JP2016034217A - Isolated operation detector and isolated operation detection method, and controller for detecting isolated operation and distributed power supply device - Google Patents

Isolated operation detector and isolated operation detection method, and controller for detecting isolated operation and distributed power supply device Download PDF

Info

Publication number
JP2016034217A
JP2016034217A JP2014156967A JP2014156967A JP2016034217A JP 2016034217 A JP2016034217 A JP 2016034217A JP 2014156967 A JP2014156967 A JP 2014156967A JP 2014156967 A JP2014156967 A JP 2014156967A JP 2016034217 A JP2016034217 A JP 2016034217A
Authority
JP
Japan
Prior art keywords
reactive power
power
period
injected
additional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014156967A
Other languages
Japanese (ja)
Other versions
JP6341791B2 (en
Inventor
清俊 田中
Kiyotoshi Tanaka
清俊 田中
義彦 小道
Yoshihiko Komichi
義彦 小道
哲成 押目
Tetsunari Oshime
哲成 押目
重実 萱野
Shigemi Kayano
重実 萱野
一平 竹内
Ippei Takeuchi
一平 竹内
長田 和哉
Kazuya Osada
和哉 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014156967A priority Critical patent/JP6341791B2/en
Publication of JP2016034217A publication Critical patent/JP2016034217A/en
Application granted granted Critical
Publication of JP6341791B2 publication Critical patent/JP6341791B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent reactive power injected into a power system from being cancelled, to securely detect isolated operation even when the reactive power balances with load reactive power.SOLUTION: An isolated operation detection method includes: a first step of injecting reactive power to a power system; a second step of additionally injecting reactive power having a preset phase within a first period, when already injected reactive power has balanced with load reactive power; a third step of determining interference between the already injected reactive power and additionally injected reactive power, by using the absolute value of a difference between a value of a frequency deviation at the time of the additional injection at the second step and a value of a frequency deviation at the time at which a second period shorter than the first period has passed; a fourth step of further injecting additional injection reactive power having a phase obtained by reversing a phase of the additionally injected reactive power, when a result of the determination at the third step has shown interference; and a fifth step of continuing injection of additional reactive power having the same phase as the additionally injected reactive power injected at the second step during the remaining period until the first period has passed from the time of additional injection at the second step, when the result of the determination at the third step has shown non-interference.SELECTED DRAWING: Figure 5

Description

本発明は、分散型電源装置が電力系統から切り離され単独運転しているか否かを検出する単独運転検出装置および単独運転検出方法ならびに、単独運転検出用の制御装置および、当該制御装置を備えた分散型電源装置に関する。   The present invention includes an isolated operation detection device and an isolated operation detection method for detecting whether or not a distributed power supply device is disconnected from an electric power system and operated independently, an isolated operation detection control device, and the control device. The present invention relates to a distributed power supply.

分散型電源装置における単独運転は、電力系統が停止しているとき、分散型電源装置が独立して運転され、局所的な系統負荷に電力が供給されている状態である。電力系統の停止は、工事または事故といった要因によって引き起こされる。   The isolated operation in the distributed power supply device is a state in which when the power system is stopped, the distributed power supply device is operated independently and power is supplied to the local system load. Power system outages are caused by factors such as construction or accidents.

電力系統に接続される分散型電源には、太陽光発電装置、風力発電装置、エンジン発電機、電力貯蔵装置、燃料電池が代表的なものである。これらの分散型電源では、太陽電池、蓄電池、燃料電池といった特性または性質の異なる電力供給手段を電力系統に接続させて使用するため、周波数および電圧を電力系統に適合させるインバータ機能と、電力系統の異常を検出する保護装置とを内蔵したパワーコンディショナが数多く提案されている。   Typical distributed power sources connected to the power system are solar power generation devices, wind power generation devices, engine generators, power storage devices, and fuel cells. In these distributed power supplies, power supply means having different characteristics or properties, such as solar cells, storage batteries, and fuel cells, are connected to the power system, so that an inverter function that adapts the frequency and voltage to the power system, and the power system Many power conditioners with built-in protection devices for detecting abnormalities have been proposed.

以上に説明した電力供給手段と、直流を交流に変換するパワーコンディショナとを備えた分散型電源装置を電力系統に連系させて、例えば家電製品に給電する分散型電源装置が実用化されている。   A distributed power supply device that supplies power to home appliances, for example, by connecting a distributed power supply device including the power supply means described above and a power conditioner that converts direct current to alternating current to a power system has been put into practical use. Yes.

この種の分散型電源装置では、電力系統の停電時および作業停電時において、電力系統における工事作業の安全を確保するため、分散型電源装置側のインバータの動作を停止させるか、または、開閉器を作動させて連系を解除することにより、分散型電源装置を電力系統から解列させて、分散型電源装置の単独運転を防止する機能が不可欠である。なお、この機能は、単独運転検出機能と呼ばれている。   In this type of distributed power supply, in order to ensure the safety of construction work in the power system at the time of power failure and work power failure, the operation of the inverter on the distributed power supply side is stopped or a switch The function of disconnecting the distributed power supply device from the power system by actuating the connection to prevent the isolated operation of the distributed power supply device is indispensable. This function is called an isolated operation detection function.

単独運転を検出する方式の1つとして、電力系統に無効電力を注入する手法が既に提案されている。この手法を用いた単独運転検出装置では、注入した無効電力によって引き起こされる周波数変動を検知して、分散型電源装置の単独運転を検出することが行われる。   As one of methods for detecting islanding, a method for injecting reactive power into the power system has already been proposed. In the isolated operation detection device using this method, the frequency variation caused by the injected reactive power is detected to detect the isolated operation of the distributed power supply device.

一方、電力系統に無効電力を注入する手法では、単独運転検出装置から無効電力を注入しているにもかかわらず、注入している無効電力と、負荷の無効電力とがバランスしているときは、分散型電源装置が単独運転になっても、注入している無効電力によって周波数変動を引き起すことができなくなる、という現象があった。すなわち、電力系統に無効電力を注入する手法では、単独運転が検出されずに単独運転状態が継続されてしまう場合があるという課題があった。   On the other hand, in the method of injecting reactive power into the power system, when reactive power is injected from the isolated operation detection device, the reactive power being injected is balanced with the reactive power of the load. There is a phenomenon that even if the distributed power supply device is operated independently, frequency fluctuations cannot be caused by the reactive power being injected. That is, the method of injecting reactive power into the power system has a problem that the isolated operation state may be continued without detecting the isolated operation.

上記のような技術的背景の下、制御装置からの注入無効電力と負荷における無効電力(以下「負荷無効電力」と称する)とがバランスして単独運転状態が発生し、且つ、単独運転検出のための無効電力の注入が不足する場合において、既に注入している無効電力(以下「既注入無効電力」と称する)に対して、さらに追加で注入する無効電力(以下「追加注入無効電力」もしくは「追加無効電力」と称する)の注入を可能としたことにより、分散型電源装置の単独運転を検出することができる単独運転検出方法が提案されている(例えば、下記特許文献1参照)。   Under the technical background as described above, the injection reactive power from the control device and the reactive power in the load (hereinafter referred to as “load reactive power”) are balanced to generate an isolated operation, and the isolated operation is detected. When the reactive power injection is insufficient, the reactive power that is already injected (hereinafter referred to as “already injected reactive power”) is additionally injected (hereinafter referred to as “additional injection reactive power”) or An isolated operation detection method that can detect the isolated operation of the distributed power supply apparatus by enabling the injection of “additional reactive power”) has been proposed (see, for example, Patent Document 1 below).

この特許文献1の手法では、既注入無効電力と負荷無効電力とがバランスして、単独運転検出のための無効電力の注入が不足する場合に、既注入無効電力と追加注入無効電力とが相殺されないように、既注入無効電力の位相の進みまたは遅れと、追加注入無効電力の位相の進みまたは遅れとを一致させる制御が行われる。   In the method of Patent Document 1, when the injected reactive power and the load reactive power are balanced and the reactive power injection for the isolated operation is insufficient, the injected reactive power and the additional injected reactive power cancel each other. In order not to be performed, control is performed so that the phase advance or delay of the already injected reactive power coincides with the phase advance or delay of the additional injected reactive power.

