JP2016034926A - Production method of 5-hydroxymethylfurfural - Google Patents

Production method of 5-hydroxymethylfurfural Download PDF

Info

Publication number
JP2016034926A
JP2016034926A JP2014158832A JP2014158832A JP2016034926A JP 2016034926 A JP2016034926 A JP 2016034926A JP 2014158832 A JP2014158832 A JP 2014158832A JP 2014158832 A JP2014158832 A JP 2014158832A JP 2016034926 A JP2016034926 A JP 2016034926A
Authority
JP
Japan
Prior art keywords
cellulose
reaction
catalyst
raw material
hmf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014158832A
Other languages
Japanese (ja)
Other versions
JP6425936B2 (en
Inventor
三村 直樹
Naoki Mimura
直樹 三村
山口 有朋
Aritomo Yamaguchi
有朋 山口
佐藤 修
Osamu Sato
佐藤  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014158832A priority Critical patent/JP6425936B2/en
Publication of JP2016034926A publication Critical patent/JP2016034926A/en
Application granted granted Critical
Publication of JP6425936B2 publication Critical patent/JP6425936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for synthesizing 5-hydroxymethylfurfural by one pot (single stage) reaction by using cellulose and/or a cellulose-containing material as raw materials, and without using a harmful catalyst or organic solvent.SOLUTION: Calcium phosphate is used as a catalyst, and preferably, cellulose and/or a cellulose-containing material which are raw materials are subjected beforehand to crushing/grinding treatment independently or in the mixed state with the catalyst, and then the catalyst and the cellulose or the cellulose-containing material which is the raw material are subjected to a heating treatment in a water solvent, to thereby obtain 5-hydroxymethylfurfural.SELECTED DRAWING: Figure 1

Description

本発明は、5−ヒドロキシメチルフルフラールの製造方法に関し、特に、セルロースを原料に用いた5−ヒドロキシメチルフルフラールの製造方法に関する。   The present invention relates to a method for producing 5-hydroxymethylfurfural, and more particularly to a method for producing 5-hydroxymethylfurfural using cellulose as a raw material.

5−ヒドロキシメチルフルフラール(以下、「HMF」ということもある)は、樹脂材料、燃料、化成品、界面活性剤、香粧品などの種々の有用な化学物質の原料となるので、重要な化学中間体である。このHMFを有用な化学物質に変換する方法、および変換で得られた生成物の有効利用方法の例として、次のようなものがある。
酸化反応によればフランジカルボン酸に変換することができて、この生成物はテレフタル酸の代替物質として期待されている。また、水素化反応によれば、ジメチルフランへと変換され、燃料添加剤としての利用が期待されている。さらに、加水分解反応によればレブリン酸が生成し、γ-バレロラクトンの原料など広範な利用が期待できる。
5-Hydroxymethylfurfural (hereinafter sometimes referred to as “HMF”) is an important chemical intermediate because it is a raw material for various useful chemical substances such as resin materials, fuels, chemical products, surfactants and cosmetics. Is the body. Examples of a method for converting this HMF into a useful chemical substance and a method for effectively using the product obtained by the conversion include the following.
Oxidation can be converted to furandicarboxylic acid, and this product is expected as an alternative to terephthalic acid. Further, according to the hydrogenation reaction, it is converted into dimethylfuran and expected to be used as a fuel additive. Furthermore, levulinic acid is produced by the hydrolysis reaction, and a wide range of uses such as a raw material for γ-valerolactone can be expected.

このHMFは、糖類を種々の条件下で加水分解及び脱水反応をさせることにより製造することができるが、近年、石油の代替として、廃木材などの廃棄バイオマスが化学原料資源として注目されており、セルロースを原料にしてHMFを合成する方法が種々提案されている。   This HMF can be produced by hydrolyzing and dehydrating saccharides under various conditions. In recent years, waste biomass such as waste wood has attracted attention as a chemical raw material resource as an alternative to petroleum. Various methods for synthesizing HMF using cellulose as a raw material have been proposed.

例えば、特許文献1では、セルロースから乳酸及び5−ヒドロキシメチルフルフラール及びフルフラールを製造する方法において、セルロースを含有する水を経路へ流す流通工程と、前記水に塩基が添加されている状態で前記水が前記経路内で温度150℃以上400℃未満、圧力5MPa以上の状態にされる乳酸製造工程と、前記乳酸製造工程の前あるいは後に、前記水に酸が添加されている状態で前記水が前記経路内で温度250℃以上400℃未満、圧力10MPa以上の状態にされる5−ヒドロキシメチルフルフラール及びフルフラール製造工程とにより、乳酸及び5−ヒドロキシメチルフルフラール及びフルフラールを製造することが記載されている。しかしながら、圧力5MPaという高圧条件を課す必要があり、高圧反応を安全に行うための装置や維持管理にコストがかかると予想される。   For example, in Patent Document 1, in a method for producing lactic acid and 5-hydroxymethylfurfural and furfural from cellulose, a flow step of flowing water containing cellulose to the path, and the water in a state where a base is added to the water. Is a lactic acid production process in which the temperature is set to a temperature of 150 ° C. or more and less than 400 ° C. and a pressure of 5 MPa or more, and before or after the lactic acid production process, the water is added in a state where an acid is added to the water. It describes that lactic acid and 5-hydroxymethylfurfural and furfural are produced by a 5-hydroxymethylfurfural and furfural production process in which a temperature of 250 ° C. or more and less than 400 ° C. and a pressure of 10 MPa or more is established in the route. However, it is necessary to impose a high pressure condition of a pressure of 5 MPa, and it is expected that an apparatus and a maintenance management for safely performing a high pressure reaction will be costly.

また、特許文献2では、セルロースから5−ヒドロキシメチルフルフラールを製造する方法において、反応温度200℃以上400℃未満、圧力10MPa以上40MPa以下の水に、セルロースと酸と触媒を共存させることによって、前記セルロースを直接5−ヒドロキシメチルフルフラールにまで選択的に分解すること、及び該触媒として、スカンジウムトリフラート、モンモリロナイト、白金担持アルミナを用いることが記載されている。しかしながら、該方法では、水を10MPa以上40MPa以下と高圧条件に保つ必要があり、安全な反応のためには装置コスト、維持管理コストが多大になると予想される。また、酸としては硫酸や硝酸、リン酸などの無機酸やギ酸や酢酸などの有機酸が挙げられており、水以外に添加剤的に使用する必要性がある。また装置腐食など維持管理にコストがかかることが予想される。   In addition, in Patent Document 2, in the method for producing 5-hydroxymethylfurfural from cellulose, the cellulose, the acid and the catalyst are allowed to coexist in water having a reaction temperature of 200 ° C. or more and less than 400 ° C. and a pressure of 10 MPa or more and 40 MPa or less. It is described that cellulose is selectively decomposed directly to 5-hydroxymethylfurfural, and scandium triflate, montmorillonite, and platinum-supported alumina are used as the catalyst. However, in this method, it is necessary to keep the water under a high pressure condition of 10 MPa or more and 40 MPa or less, and it is expected that the apparatus cost and the maintenance management cost will be great for a safe reaction. Examples of the acid include inorganic acids such as sulfuric acid, nitric acid and phosphoric acid, and organic acids such as formic acid and acetic acid, and it is necessary to use them as additives in addition to water. In addition, maintenance costs such as equipment corrosion are expected to be expensive.

