JP2016033613A - MEMS device - Google Patents

MEMS device Download PDF

Info

Publication number
JP2016033613A
JP2016033613A JP2014156711A JP2014156711A JP2016033613A JP 2016033613 A JP2016033613 A JP 2016033613A JP 2014156711 A JP2014156711 A JP 2014156711A JP 2014156711 A JP2014156711 A JP 2014156711A JP 2016033613 A JP2016033613 A JP 2016033613A
Authority
JP
Japan
Prior art keywords
magnetic pole
magnetic
pole
loop
closed loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014156711A
Other languages
Japanese (ja)
Other versions
JP6365077B2 (en
Inventor
村田 香苗
Kanae Murata
香苗 村田
勲 青柳
Isao Aoyanagi
勲 青柳
宏哉 田中
Hiroya Tanaka
宏哉 田中
明石 照久
Teruhisa Akashi
照久 明石
裕 野々村
Yutaka Nonomura
裕 野々村
英男 飯塚
Hideo Iizuka
英男 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2014156711A priority Critical patent/JP6365077B2/en
Publication of JP2016033613A publication Critical patent/JP2016033613A/en
Application granted granted Critical
Publication of JP6365077B2 publication Critical patent/JP6365077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a MEMS device capable of improving driving force of a movable part without increasing the size of the whole device.SOLUTION: A MEMS device includes: a substrate; a movable part having a magnetic body, and capable of moving in a tilt manner relatively to the substrate; a fixation part having a first magnetic pole and a second magnetic pole capable of applying a magnetic field to the magnetic body; and a conductive closed loop provided on the first magnetic pole side or the second magnetic pole side, with respect to the magnetic body. In the closed loop, the loop surface of the closed loop is arranged in a direction crossing a direction of the magnetic field, in the periphery of an area positioned between the magnetic body and the first magnetic pole or the second magnetic pole.SELECTED DRAWING: Figure 4

Description

本明細書は、MEMS(Micro Electro Mechanical Systems)装置に関する。   The present specification relates to a MEMS (Micro Electro Mechanical Systems) apparatus.

基板と、基板に対して相対的に傾動可能な可動部を備えるMEMS装置が知られている。このようなMEMS装置は、例えば光偏向装置として応用される。この種の光偏向装置では、可動部にミラーを固定し、可動部を基板に対して傾動させることで、ミラーの角度を調整する。   2. Description of the Related Art A MEMS device including a substrate and a movable portion that can be tilted relative to the substrate is known. Such a MEMS device is applied as an optical deflection device, for example. In this type of optical deflection apparatus, the mirror is fixed to the movable part, and the angle of the mirror is adjusted by tilting the movable part with respect to the substrate.

可動部を傾動させる方式の1つとして、電磁駆動が挙げられる。特許文献1には、可動部に永久磁石を固定し、この永久磁石に、電磁石によって磁場を与えることで、可動部を傾動させることができる、電磁駆動式のMEMS装置が記載されている。   One method for tilting the movable part is electromagnetic driving. Patent Document 1 describes an electromagnetically driven MEMS device in which a permanent magnet is fixed to a movable part, and the movable part can be tilted by applying a magnetic field to the permanent magnet by an electromagnet.

特開2011−197233号公報JP 2011-197233 A

特許文献1のMEMS装置において、可動部の駆動力を大きくするには、電磁石のコイル巻き数を増やす等によって電磁石の磁場を強くすることが一般に行われている。コイル巻き数を増やすと、電磁石が大型化せざるを得ず、限られたサイズで可動部の駆動力を向上させることは容易ではない。一般に、電磁石は、可動部等のMEMS構造体と比較して大きく、電磁石を大きくすると、MEMS装置全体が大きくならざるを得ない。   In the MEMS device of Patent Document 1, in order to increase the driving force of the movable part, it is generally performed to increase the magnetic field of the electromagnet by increasing the number of coil turns of the electromagnet. When the number of coil turns is increased, the electromagnet must be enlarged, and it is not easy to improve the driving force of the movable part with a limited size. In general, an electromagnet is larger than a MEMS structure such as a movable part. When the electromagnet is enlarged, the entire MEMS device must be enlarged.

本明細書が開示するMEMS装置は、基板と、磁性体を有し、基板に対して相対的に傾動可能な可動部と、磁性体に磁場を印加可能な第1磁極および第2磁極を含む固定部と、磁性体に対して、第1磁極側または第2磁極側に設けられた導電性の閉ループと、を備えている。閉ループは、磁性体と第1磁極または第2磁極との間に位置する領域の周囲に、閉ループのループ面が磁場の方向と交差する向きで配置されている。   A MEMS device disclosed in the present specification includes a substrate, a movable portion that has a magnetic body and can be tilted relative to the substrate, and a first magnetic pole and a second magnetic pole that can apply a magnetic field to the magnetic body. A fixed portion and a conductive closed loop provided on the first magnetic pole side or the second magnetic pole side with respect to the magnetic body are provided. The closed loop is disposed around a region located between the magnetic body and the first magnetic pole or the second magnetic pole so that the loop surface of the closed loop intersects the direction of the magnetic field.

上記のMEMS装置では、第1磁極と第2磁極によって印加される磁場によって、閉ループに誘導電流が流れる。この誘導電流は、閉ループ内において第1磁極と第2磁極によって印加される磁場を打ち消し、閉ループの外側において第1磁極と第2磁極によって印加される磁場を強化する向きに、誘導磁場を発生させる。閉ループは、磁性体と第1磁極または第2磁極との間に位置する領域の周囲に配置されているため、閉ループの外側に発生する誘導磁場によって磁性体に印加される磁場が強化される。閉ループによって、磁性体に印加される磁場が強化されて、可動部の駆動力が向上する。閉ループを設けることで、電磁石を大きくすることなく、可動部の駆動力を向上できる。   In the above MEMS device, an induced current flows in a closed loop by the magnetic field applied by the first magnetic pole and the second magnetic pole. This induced current cancels the magnetic field applied by the first magnetic pole and the second magnetic pole in the closed loop, and generates an induced magnetic field in a direction that strengthens the magnetic field applied by the first magnetic pole and the second magnetic pole outside the closed loop. . Since the closed loop is disposed around a region located between the magnetic body and the first magnetic pole or the second magnetic pole, the magnetic field applied to the magnetic body is strengthened by the induced magnetic field generated outside the closed loop. By the closed loop, the magnetic field applied to the magnetic body is strengthened, and the driving force of the movable part is improved. By providing the closed loop, the driving force of the movable portion can be improved without increasing the electromagnet.