特開2009−11037号公報JP 2009-11037 A

上述の通り、特許文献1の手法では、既注入無効電力の位相の進みまたは遅れと、追加注入無効電力の位相の進みまたは遅れとを一致させる制御が行われるが、分散型電源装置が1台のみであれば、無効電力が相殺されることはない。   As described above, in the method of Patent Document 1, control is performed to match the phase advance or delay of already injected reactive power with the phase advance or delay of additional injected reactive power, but one distributed power supply device is provided. If it is only, it will not cancel out reactive power.

しかしながら、単独運転検出装置は、個々の分散型電源装置ごとに設ける必要があるため、例えば2つの分散型電源装置がある場合には、2台の単独運転検出装置を有する構成となる。このような2台の単独運転検出装置を有する構成において、例えば系統周波数偏差が「0」の付近では、周波数計測にバラツキがあるために、それぞれの分散型電源装置において、一方の分散型電源装置では、例えば進み位相の追加無効電力を注入し、他方の分散型電源装置では、遅れ位相の無効電力を注入することが起こり得る。この場合、追加注入した無効電力が相殺されて、電力変動を引き起すことができなくなり、結果として、単独運転が検出されずに単独運転状態が継続されてしまうという問題点があった。   However, since the single operation detection device needs to be provided for each individual distributed power supply device, for example, when there are two distributed power supply devices, the single operation detection device is configured to have two single operation detection devices. In such a configuration having two independent operation detection devices, for example, when the system frequency deviation is near “0”, there is a variation in frequency measurement. Then, for example, it is possible to inject additional reactive power having a leading phase, and injecting reactive power having a lagging phase in the other distributed power supply apparatus. In this case, the additionally injected reactive power is offset and power fluctuation cannot be caused. As a result, the isolated operation is not detected and the isolated operation state is continued.

本発明は、上記に鑑みてなされたものであって、電力系統に注入する無効電力が相殺されるのを抑止し、無効電力と負荷無効電力とがバランスしても確実に単独運転を検出することがきる単独運転検出装置および単独運転検出方法ならびに、単独運転検出用の制御装置および分散型電源装置を得ることを目的とする。   The present invention has been made in view of the above, and it is possible to prevent the reactive power injected into the power system from being canceled, and to reliably detect an isolated operation even when the reactive power and the load reactive power are balanced. It is an object of the present invention to provide an isolated operation detection device, an isolated operation detection method, an isolated operation detection control device, and a distributed power supply device.

上述した課題を解決し、目的を達成するために、本発明は、前記電力系統で生起する電気的変動に基づいて、前記電力系統に連系する分散型電源装置の単独運転を検出するように構成された単独運転検出用の制御装置であって、前記制御装置は、前記電気的変動を計測する計測部と、前記計測部が計測した計測値に基づいて、前記制御装置によって制御される電力変換手段によって注入された既注入無効電力が負荷無効電力とバランスしたとき、前記電力系統に予め設定された位相の無効電力を予め設定された第1の期間内に追加注入する制御を行う無効電流注入制御部と、前記計測部の計測値に基づいて単独運転の判定を行う単独運転判定部と、前記無効電流注入部の演算結果に基づいて前記既注入無効電力と追加注入された追加注入無効電力とが干渉しているか否かを判定する無効電力干渉判定部と、を備え、前記無効電力干渉判定部は、前記第1の期間内に無効電力を追加注入した追加注入時点における周波数偏差の値と、前記第1の期間よりも短い第2の期間の経過時点における周波数偏差の値との差の絶対値により、前記既注入無効電力と前記追加注入無効電力との間の干渉を判定し、前記無効電流注入制御部は、前記無効電力干渉判定部の判定結果が干渉していると判定したときは、前記追加注入無効電力の位相を反転させた位相の追加注入無効電力を、改めて前記第1の期間注入する制御を行い、前記無効電力干渉判定部の判定結果が干渉していないと判定したときは、前記追加注入無効電力の注入時点から前記第1の期間が経過するまでの残り期間、前記追加注入無効電力と同位相の追加無効電力の注入を継続する制御を行うことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention detects a single operation of a distributed power supply device linked to the power system based on electrical fluctuations that occur in the power system. A control device configured to detect isolated operation, wherein the control device is configured to measure the electrical variation, and based on the measurement value measured by the measurement unit, the power controlled by the control device. Reactive current for performing control for additionally injecting reactive power of a phase preset in the power system within a first preset period when the already injected reactive power injected by the conversion means balances with the load reactive power An injection control unit, an isolated operation determination unit for determining an isolated operation based on the measurement value of the measurement unit, and the already injected reactive power and the additional injection disabled that has been additionally injected based on the calculation result of the reactive current injection unit A reactive power interference determination unit that determines whether or not the force is interfering, and the reactive power interference determination unit includes a frequency deviation at an additional injection time point when the reactive power is additionally injected within the first period. Interference between the already-injected reactive power and the additional injected reactive power is determined based on the absolute value of the difference between the value and the value of the frequency deviation at the elapse of the second period shorter than the first period. When the reactive current injection control unit determines that the determination result of the reactive power interference determination unit is interfering, the additional injection reactive power of the phase obtained by inverting the phase of the additional injection reactive power is changed again. When the control for injecting the first period is performed and it is determined that the determination result of the reactive power interference determination unit is not interfering, the remaining until the first period elapses from the injection point of the additional injection reactive power Duration, said additional injection And performing control to continue the injection of additional reactive power reactive power and phase.

この発明によれば、電力系統に注入する無効電力が相殺されるのを抑止し、無効電力と負荷無効電力とがバランスしても確実に単独運転を検出することがきる、という効果を奏する。   According to the present invention, it is possible to prevent the reactive power injected into the power system from being canceled and to detect the isolated operation reliably even if the reactive power and the load reactive power are balanced.

本実施の形態に係る単独運転検出方法が適用される分散型電源装置の構成を示す図The figure which shows the structure of the distributed power supply device to which the isolated operation detection method which concerns on this Embodiment is applied. 電力系統に多数台の分散型電源装置が連系する場合の一例を示すイメージ図Image diagram showing an example when a large number of distributed power supply units are connected to the power system 本実施の形態に係る制御装置の機能構成の一例を示すブロック図The block diagram which shows an example of a function structure of the control apparatus which concerns on this Embodiment 本実施の形態に係る無効電力量演算部が無効電力量を演算する際の特性カーブを示す図The figure which shows the characteristic curve at the time of the reactive energy calculating part which concerns on this Embodiment calculating a reactive energy 無効電力干渉判定部における動作を説明するためのフローチャートFlowchart for explaining operation in reactive power interference determination unit 既注入無効電力と追加無効電力とが干渉する場合の動作波形を示す図The figure which shows the operation waveform in case existing injection reactive power and additional reactive power interfere 既注入無効電力と追加無効電力とが干渉しない場合の動作波形を示す図The figure which shows the operation waveform when existing injection reactive power and additional reactive power do not interfere

以下に添付図面を参照し、本発明の実施の形態に係る単独運転検出方法、制御装置、単独運転検出装置および分散型電源装置について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。   Hereinafter, an isolated operation detection method, a control device, an isolated operation detection device, and a distributed power supply device according to embodiments of the present invention will be described with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.

実施の形態.
図1は、本発明の実施の形態に係る単独運転検出方法が適用される分散型電源装置の構成を示す図である。実施の形態に係る分散型電源装置1は、電力供給手段5およびパワーコンディショナ10を有して構成され、パワーコンディショナ10は、インバータ11および単独運転検出装置16を有して構成され、単独運転検出装置16は、インバータ制御部12、制御装置13、連系リレー14および電流検出器15を有して構成される。
Embodiment.
FIG. 1 is a diagram illustrating a configuration of a distributed power supply apparatus to which an isolated operation detection method according to an embodiment of the present invention is applied. The distributed power supply device 1 according to the embodiment includes a power supply unit 5 and a power conditioner 10, and the power conditioner 10 includes an inverter 11 and an independent operation detection device 16. The operation detection device 16 includes an inverter control unit 12, a control device 13, an interconnection relay 14, and a current detector 15.

