the axial movement restricting portion 143 are the same surface. The axial direction regulating surface 143a abuts on the end surface 141a of the rolling element 132 and regulates the movement of the rolling element 132 in the axial direction.

径方向移動規制部144は、軸方向移動規制部143よりも外周側の部位が転動体132側に若干屈曲されて形成される。径方向移動規制部144は、転動体132の円筒部139側に径方向規制面144aを備える。径方向規制面144aは、転動体132の円筒部139の側面と当接して転動体132の径方向外方への移動を規制する。このように、保持部材133の外周部全周において転動体当接部142は、転動体132の端面141a(端部)を覆うように、つまり転動体132の軸線を覆うように設けられる。   The radial direction movement restricting portion 144 is formed by slightly bending the outer peripheral portion of the radial direction movement restricting portion 143 toward the rolling element 132. The radial movement restricting portion 144 includes a radial restricting surface 144 a on the cylindrical portion 139 side of the rolling element 132. The radial direction regulating surface 144a abuts against the side surface of the cylindrical portion 139 of the rolling element 132 and regulates the movement of the rolling element 132 outward in the radial direction. As described above, the rolling element contact part 142 is provided so as to cover the end surface 141a (end part) of the rolling element 132, that is, to cover the axis of the rolling element 132, in the entire outer periphery of the holding member 133.

径方向移動規制部144の板厚は、軸方向移動規制部143の板厚t2と同等であってもよいし、嵌合部137の板厚t1と同等であってもよい。このような態様によって、上記実施形態と同様の効果が得られる。   The plate thickness of the radial direction movement restricting portion 144 may be equal to the plate thickness t2 of the axial direction movement restricting portion 143, or may be equal to the plate thickness t1 of the fitting portion 137. By such an aspect, the same effect as the above-described embodiment can be obtained.

<変形例2>
次に、変形例2について説明する。変形例2についても、変形例1と同様、一部を除いて上記実施形態と同様である。よって、変更点についてのみ説明し、同様部分については、詳細な説明を省略する。また、同様の部品については、同じ符号を付して説明する。図12に示すように、変形例2は、保持部材233、及び転動体232を備える。転動体232は、軸状であり、円筒部239と、端部241とを備えている。円筒部239は、軸線方向において円筒径(最大径)がφD6で円筒状に形成される。端部241は、円筒部239の端面(図12の破線参照)から円筒部239の軸線方向に突設される。端部241は、球状であり、軸線方向において円筒部239から離間するにつれ軸線と直交する方向の径φD7が小さくなる。端部241は端面241aを有している。
<Modification 2>
Next, Modification 2 will be described. The modification 2 is the same as the above-described embodiment except for a part as in the modification 1. Therefore, only the changes will be described, and detailed description of similar parts will be omitted. In addition, the same parts are described with the same reference numerals. As illustrated in FIG. 12, Modification 2 includes a holding member 233 and rolling elements 232. The rolling element 232 has an axial shape and includes a cylindrical portion 239 and an end portion 241. The cylindrical portion 239 is formed in a cylindrical shape with a cylindrical diameter (maximum diameter) of φD6 in the axial direction. The end portion 241 protrudes from the end surface of the cylindrical portion 239 (see the broken line in FIG. 12) in the axial direction of the cylindrical portion 239. The end portion 241 has a spherical shape, and the diameter φD7 in the direction orthogonal to the axial line becomes smaller as the end portion 241 is separated from the cylindrical portion 239 in the axial direction. The end 241 has an end surface 241a.

保持部材233は、内周部に非円筒状及び板厚t1で形成された嵌合部237と、外周部に転動体232の端部241の端面241aと当接する、少なくとも一部が板厚t1より小さな板厚t2で形成される転動体当接部242を備える。転動体当接部242は、軸方向移動規制部243、径方向移動規制部244を備える。軸方向移動規制部243は、嵌合部237から径方向外方に向かって延在し形成される。軸方向移動規制部243は、転動体232側に軸方向規制面243aを備える。嵌合部237の板厚t1に対して軸方向移動規制部243の板厚t2は、薄くなるよう形成される。   The holding member 233 comes into contact with the end portion 241a of the end portion 241 of the rolling element 232 at the outer peripheral portion at least partially with the thickness t1. A rolling element contact portion 242 formed with a smaller plate thickness t2 is provided. The rolling element contact part 242 includes an axial direction movement restricting part 243 and a radial direction movement restricting part 244. The axial movement restricting portion 243 is formed to extend radially outward from the fitting portion 237. The axial movement restricting portion 243 includes an axial restricting surface 243a on the rolling element 232 side. The plate thickness t2 of the axial direction movement restricting portion 243 is formed to be thinner than the plate thickness t1 of the fitting portion 237.