また、特許文献3では、ヘキソースを、不均一系リン酸ジルコニウム触媒の存在下、亜臨界状態または超臨界状態の水と接触させて5−ヒドロキシメチルフルフラールを得ること、及びセルロース又はセルロース含有物質を、不均一系リン酸ジルコニウム触媒の存在下、亜臨界状態または超臨界状態の水と接触させて、ヘキソースに分解し、さらに得られたヘキソースから5−ヒドロキシメチルフルフラールを得ることが記載されている。
しかしながら、反応開始物質がセルロールやセルロース含有物質である場合については、亜臨界状態または超臨界状態の水と接触させると、分解が進み、単糖類、二糖類を生成する、この分解の際に、反応系にリン酸ジルコニウム触媒が存在していても、セルロースの分解反応を妨害しない、との記載があるだけで、セルロースの分解については具体的な記載はない。また、本手法においては、亜臨界条件、または超臨界条件で反応を行う必要性があり、高温高圧条件の反応を安全に行うための設備やその維持管理が高コストであることが予想される。
In Patent Document 3, hexose is brought into contact with subcritical or supercritical water in the presence of a heterogeneous zirconium phosphate catalyst to obtain 5-hydroxymethylfurfural, and cellulose or a cellulose-containing substance is obtained. In the presence of a heterogeneous zirconium phosphate catalyst, it is described that it is decomposed into hexose by contacting with subcritical or supercritical water, and 5-hydroxymethylfurfural is obtained from the obtained hexose. .
However, when the reaction starting material is cellulose or a cellulose-containing material, when it is brought into contact with subcritical or supercritical water, decomposition proceeds and monosaccharides and disaccharides are produced. Even if a zirconium phosphate catalyst is present in the reaction system, there is only a description that it does not interfere with the decomposition reaction of cellulose, and there is no specific description about the decomposition of cellulose. Also, in this method, it is necessary to perform the reaction under subcritical conditions or supercritical conditions, and it is expected that the equipment for maintaining the reaction under high temperature and high pressure conditions and its maintenance will be expensive. .

また、特許文献4では、セルロースを、酸性電解水に混合し、得られた混合物を、最高温度が210℃で飽和蒸気圧の条件下で、撹拌することで、ヒドロキシメチルフルフラールを得ることが記載されている。しかしながら、通常の水ではなく、酸性電解水を溶媒に使用しているので高コストにつながることが予想される。   Patent Document 4 describes that hydroxymethylfurfural is obtained by mixing cellulose in acidic electrolyzed water and stirring the resulting mixture under conditions of a maximum temperature of 210 ° C. and a saturated vapor pressure. Has been. However, since acid electrolyzed water is used as a solvent instead of ordinary water, it is expected to lead to high costs.

また、特許文献5においては、木材及び農業廃棄汚物のリグノセルロース材料(セルルース、ヘミセルロース及びリグニン)を、固体不均一酸触媒を用いて、一段階加水分解法により付加価値材料に変換するための方法が提案されており、該文献の実施例中には、溶媒として水のみを用いたものも記載されている。
しかしながら、反応混合物の分析について、HPLC(高速液体クロマトグラフ装置)で分析し、すべての化合物(キシロース、アラビノース、グルコース、5−ヒドロキシメチルフルフラール及びフルアルデヒド)の較正を分析に先立て行ったことが記載されているものの、キシロース以外の生成物については、40%のフルフラール収率が観察されたことが記載されているだけで、HMFについては具体的な記載がない。
In Patent Document 5, a method for converting lignocellulosic materials (cellulose, hemicellulose and lignin) of wood and agricultural waste waste into a value-added material by a one-step hydrolysis method using a solid heterogeneous acid catalyst. Have been proposed, and in the examples of this document, those using only water as a solvent are also described.
However, the analysis of the reaction mixture was performed by HPLC (high performance liquid chromatograph), and all the compounds (xylose, arabinose, glucose, 5-hydroxymethylfurfural and furaldehyde) were calibrated prior to the analysis. Although described, it is only described that a 40% furfural yield was observed for products other than xylose, and there is no specific description for HMF.

また、非特許文献1には、CuCl2とCrCl2の触媒金属成分を1-ethyl-3-methylimidazolium chlorideに溶解して得られる反応系がセルロースの変換に効果的であり、HMFの収率が55.4±4.0%であると記載されている。
しかしながら、触媒に有害金属のクロムが使用されており、製造時の安全性に問題が生じることや、使用後の触媒の処理や廃液処理等に多大なコストがかかることが予想される。
Non-Patent Document 1 discloses that a reaction system obtained by dissolving catalytic metal components of CuCl 2 and CrCl 2 in 1-ethyl-3-methylimidazolium chloride is effective for cellulose conversion, and the yield of HMF is high. It is described as 55.4 ± 4.0%.
However, chromium, which is a harmful metal, is used for the catalyst, and it is expected that there will be a problem in safety during production, and that it will be costly to treat the catalyst after use and waste liquid treatment.

さらに、非特許文献2には、セルロース及びグルコースをイオン液体(ionic liquid)の存在下でマイクロウェーブ処理をすることがHMFを得る効果的な方法であり、触媒には3塩化クロム6水和物が効果的であると記載されている。
しかし、この方法では、同じく有害金属であるクロムの処理に多大なコストがかかることが予想される。
Furthermore, Non-Patent Document 2 discloses an effective method for obtaining HMF by subjecting cellulose and glucose to microwave treatment in the presence of an ionic liquid, and the catalyst contains chromium trichloride hexahydrate. Are described as effective.
However, with this method, it is expected that the treatment of chromium, which is also a harmful metal, will be very expensive.

特開2005−232116号公報JP-A-2005-232116 特開2007−145736号公報JP 2007-145736 A 特開2007−196174号公報JP 2007-196174 A 特開2011−115061号公報JP 2011-115061 A 特開2013−517792号公報JP 2013-517792 A

Applied Catalysis A: General,第361巻,Issues 1-2, 117-122ページApplied Catalysis A: General, Vol.361, Issues 1-2, 117-122 Tetrahedron Letters 第50巻,(2009年) 5403-5405ページTetrahedron Letters Volume 50, (2009) 5403-5405

以上のとおり、HMFの製造においては、セルロースから、酸触媒等を用いてグルコースなどの糖を製造し、得られたグルコースなどの糖からHMFを製造することは可能であるが、セルロース又はセルロース含有物質を原料として、ワンポット(一段)反応でHMFを合成させることが好ましい。
しかしながら、セルロースから直接一段でHMFを製造する手法は少なく、あったとしても有害なクロム触媒や高価なイオン液体を用いるものがほとんどであった。
また、グリーンケミストリーの考え方に基づけば、触媒には有害金属元素を含まないことが求められる。さらに、溶媒は後処理やコストの点から水であることが望ましい。
As described above, in the production of HMF, sugar such as glucose can be produced from cellulose using an acid catalyst or the like, and HMF can be produced from the obtained sugar such as glucose. It is preferable to synthesize HMF by using a substance as a raw material in a one-pot reaction.
However, there are few techniques for producing HMF directly from cellulose in one step, and most of them use harmful chromium catalysts or expensive ionic liquids.
Further, based on the concept of green chemistry, the catalyst is required not to contain harmful metal elements. Furthermore, it is desirable that the solvent is water from the viewpoint of post-treatment and cost.