電力供給手段5は、例えば太陽電池、ガスエンジン発電機であり、直流電力を発電して電力変換手段であるパワーコンディショナ10に供給する。   The power supply means 5 is, for example, a solar cell or a gas engine generator, and generates DC power and supplies it to the power conditioner 10 that is power conversion means.

電力供給手段5は、パワーコンディショナ10を介して電力系統2と接続される。パワーコンディショナ10は、電力供給手段5が発電した直流電力を交流電力に変換する電力変換機能を有する。パワーコンディショナ10が変換した交流電力は、電力系統2に供給される他、例えば一般家電機器である負荷3にも供給される。   The power supply means 5 is connected to the power system 2 via the power conditioner 10. The power conditioner 10 has a power conversion function for converting DC power generated by the power supply means 5 into AC power. The AC power converted by the power conditioner 10 is supplied to the power system 2 and also to the load 3 which is a general household electrical appliance, for example.

インバータ11は、パワーコンディショナ10における電力変換機能を担う。インバータ制御部12は、電力系統2の出力電圧および、インバータ11と電力系統2との間に流れる電流に基づいてインバータ11を制御する。   The inverter 11 has a power conversion function in the power conditioner 10. The inverter control unit 12 controls the inverter 11 based on the output voltage of the power system 2 and the current flowing between the inverter 11 and the power system 2.

制御装置13は、電力系統2が出力する電圧の電圧値である系統電圧、電力系統2が出力する電圧に含まれる高調波成分の電圧である高調波歪電圧および、電力系統2が出力する電圧の周波数である系統周波数を計測する。制御装置13は、計測した系統電圧、高調波歪電圧および系統周波数に基づいて、連系リレー14をオンオフ制御するための制御信号を生成して連系リレー14に出力すると共に、電力系統2に注入無効電力を注入するための電流指令値を生成してインバータ制御部12に出力する。なお、注入無効電力は、既注入無効電力と追加注入無効電力とを総称する用語である。制御装置13の機能を更に詳細に説明すると以下の通りである。   The control device 13 includes a system voltage that is a voltage value of a voltage output from the power system 2, a harmonic distortion voltage that is a voltage of a harmonic component included in the voltage output from the power system 2, and a voltage output from the power system 2. Measure the system frequency, which is the frequency of. The control device 13 generates a control signal for on / off control of the interconnection relay 14 based on the measured system voltage, harmonic distortion voltage, and system frequency, and outputs the control signal to the interconnection relay 14. A current command value for injecting injection reactive power is generated and output to the inverter control unit 12. The injection reactive power is a term that collectively refers to the existing injection reactive power and the additional injection reactive power. The function of the control device 13 will be described in further detail as follows.

制御装置13は、計測した系統周波数に基づいて、予め設定された期間内において、系統周波数偏差を演算すると共に、演算した系統周波数偏差に基づいて電力系統に注入すべき無効電力を演算する。演算された無効電力は、電力系統2に注入される一方で、計測した系統周波数、系統電圧および高調波電圧歪に基づいて、系統周波数偏差が予め設定された期間において、連続して一定以下となる状態が継続しているような系統周波数に実質変化が無く、かつ、系統電圧または高調波電圧歪が予め設定された変動範囲を超える変化でもって変動したという条件(以下必要に応じて「急変条件」と称する)が成立するか否かを判定する。急変条件が成立する場合には、既注入無効電力に加えて、追加注入無効電力を注入する制御を行う。   The control device 13 calculates a system frequency deviation based on the measured system frequency and calculates reactive power to be injected into the power system based on the calculated system frequency deviation. While the calculated reactive power is injected into the power system 2, the system frequency deviation is continuously below a certain level in a period in which the system frequency deviation is set based on the measured system frequency, system voltage, and harmonic voltage distortion. There is no substantial change in the system frequency so that the state continues, and the condition that the system voltage or harmonic voltage distortion fluctuates with a change exceeding the preset fluctuation range (hereinafter referred to as “abrupt change” It is determined whether or not (referred to as “condition”) is satisfied. When the sudden change condition is satisfied, control is performed to inject additional injection reactive power in addition to the existing injection reactive power.

図2は、電力系統に多数台の分散型電源装置が連系する場合の一例を示すイメージ図である。単独運転検出装置における単独運転検出手法には、大きく分けて能動方式と、受動方式とがあるが、本実施の形態の単独運転検出装置のように無効電力を注入する方式は、能動方式である。能動方式において、単独運転検出装置による単独運転検出を行うまでの時間は、0.5秒から1.0秒を要すると言われている。一方、この数値範囲は、柱上変圧器22の配下にある柱上変圧器22を含まない「(1)住宅単位」での単独運転を想定した特性である。分散型電源が少量普及の段階では、このような数値の検出特性でも問題にならなかった。   FIG. 2 is an image diagram illustrating an example of a case where a large number of distributed power supply apparatuses are connected to the power system. The isolated operation detection method in the isolated operation detection device is roughly divided into an active method and a passive method, but the method of injecting reactive power as in the isolated operation detection device of the present embodiment is the active method. . In the active system, it is said that it takes 0.5 to 1.0 seconds to perform the isolated operation detection by the isolated operation detection device. On the other hand, this numerical range is a characteristic that assumes a single operation in “(1) Residential unit” that does not include the pole transformer 22 under the pole transformer 22. At the stage where distributed power supplies are in widespread use, even these numerical detection characteristics were not a problem.

しかしながら、近時においては、分散型電源が普及期に入っており、図2に示すような、多数台の分散型電源装置が連系する状況下に推移している。多数台の分散型電源装置が連系している場合、柱上変圧器22を含む「(2)柱上変圧器単位」、区分開閉器24を含む「(3)区分開閉器単位」および、例えば電力会社の変電所に設けられる遮断器26を含む「(4)フィーダー単位」において、単独運転の可能性がある。   However, recently, the distributed power supply has entered the popularization period, and is in a situation where a large number of distributed power supply apparatuses are connected as shown in FIG. When a large number of distributed power supply devices are interconnected, “(2) unit on pole transformer” including the pole transformer 22, “(3) unit switch unit” including the segment switch 24, and For example, in “(4) Feeder unit” including the circuit breaker 26 provided in a substation of an electric power company, there is a possibility of an independent operation.

したがって、「(2)柱上変圧器単位」、「(3)区分開閉器単位」および「(4)フィーダー単位」といった高圧系においても有用に動作する単独運転検出装置および単独運転検出方法が要請されている。本実施の形態に係る制御装置13の機能は、高圧系においても有用に動作するという要請に応えることができるものである。以下、図3を参照し、制御装置13の機能を詳細に説明する。   Therefore, there is a demand for an isolated operation detection device and an isolated operation detection method that operate effectively even in a high voltage system such as “(2) pole transformer unit”, “(3) section switch unit” and “(4) feeder unit”. Has been. The function of the control device 13 according to the present embodiment can meet the demand for useful operation even in a high-pressure system. Hereinafter, the function of the control device 13 will be described in detail with reference to FIG.

図3は、本実施の形態に係る制御装置13の機能構成の一例を示すブロック図である。まず、制御装置13には、電力系統2が出力する電圧の波形信号が入力される計測部30が設けられる。計測部30は、系統電圧計測部131、高調波歪検出部132および周波数計測部133を有してなる。系統電圧計測部131は、波形信号に基づいて電力系統2が出力する電圧の電圧値である系統電圧を計測する。高調波歪検出部132は、波形信号に基づいて電力系統2が出力する電圧に含まれる高調波成分の電圧値である高調波歪電圧を計測する。周波数計測部133は、波形信号に基づいて電力系統2が出力する電圧の周波数である系統周波数を計測する。   FIG. 3 is a block diagram illustrating an example of a functional configuration of the control device 13 according to the present embodiment. First, the control device 13 is provided with a measuring unit 30 to which a waveform signal of a voltage output from the power system 2 is input. The measurement unit 30 includes a system voltage measurement unit 131, a harmonic distortion detection unit 132, and a frequency measurement unit 133. The system voltage measurement unit 131 measures a system voltage that is a voltage value of a voltage output from the power system 2 based on the waveform signal. The harmonic distortion detector 132 measures a harmonic distortion voltage that is a voltage value of a harmonic component included in the voltage output from the power system 2 based on the waveform signal. The frequency measurement unit 133 measures a system frequency that is a frequency of a voltage output from the power system 2 based on the waveform signal.