上記のMEMS装置では、閉ループは、可動部に固定されていてもよい。また、閉ループは、固定部に固定されていてもよい。   In the above MEMS device, the closed loop may be fixed to the movable part. Further, the closed loop may be fixed to the fixing portion.

上記のMEMS装置では、磁性体は、N極とS極を両端に有し、N極とS極の一方が第3磁極として可動部に固定され、他方が第4磁極として第1磁極と第2磁極との間に配置されていてもよい。この場合、閉ループは、第4磁極と第1磁極または第2磁極との間に位置する領域の周囲に配置されていることが好ましい。   In the above MEMS device, the magnetic body has the N pole and the S pole at both ends, and one of the N pole and the S pole is fixed to the movable portion as the third magnetic pole, and the other is the fourth magnetic pole and the first magnetic pole and the first magnetic pole. You may arrange | position between 2 magnetic poles. In this case, the closed loop is preferably disposed around a region located between the fourth magnetic pole and the first magnetic pole or the second magnetic pole.

本願が開示するMEMS装置では、導電性ループがスイッチを備えた開閉式であってもよい。このMEMS装置は、基板と、磁性体を有し、基板に対して相対的に傾動可能な可動部と、磁性体に磁場を印加可能な第1磁極および第2磁極を含む固定部と、磁性体に対して、第1磁極側または第2磁極側に設けられた、スイッチにより開閉可能な導電性の開閉ループと、を備えている。開閉ループは、そのループ面が磁場の方向と交差する向きで配置されている。可動部が傾動したときに、開閉ループが、磁性体と第1磁極または第2磁極との間に位置する領域の周囲に位置する場合には、そのスイッチが閉じられ、開閉ループが、磁性体と第1磁極または第2磁極との間に位置する領域内に位置するときは、そのスイッチが開かれる。   In the MEMS device disclosed in the present application, the conductive loop may be an open / close type including a switch. The MEMS device includes a substrate, a movable portion having a magnetic body and capable of tilting relative to the substrate, a fixed portion including a first magnetic pole and a second magnetic pole capable of applying a magnetic field to the magnetic body, And a conductive open / close loop provided on the first magnetic pole side or the second magnetic pole side, which can be opened and closed by a switch. The open / close loop is arranged so that its loop surface intersects the direction of the magnetic field. When the movable part tilts, when the open / close loop is located around the region located between the magnetic body and the first magnetic pole or the second magnetic pole, the switch is closed, and the open / close loop is And the first magnetic pole or the second magnetic pole, the switch is opened.

本願が開示するMEMS装置は、第1磁極と第2磁極の磁場を制御する制御装置をさらに備えていてもよい。例えば、第1磁極と第2磁極が電磁石である場合に、この制御装置は、第1磁極と第2磁極に入力する電流信号を制御することによって、第1磁極と第2磁極の磁場を制御する制御装置であってもよい。この場合、閉ループまたは開閉ループに誘導電流が流れないときと比較して、閉ループまたは開閉ループに誘導電流が流れるときに、第1磁極と第2磁極の磁場の位相がdt進む場合に、制御装置は、第1磁極と第2磁極に入力する電流信号の位相をdt遅らせる制御を行ってもよい。   The MEMS device disclosed in the present application may further include a control device that controls the magnetic fields of the first magnetic pole and the second magnetic pole. For example, when the first magnetic pole and the second magnetic pole are electromagnets, the control device controls the magnetic field of the first magnetic pole and the second magnetic pole by controlling the current signal input to the first magnetic pole and the second magnetic pole. It may be a control device. In this case, when the induced current flows through the closed loop or the open / close loop when the induced current does not flow through the closed loop or the open / close loop, when the phase of the magnetic field of the first magnetic pole and the second magnetic pole advances by dt, the control device May perform control to delay the phase of the current signal input to the first magnetic pole and the second magnetic pole by dt.

本明細書が開示する技術によれば、MEMS装置全体を大きくすることなく、可動部の駆動力を向上可能なMEMS装置を提供する。   According to the technology disclosed in this specification, a MEMS device capable of improving the driving force of a movable part without increasing the size of the entire MEMS device is provided.

光偏向装置1の概略の構成を示す斜視図である。1 is a perspective view showing a schematic configuration of an optical deflection apparatus 1. FIG. 光偏向装置1の一部を側面から見た状態を概念的に示す図である。It is a figure which shows notionally the state which looked at a part of optical deflecting device 1 from the side. 光偏向装置1の一部を側面から見た状態を概念的に示す図である。It is a figure which shows notionally the state which looked at a part of optical deflecting device 1 from the side. コアの磁極に配置された閉ループの一例を概念的に示す図である。It is a figure which shows notionally an example of the closed loop arrange | positioned at the magnetic pole of a core. コアの磁極に配置された閉ループの一例を概念的に示す図である。It is a figure which shows notionally an example of the closed loop arrange | positioned at the magnetic pole of a core. コアの磁極によって永久磁石に印加される磁場が、閉ループの誘導電流によって変化することを説明する図である。It is a figure explaining that the magnetic field applied to a permanent magnet by the magnetic pole of a core changes with the induced current of a closed loop. 光偏向装置1の永久磁石と、閉ループの誘導電流によって磁場が強化される領域の位置関係を示す図である。It is a figure which shows the positional relationship of the area | region where the magnetic field is strengthened by the permanent magnet of the optical deflection | deviation apparatus 1, and a closed loop induced current. 変形例に係る光偏向装置の一部を側面から見た状態を概念的に示す図である。It is a figure which shows notionally the state which looked at a part of optical deflection device concerning a modification from the side. 変形例に係る光偏向装置の一部を側面から見た状態を概念的に示す図である。It is a figure which shows notionally the state which looked at a part of optical deflection device concerning a modification from the side. 変形例に係るコアの磁極に配置された開閉式のループの一例を概念的に示す図である。It is a figure which shows notionally an example of the open / close-type loop arrange | positioned at the magnetic pole of the core which concerns on a modification. 変形例に係るコアの磁極に配置された閉ループの一例を概念的に示す図である。It is a figure which shows notionally an example of the closed loop arrange | positioned at the magnetic pole of the core which concerns on a modification. 変形例に係るコアの磁極に配置された閉ループの一例を概念的に示す図である。It is a figure which shows notionally an example of the closed loop arrange | positioned at the magnetic pole of the core which concerns on a modification.