具体的には、嵌合部237は、軸方向規制面243aに対して転動体232の中央部側に向かって厚みが大きくなるよう形成される。つまり、円筒部239の外径φD6と端部241の径φD7との径差によって生じた隙間に向かって嵌合部237の厚みが大きくなるよう形成される。図12における嵌合部237の上側の面と軸方向移動規制部243の上側の面とは同一高さである。球状に形成された軸方向規制面243aは、転動体232の端面241aと当接して転動体232の軸線方向への移動を規制する。   Specifically, the fitting portion 237 is formed so as to increase in thickness toward the center side of the rolling element 232 with respect to the axial direction regulating surface 243a. That is, the fitting portion 237 is formed so that the thickness of the fitting portion 237 increases toward the gap generated by the difference in diameter between the outer diameter φD6 of the cylindrical portion 239 and the diameter φD7 of the end portion 241. The upper surface of the fitting portion 237 and the upper surface of the axial movement restricting portion 243 in FIG. 12 have the same height. The spherically-shaped axial regulating surface 243a abuts on the end surface 241a of the rolling element 232 and regulates the movement of the rolling element 232 in the axial direction.

径方向移動規制部244は、軸方向移動規制部243と兼用である。径方向移動規制部244は、転動体232の端面241a側に径方向規制面244aを備える。径方向規制面244aは、端面241aと当接して転動体232の径方向外方への移動を規制する。このように、保持部材233の外周部全周において転動体当接部242は、転動体232の軸線を覆うように設けられる。   The radial movement restriction unit 244 is also used as the axial movement restriction unit 243. The radial movement restricting portion 244 includes a radial restricting surface 244a on the end surface 241a side of the rolling element 232. The radial direction regulating surface 244a abuts on the end surface 241a and regulates the movement of the rolling elements 232 outward in the radial direction. As described above, the rolling element contact portion 242 is provided so as to cover the axis of the rolling element 232 in the entire outer periphery of the holding member 233.

径方向移動規制部244の板厚は、軸方向移動規制部243の板厚t2と同等であってもよいし、嵌合部237の板厚t1と同等であってもよい。このような態様によって、上記実施形態と同様の効果が得られる。なお、変形例1,2では、径方向移動規制部144,244に鍔部を設けていない。しかし、この態様に限らず、設定可能であれば鍔部を設けてもよい。   The plate thickness of the radial direction movement restricting portion 244 may be equal to the plate thickness t2 of the axial direction movement restricting portion 243, or may be equal to the plate thickness t1 of the fitting portion 237. By such an aspect, the same effect as the above-described embodiment can be obtained. In Modifications 1 and 2, the radial movement restricting portions 144 and 244 are not provided with a flange portion. However, the present invention is not limited to this aspect, and a collar may be provided as long as it can be set.

<変形例3>
次に、軸状の転動体以外の例を示す変形例3として、転動体32,132,232を球体としてもよい(図示しない)。この場合、変形例1の転動体132と変形例2の転動体232とを組み合わせたものであると考えればよい。このような態様によっても、上記実施形態と同様の効果が得られる。
<Modification 3>
Next, as a third modification showing an example other than the shaft-shaped rolling element, the rolling elements 32, 132, and 232 may be spherical (not shown). In this case, it may be considered that the rolling element 132 of Modification 1 and the rolling element 232 of Modification 2 are combined. Also by such an aspect, the same effect as the said embodiment is acquired.

なお、上記実施形態及び変形例1〜3では、保持部材33の嵌合部37と内側部材31の被嵌合部35との嵌合は、隙間を有した嵌合であるものとした。しかし、この態様には限らない。嵌合部37と被嵌合部35との嵌合は、圧入としてもよい。この場合、止め輪34及び円弧溝36は設けなくてもよいし、設けてもよい。これらによっても、相応の効果は得られる。   In the embodiment and the first to third modifications, the fitting between the fitting portion 37 of the holding member 33 and the fitted portion 35 of the inner member 31 is a fitting with a gap. However, it is not limited to this aspect. The fitting between the fitting portion 37 and the fitted portion 35 may be press-fitting. In this case, the retaining ring 34 and the arc groove 36 may or may not be provided. The corresponding effects can be obtained also by these.