単独運転判定部134は、周波数計測部133の計測値から単独運転の判定を行い、当該判定結果に基づいて連系リレー14をオンオフ制御するための制御信号である単独運転検出信号を生成して連系リレー14に出力する。周波数偏差演算部135は、周波数計測部133の計測値に基づいて、現在の系統周波数の移動平均値と、過去の系統周波数の移動平均値とを算出すると共に、これらの各算出値を用いて系統周波数偏差を演算する。無効電力量演算部136は、周波数偏差演算部135が演算した系統周波数偏差を用いて、電力系統2に注入する無効電力量を演算する。   The isolated operation determination unit 134 determines the isolated operation from the measurement value of the frequency measurement unit 133 and generates an isolated operation detection signal that is a control signal for on / off control of the interconnection relay 14 based on the determination result. Output to the interconnection relay 14. The frequency deviation calculation unit 135 calculates a moving average value of the current system frequency and a moving average value of the past system frequency based on the measurement value of the frequency measurement unit 133, and uses each of these calculated values. Calculate system frequency deviation. The reactive power amount calculation unit 136 calculates the reactive power amount to be injected into the power system 2 using the system frequency deviation calculated by the frequency deviation calculation unit 135.

制御装置13は、さらに無効電力注入判定部137を備えている。無効電力注入判定部137は、系統周波数偏差が上記第2の周期の間、連続して一定以下となる状態が継続し、系統周波数に実質変化が無く、かつ、高調波電圧歪または系統電圧が予め設定された変動範囲を超える変化をしたときに、高調波電圧歪または系統電圧が単独運転発生に起因して急変したと判断し、追加無効電力を注入する制御を行う。   The control device 13 further includes a reactive power injection determination unit 137. The reactive power injection determining unit 137 continuously maintains a state where the system frequency deviation is constant or lower during the second period, the system frequency is not substantially changed, and the harmonic voltage distortion or the system voltage is When a change exceeding a preset fluctuation range is made, it is determined that the harmonic voltage distortion or the system voltage has suddenly changed due to the occurrence of the isolated operation, and control for injecting additional reactive power is performed.

単独運転判定部134の出力である単独運転検出信号と、出力電流制御部139の出力である電流指令値とが、制御装置13の出力である。繰り返しになるが、単独運転検出信号は連系リレー14に出力され、電流指令値はインバータ制御部12に出力される。   The isolated operation detection signal that is the output of the isolated operation determination unit 134 and the current command value that is the output of the output current control unit 139 are the outputs of the control device 13. Again, the isolated operation detection signal is output to the interconnection relay 14, and the current command value is output to the inverter control unit 12.

ここで、周波数計測部133および周波数偏差演算部135の動作について補足する。   Here, it supplements about operation | movement of the frequency measurement part 133 and the frequency deviation calculating part 135. FIG.

周波数計測部133は、電力系統2の系統周波数を計測周期単位で順次計測する。計測周期単位の一例は、例えば5m秒単位である。なお、電力系統2の系統周波数を50Hzとした場合、1系統周期は20m秒であるため、系統周期単位は、電力系統2の系統周期の1/3以下、例えば、5m秒単位にすることが望ましい。   The frequency measurement unit 133 sequentially measures the system frequency of the power system 2 in units of measurement cycles. An example of the measurement cycle unit is, for example, a unit of 5 milliseconds. In addition, when the system frequency of the power system 2 is 50 Hz, since one system period is 20 milliseconds, the system period unit may be 1/3 or less of the system period of the power system 2, for example, 5 milliseconds unit. desirable.

周波数偏差演算部135においては、周波数計測部133で順次計測した計測周期単位(5m秒単位)の整数倍の周期に基づき、連続する予め設定された移動平均時間分の移動平均値を順次算出する。計測周期単位(5m秒単位)の整数倍の周期の一例は、例えば40m秒である。なお、予め設定された移動平均時間は、系統周期の一周期である20m秒よりも長く、かつ、所望する検出速度である例えば100m秒よりも短い時間を条件とすることが好ましく、例えば40m秒に設定する。   The frequency deviation calculation unit 135 sequentially calculates a moving average value for a continuous preset moving average time based on a cycle that is an integral multiple of the measurement cycle unit (5 msec unit) sequentially measured by the frequency measurement unit 133. . An example of a cycle that is an integral multiple of a measurement cycle unit (5 msec unit) is, for example, 40 msec. In addition, it is preferable that the preset moving average time is longer than 20 milliseconds which is one cycle of the system cycle, and is shorter than 100 milliseconds which is a desired detection speed, for example, 40 milliseconds. Set to.

制御装置13は、さらに加算部138および出力電流制御部139を備えている。加算部138は、無効電力量演算部136からの演算無効電力と、無効電力注入判定部137からの追加無効電力とを加算して出力電流制御部139に出力する。出力電流制御部139は、加算部138の出力に応じた電流指令値をインバータ制御部12へ出力する制御を行う。   The control device 13 further includes an addition unit 138 and an output current control unit 139. The adding unit 138 adds the calculated reactive power from the reactive power amount calculating unit 136 and the additional reactive power from the reactive power injection determining unit 137 and outputs the result to the output current control unit 139. The output current control unit 139 performs control to output a current command value corresponding to the output of the addition unit 138 to the inverter control unit 12.

以上に説明した、周波数偏差演算部135、無効電力量演算部136、無効電力注入判定部137、加算部138および出力電流制御部139は、制御装置13における無効電流注入制御部32を構成する。   The frequency deviation calculation unit 135, the reactive power amount calculation unit 136, the reactive power injection determination unit 137, the addition unit 138, and the output current control unit 139 described above constitute the reactive current injection control unit 32 in the control device 13.

制御装置13は、さらに無効電力干渉判定部140を備えている。無効電力干渉判定部140は、周波数偏差演算部135からの系統周波数偏差と、無効電力注入判定部137の出力とに基づいて、後述する判定動作を行い、判定結果を無効電力注入判定部137に出力する。無効電力注入判定部137は、無効電力干渉判定部140の判定結果、すなわち無効電力注入に関する再判定結果に従い、無効電力の注入制御を行うための制御信号を生成する。   The control device 13 further includes a reactive power interference determination unit 140. The reactive power interference determination unit 140 performs a determination operation described later based on the system frequency deviation from the frequency deviation calculation unit 135 and the output of the reactive power injection determination unit 137, and sends the determination result to the reactive power injection determination unit 137. Output. The reactive power injection determination unit 137 generates a control signal for performing reactive power injection control according to the determination result of the reactive power interference determination unit 140, that is, the re-determination result regarding the reactive power injection.

図4は、無効電力量演算部136が無効電力量Qを演算する際の特性カーブを示す図であり、系統周波数偏差Δfに対する無効電力量Qの関係を示している。なお、縦軸に示される無効電力量Qは、単独運転検出のための既注入無効電力に対応している。   FIG. 4 is a diagram showing a characteristic curve when the reactive power amount calculation unit 136 calculates the reactive power amount Q, and shows the relationship of the reactive power amount Q to the system frequency deviation Δf. Note that the reactive power amount Q shown on the vertical axis corresponds to the already injected reactive power for the isolated operation detection.