本発明は、こうした現状を鑑みてなされたものであって、セルロース又はセルロース含有物質を原料として、有害な触媒や有機溶剤を用いることなく、ワンポット(一段)反応でHMFを合成する方法を提供することを目的とするものである。   The present invention has been made in view of the current situation, and provides a method for synthesizing HMF by a one-pot reaction using cellulose or a cellulose-containing substance as a raw material without using a harmful catalyst or an organic solvent. It is for the purpose.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、リン酸カルシウムを触媒に用いて、好ましくは、原料のセルロース及び/又はセルロース含有物質を単独で又は該触媒と混合して、事前に、ボールミルや自動乳鉢などで粉砕混合を行うことにより、セルロース含有原料の結晶性を低下させたり、物理的に強固な接触状態を作ったりした後、該触媒と原料のセルロース又はセルロース含有物質との混合体を、水溶媒ともにオートクレーブ内に密封して加熱することにより目的生成物のHMFへの反応が効果的に進行するという知見を得た。   As a result of intensive research to achieve the above object, the present inventors have used calcium phosphate as a catalyst, and preferably, the raw material cellulose and / or cellulose-containing substance alone or mixed with the catalyst is used in advance. In addition, by performing pulverization and mixing in a ball mill, an automatic mortar or the like, the crystallinity of the cellulose-containing raw material is reduced or a physically strong contact state is created, and then the catalyst and the raw material cellulose or cellulose-containing substance It was found that the reaction of the target product to HMF proceeds effectively by sealing and heating the mixture together with an aqueous solvent in an autoclave.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]セルロース及び/又はセルロース含有物質を反応原料として用い、リン酸カルシウムからなる触媒と水溶媒中で加熱処理することにより、5−ヒドロキシメチルフルフラールを得ることを特徴とする5−ヒドロキシメチルフルフラールの製造方法。
[2]前記加熱処理前に、前記反応原料単独で又は前記触媒と混合して、粉砕・摺り合わせ処理を行うことを特徴とする[1]に記載の5−ヒドロキシメチルフルフラールの製造方法。
[3]前記前処理が、ボールミル処理であることを特徴とする[2]に記載の5−ヒドロキシメチルフルフラールの製造方法。
[4]前記加熱処理が、不活性ガス中で行われることを特徴とする[1]〜[3]のいずれかに記載の5−ヒドロキシメチルフルフラールの製造方法。
[5]前記加熱処理が、180〜220℃で行われることを特徴とする[1]〜[4]のいずれかに記載の5−ヒドロキシメチルフルフラールの製造方法。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] Production of 5-hydroxymethylfurfural, wherein cellulose and / or a cellulose-containing substance is used as a reaction raw material, and 5-hydroxymethylfurfural is obtained by heat treatment in a catalyst composed of calcium phosphate and an aqueous solvent. Method.
[2] The process for producing 5-hydroxymethylfurfural according to [1], wherein the reaction raw material alone or mixed with the catalyst is subjected to pulverization and rubbing before the heat treatment.
[3] The method for producing 5-hydroxymethylfurfural according to [2], wherein the pretreatment is a ball mill treatment.
[4] The method for producing 5-hydroxymethylfurfural according to any one of [1] to [3], wherein the heat treatment is performed in an inert gas.
[5] The method for producing 5-hydroxymethylfurfural according to any one of [1] to [4], wherein the heat treatment is performed at 180 to 220 ° C.

本発明の方法によれば、人体に害のないリン酸カルシウムを触媒に用い、溶媒として水だけを用いることにより、セルロース又はセルロース含有物質から、有害な触媒や、有機溶剤を用いることなく、ワンポット(一段)反応でHMFを合成することができる。   According to the method of the present invention, calcium phosphate which is not harmful to the human body is used as a catalyst, and only water is used as a solvent, so that one-pot (one-stage) can be obtained from cellulose or a cellulose-containing substance without using a harmful catalyst or an organic solvent. HMF can be synthesized by reaction.

本発明の化学反応の概要を示す図The figure which shows the outline | summary of the chemical reaction of this invention

本発明の5−ヒドロキシメチルフルフラールを製造する方法は、セルロース及び/又はセルロース含有物質を反応原料として用い、該反応原料とリン酸カルシウムからなる触媒とを水溶媒中で混合した後、該混合物を加熱することを特徴とする。
図1は、本発明の化学反応の概要を示す図であって、本発明によれば、セルロース及び/又はセルロース含有物質から、有害な触媒や有機溶剤を用いることなく、従来の2段階又は多段階の反応をワンポット(一段)反応で、HMFを合成することができる。
In the method for producing 5-hydroxymethylfurfural of the present invention, cellulose and / or a cellulose-containing substance is used as a reaction raw material, the reaction raw material and a catalyst composed of calcium phosphate are mixed in an aqueous solvent, and then the mixture is heated. It is characterized by that.
FIG. 1 is a diagram showing an outline of a chemical reaction of the present invention. According to the present invention, a conventional two-stage or multi-step process can be performed from cellulose and / or a cellulose-containing substance without using harmful catalysts or organic solvents. The HMF can be synthesized by a one-step reaction.

本発明において、原料に用いるセルロース又はセルロース含有物質として好適なものは、試薬や食品添加物などとして提供されている精製セルロースのほかに、廃棄物系の資源としては古紙や古布、さらには間伐材やオガクズなどに代表される天然木材やその加工品などが使用可能である。廃棄物の場合には紙類には添加剤やインク、布類の場合には染料や合成繊維類、天然木材にはリグニンやヘミセルロースなどセルロース以外の不純物が含有されているが、それらは特に反応に悪影響を与えることはなく、セルロース含有原料を使用すれば良好な反応結果が得られる。   In the present invention, cellulose suitable for use as a raw material or a cellulose-containing substance is not only purified cellulose provided as a reagent or food additive, but also waste paper, waste cloth, and thinned wood as waste resources. Natural wood, such as sawdust and sawdust, and processed products thereof can be used. In the case of waste, paper contains additives and inks, in the case of cloth, dyes and synthetic fibers, and natural wood contains impurities other than cellulose, such as lignin and hemicellulose. If cellulose-containing raw materials are used, good reaction results can be obtained.

また、本発明において、ワンポット(一段)反応に用いる触媒は、リン酸カルシウム(化学式:Ca3(PO4)2)であり、市販の試薬や公知の種々の方法で合成したものが使用できる。 In the present invention, the catalyst used in the one-pot reaction is calcium phosphate (chemical formula: Ca 3 (PO 4 ) 2 ), and commercially available reagents and those synthesized by various known methods can be used.