(実施例)
以下では図1−図3を参照しながら、実施例に係るMEMS装置である光偏向装置1について説明する。光偏向装置1は、上部基板10と、下部基板20と、可動部12と、コア31,32とを備えている。図1では、上部基板10と下部基板20が離間して図示されているが、実際は、上部基板10の下面と、下部基板20の上面とは接合されており、図1では、下部基板20の内側にコア31,32の上方(z軸の正方向)の部分が収まるように配置されている。上部基板10と可動部12は、半導体基板を材料として、MEMS技術を用いて一体に成形されている。下部基板20は非磁性材料によって形成されており、下部基板20を介して、コア31,32と上部基板10が固定されている。コア31,32にはそれぞれコイルが捲回されているが、図示を省略している。
(Example)
Hereinafter, the optical deflection apparatus 1 which is the MEMS apparatus according to the embodiment will be described with reference to FIGS. The optical deflecting device 1 includes an upper substrate 10, a lower substrate 20, a movable part 12, and cores 31 and 32. In FIG. 1, the upper substrate 10 and the lower substrate 20 are illustrated as being separated from each other, but actually, the lower surface of the upper substrate 10 and the upper surface of the lower substrate 20 are bonded. The upper part of the cores 31 and 32 (the positive direction of the z-axis) is disposed inside. The upper substrate 10 and the movable portion 12 are integrally formed using a semiconductor substrate as a material and using MEMS technology. The lower substrate 20 is made of a nonmagnetic material, and the cores 31 and 32 and the upper substrate 10 are fixed via the lower substrate 20. A coil is wound around each of the cores 31 and 32, but the illustration is omitted.

可動部12は、ジンバル構造を有し、支持枠112と、ミラー構造体140と、上部基板10と支持枠112とを接続する可撓梁111a,111bと、支持枠112とミラー構造体140とを接続する可撓梁121a,121bとを備えている。可撓梁111a,111bは、図1に示すy軸方向に伸びており、y軸周りに捻じれる。これによって、支持枠112はy軸周りに回転し、そのx方向の両端部は上部基板10に対してz方向に傾動することができる。可撓梁121a,121bは、図1に示すx軸方向に伸びており、x軸周りに捻じれる。これによって、ミラー構造体140はx軸周りに回転し、そのy方向の両端部は上部基板10に対してz方向に傾動することができる。   The movable portion 12 has a gimbal structure, and includes a support frame 112, a mirror structure 140, flexible beams 111a and 111b connecting the upper substrate 10 and the support frame 112, a support frame 112, and a mirror structure 140. Are provided with flexible beams 121a and 121b. The flexible beams 111a and 111b extend in the y-axis direction shown in FIG. 1 and are twisted around the y-axis. Accordingly, the support frame 112 rotates around the y axis, and both end portions in the x direction can tilt in the z direction with respect to the upper substrate 10. The flexible beams 121a and 121b extend in the x-axis direction shown in FIG. 1 and are twisted around the x-axis. Accordingly, the mirror structure 140 rotates around the x axis, and both end portions in the y direction can tilt in the z direction with respect to the upper substrate 10.

ミラー構造体140の上面(z軸の正方向の面)はミラーとなっており、これによって光が偏向される。ミラー構造体140の下面(z軸の負方向の面)には、直方体形状の永久磁石150が固定されている。永久磁石150としては、例えば、ネオジム磁石(NdFe14B)、サマリウムコバルト磁石(SmCo(1−5系)、SmCo17(2−17系)等)、フェライト磁石等を用いることができる。本実施例では、図7に示すように、永久磁石150は、可動部12側(z軸の正方向側)がS極であり、コア31,32側(z軸の負方向側)がN極であるが、N極とS極の向きを逆向きにすることもできる。 The upper surface (the surface in the positive z-axis direction) of the mirror structure 140 is a mirror, which deflects light. A rectangular parallelepiped permanent magnet 150 is fixed to the lower surface (surface in the negative direction of the z-axis) of the mirror structure 140. As the permanent magnet 150, for example, a neodymium magnet (Nd 2 Fe 14 B), a samarium cobalt magnet (SmCo 5 (1-5 system), Sm 2 Co 17 (2-17 system), etc.), a ferrite magnet, or the like is used. Can do. In the present embodiment, as shown in FIG. 7, the permanent magnet 150 has an S pole on the movable part 12 side (the positive direction side of the z axis) and N on the cores 31 and 32 side (the negative direction side of the z axis). Although it is a pole, the direction of the N pole and the S pole can be reversed.

図1〜3に示すように、略U字形状のコア31は、永久磁石150の下部を挟んでx方向に対向する磁極311,312を備えている。略U字形状のコア32は、永久磁石150の下部を挟んでy方向に対向する磁極321,322を備えている。コア31は、z方向に伸びる部分から磁極311,312に向かって(すなわち、永久磁石150に向かって)斜め上方に伸びており、磁極311,312に向かうほど上部基板10に近づいている。コア32は、z方向に伸びる部分から磁極321,322に向かって(すなわち、永久磁石150に向かって)斜め上方に伸びており、磁極321,322に向かうほど上部基板10に近づいている。コア31は、そのx方向の中央を通るyz平面について対称であり、コア32は、そのy方向の中央を通るzx平面について対称である。なお、図1では、光偏向装置1は上部基板10が上方に、コア31,32が下方に配置された状態を図示しているが、光偏向装置1の設置方向は、この方向に限定されない。   As shown in FIGS. 1 to 3, the substantially U-shaped core 31 includes magnetic poles 311 and 312 that face each other in the x direction across the lower part of the permanent magnet 150. The substantially U-shaped core 32 includes magnetic poles 321 and 322 that face each other in the y direction across the lower part of the permanent magnet 150. The core 31 extends obliquely upward from the portion extending in the z direction toward the magnetic poles 311, 312 (that is, toward the permanent magnet 150), and approaches the upper substrate 10 toward the magnetic poles 311, 312. The core 32 extends obliquely upward from the portion extending in the z direction toward the magnetic poles 321 and 322 (that is, toward the permanent magnet 150), and approaches the upper substrate 10 toward the magnetic poles 321 and 322. The core 31 is symmetric with respect to the yz plane passing through the center in the x direction, and the core 32 is symmetric with respect to the zx plane passing through the center in the y direction. In FIG. 1, the optical deflecting device 1 shows a state in which the upper substrate 10 is disposed on the upper side and the cores 31 and 32 are disposed on the lower side. However, the installation direction of the optical deflecting device 1 is not limited to this direction. .