図4に示す特性カーブは制御装置13内に組み込まれ、無効電力量演算部136によって参照される。無効電力量演算部136は、系統周波数偏差Δfが正のときには位相進みの無効電力量Qを算出し、系統周波数偏差Δfが負のときには位相遅れの無効電力量Qを算出する。その結果、基本動作としては、系統周波数偏差Δfが正のときには、インバータ制御部12にて位相進みの無効電力が生成されて電力系統2に注入され、系統周波数偏差Δfが負のときには、インバータ制御部12にて位相遅れの無効電力が生成されて電力系統2に注入される。   The characteristic curve shown in FIG. 4 is incorporated in the control device 13 and is referred to by the reactive energy calculation unit 136. The reactive power amount calculation unit 136 calculates a phase-advanced reactive power amount Q when the system frequency deviation Δf is positive, and calculates a phase-lag reactive power amount Q when the system frequency deviation Δf is negative. As a result, as a basic operation, when the system frequency deviation Δf is positive, the inverter control unit 12 generates a phase advance reactive power and injects it into the power system 2, and when the system frequency deviation Δf is negative, inverter control is performed. The reactive power with phase lag is generated by the unit 12 and injected into the power system 2.

なお、図4に示される特性カーブは、系統周波数偏差Δf1において、変化特性が切り替えられるようになっている。具体的に説明すると、系統周波数偏差Δfが小さいときには、系統周波数偏差Δfの変化に対する無効電力量Qの変化割合を小さくして、電力系統2に出力される無効電力量が少なくなる特性となっている。一方、系統周波数偏差Δfが大きいときには、系統周波数偏差Δfの変化に対する無効電力量Qの変化割合を大きくし、電力系統2に出力される無効電力量Qが多くなる特性となっている。無効電力量演算部136は、図4の特性カーブに従うように周波数偏差演算部135が算出した系統周波数偏差Δfに基づいて無効電力量Qを算出する。   In the characteristic curve shown in FIG. 4, the change characteristic is switched at the system frequency deviation Δf1. More specifically, when the system frequency deviation Δf is small, the rate of change of the reactive power amount Q with respect to the change of the system frequency deviation Δf is reduced to reduce the reactive power amount output to the power system 2. Yes. On the other hand, when the system frequency deviation Δf is large, the rate of change of the reactive power amount Q with respect to the change of the system frequency deviation Δf is increased, and the reactive power amount Q output to the power system 2 increases. The reactive energy calculator 136 calculates the reactive energy Q based on the system frequency deviation Δf calculated by the frequency deviation calculator 135 so as to follow the characteristic curve of FIG.

つぎに、無効電力干渉判定部140による無効電力の注入制御について、図5から図7の各図面を参照して説明する。図5は、無効電力干渉判定部140における動作を説明するためのフローチャートである。図6は、既注入無効電力と追加無効電力とが干渉する場合の動作波形を示す図であり、図7は、既注入無効電力と追加無効電力とが干渉しない場合の動作波形を示す図である。これら図6および図7のそれぞれにおいて、(a)は系統周波数偏差Δf、(b)は追加注入無効電力、(c)は既注入無効電力の動作波形を示している。   Next, reactive power injection control by the reactive power interference determination unit 140 will be described with reference to FIGS. 5 to 7. FIG. 5 is a flowchart for explaining the operation in reactive power interference determination section 140. FIG. 6 is a diagram illustrating an operation waveform when the already-injected reactive power interferes with the additional reactive power, and FIG. 7 is a diagram illustrating an operation waveform when the already-injected reactive power and the additional reactive power do not interfere with each other. is there. 6 and 7, (a) shows the system frequency deviation Δf, (b) shows the additional injection reactive power, and (c) shows the operation waveform of the already injected reactive power.

図5において、無効電力注入判定部137は、追加無効電力を注入するかどうかを判定する(ステップS1)。このステップS1の判定処理では、上述したごとく、周波数偏差演算部135で演算した系統周波数偏差Δfに基づく既注入無効電力と負荷無効電力とがバランスしているか否かが判定される。ここで、既注入無効電力と負荷無効電力とがバランスしていないと判定された場合(ステップS1,No)には、ステップS1の判定処理を繰り返す。一方、既注入無効電力と負荷無効電力とがバランスしていると判定された場合(ステップS1,Yes)には、予め設定された位相値の位相遅れを有する追加注入無効電力が出力される(ステップS2)。   In FIG. 5, the reactive power injection determining unit 137 determines whether to inject additional reactive power (step S1). In the determination process of step S1, as described above, it is determined whether the already injected reactive power and the load reactive power are balanced based on the system frequency deviation Δf calculated by the frequency deviation calculating unit 135. Here, when it is determined that the injected reactive power and the load reactive power are not balanced (step S1, No), the determination process of step S1 is repeated. On the other hand, if it is determined that the already injected reactive power and the load reactive power are balanced (step S1, Yes), the additional injected reactive power having a phase delay of a preset phase value is output ( Step S2).

ステップS2の処理による注入タイミングは、図6では、タイミングt0である。タイミングt0では、図6(a)に示すように、系統周波数偏差Δfがプラスであることが示され、追加注入無効電力の位相は、図6(b)に示すように、遅れ位相であることが示されている。このように、無効電力注入判定部137による動作では、系統周波数偏差Δfの符号に関わらず、無効電力注入判定部137から出力される無効電力の位相が、予め設定された遅れ側の位相に設定されている。   The injection timing by the process of step S2 is timing t0 in FIG. At timing t0, as shown in FIG. 6A, it is shown that the system frequency deviation Δf is positive, and the phase of the additional injection reactive power is a delayed phase as shown in FIG. 6B. It is shown. As described above, in the operation by the reactive power injection determining unit 137, the phase of the reactive power output from the reactive power injection determining unit 137 is set to a preset delay side phase regardless of the sign of the system frequency deviation Δf. Has been.

無効電力注入判定部137の出力は、図3に示すように無効電力干渉判定部140に入力されている。この構成により、無効電力干渉判定部140は、無効電力注入判定部137の出力変化から追加無効電力の注入タイミングt0を知ることができる。無効電力干渉判定部140は、注入タイミングt0を知り得てから以降の処理を制御する。なお、本実施の形態では、無効電力注入判定部137からの追加注入無効電力の出力期間は、系統周期の3周期分としているが、3周期分でなくてもよいことは言うまでもない。   The output of the reactive power injection determining unit 137 is input to the reactive power interference determining unit 140 as shown in FIG. With this configuration, the reactive power interference determination unit 140 can know the injection timing t0 of additional reactive power from the output change of the reactive power injection determination unit 137. The reactive power interference determination unit 140 controls the subsequent processing after knowing the injection timing t0. In the present embodiment, the output period of the additional injected reactive power from the reactive power injection determining unit 137 is set to three system cycles, but needless to say, the output period may not be three cycles.

無効電力干渉判定部140は、注入タイミングt0から上記3周期が経過する前の期間である系統周期で2周期分の期間が経過したか否かを判定する(ステップS3)。なお、図6において、t0から2周期分の期間をt1として示している。ここで、2周期分の期間が経過していなければ(ステップS3,No)、ステップS2の判定処理を繰り返す。一方、2周期分の期間が経過していれば(ステップS3,Yes)、ステップS4に移行する。   The reactive power interference determination unit 140 determines whether or not two periods have elapsed in the system cycle, which is a period before the three cycles elapse from the injection timing t0 (step S3). In FIG. 6, a period of two cycles from t0 is shown as t1. Here, if the period of two cycles has not passed (step S3, No), the determination process of step S2 is repeated. On the other hand, if the period of two cycles has passed (step S3, Yes), it will transfer to step S4.

ステップS4では、まず、無効電力干渉判定部140は、判定タイミングt1における周波数偏差Δft1と注入タイミングt0のときの系統周波数偏差Δft0との差の絶対値|Δft0−Δft1|の値が、予め設定された判定値未満か否かを判定する。判定値の一例は、例えば0.5Hzである。無効電力干渉判定部140は、さらに判定値未満か否かの判定結果に基づいて、追加無効電力と既注入無効電力との間の干渉の有無を判定する。   In step S4, first, the reactive power interference determination unit 140 is preset with an absolute value | Δft0−Δft1 | of the difference between the frequency deviation Δft1 at the determination timing t1 and the system frequency deviation Δft0 at the injection timing t0. It is determined whether it is less than the determined value. An example of the determination value is 0.5 Hz, for example. The reactive power interference determination unit 140 further determines the presence or absence of interference between the additional reactive power and the already-injected reactive power based on the determination result of whether or not it is less than the determination value.