また、上記実施形態及び変形例1〜3では、内側部材31の長辺側の各側面31c、31dが、各軌道溝16の各側面16b、16cとそれぞれ対向するよう挿入された。しかし、この態様に限らず、内側部材31の短辺側の各側面31e,31fが、各軌道溝16の各側面16b、16cとそれぞれ対向するよう挿入されてもよい。この場合、短辺側の各側面31e,31fを研削面とし、長辺側の各側面31c、31dを非研削面としてもよい。   Moreover, in the said embodiment and the modifications 1-3, each long side side 31c and 31d of the inner member 31 was inserted so that each side 16b and 16c of each track groove 16 might each be opposed. However, the present invention is not limited thereto, and the side surfaces 31e and 31f on the short side of the inner member 31 may be inserted so as to face the side surfaces 16b and 16c of the raceway grooves 16, respectively. In this case, the short side surfaces 31e and 31f may be ground surfaces, and the long side surfaces 31c and 31d may be non-ground surfaces.

また、上記実施形態及び変形例1〜3では、内側部材31が直方体状に形成された。しかし、この態様に限らず、内側部材31の長辺と短辺の長さが同じになるよう形成してもよい。これによっても、本発明の構造によって内側部材31と、保持部材33との相対回転を安価に規制する効果が十分得られる。   Moreover, in the said embodiment and the modifications 1-3, the inner member 31 was formed in the rectangular parallelepiped shape. However, the present invention is not limited to this aspect, and the inner member 31 may be formed so that the long side and the short side have the same length. Also by this, the effect of restricting the relative rotation between the inner member 31 and the holding member 33 at a low cost is sufficiently obtained by the structure of the present invention.

また、上記実施形態及び変形例1〜3では、内側部材31の長辺側の各側面31c、31dを研削面とした。しかし、この態様に限らず、長辺側及び短辺側の各側面をすべて非研削面としてもよい。これによっても、相応の効果は得られる。また、長辺側及び短辺側の各側面をすべて研削面としてもよい。   Moreover, in the said embodiment and the modifications 1-3, each side surface 31c, 31d of the long side of the inner member 31 was used as the grinding surface. However, the present invention is not limited to this aspect, and all the side surfaces on the long side and the short side may be non-ground surfaces. This also provides a reasonable effect. Moreover, it is good also considering all the side surfaces of a long side and a short side as a grinding surface.

また、上記実施形態及び変形例1〜3では、内側部材31の長辺側の各側面31c、31dに被嵌合部35の平面部35bを設けた。しかし、この態様に限らず、平面部35bを内側部材31の短辺側の各側面31e、31fに設けてもよい。   Moreover, in the said embodiment and the modifications 1-3, the plane part 35b of the to-be-fitted part 35 was provided in each side surface 31c, 31d of the long side of the inner member 31. As shown in FIG. However, the present invention is not limited to this, and the flat portion 35 b may be provided on each of the side surfaces 31 e and 31 f on the short side of the inner member 31.

また、上記実施形態及び変形例1〜3では、内側部材31の被嵌合部35及び保持部材33の嵌合部37の非円筒状の外周面は、各平面部35b,37bによって形成した。しかし、この態様には限らない。非円筒状の外周面は、平面でなくどのような形状で成立させてもよい。これによっても、同様の効果が得られる。   Moreover, in the said embodiment and the modifications 1-3, the non-cylindrical outer peripheral surface of the to-be-fitted part 35 of the inner side member 31 and the fitting part 37 of the holding member 33 was formed by each plane part 35b, 37b. However, it is not limited to this aspect. The non-cylindrical outer peripheral surface may be formed in any shape instead of a flat surface. This also provides the same effect.

また、上記実施形態及び変形例1〜3では、内側部材31の両端面31a,31b側に保持部材33を設けた。しかし、この態様には限らず、保持部材33は、両端面31a,31bのいずれか一方に設けるだけでもよい。この場合、保持部材33を設けなかった端面31a,31bの他方では、保持部材33に相当する鍔部を内側部材31と一体的に設ければよい。これによっても、保持部材33、1個分の効果は得られる。   Moreover, in the said embodiment and the modifications 1-3, the holding member 33 was provided in the both end surfaces 31a and 31b side of the inner member 31. FIG. However, it is not limited to this mode, and the holding member 33 may be provided only on either one of the both end faces 31a and 31b. In this case, a flange corresponding to the holding member 33 may be provided integrally with the inner member 31 on the other of the end surfaces 31 a and 31 b where the holding member 33 is not provided. Also by this, the effect of one holding member 33 can be obtained.