図示していないが、コア31,32には交流電源に接続されるコイルが捲回されている。コア31に捲回されたコイルに電流が流れ、磁極311,312によって永久磁石150にx軸方向の磁場が印加されると、可撓梁111a,111bが捻じれて上部基板10に対して支持枠112がy軸の周りに傾動する。コア32に捲回されたコイルに電流が流れ、磁極321,322によって永久磁石150にy軸方向の磁場が印加されると、可撓梁121a,121bが捻じれてミラー構造体140がx軸の周りに傾動する。光偏向装置1は、コア31,32にそれぞれ捲回されたコイルに流れる電流を制御可能な制御装置(図示しない)をさらに備えている。制御装置がコア31,32にそれぞれ捲回されたコイルに流れる電流の向きおよび大きさを制御することによって、支持枠112およびミラー構造体140の傾動する向きおよび傾動角を制御することができる。なお、限定されないが、コア31のコイルにはミラー構造体140のy軸周りの捻じれの共振周波数とは異なる周波数の電流が流れ、コア32のコイルにはミラー構造体140のx軸周りの捻じれの共振周波数の電流が流れるようにすることが好ましい。   Although not shown, the cores 31 and 32 are wound with a coil connected to an AC power source. When a current flows through the coil wound around the core 31 and a magnetic field in the x-axis direction is applied to the permanent magnet 150 by the magnetic poles 311 and 312, the flexible beams 111 a and 111 b are twisted to support the upper substrate 10. The frame 112 tilts around the y axis. When a current flows through the coil wound around the core 32 and a magnetic field in the y-axis direction is applied to the permanent magnet 150 by the magnetic poles 321 and 322, the flexible beams 121a and 121b are twisted to cause the mirror structure 140 to move to the x-axis. Tilt around. The optical deflection apparatus 1 further includes a control device (not shown) that can control the current flowing in the coils wound around the cores 31 and 32, respectively. By controlling the direction and magnitude of the current flowing in the coils wound around the cores 31 and 32 by the control device, it is possible to control the tilting direction and tilting angle of the support frame 112 and the mirror structure 140. Although not limited, a current having a frequency different from the torsional resonance frequency around the y axis of the mirror structure 140 flows in the coil of the core 31, and the coil around the x axis of the mirror structure 140 flows in the coil of the core 32. It is preferable that a current having a torsional resonance frequency flows.

図4に示すように、光偏向装置1の磁極311の略正方形状の面には、8個の閉ループ40a,40b,40c,40d,40f,40g,40h,40iが絶縁性の接着剤によって貼りつけられている。8個の閉ループ40a,40b,40c,40d,40f,40g,40h,40iは、略正方形状の導電性の金属ワイヤのループであり、磁極311の面の中央の領域42を取り囲むように配置されている。図5に示すように、光偏向装置1の磁極312の略正方形状の面には、8個の閉ループ41a,41b,41c,41d,41f,41g,41h,41iが絶縁性の接着剤によって貼りつけられている。8個の閉ループ41a,41b,41c,41d,41f,41g,41h,41iは、正方形状の導電性の金属ワイヤのループであり、磁極312の面の中央の領域43を取り囲むように配置されている。閉ループ40aと閉ループ41a,閉ループ40bと閉ループ41b,閉ループ40cと閉ループ41c,閉ループ40dと閉ループ41d,閉ループ40fと閉ループ41f,閉ループ40gと閉ループ41g,閉ループ40hと閉ループ41h,閉ループ40iと閉ループ41iは、それぞれy方向およびz方向に同じ位置に配置され、x方向に対向している。そのため、領域42と領域43とは、それぞれy方向およびz方向に同じ位置であり、永久磁石150のN極を挟んで対向している。コア31のコイルに電流が流れ、磁極311,312によって永久磁石150にx軸の正方向の磁場が印加されると、図4,5に示すように、閉ループ40a〜d,40f〜i,および閉ループ41a〜d,41f〜iには、x軸の正方向から見て時計回りの誘導電流が流れる。この誘導電流によって、閉ループ40a〜d,40f〜i,閉ループ41a〜d,41f〜iの各ループ内では、x軸の負方向の磁束が発生し、各ループ外では、x軸の正方向の磁束が発生する。   As shown in FIG. 4, eight closed loops 40a, 40b, 40c, 40d, 40f, 40g, 40h, and 40i are attached to the substantially square surface of the magnetic pole 311 of the optical deflector 1 with an insulating adhesive. It is attached. The eight closed loops 40 a, 40 b, 40 c, 40 d, 40 f, 40 g, 40 h, 40 i are substantially square conductive metal wire loops, and are arranged so as to surround the central region 42 on the surface of the magnetic pole 311. ing. As shown in FIG. 5, eight closed loops 41a, 41b, 41c, 41d, 41f, 41g, 41h, and 41i are attached to the substantially square surface of the magnetic pole 312 of the optical deflector 1 with an insulating adhesive. It is attached. The eight closed loops 41 a, 41 b, 41 c, 41 d, 41 f, 41 g, 41 h, 41 i are square conductive metal wire loops arranged so as to surround the central region 43 on the surface of the magnetic pole 312. Yes. Closed loop 40a and closed loop 41a, closed loop 40b and closed loop 41b, closed loop 40c and closed loop 41c, closed loop 40d and closed loop 41d, closed loop 40f and closed loop 41f, closed loop 40g and closed loop 41g, closed loop 40h and closed loop 41h, closed loop 40i and closed loop 41i, respectively They are arranged at the same position in the y direction and the z direction, and face the x direction. Therefore, the region 42 and the region 43 are at the same position in the y direction and the z direction, respectively, and face each other with the N pole of the permanent magnet 150 interposed therebetween. When a current flows through the coil of the core 31 and a magnetic field in the positive direction of the x-axis is applied to the permanent magnet 150 by the magnetic poles 311 and 312, as shown in FIGS. A clockwise induced current flows through the closed loops 41a to 41d and 41f to 41i when viewed from the positive direction of the x axis. The induced current generates a negative magnetic flux in the x-axis in each of the closed loops 40a to 40d, 40f to i, and the closed loops 41a to 41d and 41f to 41i. Magnetic flux is generated.