さらに、ステップS4において、無効電力干渉判定部140は、例えば図6(a)に示すように、|Δft0−Δft1|の値が判定値未満であれば、追加無効電力が既注入無効電力で相殺されて干渉していると判断し、追加注入無効電力が遅れ位相であるので既注入無効電力の位相が進み側であると判定する。   Further, in step S4, the reactive power interference determination unit 140 cancels the additional reactive power with the already injected reactive power if the value of | Δft0−Δft1 | is less than the determination value, for example, as illustrated in FIG. Since the additional injection reactive power is in the delayed phase, it is determined that the phase of the already injected reactive power is the leading side.

無効電力干渉判定部140は、既注入無効電力における位相の判定結果に基づいて、追加無効電力の位相を既注入無効電力の位相に一致させるため、追加無効電力の注入方向を進み側に変更し(ステップS5)、ステップS5で変更した注入方向の情報を示す信号、すなわち追加無効電力の位相を進み側に変更した旨を示す信号を無効電力注入判定部137に通知する。   The reactive power interference determination unit 140 changes the injection direction of the additional reactive power to the forward side in order to match the phase of the additional reactive power with the phase of the already injected reactive power based on the phase determination result of the already injected reactive power. (Step S5), a signal indicating the injection direction information changed in Step S5, that is, a signal indicating that the phase of the additional reactive power is changed to the advance side is notified to the reactive power injection determining unit 137.

無効電力注入判定部137は、無効電力干渉判定部140からの通知を受けて、追加無効電力の注入方向を変更する。   Reactive power injection determination unit 137 receives the notification from reactive power interference determination unit 140 and changes the injection direction of additional reactive power.

無効電力干渉判定部140は、追加無効電力の注入方向変更後から系統周期で、例えば3周期分の時間が経過したかどうかを判定する(ステップS6)。3周期分の時間が経過していなければ(ステップS6,No)、ステップS5,S6の処理を繰り返し、3周期分の時間が経過していれば(ステップS6,Yes)、3周期分の時間が経過した旨を示す信号を無効電力注入判定部137に通知する。   The reactive power interference determination unit 140 determines whether, for example, three cycles have elapsed in the system cycle after the additional reactive power injection direction is changed (step S6). If the time for three cycles has not elapsed (step S6, No), the processing of steps S5 and S6 is repeated, and if the time for three cycles has elapsed (step S6, Yes), the time for three cycles The reactive power injection determination unit 137 is notified of a signal indicating that has passed.

無効電力注入判定部137は、3周期分の時間が経過した旨を示す信号入力に応答して、追加無効電力の注入を停止し(ステップS9)、追加無効電力の注入停止後から系統周期で、例えば5周期分の時間が経過したかどうかを判定する(ステップS10)。5周期分の時間が経過していなければ(ステップS10,No)、ステップS9,S10の処理を繰り返し、5周期分の時間が経過していれば(ステップS10,Yes)、ステップS1の処理に戻る。   The reactive power injection determining unit 137 stops the injection of the additional reactive power in response to the signal input indicating that the time for three cycles has passed (step S9), and after the stop of the additional reactive power injection, For example, it is determined whether or not five cycles have elapsed (step S10). If the time for 5 cycles has not elapsed (step S10, No), the processing of steps S9 and S10 is repeated, and if the time for 5 cycles has elapsed (step S10, Yes), the processing of step S1 is performed. Return.

一方、ステップS4において、無効電力干渉判定部140は、例えば図7(a)に示すように、|Δft0−Δft1|の値が判定値以上であれば、追加無効電力が既注入無効電力で相殺されておらず干渉していないと判断し(ステップS4,No)、追加無効電力の注入方向を変更しないとする旨の信号を無効電力注入判定部137に通知する。   On the other hand, in step S4, the reactive power interference determining unit 140 cancels the additional reactive power with the already injected reactive power if the value of | Δft0−Δft1 | is equal to or greater than the determination value, for example, as illustrated in FIG. It is determined that no interference has occurred (step S4, No), and a signal indicating that the injection direction of the additional reactive power is not changed is notified to the reactive power injection determination unit 137.

無効電力注入判定部137は、無効電力干渉判定部140からの通知を受け、図7(b)に示すように、遅れ位相の無効電力の注入を、タイミングt1から系統周期でさらに、例えば1周期分継続する(ステップS7)。   The reactive power injection determination unit 137 receives the notification from the reactive power interference determination unit 140, and as shown in FIG. 7B, the reactive power injection of the delayed phase is further performed in the system cycle from the timing t1, for example, one cycle. Continue for a minute (step S7).

無効電力干渉判定部140は、追加無効電力の注入が系統周期で1周期分の時間が経過したかどうか判定する(ステップS8)。1周期分の時間が経過していなければ(ステップS8,No)、ステップS7,S8の処理を繰り返し、1周期分の時間が経過していれば(ステップS8,Yes)、ステップS9の処理に移行して、追加無効電力の注入を停止する。以後の動作は、上述した通りである。   The reactive power interference determination unit 140 determines whether or not the additional reactive power injection has elapsed for one cycle in the system cycle (step S8). If the time for one cycle has not elapsed (step S8, No), the processing of steps S7 and S8 is repeated, and if the time for one cycle has elapsed (step S8, Yes), the processing of step S9 is performed. Transition to stop injection of additional reactive power. Subsequent operations are as described above.

以上説明したように、本実施の形態では、電力系統における系統周波数偏差に基づいて電力系統に追加無効電力を既注入無効電力として注入すると共にこの既注入無効電力が負荷無効電力とバランスしたときには電力系統に、系統周波数偏差の符号に関わらず、予め定めた位相である遅れ位相の無効電力である追加無効電力を、第1の期間として、例えば系統周期で3周期分、追加注入する。なお、系統周波数偏差、すなわち系統周波数の変動は、電力系統で生起する電気的変動の一例であり、系統周波数偏差に代えて、系統電圧の変動を表す系統電圧偏差、高調波成分の変動を表す高調波歪電圧偏差を判定指標として用いてもよい。   As described above, in the present embodiment, additional reactive power is injected into the power system as already injected reactive power based on the system frequency deviation in the power system, and when this already injected reactive power balances with the load reactive power, the power Regardless of the sign of the system frequency deviation, additional reactive power, which is reactive power with a delay phase that is a predetermined phase, is additionally injected into the system as a first period, for example, for three periods in the system period. The system frequency deviation, that is, the system frequency fluctuation is an example of an electrical fluctuation that occurs in the power system. Instead of the system frequency deviation, the system voltage deviation representing the system voltage fluctuation and the harmonic component fluctuation are represented. A harmonic distortion voltage deviation may be used as a determination index.

そして、上記第1の期間が経過するまでには、追加無効電力の注入後から第1の期間よりも短い期間である、例えば系統周期で2周期分の時間である第2の期間が経過した後に、追加注入無効電力が既注入無効電力で相殺され干渉しているかどうかを判定する。この判定は、判定タイミングt1における周波数偏差Δft1と、注入タイミングt0のときの系統周波数偏差Δft0との間の差の絶対値|Δft0−Δft1|に基づいて行う。この判定の結果、判定時点での|Δft0−Δft1|の値が判定値未満の場合は、既注入無効電力の位相が、追加注入無効電力の位相とは逆位相になっていて干渉しているという判定を行い、追加注入無効電力の位相を反転させた位相の追加注入無効電力を、改めて上記第1の期間、注入するので、追加注入無効電力が既注入無効電力で相殺されずに済み、追加注入無効電力で無効電力バランスを崩して単独運転検出することが可能となる。   By the time the first period elapses, a second period that is a period shorter than the first period after the injection of the additional reactive power, for example, two periods in the system period has elapsed. Later, it is determined whether or not the additional injection reactive power is offset by the already injected reactive power. This determination is made based on the absolute value | Δft0−Δft1 | of the difference between the frequency deviation Δft1 at the determination timing t1 and the system frequency deviation Δft0 at the injection timing t0. As a result of this determination, if the value of | Δft0−Δft1 | at the determination time is less than the determination value, the phase of the already injected reactive power is opposite to the phase of the additional injected reactive power and interferes. The additional injection reactive power of the phase obtained by inverting the phase of the additional injection reactive power is injected again during the first period, so that the additional injection reactive power does not need to be offset by the existing injection reactive power, It becomes possible to detect the isolated operation by breaking the reactive power balance with the additional injection reactive power.