また、上記実施形態及び変形例1〜3では、保持部材33の抜け止めとして、止め輪34及び円弧溝36を設けた。しかし、この態様には限らない。止め輪34の代わりに、保持部材33をカシメることによって保持部材33の抜け止めを行なってもよい。   Moreover, in the said embodiment and the modifications 1-3, the retaining ring 34 and the circular arc groove 36 were provided as a retention prevention of the holding member 33. FIG. However, it is not limited to this aspect. Instead of the retaining ring 34, the retaining member 33 may be prevented from coming off by caulking the retaining member 33.

1・・・トリポード型等速ジョイント、 10・・・外輪、 16・・・軌道溝、 16b,16c・・・各側面、 31c,31d・・・各側面、 20・・・トリポード、 21・・・ボス部、 22・・・トリポード軸部、 22a・・・球面凸状部、 30・・・転動体ユニット、 31・・・内側部材、 31a,31b・・・両端面、 31c,31d・・・側面(長辺側)、 31e,31f・・・側面(短辺側)、 31g・・・貫通孔、 31h,31i・・・各テーパ面、 32,132,232・・・転動体、 33,133,233・・・保持部材、 33c・・・内周面、 34・・・止め輪、 35・・・被嵌合部、 35a・・・内側部材円弧部、 35b・・・平面部、 35c・・・外周面、 36・・・円弧溝、 37,137,237・・・嵌合部、 37a・・・保持部材円弧部、 37b・・・平面部、 38・・・平面状転走面、 39,139,239・・・円筒部、 41・・・端部(突起部)、 42,142,242・・・転動体当接部、 43,143,243・・・軸方向移動規制部、 43a,143a,243a・・・軸方向規制面、 44,144,244・・・径方向移動規制部、 44a,144a,244a・・・径方向規制面、 45,145,245・・・鍔部、 141,142・・・端部。   DESCRIPTION OF SYMBOLS 1 ... Tripod type constant velocity joint, 10 ... Outer ring, 16 ... Track groove, 16b, 16c ... Each side surface, 31c, 31d ... Each side surface, 20 ... Tripod, 21 ... -Boss part, 22 ... Tripod shaft part, 22a ... Spherical convex part, 30 ... Rolling element unit, 31 ... Inner member, 31a, 31b ... Both end faces, 31c, 31d ... Side surface (long side), 31e, 31f ... side surface (short side), 31g ... through hole, 31h, 31i ... taper surface, 32, 132, 232 ... rolling element, 33 , 133, 233 ... holding member, 33c ... inner peripheral surface, 34 ... retaining ring, 35 ... fitted portion, 35a ... inner member arc portion, 35b ... flat portion, 35c ... outer peripheral surface, 36 ... arc groove, 37 137, 237 ... fitting part, 37a ... holding member arc part, 37b ... flat part, 38 ... flat rolling surface, 39, 139, 239 ... cylindrical part, 41 ... End portions (projections) 42, 142, 242 ... rolling element contact portions 43, 143, 243 ... axial movement restricting portions 43a, 143a, 243a ... axial restricting surfaces 44 , 144, 244 ... radial movement restricting portion, 44a, 144a, 244a ... radial restricting surface, 45, 145, 245 ... flange, 141, 142 ... end.

Claims (9)

筒状からなり、内周面に外輪回転軸方向に延びる複数の軌道溝が形成された外輪と、
シャフトに連結されるボス部、及び前記ボス部の外周面からそれぞれ前記ボス部の径方向外方に延びるように設けられる複数のトリポード軸部を備えるトリポードと、
環状に形成され、前記トリポード軸部の外周に前記トリポード軸部に対して傾動可能に設けられる内側部材と、
前記内側部材の外周に循環可能に設けられ、且つ、前記軌道溝の側面に沿って転動可能に設けられる複数の転動体と、
前記転動体が前記内側部材に対して、前記内側部材の軸線方向へ移動することを規制し、且つ、前記転動体が前記内側部材に対して、前記内側部材の径方向外方へ移動することを規制する保持部材と、
を備え、
前記内側部材は、非円筒状の外周面を有する被嵌合部を備え、
前記保持部材は、非円筒状の内周面を有し、前記被嵌合部に嵌合される嵌合部を備え、
前記被嵌合部と前記嵌合部との嵌合によって、前記保持部材は、前記内側部材に対して相対回転不能とされるトリポード型等速ジョイント。
An outer ring having a cylindrical shape and formed with a plurality of raceway grooves extending in the direction of the outer ring rotation axis on the inner peripheral surface;
A tripod provided with a plurality of tripod shaft portions provided so as to extend from the outer peripheral surface of the boss portion to the shaft in the radial direction of the boss portion.
An inner member formed in an annular shape and provided on the outer periphery of the tripod shaft portion so as to be tiltable with respect to the tripod shaft portion;
A plurality of rolling elements provided on the outer periphery of the inner member so as to be able to circulate, and provided so as to be able to roll along the side surface of the raceway groove;
The rolling element is restricted from moving in the axial direction of the inner member with respect to the inner member, and the rolling element is moved radially outward of the inner member with respect to the inner member. A holding member that regulates,
With
The inner member includes a fitted portion having a non-cylindrical outer peripheral surface,
The holding member has a non-cylindrical inner peripheral surface, and includes a fitting portion fitted into the fitted portion,
A tripod type constant velocity joint in which the holding member cannot be rotated relative to the inner member by fitting the fitted portion and the fitting portion.
前記トリポード型等速ジョイントは、前記保持部材の前記内側部材の前記軸線方向への移動を規制する止め輪を備え、
前記内側部材は、前記外周面に前記止め輪が嵌合される円弧溝を有し、
前記内側部材の前記被嵌合部の前記非円筒状の外周面は、内側部材円弧部を有し、
前記保持部材の前記嵌合部の前記非円筒状の内周面は、前記被嵌合部の前記内側部材円弧部に対応する保持部材円弧部を有し、
前記円弧溝と前記内側部材円弧部とは、同軸に形成される、請求項1に記載のトリポード型等速ジョイント。
The tripod type constant velocity joint includes a retaining ring that restricts movement of the inner member of the holding member in the axial direction;
The inner member has an arc groove in which the retaining ring is fitted to the outer peripheral surface,
The non-cylindrical outer peripheral surface of the fitted portion of the inner member has an inner member arc portion,
The non-cylindrical inner peripheral surface of the fitting portion of the holding member has a holding member arc portion corresponding to the inner member arc portion of the fitted portion,
The tripod type constant velocity joint according to claim 1, wherein the arc groove and the inner member arc portion are formed coaxially.
前記止め輪の内周面は、円筒状であり、
前記内側部材の前記円弧溝は、前記内側部材の前記外周面における周方向の位相のうち前記軌道溝の前記側面と対向する位相の部位とは異なる位相の部位に設けられる、請求項2に記載のトリポード型等速ジョイント。
The inner peripheral surface of the retaining ring is cylindrical,
The circular arc groove of the inner member is provided in a portion of a phase different from a portion of a phase facing the side surface of the raceway groove in a circumferential phase on the outer peripheral surface of the inner member. Tripod type constant velocity joint.
前記内側部材の前記被嵌合部の前記非円筒の外周面は、平面部を有し、
前記内側部材は、前記転動体を転動させる平面状転走面を有し、
前記被嵌合部の前記平面部と前記平面状転走面は、同一平面上に形成される、請求項1又は2に記載のトリポード型等速ジョイント。
The non-cylindrical outer peripheral surface of the fitted portion of the inner member has a flat portion,
The inner member has a planar rolling surface for rolling the rolling element,
The tripod type constant velocity joint according to claim 1 or 2, wherein the planar portion and the planar rolling surface of the fitted portion are formed on the same plane.
前記内側部材の前記被嵌合部の前記平面部及び前記内側部材の前記平面状転走面は、前記軌道溝の前記側面と対向する面である、請求項4に記載のトリポード型等速ジョイント。   The tripod constant velocity joint according to claim 4, wherein the planar portion of the fitted portion of the inner member and the planar rolling surface of the inner member are surfaces facing the side surface of the raceway groove. . 前記内側部材は、前記外周において背向する2対の平行な平面のうち前記周方向の辺の長さが長い長辺側の一対の平面と、前記周方向の辺の長さが前記長辺側の平面の前記辺の長さより短い短辺側の一対の平面とを有して直方体状に形成され、
前記内側部材の前記被嵌合部のうち前記保持部材の前記嵌合部に対して周方向に係止される部位は、前記内側部材の前記長辺側の前記平面に設けられ、
前記長辺側の前記平面は、前記軌道溝の前記側面に対向する面である、請求項1〜5の何れか1項に記載のトリポード型等速ジョイント。
The inner member includes a pair of planes on the long side where the length of the side in the circumferential direction is long, and the length of the side in the circumferential direction is the long side. A pair of planes on the short side shorter than the length of the side of the side plane is formed in a rectangular parallelepiped shape,
A portion of the fitted portion of the inner member that is locked in the circumferential direction with respect to the fitting portion of the holding member is provided on the flat surface on the long side of the inner member,
The tripod constant velocity joint according to any one of claims 1 to 5, wherein the flat surface on the long side is a surface facing the side surface of the raceway groove.
前記直方体状の前記内側部材の前記長辺側の前記1対の平面は研削面であり、前記短辺側の前記1対の平面は非研削面である、請求項6に記載のトリポード型等速ジョイント。   The tripod type according to claim 6, wherein the pair of flat surfaces on the long side of the rectangular parallelepiped inner member is a ground surface, and the pair of flat surfaces on the short side is a non-ground surface. Fast joint. 前記内側部材の前記軸線方向の両端側に、前記保持部材をそれぞれ備える請求項1〜7の何れか1項に記載のトリポード型等速ジョイント。   The tripod type | mold constant velocity joint of any one of Claims 1-7 each provided with the said holding member in the both ends side of the said axial direction of the said inner member. 前記保持部材は、環状で板状に形成され、外周部に前記転動体の端部に当接する転動体当接部を備え、
前記保持部材の前記嵌合部の板厚は、前記転動体当接部の板厚のうち少なくとも一部の板厚より大きい、請求項1〜8の何れか1項に記載のトリポード型等速ジョイント。
The holding member is formed in a plate shape in an annular shape, and includes a rolling element abutting portion that abuts on an end of the rolling element on an outer peripheral portion,
The tripod type constant velocity according to any one of claims 1 to 8, wherein a thickness of the fitting portion of the holding member is larger than at least a part of a thickness of the rolling element contact portion. Joint.
JP2014157871A 2014-08-01 2014-08-01 Tripod type constant velocity joint Pending JP2016035282A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014157871A JP2016035282A (en) 2014-08-01 2014-08-01 Tripod type constant velocity joint
DE102015112483.1A DE102015112483A1 (en) 2014-08-01 2015-07-30 TRIPOIDGLEICHLAUFGELENK
US14/813,543 US20160032984A1 (en) 2014-08-01 2015-07-30 Tripod constant velocity joint
CN201510479281.8A CN105317859A (en) 2014-08-01 2015-08-03 Tripod constant velocity joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014157871A JP2016035282A (en) 2014-08-01 2014-08-01 Tripod type constant velocity joint

Publications (1)

Publication Number Publication Date
JP2016035282A true JP2016035282A (en) 2016-03-17

Family

ID=55523256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014157871A Pending JP2016035282A (en) 2014-08-01 2014-08-01 Tripod type constant velocity joint

Country Status (1)

Country Link
JP (1) JP2016035282A (en)

Similar Documents

Publication Publication Date Title
KR102236715B1 (en) Gear power transmission device
JP6352015B2 (en) Rotation transmission device
JPWO2016114327A1 (en) Cam device and steering wheel position adjusting device
JP5240506B2 (en) Sliding tripod type constant velocity joint
JP2016035282A (en) Tripod type constant velocity joint
JP2016035281A (en) Tripod type constant velocity joint
US20160032984A1 (en) Tripod constant velocity joint
JP4952667B2 (en) Sliding tripod type constant velocity joint
JP5176717B2 (en) Sliding tripod type constant velocity joint
JP6372304B2 (en) Toroidal continuously variable transmission
US20160369848A1 (en) Sliding constant-velocity joint
JP2016148356A (en) Constant velocity joint
JP5240507B2 (en) Sliding tripod type constant velocity joint
JP5726694B2 (en) Constant velocity joint
JP2016161053A (en) Slide type constant velocity joint
JP2010281357A (en) Sliding tripod type constant velocity joint
JP6561505B2 (en) Constant velocity joint
JP2016180450A (en) Slide type constant velocity joint
JP2016169847A (en) Constant velocity joint
JP6565217B2 (en) Sliding constant velocity joint
JP6497167B2 (en) Sliding constant velocity joint
JP2010007707A (en) Sliding type tripod constant velocity joint
US20160369845A1 (en) Sliding constant velocity joint
JP2016079996A (en) Toroidal-type continuously variable transmission
JP2010144898A (en) Sliding tripod constant-velocity joint and roller unit