本発明においては、セルロース又はセルロース含有物質は、好ましくは、加熱処理前に、単独でまたは前記触媒と混合し、機械的エネルギーとして自動乳鉢やボールミル装置などを用いて粉砕・摺り合わせ処理を行った後に、水溶媒中で混合して反応を行う。機械的処理装置を使用して、粉砕・摺り合わせ処理を行うことで、原料セルロース又はセルロース含有物質の結晶性が低下して反応性が大幅に高まる効果が得られるので、高い目的生成物の収率を得るためには、前処理操作は行うことが好ましい。前処理を行う時間は、好ましくは1時間〜7日間、特に好ましくは24時間〜72時間程度である。   In the present invention, the cellulose or the cellulose-containing substance is preferably subjected to pulverization and rubbing treatment using an automatic mortar, a ball mill apparatus, or the like as mechanical energy, alone or mixed with the catalyst before the heat treatment. Later, the reaction is carried out by mixing in an aqueous solvent. By performing pulverization and rubbing treatment using a mechanical processing device, the crystallinity of the raw material cellulose or cellulose-containing substance is reduced and the reactivity is greatly increased. In order to obtain a rate, it is preferable to perform a pretreatment operation. The pretreatment time is preferably about 1 hour to 7 days, particularly preferably about 24 hours to 72 hours.

本発明において、加熱処理は、180〜220℃、好ましくは、200℃前後の反応温度に加熱して、1〜10時間、特に好ましくは2時間程度反応を行う。この反応は多段階の逐次反応であるので、長時間過ぎれば目的生成物の分解や重合、触媒表面への沈着など望ましくない反応や現象が進行し収率の低下を招く。短時間すぎた場合には、原料の反応率が低いので収率が低下する。
また、加熱処理は、アルゴンガスなどの不活性ガス雰囲気下で行うことにより、空気の存在による酸化などの悪影響をなくすことが好ましい。
また、加熱処理は公知の種々の方式が適用できるが、代表的な例として回分式(バッチ式)と流通式が挙げられる。回分式の場合は、密閉状態を保ち反応温度で溶媒の水が液体状態にあるようにすることが好ましい。流通式の場合は、圧力調整弁などの機構により内圧を調整し、溶媒の水が液体状態のまま反応装置を通過できるような構造であることが好ましい。
In the present invention, the heat treatment is performed at a reaction temperature of 180 to 220 ° C., preferably around 200 ° C., and the reaction is performed for 1 to 10 hours, particularly preferably about 2 hours. Since this reaction is a multi-step sequential reaction, if it is too long, undesirable reactions and phenomena such as decomposition of the target product, polymerization, and deposition on the catalyst surface proceed, leading to a decrease in yield. When the time is too short, the yield decreases because the reaction rate of the raw material is low.
The heat treatment is preferably performed in an inert gas atmosphere such as argon gas to eliminate adverse effects such as oxidation due to the presence of air.
In addition, various known methods can be applied for the heat treatment, but representative examples include a batch method and a flow method. In the case of a batch system, it is preferable to keep the sealed state so that the solvent water is in a liquid state at the reaction temperature. In the case of the flow type, it is preferable that the internal pressure is adjusted by a mechanism such as a pressure regulating valve so that the solvent water can pass through the reaction apparatus while being in a liquid state.

以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

(実施例1)
反応原料である、メルク製微結晶セルロースに対して、ボールミルを用いて通算48時間のすり潰し・擦り合わせ処理を施した。この際使用したボールミルは、容量3Lの容器を用いて、直径2cmのアルミナボールを1kgともにセルロースを空気中で封入した。その後水分含有量を調整するために80℃の乾燥機の中で空気中12時間以上乾燥処理を行い、その後シリカゲルで乾燥状態を保っているデシケーター内で室温保管した。
耐圧硝子工業製反応容器(TPR‐1型、内容積100mL)に、上記の保管されたセルロースを0.2g、触媒であるリン酸カルシウム(メルク製)を1.8g、及び蒸留水を20mL加えた。反応容器を密封し、空間部を空気中の酸素の影響を排除するためにアルゴンで置換し初圧を室温で0.4MPaに調節した。加熱用ヒーターを用いて200℃まで加熱し、撹拌機を使用して300rpmで撹拌操作を行いながら反応を行った。2時間経過後、ヒーターを外して、反応容器を室温の水に浸して急冷し反応を停止させた。
Example 1
Merck microcrystalline cellulose as a reaction raw material was ground and rubbed for 48 hours using a ball mill. The ball mill used at this time encapsulated 1 kg of alumina balls having a diameter of 2 cm and cellulose in air using a container having a capacity of 3 L. Thereafter, in order to adjust the moisture content, drying treatment was performed in an air dryer at 80 ° C. for 12 hours or more, and then stored at room temperature in a desiccator kept dry with silica gel.
0.2 g of the stored cellulose, 1.8 g of calcium phosphate (manufactured by Merck) as a catalyst, and 20 mL of distilled water were added to a pressure-resistant glass industry reaction vessel (TPR-1 type, internal volume 100 mL). The reaction vessel was sealed, and the space was replaced with argon to eliminate the influence of oxygen in the air, and the initial pressure was adjusted to 0.4 MPa at room temperature. The mixture was heated to 200 ° C. using a heater for heating, and the reaction was performed while stirring at 300 rpm using a stirrer. After 2 hours, the heater was removed, and the reaction vessel was immersed in room temperature water to quench and stop the reaction.

(生成物の分析方法と分析結果)
反応容器内の反応終了後の混合物はメンブレンフィルター(アドバンテック製)を用いて触媒と未反応原料を分離し、フィルターを通過した黄色透明な水溶液を得た。水溶液は、蒸留水で10倍に希釈し高速液体クロマトグラフ装置(以下HPLCと記載)(島津製作所製)により分析を行った。市販試薬を標準物質として検量線を作成し、その検量線により水溶液中の含有濃度を算出した。セルロースの単位構造はC6105で(C6105)nと表記され、すべてグルコース(C6126)に加水分解された場合をグルコース収率100%とした。HMFについてはグルコース100%から収率100%で得られるHMFの濃度を算出し収率100%とした。
前記反応結果は、グルコースの収率が9.0%、HMFの収率が35.1%と良好な収率を得られた。他の副生成物は検出下限界に近い微小量のフルクトースが見られたが、他の微小ピークは試薬との比較では同定不可能であった。これらは、グルコースやHMFの単量体以外の2量体や複数重合しているオリゴマー的なものと推測される。
(Product analysis methods and results)
After completion of the reaction in the reaction vessel, the catalyst and unreacted raw material were separated using a membrane filter (manufactured by Advantech) to obtain a yellow transparent aqueous solution that passed through the filter. The aqueous solution was diluted 10 times with distilled water and analyzed with a high performance liquid chromatograph (hereinafter referred to as HPLC) (manufactured by Shimadzu Corporation). A calibration curve was prepared using a commercially available reagent as a standard substance, and the concentration in the aqueous solution was calculated from the calibration curve. The unit structure of cellulose is C 6 H 10 O 5 , expressed as (C 6 H 10 O 5 ) n, and the case where it was all hydrolyzed to glucose (C 6 H 12 O 6 ) was defined as a glucose yield of 100%. For HMF, the concentration of HMF obtained from 100% glucose in 100% yield was calculated and taken as 100% yield.
As a result of the reaction, the yield of glucose was 9.0%, and the yield of HMF was 35.1%. Other by-products showed minute amounts of fructose close to the detection limit, but other minute peaks could not be identified by comparison with the reagents. These are presumed to be dimers other than glucose and HMF monomers and oligomers that are polymerized.