また、上記判定時点での|Δft0−Δft1|の値が判定値より大きいときは、既注入無効電力の位相が、追加注入無効電力の位相と同位相であり干渉していないと判定し、追加注入無効電力注入後から上記第1の期間経過するまでの残り期間である1周期分、同位相で追加注入無効電力の注入を継続するので、無効電力バランスを追加注入無効電力で効果的に崩して単独運転検出を確実に実施することが可能となる。   If the value of | Δft0−Δft1 | at the time of the determination is larger than the determination value, it is determined that the phase of the already injected reactive power is the same as the phase of the additional injected reactive power and there is no interference. Since the injection of additional injection reactive power is continued in the same phase for the remaining period from the injection reactive power injection until the first period elapses, the reactive power balance is effectively disrupted by the additional injection reactive power. In this way, it becomes possible to reliably perform the isolated operation detection.

なお、上記の処理において、系統周波数偏差、すなわち系統周波数の変動は、電力系統における電気的変動の一例であり、系統周波数偏差に代えて、系統電圧の変動を表す系統電圧偏差、高調波成分の変動を表す高調波歪電圧偏差を判定指標として用いてもよい。   In the above processing, the system frequency deviation, that is, the fluctuation of the system frequency is an example of the electrical fluctuation in the power system. Instead of the system frequency deviation, the system voltage deviation representing the fluctuation of the system voltage and the harmonic component You may use the harmonic distortion voltage deviation showing a fluctuation | variation as a determination parameter | index.

また、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略して構成してもよいことは言うまでもない。   The configurations described in the above embodiments are examples of the configurations of the present invention, and can be combined with other known techniques, and a part of the configurations is omitted without departing from the gist of the present invention. Needless to say, it may be configured.

1 分散型電源装置、2 電力系統、3 負荷、5 電力供給手段、10 パワーコンディショナ、11 インバータ、12 インバータ制御部、13 制御装置、14 連系リレー、15 電流検出器、16 単独運転検出装置、22 柱上変圧器、24 区分開閉器、26 遮断器、30 計測部、32 無効電流注入制御部、131 系統電圧計測部、132 高調波歪検出部、133 周波数計測部、134 単独運転判定部、135 周波数偏差演算部、136 無効電力量演算部、137 無効電力注入判定部、138 加算部、139 出力電流制御部、140 無効電力干渉判定部。   DESCRIPTION OF SYMBOLS 1 Distributed type power supply device, 2 Electric power system, 3 Load, 5 Power supply means, 10 Power conditioner, 11 Inverter, 12 Inverter control part, 13 Control apparatus, 14 Interconnection relay, 15 Current detector, 16 Independent operation detection apparatus , 22 pole transformer, 24 section switch, 26 circuit breaker, 30 measurement unit, 32 reactive current injection control unit, 131 system voltage measurement unit, 132 harmonic distortion detection unit, 133 frequency measurement unit, 134 isolated operation determination unit , 135 Frequency deviation calculation unit, 136 Reactive power amount calculation unit, 137 Reactive power injection determination unit, 138 Addition unit, 139 Output current control unit, 140 Reactive power interference determination unit.

Claims (8)

電力系統で生起する電気的変動に基づいて、前記電力系統に連系する分散型電源装置の単独運転を検出するように構成された単独運転検出用の制御装置であって、
前記制御装置は、
前記電気的変動を計測する計測部と、
前記計測部が計測した計測値に基づいて、前記制御装置によって制御される電力変換手段によって注入された既注入無効電力が負荷無効電力とバランスしたとき、前記電力系統に予め設定された位相の無効電力を予め設定された第1の期間内に追加注入する制御を行う無効電流注入制御部と、
前記計測部の計測値に基づいて単独運転の判定を行う単独運転判定部と、
前記無効電流注入制御部の演算結果に基づいて、前記既注入無効電力と追加注入された追加注入無効電力とが干渉しているか否かを判定する無効電力干渉判定部と、
を備え、
前記無効電力干渉判定部は、前記第1の期間内に無効電力を追加注入した追加注入時点における周波数偏差の値と、前記第1の期間よりも短い第2の期間の経過時点における周波数偏差の値との差の絶対値により、前記既注入無効電力と前記追加注入無効電力との間の干渉を判定し、
前記無効電流注入制御部は、
前記無効電力干渉判定部の判定結果が干渉していると判定したときは、前記追加注入無効電力の位相を反転させた位相の追加注入無効電力を、改めて前記第1の期間注入する制御を行い、
前記無効電力干渉判定部の判定結果が干渉していないと判定したときは、前記追加注入無効電力の注入時点から前記第1の期間が経過するまでの残り期間、前記追加注入無効電力と同位相の追加無効電力の注入を継続する制御を行う
ことを特徴とする制御装置。
A control device for single operation detection configured to detect single operation of a distributed power supply device linked to the power system, based on electrical fluctuations that occur in the power system,
The controller is
A measurement unit for measuring the electrical variation;
When the already injected reactive power injected by the power conversion means controlled by the control device is balanced with the load reactive power based on the measurement value measured by the measuring unit, the phase invalid in advance set in the power system A reactive current injection control unit that performs control to additionally inject power within a preset first period;
An isolated operation determination unit that determines an isolated operation based on the measurement value of the measurement unit;
Based on the calculation result of the reactive current injection control unit, a reactive power interference determination unit that determines whether or not the already injected reactive power interferes with the additionally injected reactive power that has been additionally injected,
With
The reactive power interference determination unit includes a value of a frequency deviation at an additional injection time point when additional reactive power is additionally injected within the first period, and a frequency deviation value at a time point when a second period shorter than the first period is passed. Determining the interference between the already injected reactive power and the additional injected reactive power by the absolute value of the difference between the values,
The reactive current injection control unit includes:
When it is determined that the determination result of the reactive power interference determination unit interferes, control is performed to inject additional injection reactive power having a phase obtained by inverting the phase of the additional injection reactive power again in the first period. ,
When it is determined that the determination result of the reactive power interference determination unit does not interfere, the remaining period until the first period elapses from the time of injection of the additional injection reactive power, the same phase as the additional injection reactive power A control device that performs control to continue injection of additional reactive power.
前記無効電力干渉判定部は、前記追加無効電力注入後の周波数偏差の値と、前記第1の期間よりも短い期間経過した後の周波数偏差の値との差の絶対値が判定値未満の場合には前記既注入無効電力と前記追加注入無効電力とが干渉していると判定し、前記判定値以上の場合は、前記既注入無効電力と前記追加注入無効電力とが干渉していないと判定することを特徴とする請求項1に記載の制御装置。   The reactive power interference determination unit is configured such that an absolute value of a difference between a frequency deviation value after the additional reactive power injection and a frequency deviation value after a period shorter than the first period is less than a determination value It is determined that the already injected reactive power and the additional injected reactive power interfere with each other, and if it is equal to or greater than the determination value, it is determined that the already injected reactive power and the additional injected reactive power do not interfere with each other. The control device according to claim 1, wherein: 前記電気的変動が、系統周波数変動、系統電圧変動、または高調波変動であることを特徴とする請求項1または2に記載の制御装置。   The control device according to claim 1, wherein the electrical variation is a system frequency variation, a system voltage variation, or a harmonic variation. 前記第1の期間は系統周期の3倍の期間であり、前記第2の期間は前記系統周期の2倍の期間であることを特徴とする請求項1から3の何れか1項に記載の制御装置。   4. The device according to claim 1, wherein the first period is a period that is three times the system period, and the second period is a period that is twice the system period. 5. Control device. 分散型電源装置が電力系統から切り離されて単独運転しているか否かを検出する単独運転検出装置であって、請求項1から4の何れか1項に記載の制御装置を備えたことを特徴とする単独運転検出装置。   An isolated operation detection device for detecting whether or not the distributed power supply device is isolated from the electric power system and operated independently, comprising the control device according to any one of claims 1 to 4. An isolated operation detection device. 請求項5に記載の単独運転検出装置を備えたことを特徴とする分散型電源装置。   A distributed power supply device comprising the isolated operation detection device according to claim 5. 電力系統で生起する電気的変動に基づいて、前記電力系統に連系する分散型電源装置の単独運転を検出するようにした単独運転検出方法であって、
前記電気的変動に基づいて前記電力系統に無効電力を注入する第1ステップと、
前記第1ステップによって注入された既注入無効電力が負荷無効電力とバランスしたとき、前記電力系統に予め設定された位相の追加無効電力を予め設定された第1の期間内に追加注入する第2ステップと、
前記第2ステップでの追加注入時点における周波数偏差の値と、前記第1の期間よりも短い第2の期間の経過時点における周波数偏差の値との差の絶対値により、前記既注入無効電力と前記第2ステップによって追加注入された追加注入無効電力とが干渉しているか否かを判定する第3ステップと、
前記第3ステップでの判定結果より、干渉していると判定したときは、追加注入無効電力の位相を反転させた位相の追加注入無効電力を、改めて前記第1の期間注入する第4ステップと、
前記第3ステップでの判定結果より、干渉していないと判定したときは、前記第2ステップでの追加注入時点から前記第1の期間が経過するまでの残り期間、前記第2ステップで注入した追加注入無効電力と同位相の追加無効電力の注入を継続する第5ステップと、
を含むことを特徴とする単独運転検出方法。
An isolated operation detection method for detecting isolated operation of a distributed power supply unit connected to the power system based on electrical fluctuations that occur in the power system,
A first step of injecting reactive power into the power system based on the electrical variation;
When the already injected reactive power injected by the first step is balanced with the load reactive power, a second phase of the additional reactive power having a preset phase in the power system is additionally injected within a preset first period. Steps,
The absolute value of the difference between the value of the frequency deviation at the time of the additional injection in the second step and the value of the frequency deviation at the time of the second period shorter than the first period, A third step of determining whether or not the additional injection reactive power additionally injected by the second step interferes;
From the determination result in the third step, when it is determined that there is interference, the fourth step of injecting the additional injection reactive power of the phase obtained by inverting the phase of the additional injection reactive power again in the first period; ,
When it is determined from the determination result in the third step that there is no interference, the remaining period from the additional injection time point in the second step until the first period elapses is injected in the second step. A fifth step of continuing to inject additional reactive power in phase with the additional injected reactive power;
An islanding operation detection method comprising:
前記第3ステップでの判定は、前記追加無効電力の注入後の周波数偏差の値と、前記第1の期間よりも短い期間経過した後の周波数偏差の値との差の絶対値が判定値未満の場合には前記既注入無効電力と前記追加注入無効電力とが干渉していると判定し、前記判定値以上の場合は、前記既注入無効電力と前記追加注入無効電力とが干渉していないと判定することを特徴とする請求項7に記載の単独運転検出方法。   In the determination in the third step, the absolute value of the difference between the frequency deviation value after the injection of the additional reactive power and the frequency deviation value after a period shorter than the first period is less than the determination value. In the case of the above, it is determined that the already injected reactive power and the additional injected reactive power interfere with each other, and in the case of the determination value or more, the already injected reactive power and the additional injected reactive power do not interfere with each other. The islanding operation detection method according to claim 7, wherein:
JP2014156967A 2014-07-31 2014-07-31 Isolated operation detection device, isolated operation detection method, isolated operation detection control device, and distributed power supply device Expired - Fee Related JP6341791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014156967A JP6341791B2 (en) 2014-07-31 2014-07-31 Isolated operation detection device, isolated operation detection method, isolated operation detection control device, and distributed power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014156967A JP6341791B2 (en) 2014-07-31 2014-07-31 Isolated operation detection device, isolated operation detection method, isolated operation detection control device, and distributed power supply device