図6は、コア31の磁極311,312によって永久磁石150に印加される磁場が、閉ループ40a〜d,40f〜i,閉ループ41a〜d,41f〜iの誘導電流によって変化することを示す図である。縦軸は磁場の強さを示し、横軸は時間を示している。参照番号91に示す波形は、閉ループ40a〜d,40f〜i,閉ループ41a〜d,41f〜iが存在する状態で、コア31に捲回されたコイルに交流電流を流した場合に永久磁石150に印加される磁場の時間変化を示している。参照番号92に示す波形は、閉ループ40a〜d,40f〜i,閉ループ41a〜d,41f〜iが存在しない状態で、コア31に捲回されたコイルに交流電流を流した場合に永久磁石150に印加される磁場の時間変化を示している。閉ループ40a〜d,40f〜i,閉ループ41a〜d,41f〜iが存在する場合の波形91は、dtに示す分だけ、各閉ループが存在しない場合の波形92よりも位相が進む。光偏向装置1は、閉ループ40a〜d,40f〜i,閉ループ41a〜d,41f〜iを備えているため、可動部12は、波形92に示す磁場によって駆動される。このため、光偏向装置1では、制御装置は、位相の進みを補うために、例えば、コア31に捲回されたコイルに入力する電流信号の位相を時間dtに応じて遅れさせる。具体的には、例えば、コア31に捲回されたコイルに入力する電流信号の位相を時間dtだけ遅らせる。これによって、各閉ループが無い場合と同様に、可動部12を所望の波形で駆動することができる。   FIG. 6 is a diagram showing that the magnetic field applied to the permanent magnet 150 by the magnetic poles 311 and 312 of the core 31 changes depending on the induced currents of the closed loops 40a to 40d and 40f to i and the closed loops 41a to 41d and 41f to 41i. is there. The vertical axis indicates the strength of the magnetic field, and the horizontal axis indicates time. The waveform indicated by reference numeral 91 is the permanent magnet 150 when an alternating current is passed through the coil wound around the core 31 in the state where the closed loops 40a to 40d, 40f to i, and the closed loops 41a to 41d and 41f to i exist. The time change of the magnetic field applied to is shown. The waveform indicated by reference numeral 92 is the permanent magnet 150 when an alternating current is passed through the coil wound around the core 31 in a state where the closed loops 40a to 40d, 40f to i, and the closed loops 41a to 41d and 41f to 41i do not exist. The time change of the magnetic field applied to is shown. The phase of the waveform 91 when the closed loops 40a to 40d, 40f to i, and the closed loops 41a to 41d and 41f to i are present is advanced by the amount indicated by dt than the waveform 92 when each closed loop does not exist. Since the optical deflecting device 1 includes closed loops 40 a to d and 40 f to i and closed loops 41 a to d and 41 f to i, the movable unit 12 is driven by a magnetic field indicated by a waveform 92. For this reason, in the optical deflection apparatus 1, the control device delays the phase of the current signal input to the coil wound around the core 31 according to the time dt, for example, in order to compensate for the advance of the phase. Specifically, for example, the phase of the current signal input to the coil wound around the core 31 is delayed by time dt. As a result, the movable portion 12 can be driven with a desired waveform as in the case where there is no closed loop.

図7の参照番号45a、45bに示す破線は、それぞれ、対向する領域42と領域43とによって挟まれた領域の上端45aと下端45bとを表している。永久磁石150のN極は、上端45aと下端45bとの間に位置しており、対向する領域42と領域43とによって挟まれた領域内(この領域内では、閉ループ40a〜d,40f〜i,閉ループ41a〜d,41f〜iに流れる誘導電流によって磁場が強化される)に配置されている。永久磁石150のS極は、上端45aの上方に位置しており、対向する領域42と領域43とによって挟まれた領域の外側に配置されている。図7の向きで永久磁石150を配置した光偏向装置1の場合には、永久磁石150の磁極のうち、可動部12の回転軸に比較的近いS極よりも、比較的遠いN極により強い磁場を印加する方が、可動部12を動かすためのトルクを大きくすることができ、可動部12を大きく駆動させることができる。さらには、同じ方向の磁場からN極、S極が受ける磁力の方向は互いに反対向きであるため、永久磁石150のS極に印加される磁場が強化されると、可動部12の駆動が妨げられる。すなわち、可動部12を大きく駆動させるためには、永久磁石150のS極に印加される磁場は、強化されない方が好ましい。光偏向装置1では、閉ループ40a〜d,40f〜i,閉ループ41a〜d,41f〜iに流れる誘導電流によって、領域42と領域43とに挟まれた領域内に位置している永久磁石150のN極に印加される磁場は強化され、S極に印加される磁場は弱められる。このため、可動部12を動かすためのトルクを大きくすることができる。   The broken lines indicated by reference numbers 45a and 45b in FIG. 7 represent the upper end 45a and the lower end 45b of the region sandwiched between the opposing region 42 and region 43, respectively. The N pole of the permanent magnet 150 is located between the upper end 45a and the lower end 45b, and is in a region sandwiched between the opposing region 42 and the region 43 (in this region, closed loops 40a to 40d, 40f to i). , The magnetic field is enhanced by the induced current flowing in the closed loops 41a to 41d and 41f to 41i. The south pole of the permanent magnet 150 is located above the upper end 45a and is disposed outside the region sandwiched between the region 42 and the region 43 facing each other. In the case of the optical deflecting device 1 in which the permanent magnet 150 is arranged in the direction of FIG. 7, among the magnetic poles of the permanent magnet 150, the N pole that is relatively far from the S pole that is relatively close to the rotation axis of the movable portion 12 is stronger. When the magnetic field is applied, the torque for moving the movable part 12 can be increased, and the movable part 12 can be driven greatly. Furthermore, since the directions of the magnetic forces received by the N and S poles from the same direction of the magnetic field are opposite to each other, if the magnetic field applied to the S pole of the permanent magnet 150 is strengthened, the driving of the movable portion 12 is hindered. It is done. That is, in order to drive the movable part 12 greatly, it is preferable that the magnetic field applied to the south pole of the permanent magnet 150 is not strengthened. In the optical deflecting device 1, the permanent magnet 150 positioned in the region sandwiched between the region 42 and the region 43 by the induced current flowing in the closed loops 40 a to d and 40 f to i and the closed loops 41 a to d and 41 f to i. The magnetic field applied to the N pole is strengthened and the magnetic field applied to the S pole is weakened. For this reason, the torque for moving the movable part 12 can be increased.

上記のとおり、光偏向装置1では、ミラー構造体140の下面に固定された永久磁石150の下部を挟んでx方向に対向する磁極311,312の略正方形状の面に、それぞれ8個の閉ループ40a〜d,40f〜iと、閉ループ41a〜d,41f〜iとが設置されている。閉ループ40a〜d,40f〜iは、永久磁石150と磁極311との間に位置する領域の周囲に配置されており、それらのループ面の法線ベクトルはx軸方向であり、磁極311,312によって永久磁石150に印加されるx軸の正方向の磁場の方向と平行である。また、閉ループ41a〜d,41f〜iは、永久磁石150と磁極312との間に位置する領域の周囲に配置されており、それらのループ面の法線ベクトルはx軸方向であり、磁極311,312によって永久磁石150に印加されるx軸の正方向の磁場の方向と平行である。すなわち、閉ループ40a〜d,40f〜i,閉ループ41a〜d,41f〜iの各ループ面は、磁極311,312によって永久磁石150に印加される磁場の方向と交差する向きで配置されている。   As described above, in the optical deflecting device 1, eight closed loops are provided on the substantially square surfaces of the magnetic poles 311 and 312 facing each other in the x direction across the lower part of the permanent magnet 150 fixed to the lower surface of the mirror structure 140. 40a-d, 40f-i and closed loops 41a-d, 41f-i are installed. The closed loops 40a to 40d, 40f to 40i are arranged around a region located between the permanent magnet 150 and the magnetic pole 311. The normal vectors of these loop surfaces are in the x-axis direction, and the magnetic poles 311 and 312 are arranged. Is parallel to the direction of the magnetic field in the positive direction of the x axis applied to the permanent magnet 150. The closed loops 41a to 41d and 41f to 41i are arranged around a region located between the permanent magnet 150 and the magnetic pole 312. The normal vectors of those loop surfaces are in the x-axis direction, and the magnetic pole 311. , 312 is parallel to the direction of the positive magnetic field of the x axis applied to the permanent magnet 150. In other words, the loop surfaces of the closed loops 40a to 40d, 40f to i, and the closed loops 41a to 41d and 41f to i are arranged in a direction intersecting the direction of the magnetic field applied to the permanent magnet 150 by the magnetic poles 311 and 312.

8個の閉ループ40a〜d,40f〜i、および、8個の閉ループ41a〜d,41f〜iは、それぞれ、磁極311、磁極312の面上に、z方向およびy方向に9個の閉ループを3×3配列で配置し、その中央に位置する閉ループを取り除いた位置関係で配置されている。閉ループ40a〜d,40f〜iは、全体として領域42の周囲を取り囲むように配置されており、領域42は、閉ループ40a〜d,40f〜iの外側に配置されている。磁極311,312によって発生する磁場内に置かれることにより、閉ループ40a〜d,40f〜iには、誘導電流が流れる。領域42は、閉ループ40a〜d,40f〜iの外側に配置されているため、領域42では、磁極311,312によって発生する磁場が、閉ループ40a〜d,40f〜iによって発生する誘導磁場によって強化される。また、閉ループ41a〜d,41f〜iは、領域43の周囲を取り囲むように配置されており、領域43は、閉ループ41a〜d,41f〜iの外側に配置されている。磁極311,312によって発生する磁場内に置かれることにより、閉ループ41a〜d,41f〜iには、誘導電流が流れる。領域43は、閉ループ41a〜d,41f〜iの外側に配置されているため、領域43では、磁極311,312によって発生する磁場が、閉ループ41a〜d,41f〜iによって発生する誘導磁場によって強化される。永久磁石150は、そのN極が、対向する領域42と領域43とによって挟まれた領域内に配置されているから、閉ループ40a〜d,40f〜i,閉ループ41a〜d,41f〜iに流れる誘導電流によって、永久磁石150に印加される磁場が強化される。このため、光偏向装置1では、コア31等の電磁石を構成する部材を大きくすることなく、可動部12の駆動力を向上できる。なお、上記の実施例では、コア31に閉ループ40a等を設ける場合を例示して説明したが、コア32の2つの磁極321,322と永久磁石150との間にも同様に、導電性の閉ループを配置してもよい。この閉ループは、そのループ面がコア32の2つの磁極321,322によって永久磁石150に印加される磁場の方向(y方向)と交差する向きで配置される。また、この場合、制御装置は、コア32に対して配置される閉ループに誘導電流が流れるときに生じる位相の進みの分だけ、コア32に捲回されたコイルに入力する電流信号の位相を遅らせてもよい。   Eight closed loops 40a to 40d, 40f to i, and eight closed loops 41a to 41d and 41f to i respectively have nine closed loops in the z direction and the y direction on the surfaces of the magnetic pole 311 and the magnetic pole 312. They are arranged in a 3 × 3 arrangement, and are arranged in a positional relationship from which the closed loop located at the center is removed. The closed loops 40a to 40d and 40f to i are arranged so as to surround the area 42 as a whole, and the area 42 is arranged outside the closed loops 40a to 40d and 40f to i. By being placed in the magnetic field generated by the magnetic poles 311 and 312, an induced current flows through the closed loops 40 a to 40 d and 40 f to i. Since the region 42 is disposed outside the closed loops 40a to 40d and 40f to i, in the region 42, the magnetic field generated by the magnetic poles 311 and 312 is reinforced by the induced magnetic field generated by the closed loops 40a to 40d and 40f to i. Is done. Further, the closed loops 41a to 41d and 41f to i are arranged so as to surround the area 43, and the area 43 is arranged outside the closed loops 41a to 41d and 41f to i. By being placed in the magnetic field generated by the magnetic poles 311, 312, an induced current flows in the closed loops 41 a to 41 d and 41 f to i. Since the region 43 is arranged outside the closed loops 41a to 41d and 41f to i, in the region 43, the magnetic field generated by the magnetic poles 311 and 312 is strengthened by the induction magnetic field generated by the closed loops 41a to 41d and 41f to i. Is done. Since the N pole of the permanent magnet 150 is arranged in a region sandwiched between the region 42 and the region 43 facing each other, the permanent magnet 150 flows in the closed loops 40a to 40d, 40f to i, and the closed loops 41a to 41d and 41f to 41i. The magnetic field applied to the permanent magnet 150 is enhanced by the induced current. For this reason, in the optical deflecting device 1, the driving force of the movable part 12 can be improved without increasing the members constituting the electromagnet such as the core 31. In the above-described embodiment, the case where the core 31 is provided with the closed loop 40a and the like has been described as an example. However, similarly between the two magnetic poles 321 and 322 of the core 32 and the permanent magnet 150, a conductive closed loop is also provided. May be arranged. The closed loop is arranged in a direction in which the loop surface intersects the direction (y direction) of the magnetic field applied to the permanent magnet 150 by the two magnetic poles 321 and 322 of the core 32. Also, in this case, the control device delays the phase of the current signal input to the coil wound around the core 32 by the amount of advance of the phase that occurs when the induced current flows in the closed loop arranged for the core 32. May be.

(変形例)
光偏向装置1では、コア31の対向する2つの磁極311,312に、それぞれ、閉ループ40a〜d,40f〜i,閉ループ41a〜d,41f〜iが固定された形態を例示して説明したが、閉ループの設置位置は、これに限定されない。例えば、図8に示すように、上部基板10aから下方に伸びた板状部材141、142に閉ループを配置してもよい。板状部材141,142は、矩形状の平板であり、その平面はx方向に直交し、その下端は、永久磁石150の下端まで伸びている。永久磁石150と磁極311との間に、板状部材141が配置されており、永久磁石150と磁極312との間に、板状部材142が配置されている。例えば、板状部材141の磁極311側の面141a,永久磁石150側の面141b、板状部材142の磁極312側の面142a,永久磁石150側の面142bの少なくともいずれか一つに、絶縁性の接着剤等を用いて閉ループを接着して固定してもよい。
(Modification)
In the optical deflecting device 1, the configuration in which the closed loops 40 a to d and 40 f to i and the closed loops 41 a to 41 d and 41 f to i are fixed to the two magnetic poles 311 and 312 facing each other of the core 31 has been described as an example. The position where the closed loop is installed is not limited to this. For example, as shown in FIG. 8, closed loops may be arranged on plate-like members 141 and 142 extending downward from the upper substrate 10a. The plate-like members 141 and 142 are rectangular flat plates, the plane thereof is orthogonal to the x direction, and the lower end thereof extends to the lower end of the permanent magnet 150. A plate-shaped member 141 is disposed between the permanent magnet 150 and the magnetic pole 311, and a plate-shaped member 142 is disposed between the permanent magnet 150 and the magnetic pole 312. For example, at least one of the surface 141a on the magnetic pole 311 side of the plate member 141, the surface 141b on the permanent magnet 150 side, the surface 142a on the magnetic pole 312 side of the plate member 142, and the surface 142b on the permanent magnet 150 side is insulated. The closed loop may be bonded and fixed using a sex adhesive or the like.

また、図9に示すように、下部基板20側から上部基板10側に向かって伸びる板状部材431,432を設け、板状部材431の磁極311側の面431a,永久磁石150側の面431b、板状部材432の磁極312側の面432a,永久磁石150側の面432bの少なくともいずれか一つに、絶縁性の接着剤等を用いて閉ループを接着して固定してもよい。また、図4では、領域42を囲む同一平面上に閉ループ40a〜d,40f〜iを配置する形態を例示して説明したが、全ての閉ループが同一平面上に存在する必要はない。例えば、図4では、閉ループ40a〜d,40f〜iはx方向の位置が全て一致しているが、各閉ループのx方向の位置をそれぞれずらしてもよい。   9, plate-like members 431 and 432 extending from the lower substrate 20 side toward the upper substrate 10 side are provided, and the surface 431a on the magnetic pole 311 side and the surface 431b on the permanent magnet 150 side of the plate-like member 431 are provided. Alternatively, a closed loop may be bonded and fixed to at least one of the surface 432a on the magnetic pole 312 side and the surface 432b on the permanent magnet 150 side of the plate member 432 using an insulating adhesive or the like. Moreover, although FIG. 4 illustrated and demonstrated the form which arrange | positions the closed loops 40a-d and 40f-i on the same plane surrounding the area | region 42, all the closed loops do not need to exist on the same plane. For example, in FIG. 4, the closed loops 40 a to 40 d and 40 f to i all have the same position in the x direction, but the position of each closed loop in the x direction may be shifted.

また、光偏向装置は、閉ループに替えて、スイッチを備えた開閉式の導電性のループを備えていてもよい。図10は、図4に示す8個の閉ループ40a〜d,40f〜iに替えて、9個の開閉式の導電性のループ50a〜iを用いてもよい。9個のループ50a〜iは、z方向およびy方向に3×3配列で配置されている。8個のループ50a〜d,50f〜iは、図4に示す8個の閉ループ40a〜d,40f〜iと同じ位置に配置されている。ループ50eは、図4に示す領域42の位置に配置されている。8個のループ50a〜d,50f〜iは、ループ50eの周囲を取り囲むように配置されている。   Further, the optical deflecting device may include an open / closed conductive loop including a switch instead of the closed loop. In FIG. 10, nine open / close-type conductive loops 50 a to 50 i may be used instead of the eight closed loops 40 a to 40 d and 40 f to i illustrated in FIG. 4. The nine loops 50a to 50i are arranged in a 3 × 3 array in the z direction and the y direction. The eight loops 50a to 50d and 50f to i are arranged at the same positions as the eight closed loops 40a to 40d and 40f to i shown in FIG. The loop 50e is arranged at the position of the region 42 shown in FIG. The eight loops 50a to 50d, 50f to 50i are arranged so as to surround the loop 50e.

この光偏向装置では、9個のループ50a〜iは、制御回路と接続されている。制御回路によって、ループ50a〜iのスイッチの開閉を切り替えることができる。図10に示すように、ループ50eのスイッチを開に、ループ50a〜d,50f〜iのスイッチを閉に制御すると、ループ50a〜d,50f〜iによって誘導磁場が発生し、図4に示す領域42と同様の領域(図10においては、ループ50eが配置されている領域)において、磁極311,312によって永久磁石150に印加される磁場が強化される。なお、この開閉式のループは、コア32に対しても同様に配置することができる。   In this optical deflecting device, nine loops 50a to 50i are connected to a control circuit. The control circuit can switch the switching of the loops 50a to 50i. As shown in FIG. 10, when the switch of the loop 50e is opened and the switches of the loops 50a to d and 50f to i are closed, an induction magnetic field is generated by the loops 50a to 50d and 50f to i, as shown in FIG. In a region similar to the region 42 (a region where the loop 50e is disposed in FIG. 10), the magnetic field applied to the permanent magnet 150 is strengthened by the magnetic poles 311 and 312. Note that this open / close loop can be similarly arranged with respect to the core 32.