反応温度条件を205℃に変更して、それ以外の条件は変更せずに上述の実験を行った。その結果は、HMF収率25.0%、グルコースは検出下限界に近い微小量であった。
次に反応温度条件を195℃に変更して、これ以外の条件は変更せずに上述の実験を行った。その結果は、HMF収率が25.9%、グルコースの収率が12.2%であった。
さらに、温度195℃の条件で、反応時間を3時間に延長した時は、HMF収率が26.5%、グルコースの収率が8.2%であった。
The above-mentioned experiment was performed by changing the reaction temperature condition to 205 ° C. and without changing the other conditions. As a result, the yield of HMF was 25.0%, and glucose was a minute amount close to the lower limit of detection.
Next, the above-mentioned experiment was performed by changing the reaction temperature condition to 195 ° C. without changing the other conditions. As a result, the yield of HMF was 25.9% and the yield of glucose was 12.2%.
Furthermore, when the reaction time was extended to 3 hours under the condition of a temperature of 195 ° C., the HMF yield was 26.5% and the glucose yield was 8.2%.

(実施例2)
本実施例では、反応原料の汎用性を確認するために、メルク製微結晶セルロースに代えてSERVA社製の微結晶性セルロースを原料に用いて、ボールミルを用いて通算48時間のすり潰し・擦り合わせ処理を前述の実施例と同様に施した。その後、前記と同様の反応操作を行い、反応温度200℃、反応時間2時間でHMFの合成を行った。
その結果は、HMF収率が27.0%、グルコースの収率が9.4%であった。
この結果、原料セルロースの製造元により、多少のばらつきは認められるものの、HFFが合成できることは間違いないことが明らかになった。
(Example 2)
In this example, in order to confirm the versatility of the reaction raw material, instead of Merck microcrystalline cellulose, SERVA microcrystalline cellulose was used as a raw material, and grinding and rubbing were performed for 48 hours using a ball mill. The treatment was carried out in the same way as in the previous examples. Thereafter, the same reaction operation as described above was performed, and HMF was synthesized at a reaction temperature of 200 ° C. and a reaction time of 2 hours.
As a result, the yield of HMF was 27.0% and the yield of glucose was 9.4%.
As a result, it was clarified that HFF could be synthesized, although some variation was observed depending on the manufacturer of the raw material cellulose.

(実施例3)
反応原料を実施例1と同一のメルク製微結晶セルロースを使用し、メルク製微結晶セルロースを、自動乳鉢を用いて通算10時間のすり潰し・擦り合わせ処理を空気中、室温で施した。その後水分含有量を調整するために80℃の乾燥機の中で空気中12時間以上乾燥処理を行い、その後シリカゲルで乾燥状態を保っているデシケーター内で室温保管した。
耐圧硝子工業製反応容器(TPR‐1型)に、上記の保管されたセルロースを0.2g、触媒であるリン酸カルシウム(メルク製)を1.8g、及び蒸留水を30mL加えた。反応容器を密封し、空間部を空気中の酸素の影響を排除するためにアルゴンで置換し初圧を室温で0.4MPaに調節した。加熱用ヒーターを用いて200℃まで加熱し撹拌機を使用して300rpmで撹拌操作を行いながら反応を行った。2時間経過後、ヒーターを外して、反応容器を室温の水に浸して急冷し反応を停止させた。HPLCの分析は実施例1とまったく同様に行った。
前記反応の分析結果は、グルコースの収率が8.7%、HMFの収率が25.1%と良好な収率を得られた。他の副生成物は検出下限界に近い微小量のフルクトースが見られたが、他の微小ピークは同定不可能であった。グルコースやHMFの単量体以外の2量体や複数重合しているオリゴマー的なものと推測される。
この結果、前処理手法としては、ボールミル48時間処理が、自動乳鉢処理10時間よりも優れていると言える。
(Example 3)
Using the same Merck microcrystalline cellulose as in Example 1, the Merck microcrystalline cellulose was subjected to grinding and rubbing treatment in air for 10 hours using an automatic mortar at room temperature. Thereafter, in order to adjust the moisture content, drying treatment was performed in an air dryer at 80 ° C. for 12 hours or more, and then stored at room temperature in a desiccator kept dry with silica gel.
0.2 g of the stored cellulose, 1.8 g of calcium phosphate (manufactured by Merck) as a catalyst, and 30 mL of distilled water were added to a pressure-resistant glass industry reaction vessel (TPR-1 type). The reaction vessel was sealed, and the space was replaced with argon to eliminate the influence of oxygen in the air, and the initial pressure was adjusted to 0.4 MPa at room temperature. The reaction was conducted while heating to 200 ° C. using a heater and performing a stirring operation at 300 rpm using a stirrer. After 2 hours, the heater was removed, and the reaction vessel was immersed in room temperature water to quench and stop the reaction. HPLC analysis was performed in the same manner as in Example 1.
As a result of the analysis of the reaction, the yield of glucose was 8.7% and the yield of HMF was 25.1%. Other by-products showed minute amounts of fructose close to the detection limit, but other minute peaks could not be identified. It is presumed to be a dimer other than glucose or HMF monomer or a plurality of polymerized oligomers.
As a result, as a pretreatment method, it can be said that the ball mill 48-hour treatment is superior to the automatic mortar treatment 10 hours.

反応温度条件を205℃に変更して、それ以外の条件は変更せずに上述の実験を行った。その結果は、HMF収率が21.2%、グルコース収率が5.4%であった。
また、反応温度条件を195℃に変更して、それ以外の条件は変更せずに上述の実験を行った。その結果は、HMF収率が18.1%、グルコース収率が8.5%であった。
The above-mentioned experiment was performed by changing the reaction temperature condition to 205 ° C. and without changing the other conditions. As a result, the HMF yield was 21.2% and the glucose yield was 5.4%.
Moreover, the above-mentioned experiment was performed by changing the reaction temperature condition to 195 ° C. and without changing the other conditions. As a result, the HMF yield was 18.1% and the glucose yield was 8.5%.

(実施例4)
メルク製セルロースに代えてSERVA社製微結晶セルロースを10時間自動乳鉢にて粉砕処理を行い原料として用いた。リン酸カルシウム触媒を1.8g添加して30mLの水に分散させ、実施例1と同様の反応容器に入れ、アルゴンを封入し205℃で2時間の加熱を300rpmで撹拌しながら行い反応させた。その結果、グルコースが収率5.1%で、HMFが収率15.1%で得られた。その他、いくつかの同定および定量が不可能な少量の副生成物のピークが検出された。
この実施例の結果は、メルク製セルロース特有の現象ではなく一般性のある反応結果であることを示している。
Example 4
MERVA microcrystalline cellulose was used instead of Merck cellulose for 10 hours in an automatic mortar and used as a raw material. 1.8 g of calcium phosphate catalyst was added and dispersed in 30 mL of water, placed in the same reaction vessel as in Example 1, filled with argon, and reacted at 205 ° C. for 2 hours with stirring at 300 rpm. As a result, glucose was obtained at a yield of 5.1% and HMF was obtained at a yield of 15.1%. In addition, some minor by-product peaks that could not be identified and quantified were detected.
The result of this example shows that the reaction result is not a phenomenon specific to Merck cellulose but a general reaction result.

(実施例5)
本実施例では、原料の汎用性を確認するために、セルロース含有原料に古布(ワイシャツ、綿100%、ユニクロ製)を用いて反応を行った。
古布を1センチ×5センチの大きさに切り、縫製等に用いられている糸を取り除いた後に、粉砕機で粉砕処理を行い綿状のセルロースを得た。実施例1と同様に触媒と混合して水中で反応を行った所、HMFが10.4%生成した。その他副生成物として、同定困難な多数の微小ピークが見られ、触媒表面上にも褐色の沈着物が見られた。これらは、グルコースやHMFの単量体以外の2量体や複数重合しているオリゴマー的なものと推測される。定量計算は原料がすべてセルロースであると仮定している。
(Example 5)
In this example, in order to confirm the versatility of the raw material, a reaction was performed using a used cloth (a shirt, 100% cotton, manufactured by UNIQLO) as the cellulose-containing raw material.
The used cloth was cut into a size of 1 cm × 5 cm and the thread used for sewing was removed, followed by pulverization with a pulverizer to obtain cotton-like cellulose. When mixed with the catalyst and reacted in water as in Example 1, 10.4% of HMF was produced. As other by-products, many minute peaks that were difficult to identify were observed, and brown deposits were also observed on the catalyst surface. These are presumed to be dimers other than glucose and HMF monomers and oligomers that are polymerized. The quantitative calculation assumes that the raw material is all cellulose.

次いで、上述した古布を粉砕機で粉砕して得られた綿状のセルロース原料をボールミルでさらに48時間の処理を行った。すなわち、粉砕機処理とボールミル処理の両方を行った原料である。ボールミル処理の結果、綿状の原料の大部分は綿状から微粉末状に変化した。微粉末状に粉砕した古布(セルロース含有原料)0.2gに、リン酸カルシウム触媒を1.8g添加して30mLの水に分散させ、実施例1と同様の反応容器に入れ、アルゴンを封入し200℃で2時間の加熱を300rpmで撹拌しながら行い反応させた。
その結果、グルコースが収率6.8%で、HMFが収率30.6%で得られた。ボールミル処理の効果で原料の反応性が高まり高収率につながったと言える。その他、いくつかの同定および定量が不可能な少量の副生成物のピークが検出された。これら副生成物は、グルコースやHMFの単量体以外の2量体や複数重合しているオリゴマー的なものと推測される。定量計算は原料がすべてセルロースであると仮定している。
この結果、試薬の微結晶セルロースと比較すれば収率は多少低下するが、セルロース含有廃棄物の一つである古布を原料にHMFが製造できることが明らかとなり、原料の汎用性が実証できた。
Subsequently, the cotton-like cellulose raw material obtained by pulverizing the above-mentioned old cloth with a pulverizer was further treated with a ball mill for 48 hours. That is, it is a raw material that has been subjected to both pulverizer processing and ball mill processing. As a result of the ball mill treatment, most of the cotton-like raw material changed from cotton-like to fine powder. To 0.2 g of old cloth (cellulose-containing raw material) pulverized into a fine powder, 1.8 g of calcium phosphate catalyst was added and dispersed in 30 mL of water, placed in a reaction vessel similar to that in Example 1, and sealed with argon. Then, the reaction was carried out with stirring at 300 rpm for 2 hours.
As a result, glucose was obtained at a yield of 6.8% and HMF was obtained at a yield of 30.6%. It can be said that the effect of the ball mill treatment increased the reactivity of the raw materials, leading to a high yield. In addition, some minor by-product peaks that could not be identified and quantified were detected. These by-products are presumed to be dimers other than glucose and HMF monomers and oligomers that are polymerized in plural. The quantitative calculation assumes that the raw material is all cellulose.
As a result, although the yield was slightly reduced as compared with microcrystalline cellulose as a reagent, it became clear that HMF can be produced from old cloth, which is one of cellulose-containing wastes, and the versatility of the raw material could be demonstrated.

(実施例6)
本実施例では、原料の汎用性を確認するために、セルロース原料にコピー用紙を使用して反応を行った。
前処理として、印刷済みのコピー用紙を粉砕機にかけて処理した。綿状の粉砕物を原料として0.2g使用し、触媒を1.8g添加して、30mLの水中に分散し、200℃にて2時間反応を行った。定量は0.2gの原料全てがセルロースであると仮定して計算した。その結果、8.3%のHMF収率が得られたが、顕著に高い値ではなかった。
ボールミル処理などの機械的エネルギーを加えることの必要性を実証するためにボールミル処理を48時間行った原料を使用した場合は、HMF収率が21.7%まで向上した。その時のグルコース収率は検出下限界に近く正確な定量分析ができなかった。コピー用紙には、品質向上のために種々の添加剤が使用されているため、セルロース含有率は100%よりも低い値になる。したがって、セルロース基準のHMF収率は前記の値よりも高くなるものと考えられる。
(Example 6)
In this example, in order to confirm the versatility of the raw material, the cellulose raw material was reacted using copy paper.
As a pretreatment, the printed copy paper was processed in a pulverizer. Using 0.2 g of a cotton-like pulverized material as a raw material, 1.8 g of a catalyst was added, dispersed in 30 mL of water, and reacted at 200 ° C. for 2 hours. The quantification was calculated assuming that all 0.2 g of raw material was cellulose. As a result, an HMF yield of 8.3% was obtained, but it was not significantly high.
The HMF yield improved to 21.7% when using raw materials that had been ball milled for 48 hours to demonstrate the need to add mechanical energy such as ball milling. The glucose yield at that time was close to the detection limit, and an accurate quantitative analysis was not possible. Since various additives are used for improving the quality of copy paper, the cellulose content is lower than 100%. Therefore, the HMF yield based on cellulose is considered to be higher than the above value.

(実施例7)
本実施例では、原料の汎用性を確認するために、天然木材を原料にして反応を行った。
粉砕機を用いて粉状にした秋田杉をそのまま原料に用いて反応を行った。原料の木材を構成している糖成分の含有率を測定した結果セルロースおよびヘミセルロース由来のグルコースが43.9%(重量比)であることが判明している。その他の糖成分はキシロース9.9%、ガラクトース7.5%、マンノース12.3%であり、糖成分以外の成分はリグニンである。
原料の使用量は、木粉中の糖含有率を基に算出してグルコース量が0.2gになるように重量調整を行った結果0.456gを使用した。反応の結果、HMFが収率14.3%で得られた。グルコースは検出下限界に近く正確な定量ができなかった。天然木材を原料とした場合の収率の算出方法は下記の通りである。この分析値を基に、HMFに変換されるグルコース量を基準にしてHMF収率を算出した。したがって、木材の全重量基準では上記の反応結果は、HMF収率(全重量基準)6.3%となる。
粉砕機で粉砕された木粉に対してさらに48時間のボールミル処理を施し、反応原料に使用した。その結果、HMF収率35.5%、グルコース収率9.3%を得た。この収率の計算に使用した基準値もグルコース(含有率43.9%)基準である。
本実施例の結果、木材原料も効率的にHMFに変換することができることが明らかとなり、原料の汎用性が実証できた。
(Example 7)
In this example, in order to confirm the versatility of the raw material, the reaction was performed using natural wood as a raw material.
The reaction was carried out using Akita cedar powdered with a pulverizer as raw material. As a result of measuring the content of the sugar component constituting the raw wood, it has been found that glucose derived from cellulose and hemicellulose is 43.9% (weight ratio). The other sugar components are 9.9% xylose, 7.5% galactose and 12.3% mannose, and the components other than the sugar component are lignin.
The amount of the raw material used was calculated based on the sugar content in the wood flour, and the weight was adjusted so that the amount of glucose was 0.2 g, and 0.456 g was used. As a result of the reaction, HMF was obtained in a yield of 14.3%. Glucose was close to the detection limit and could not be accurately quantified. The calculation method of the yield when using natural wood as a raw material is as follows. Based on this analysis value, the HMF yield was calculated based on the amount of glucose converted into HMF. Therefore, based on the total weight of wood, the above reaction result is 6.3% of HMF yield (based on total weight).
The wood flour pulverized by a pulverizer was further subjected to ball mill treatment for 48 hours and used as a reaction raw material. As a result, an HMF yield of 35.5% and a glucose yield of 9.3% were obtained. The reference value used for the calculation of this yield is also based on glucose (content 43.9%).
As a result of this example, it became clear that wood raw materials can also be efficiently converted to HMF, and the versatility of the raw materials could be demonstrated.

(比較例1)
実施例1で使用したものと同じメルク製微結晶セルロースに対して48時間ボールミル処理を行い、反応の原料として0.2g用いた。触媒を一切添加せずに30mLの水に分散させ実施例と同様の反応容器に入れ、アルゴンを封入し200℃で2時間の加熱を300rpmで撹拌しながら行い反応させた。その結果、HMFが収率16.7%で、グルコースが収率14.8%で得られた。その他、いくつかの同定および定量が不可能な少量の副生成物のピークが検出された。
この反応結果は触媒を用いないと反応が遅くHMF収率が小さいことを示していて、触媒を反応系内に添加する効果を実証できた。
(Comparative Example 1)
The same Merck microcrystalline cellulose used in Example 1 was ball milled for 48 hours, and 0.2 g was used as a reaction raw material. The catalyst was dispersed in 30 mL of water without adding any catalyst, placed in a reaction vessel similar to the example, filled with argon, and reacted at 200 ° C. for 2 hours with stirring at 300 rpm. As a result, HMF was obtained in a yield of 16.7% and glucose was obtained in a yield of 14.8%. In addition, some minor by-product peaks that could not be identified and quantified were detected.
This reaction result showed that the reaction was slow and the HMF yield was small unless a catalyst was used, and the effect of adding the catalyst into the reaction system could be verified.

(実施例8)
本実施例では、メルク製微結晶セルロースに対するボールミル処理を一切行わずに原料として用いた。触媒は実施例1と同様に1.8g加えて30mLの水に分散させ実施例1と同様の反応容器に入れ、アルゴンを封入し200℃で2時間の加熱を300rpmで撹拌しながら行い反応させた。
その結果、HMFが収率12.8%で、グルコースが収率5.8%で得られた。
(Example 8)
In this example, Merck microcrystalline cellulose was used as a raw material without any ball mill treatment. As in Example 1, 1.8 g of the catalyst was added and dispersed in 30 mL of water, placed in a reaction vessel similar to that in Example 1, sealed with argon, heated at 200 ° C. for 2 hours with stirring at 300 rpm, and allowed to react. It was.
As a result, HMF was obtained in a yield of 12.8% and glucose was obtained in a yield of 5.8%.

(実施例9)
実施例1においては反応容器内をアルゴンで置換し空気中の酸素の影響を排除しているが、本実施例では、残留空気の悪影響を明らかにするためにアルゴン置換を行わずに、空気が残留したまま反応を行った。その他条件は実施例1と同様であった。
その結果、HMF収率は23.1%と低下して、グルコース収率も4.9%と低下した。
この結果は、空気の悪影響を示すものであり、アルゴンなどの不活性ガスで反応容器内を置換する効果が明らかになった。
Example 9
In Example 1, the inside of the reaction vessel was replaced with argon to eliminate the influence of oxygen in the air. However, in this example, in order to clarify the adverse effect of residual air, air was not replaced without performing argon replacement. The reaction was carried out while remaining. Other conditions were the same as in Example 1.
As a result, the HMF yield decreased to 23.1% and the glucose yield also decreased to 4.9%.
This result shows the adverse effect of air, and the effect of replacing the inside of the reaction vessel with an inert gas such as argon became clear.

(比較例2)
天然木材を使用した実施例7について、触媒の有無の効果を調べる実験を行った。
実施例7で優れた反応結果を得ている、秋田杉の粉末に48時間のボールミル処理を施した原料をグルコースの量が0.2gになるような木材量である0.456gを用いた。この原料を用いて触媒を一切添加せずに実施例7と同条件で反応を行った結果、HMF収率が24.2%、グルコース収率が11.0%であった。
この結果、触媒を用いない場合はHMF収率が低下して、触媒を使用する効果が明らかになった。
(Comparative Example 2)
With respect to Example 7 using natural wood, an experiment was conducted to examine the effect of the presence or absence of a catalyst.
As the raw material obtained by subjecting the powder of Akita cedar to ball mill treatment for 48 hours, which has obtained excellent reaction results in Example 7, 0.456 g of wood so that the amount of glucose becomes 0.2 g was used. Using this raw material, the reaction was conducted under the same conditions as in Example 7 without adding any catalyst. As a result, the HMF yield was 24.2% and the glucose yield was 11.0%.
As a result, when the catalyst was not used, the HMF yield was reduced, and the effect of using the catalyst became clear.

Claims (5)

セルロース及び/又はセルロース含有物質を反応原料として用い、リン酸カルシウムからなる触媒と水溶媒中で加熱処理することにより、5−ヒドロキシメチルフルフラールを得ることを特徴とする5−ヒドロキシメチルフルフラールの製造方法。   A method for producing 5-hydroxymethylfurfural, wherein cellulose and / or a cellulose-containing substance is used as a reaction raw material and heat-treated in a catalyst composed of calcium phosphate and an aqueous solvent to obtain 5-hydroxymethylfurfural. 前記加熱処理前に、前記反応原料単独で又は前記触媒と混合して、粉砕・摺り合わせ処理を行うことを特徴とする請求項1に記載の5−ヒドロキシメチルフルフラールの製造方法。   2. The method for producing 5-hydroxymethylfurfural according to claim 1, wherein before the heat treatment, the reaction raw material alone or mixed with the catalyst is subjected to pulverization and rubbing treatment. 前記前処理が、ボールミル処理であることを特徴とする請求項2に記載の5−ヒドロキシメチルフルフラールの製造方法。   The method for producing 5-hydroxymethylfurfural according to claim 2, wherein the pretreatment is a ball mill treatment. 前記加熱処理が、不活性ガス中で行われることを特徴とする請求項1〜3のいずれか1項に記載の5−ヒドロキシメチルフルフラールの製造方法。   The method for producing 5-hydroxymethylfurfural according to any one of claims 1 to 3, wherein the heat treatment is performed in an inert gas. 前記加熱処理が、180〜220℃で行われることを特徴とする請求項1〜4のいずれか1項に記載の5−ヒドロキシメチルフルフラールの製造方法。   The method for producing 5-hydroxymethylfurfural according to any one of claims 1 to 4, wherein the heat treatment is performed at 180 to 220 ° C.
JP2014158832A 2014-08-04 2014-08-04 Process for producing 5-hydroxymethylfurfural Active JP6425936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014158832A JP6425936B2 (en) 2014-08-04 2014-08-04 Process for producing 5-hydroxymethylfurfural

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014158832A JP6425936B2 (en) 2014-08-04 2014-08-04 Process for producing 5-hydroxymethylfurfural

Publications (2)

Publication Number Publication Date
JP2016034926A true JP2016034926A (en) 2016-03-17
JP6425936B2 JP6425936B2 (en) 2018-11-21

Family

ID=55523065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014158832A Active JP6425936B2 (en) 2014-08-04 2014-08-04 Process for producing 5-hydroxymethylfurfural

Country Status (1)

Country Link
JP (1) JP6425936B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112313365A (en) * 2018-05-29 2021-02-02 祖德楚克尔股份公司 Anolyte partially catalyzed HMF production

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200321A (en) * 2004-01-14 2005-07-28 Canon Inc Method for producing 5-hydroxymethylfurfural and furfural
JP2007145736A (en) * 2005-11-25 2007-06-14 Canon Inc Manufacturing method of 5-hydroxymethylfurfural
JP2007196174A (en) * 2006-01-28 2007-08-09 Osaka Industrial Promotion Organization Heterogeneous zirconium phosphate catalyst, dehydration process, 5-hydroxymethylfurfural production method, cellulose decomposition process, and regeneration method of heterogeneous zirconium phosphate catalyst
JP2010248113A (en) * 2009-04-14 2010-11-04 National Institute Of Advanced Industrial Science & Technology Method for producing 5-hydroxymethyl-2-furfuryl aldehyde and apparatus therefor
JP2011115061A (en) * 2009-12-01 2011-06-16 Honda Motor Co Ltd Method for degrading cellulose
JP2012149008A (en) * 2011-01-19 2012-08-09 Mitsubishi Chemicals Corp Method for producing 2-furaldehyde compound
JP2013203665A (en) * 2012-03-27 2013-10-07 Kao Corp Manufacturing method for 5-hydroxymethylfurfural

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200321A (en) * 2004-01-14 2005-07-28 Canon Inc Method for producing 5-hydroxymethylfurfural and furfural
JP2007145736A (en) * 2005-11-25 2007-06-14 Canon Inc Manufacturing method of 5-hydroxymethylfurfural
JP2007196174A (en) * 2006-01-28 2007-08-09 Osaka Industrial Promotion Organization Heterogeneous zirconium phosphate catalyst, dehydration process, 5-hydroxymethylfurfural production method, cellulose decomposition process, and regeneration method of heterogeneous zirconium phosphate catalyst
JP2010248113A (en) * 2009-04-14 2010-11-04 National Institute Of Advanced Industrial Science & Technology Method for producing 5-hydroxymethyl-2-furfuryl aldehyde and apparatus therefor
JP2011115061A (en) * 2009-12-01 2011-06-16 Honda Motor Co Ltd Method for degrading cellulose
JP2012149008A (en) * 2011-01-19 2012-08-09 Mitsubishi Chemicals Corp Method for producing 2-furaldehyde compound
JP2013203665A (en) * 2012-03-27 2013-10-07 Kao Corp Manufacturing method for 5-hydroxymethylfurfural

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AYUMU ONDA ET AL., GREEN CHEMISTRY, vol. 10, no. 10, JPN6018018665, October 2008 (2008-10-01), pages 1033 - 1037, ISSN: 0003801450 *
COMBS, ELLIOT ET AL.: "Influence of alkali and alkaline earth metal salts on glucose conversion to 5-hydroxymethylfurfural", CATALYSIS COMMUNICATIONS, vol. 30, JPN6018018669, 2013, pages 1 - 4, ISSN: 0003801452 *
SHI, NING ET AL.: "One-Pot Degradation of Cellulose into Furfural Compounds in Hot Compressed Steam with Dihydric Phosp", ACS SUSTAINABLE CHEMISTRY & ENGINEERING, vol. 2(4), JPN6018018663, 2014, pages 637 - 642, ISSN: 0003801449 *
三村直樹ら, 触媒討論会予稿集, vol. 第112回, JPN6018018667, 2013, pages 33, ISSN: 0003801451 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112313365A (en) * 2018-05-29 2021-02-02 祖德楚克尔股份公司 Anolyte partially catalyzed HMF production
US11697642B2 (en) 2018-05-29 2023-07-11 Südzucker AG HMF preparation catalysed by anolyte fraction
CN112313365B (en) * 2018-05-29 2023-09-01 祖德楚克尔股份公司 Anolyte Partially Catalyzed HMF Production

Also Published As

Publication number Publication date
JP6425936B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
Lachos-Perez et al. Sugars and char formation on subcritical water hydrolysis of sugarcane straw
Zhang et al. Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid
Zhang et al. Enhanced yields of furfural and other products by simultaneous solvent extraction during thermochemical treatment of cellulosic biomass
Wang et al. Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid
Galletti et al. Levulinic acid production from waste biomass
Alonso et al. Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts
Tyagi et al. Synergistic effect of modified activated carbon and ionic liquid in the conversion of microcrystalline cellulose to 5-Hydroxymethyl Furfural
Shao et al. Acidic seawater improved 5-hydroxymethylfurfural yield from sugarcane bagasse under microwave hydrothermal liquefaction
Kumar et al. Improved levulinic acid production from agri-residue biomass in biphasic solvent system through synergistic catalytic effect of acid and products
Li et al. Efficient conversion of chitosan into 5-hydroxymethylfurfural via hydrothermal synthesis in ionic liquids aqueous solution
Liang et al. Production of levulinic acid from corn cob residue in a fed-batch acid hydrolysis process
Fockink et al. Insight into the high-pressure CO2 pre-treatment of sugarcane bagasse for a delivery of upgradable sugars
Nis et al. Efficient direct conversion of lignocellulosic biomass into biobased platform chemicals in ionic liquid-water medium
Yan et al. Aqueous phase catalytic conversion of agarose to 5-hydroxymethylfurfural by metal chlorides
Ya'aini et al. Catalytic conversion of lignocellulosic biomass to levulinic acid in ionic liquid
Ji et al. Effects of Acidic Deep Eutectic Solvent Pretreatment on Sugarcane Bagasse for Efficient 5‐Hydroxymethylfurfural Production
Maerten et al. Selective Catalytic Oxidation of Humins to Low‐Chain Carboxylic Acids with Tailor‐Made Polyoxometalate Catalysts
Kim et al. Production of succinic acid from liquid hot water hydrolysate derived from Quercus mongolica
CA2862586A1 (en) Process for making levulinic acid
Li et al. Selective hydrolysis of hemicellulose component of wheat straw in high‐pressure CO2 and water with low concentration of acetic acid
Yuan et al. Production of Levulinic Acid from Pennisetum alopecuroides in the Presence of an Acid Catalyst
Sánchez-Bastardo et al. Maximization of monomeric C5 sugars from wheat bran by using mesoporous ordered silica catalysts
Salgado-Ramos et al. Microwave heating for sustainable valorization of almond hull towards high-added-value chemicals
JP6425936B2 (en) Process for producing 5-hydroxymethylfurfural
Wu et al. Metal chlorides as effective catalysts for the one-pot conversion of lignocellulose into 5-chloromethylfurfural (5-CMF)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180709

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181024

R150 Certificate of patent or registration of utility model

Ref document number: 6425936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250