Publications (2)

Publication Number Publication Date
JP2016034217A true JP2016034217A (en) 2016-03-10
JP6341791B2 JP6341791B2 (en) 2018-06-13

Family

ID=55452876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014156967A Expired - Fee Related JP6341791B2 (en) 2014-07-31 2014-07-31 Isolated operation detection device, isolated operation detection method, isolated operation detection control device, and distributed power supply device

Country Status (1)

Country Link
JP (1) JP6341791B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140771A (en) * 2018-02-08 2019-08-22 富士電機株式会社 Individual operation detecting device, individual operation detecting method, and individual operation detecting program
US11063436B2 (en) 2019-06-21 2021-07-13 Murata Manufacturing Co., Ltd. Power conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182818A (en) * 2007-01-24 2008-08-07 Omron Corp Method and apparatus for detecting isolated operation and power line conditioner
JP2009136096A (en) * 2007-11-30 2009-06-18 Omron Corp Islanding detecting method, controller, islanding detecting apparatus and distribution type power supply system
JP2011055678A (en) * 2009-09-04 2011-03-17 Omron Corp Method for detecting islanding, controller, device for detecting islanding, and distributed power system
WO2012133075A1 (en) * 2011-03-31 2012-10-04 三洋電機株式会社 Utility interconnection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182818A (en) * 2007-01-24 2008-08-07 Omron Corp Method and apparatus for detecting isolated operation and power line conditioner
JP2009136096A (en) * 2007-11-30 2009-06-18 Omron Corp Islanding detecting method, controller, islanding detecting apparatus and distribution type power supply system
JP2011055678A (en) * 2009-09-04 2011-03-17 Omron Corp Method for detecting islanding, controller, device for detecting islanding, and distributed power system
WO2012133075A1 (en) * 2011-03-31 2012-10-04 三洋電機株式会社 Utility interconnection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140771A (en) * 2018-02-08 2019-08-22 富士電機株式会社 Individual operation detecting device, individual operation detecting method, and individual operation detecting program
JP7069784B2 (en) 2018-02-08 2022-05-18 富士電機株式会社 Independent operation detection device, independent operation detection method, and independent operation detection program
US11063436B2 (en) 2019-06-21 2021-07-13 Murata Manufacturing Co., Ltd. Power conversion device

Also Published As

Publication number Publication date
JP6341791B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP4835587B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
US20140103724A1 (en) Bidirectional power system, operation method, and controller for operating
US9991819B2 (en) Power conversion system and method for detecting isolated operation of the same
JP5418079B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
US10024928B2 (en) Inverter and detection method for an inverter for detecting a network fault
US9935463B2 (en) Redundant point of common coupling (PCC) to reduce risk of microgrid's islanding
JP4661856B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP2014027762A (en) Distributed power supply system and operation method
JP5050723B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP6006637B2 (en) Power conversion control device
JP6341791B2 (en) Isolated operation detection device, isolated operation detection method, isolated operation detection control device, and distributed power supply device
CN103515981A (en) Grid-connected photovoltaic power generation system and automatic phase displacement islanding phenomenon detecting method thereof
JP6345078B2 (en) Control device for isolated operation detection, isolated operation detection device, and isolated operation detection method
JP6574725B2 (en) Power converter and isolated operation detection method
JP4872826B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP6399892B2 (en) Control device for isolated operation detection and isolated operation detection device
JP2015107033A (en) Parallel-off control device, parallel-off control method and power conditioner
TW201126185A (en) Islanding operation detection method of current-controllable power grid-connected converter under
KR101568712B1 (en) An islanding detection apparatus and method with partial phase window monitoring method on grid connected inverter
JP6398054B2 (en) Isolated operation detection device and method, and distributed power supply
JP6398057B2 (en) AC power supply apparatus and instantaneous voltage fluctuation detection method thereof
Zhou et al. A review of islanding detection method of grid-connected PV power system
KR20170050947A (en) A single phase grid connected inverter
JP2016082723A (en) Single operation detection device, single operation detection method, control device for single operation detection, and distributed power supply device
JP2013243879A (en) Individual operation detection circuit, individual operation detection method, and system interconnection inverter device including individual operation detection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180515

R150 Certificate of patent or registration of utility model

Ref document number: 6341791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees