JP2016034193A - Liquid cooling structure thin type coreless linear motor of piping sandwich type - Google Patents

Liquid cooling structure thin type coreless linear motor of piping sandwich type Download PDF

Info

Publication number
JP2016034193A
JP2016034193A JP2014156207A JP2014156207A JP2016034193A JP 2016034193 A JP2016034193 A JP 2016034193A JP 2014156207 A JP2014156207 A JP 2014156207A JP 2014156207 A JP2014156207 A JP 2014156207A JP 2016034193 A JP2016034193 A JP 2016034193A
Authority
JP
Japan
Prior art keywords
coil
piping
pipe
flow path
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014156207A
Other languages
Japanese (ja)
Inventor
弘二 寺嶋
Koji Terashima
弘二 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Nikki Denso Co Ltd
Original Assignee
Nikki Denso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Denso Co Ltd filed Critical Nikki Denso Co Ltd
Priority to JP2014156207A priority Critical patent/JP2016034193A/en
Publication of JP2016034193A publication Critical patent/JP2016034193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device having high cooling efficiency, having no risk of liquid leakage, having no increase of coil thickness in cooling of a coreless linear motor coil.SOLUTION: A sandwich structure in which a coil winding is divided into two pieces in a thickness direction between which a coolant pipe is inserted makes it possible to efficiently cool down a center of a coil. The coolant pipe is an elliptical pipe formed by compressing to deform in a coil thickness direction a pipe of a circular cross-section bent into a shape of a piping root in advance. For a pipe material, nonmagnetism austenite stainless steel is used. The coolant pipe of no joint is bent to form a flow passageway.SELECTED DRAWING: Figure 1

Description

本発明は、コアレスリニアモータの電磁巻線コイル(以下コイル)を、効果的かつコンパクトに液体で冷却する方法に関するものである。   The present invention relates to a method for effectively and compactly cooling an electromagnetic winding coil (hereinafter referred to as a coil) of a coreless linear motor with a liquid.

一般的にコアレスリニアモータの液冷方式としてはコイルを支持する金属製のフレームに流路を設けてコイルを間接的に冷却する方法が採られている。
しかし、それでは冷却効率が低いためコイル直近に流路を設けて効果的に冷却する方法が求められている。
In general, as a liquid cooling method for a coreless linear motor, a method of indirectly cooling a coil by providing a flow path in a metal frame that supports the coil is employed.
However, since the cooling efficiency is low, there is a demand for a method of effectively cooling by providing a flow path near the coil.

永久磁石と組合せて推力を発生する同期型コアレスリニアモータのコイルユニットを効果的かつコンパクトに冷却する液冷方法である。 This is a liquid cooling method for effectively and compactly cooling a coil unit of a synchronous coreless linear motor that generates thrust in combination with a permanent magnet.

コアレスリニアモータで大きな定格推力が必要な場合や周囲環境に与える熱的影響を極力抑えたい場合には、コイルの発熱を低く抑えなければならない。
そこで、発熱源であるコイル直近に冷却液を通すことにより効果的にコイルを冷却可能な構造を提供する。
When a coreless linear motor requires a large rated thrust or when it is desired to minimize the thermal influence on the surrounding environment, the heat generation of the coil must be kept low.
In view of this, a structure is provided in which the coil can be effectively cooled by passing a coolant in the vicinity of the coil, which is a heat generation source.

本発明は、コイル巻線を厚さ方向に二分割してそこに冷却液の流路となる配管を配置するサンドイッチ構造とした。
併せて、挟みこんだ冷却液流路である金属管の断面形状を円形からだ円形に圧縮成型することにより、モータの厚さ方向の寸法増加を小さく抑えた。
In the present invention, the coil winding is divided into two in the thickness direction, and a sandwich structure is provided in which a pipe serving as a coolant flow path is arranged.
At the same time, the cross-sectional shape of the metal pipe, which is the sandwiched coolant flow path, is compression-molded into a circular to ellipse shape, thereby minimizing the increase in dimension in the thickness direction of the motor.

本発明は、コイル巻線を厚さ方向に二分割してそこに冷却液の流路となる配管を通すサンドイッチ構造とすることで、発熱源であるコイル巻線の中心部を効率良く冷却することを可能とした。
モータの厚さ方向の寸法増加が少ないためモータ性能とモータ効率の低下を少なくできた。
冷却液流路は1本の金属管を曲げて製作するため、モータ内部での冷却液漏れの危険がなくなった。
The present invention efficiently cools the central portion of the coil winding, which is a heat source, by dividing the coil winding into two in the thickness direction and passing through the piping that serves as a coolant flow path therethrough. Made it possible.
The decrease in motor performance and motor efficiency can be reduced because there is little increase in dimension in the motor thickness direction.
The coolant flow path is made by bending a single metal tube, eliminating the risk of coolant leakage inside the motor.

図1は冷却液管の配置方法を示した図面である。(実施例1)FIG. 1 is a view showing a method of arranging a cooling liquid pipe. Example 1 図2はコイル、冷却液管、金属フレーム、配線及びモールド樹脂の形状と構造を立体的に示した図面である。(実施例2)FIG. 2 is a view three-dimensionally showing the shape and structure of the coil, the coolant pipe, the metal frame, the wiring, and the mold resin. (Example 2)

コイルの巻線を厚さ方向に二分割してそこに流路形状に曲げ加工と管断面をつぶし加工をされた冷却液配管を挟みこむ。
コイル、冷却液配管、配線は、樹脂モールドにより金属製フレームと一体化される。
The coil winding is divided into two in the thickness direction, and a coolant pipe that is bent into a flow path shape and crushes the cross section of the pipe is sandwiched there.
The coil, the coolant pipe, and the wiring are integrated with the metal frame by a resin mold.

Claims (7)

コイル巻線を厚さ方向に二分割してそこに冷却液の流路となる配管を通すことにより、発熱源であり冷却することが難しかったコイル中心部を効果的に冷却可能とした。   The coil winding is divided into two in the thickness direction, and a pipe serving as a flow path for the coolant is passed therethrough, thereby effectively cooling the coil central portion which is a heat source and difficult to cool. 冷却液配管は厚さ方向の寸法増加を抑えることとコイル面への伝熱面積を広げるために、予め配管ルートの形状に曲げた円形断面管をコイル厚さ方向に圧縮変形させただ円形状へ成型する。
配管断面をだ円形状にすることでコイル部の厚みの増加を小さくすることが可能となる。
In order to suppress the increase in dimension in the thickness direction and expand the heat transfer area to the coil surface, the coolant pipe has an elliptical shape in which a circular cross-section pipe bent in advance to the shape of the piping route is compressed and deformed in the coil thickness direction. Mold.
By making the pipe cross section elliptical, it is possible to reduce the increase in the thickness of the coil portion.
配管材料には耐食性とモータ電磁界への影響を小さくするため非磁性のオーステナイト系ステンレス鋼を使用する。 For the piping material, nonmagnetic austenitic stainless steel is used to reduce the effect on corrosion resistance and motor electromagnetic field. 継ぎ目のない一本の配管を成型して流路を形成することにより、樹脂モールドされたコイル内部での冷却液漏れを極力防止可能とする。 By forming a flow path by molding a single seamless pipe, it is possible to prevent leakage of the cooling liquid inside the resin-molded coil as much as possible. コイルをモールドする樹脂で冷却液配管を固定することにより、配管固定用部品を不要とする。
併せて配管を樹脂補強材として利用することでコイルユニットの剛性が向上する。
Fixing the coolant piping with resin that molds the coil eliminates the need for piping fixing parts.
In addition, the rigidity of the coil unit is improved by using the piping as a resin reinforcing material.
コイル直近に冷却液配管を配置し効率良くコイルの発熱を低減させることにより、定格推力の向上と周囲への熱影響の排除、
及び熱による機械的変位を極力低減させることを可能とした。
Improving the rated thrust and eliminating the influence of heat on the surroundings by arranging the coolant piping in the immediate vicinity of the coil and efficiently reducing the heat generation of the coil,
In addition, the mechanical displacement due to heat can be reduced as much as possible.
金属フレームに流路を設けコイルを間接冷却する方式ではガンドリル加工によって流路の深穴加工を行うため金属フレーム長に制限があるが、
金属管を曲げ加工して流路を形成する方式では金属フレームの長さに制限が無い。
In the method of providing a flow path in the metal frame and indirectly cooling the coil, the depth of the flow path is processed by gun drilling, but the metal frame length is limited.
There is no limitation on the length of the metal frame in the system in which the flow path is formed by bending a metal tube.
JP2014156207A 2014-07-31 2014-07-31 Liquid cooling structure thin type coreless linear motor of piping sandwich type Pending JP2016034193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014156207A JP2016034193A (en) 2014-07-31 2014-07-31 Liquid cooling structure thin type coreless linear motor of piping sandwich type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014156207A JP2016034193A (en) 2014-07-31 2014-07-31 Liquid cooling structure thin type coreless linear motor of piping sandwich type

Publications (1)

Publication Number Publication Date
JP2016034193A true JP2016034193A (en) 2016-03-10

Family

ID=55452862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014156207A Pending JP2016034193A (en) 2014-07-31 2014-07-31 Liquid cooling structure thin type coreless linear motor of piping sandwich type

Country Status (1)

Country Link
JP (1) JP2016034193A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110637410A (en) * 2017-05-26 2019-12-31 Asml荷兰有限公司 Actuator, linear motor and lithographic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110637410A (en) * 2017-05-26 2019-12-31 Asml荷兰有限公司 Actuator, linear motor and lithographic apparatus
CN110637410B (en) * 2017-05-26 2021-11-16 Asml荷兰有限公司 Actuator, linear motor and lithographic apparatus
US11539280B2 (en) 2017-05-26 2022-12-27 Asml Netherlands B.V. Actuator, linear motor and lithographic apparatus

Similar Documents

Publication Publication Date Title
BR112017003495A2 (en) receiving device, and methods for manufacturing and operating a receiving device.
NZ598955A (en) A hydroelectric turbine with coil cooling
EP2043233A1 (en) Cooled electric generator with tubes embedded in the cover thereof
JP2013542707A5 (en)
WO2010047129A1 (en) Linear motor coil assembly comprising cooling device
JP2021040443A5 (en)
JP2016034193A (en) Liquid cooling structure thin type coreless linear motor of piping sandwich type
RU2017106527A (en) FLOW ELEMENT
CN204629670U (en) A kind of cast iron heater
ATE545140T1 (en) SUPERCONDUCTIVE CABLE SYSTEM
JP6383540B2 (en) Spinning molding equipment
CN105932795A (en) Motor stator using liquid cooling
JP2016042755A (en) Thin coreless linear motor with liquid cooling structure around coil
JP5348476B2 (en) Linear motor, linear motor armature, and method of manufacturing linear motor armature
CN204560095U (en) Five pre-buried cooling circuit heat dissipation tanks of solid
SG154346A1 (en) System and method for restoring metal components
JP5973483B2 (en) Closed circulation refrigerant cooling system
JP6253505B2 (en) Armature for linear motor
JP6877315B2 (en) Cooling structure of rotary electric machine
EP1909297A3 (en) Flow-cooled magnet system
JP5839482B2 (en) Injection molding machine
JP2014045532A (en) Rotor of rotary electric machine
JP2020102996A (en) Cooling structure of magnetizing yoke
CN205610365U (en) Liquid cooling motor stator
JP5504888B2 (en) Superconducting coil container and superconducting equipment