図10に示す形態では、制御回路は、可動部12の傾動に合わせて、ループ50a〜iの開閉を切り替えることもできる。例えば、可動部の傾きが小さい場合には、図10のように、ループ50eのスイッチを開に、ループ50a〜d,50f〜iのスイッチを閉に制御し、可動部12が大きく傾いて、永久磁石150のN極の位置が上方に移動した場合には、ループ50bを開とし、他のループ50a,50c〜iを閉に制御してもよい。可動部12の傾動によって永久磁石150の位置が変わる場合に、ループ50a〜iのそれぞれの位置が、永久磁石150と磁極311との間に位置する領域の周囲となる場合には、そのスイッチを閉に制御し、永久磁石150と磁極311との間に位置する領域内となる場合には、そのスイッチを開に制御することで、可動部12の傾き角に関わらず、永久磁石150に印加される磁場を強化することができる。   In the form shown in FIG. 10, the control circuit can also switch the opening and closing of the loops 50 a to 50 i according to the tilt of the movable portion 12. For example, when the inclination of the movable part is small, the switch of the loop 50e is controlled to be open and the switches of the loops 50a to d and 50f to i are closed as shown in FIG. When the position of the N pole of the permanent magnet 150 moves upward, the loop 50b may be opened and the other loops 50a and 50c to i may be closed. When the position of the permanent magnet 150 changes due to the tilting of the movable portion 12, when the positions of the loops 50 a to 50 i are around the region located between the permanent magnet 150 and the magnetic pole 311, the switch is turned on. When it is within the region located between the permanent magnet 150 and the magnetic pole 311, it is applied to the permanent magnet 150 regardless of the tilt angle of the movable part 12 by controlling the switch to open. Can be strengthened.

また、閉ループ、および、開閉式のループを配置する位置関係は、図4,5,10に示した位置関係に限定されない。閉ループまたは開閉式のループは、磁場を強化したい領域の周囲全体を取り囲んでいる必要はなく、その領域の周囲に少なくとも1つ配置されていれば、磁場を強化する効果を得ることはできる。例えば、図11に示すように、磁場を強化したい領域53の鉛直上下方向(z方向)および水平方向(y方向)には、閉ループまたは開閉式のループは配置されておらず、鉛直上下方向および水平方向に対して略45°の斜め上下方向に閉ループ51a〜dが配置されていてもよい。   Further, the positional relationship in which the closed loop and the open / close loop are arranged is not limited to the positional relationship shown in FIGS. The closed loop or the open / close loop does not need to surround the entire periphery of the region where the magnetic field is to be strengthened. If at least one loop is arranged around the region, the effect of strengthening the magnetic field can be obtained. For example, as shown in FIG. 11, no closed loop or open / close loop is arranged in the vertical vertical direction (z direction) and horizontal direction (y direction) of the region 53 where the magnetic field is to be strengthened. The closed loops 51a to 51d may be arranged in an oblique vertical direction of approximately 45 ° with respect to the horizontal direction.

また、閉ループまたは開閉式のループは、略正方形状である必要はなく、他の多角形状、円形状、楕円形状であってもよく、不定形状であってもよい。例えば図12に示す閉ループ55a〜dのように、L字形状であってもよい。また、全てのループが同じ形状および同じ大きさである必要はない。なお、閉ループ51a〜d、55a〜dは、図10と同様のスイッチを有する開閉式のループに置き換えることもできる。   Further, the closed loop or the open / close loop need not be substantially square, but may be other polygonal shape, circular shape, elliptical shape, or indefinite shape. For example, it may be L-shaped like closed loops 55a to 55d shown in FIG. Also, all loops need not be the same shape and size. The closed loops 51a to 51d and 55a to 55d can be replaced with an open / close loop having a switch similar to that shown in FIG.

以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the Example of this invention was described in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

1 : 光偏向装置
10 : 上部基板
12 : 可動部
20 : 下部基板
31,32 : コア
40a-d,40f-i,41a-d,41f-i,51a-d,55a-d : 閉ループ
42,43,53 : 磁場が強化される領域
50a-i : 開閉式のループ
111a,111b,121a,121b : 可撓梁
112 : 支持枠
140 : ミラー構造体
141,142,431,432 : 板状部材
150 : 永久磁石
311,312,321,322 : 磁極
1: Optical deflection device 10: Upper substrate 12: Movable portion 20: Lower substrates 31, 32: Cores 40a-d, 40f-i, 41a-d, 41f-i, 51a-d, 55a-d: Closed loops 42, 43 53: Field 50a-i where magnetic field is strengthened: Opening and closing loops 111a, 111b, 121a, 121b: Flexible beam 112: Support frame 140: Mirror structures 141, 142, 431, 432: Plate member 150: Permanent magnets 311, 312, 321, 322: magnetic poles

Claims (6)

基板と、
磁性体を有し、前記基板に対して相対的に傾動可能な可動部と、
前記磁性体に磁場を印加可能な第1磁極および第2磁極を含む固定部と、
前記磁性体に対して、前記第1磁極側または前記第2磁極側に設けられた導電性の閉ループと、を備えており、
前記閉ループは、前記磁性体と前記第1磁極または前記第2磁極との間に位置する領域の周囲に、前記閉ループのループ面が前記磁場の方向と交差する向きで配置されている、
MEMS装置。
A substrate,
A movable part having a magnetic body and tiltable relative to the substrate;
A fixed portion including a first magnetic pole and a second magnetic pole capable of applying a magnetic field to the magnetic body;
A conductive closed loop provided on the first magnetic pole side or the second magnetic pole side with respect to the magnetic body,
The closed loop is arranged around a region located between the magnetic body and the first magnetic pole or the second magnetic pole in a direction in which the loop surface of the closed loop intersects the direction of the magnetic field.
MEMS device.
前記閉ループは、可動部に固定されている、請求項1に記載のMEMS装置。   The MEMS device according to claim 1, wherein the closed loop is fixed to a movable part. 前記閉ループは、固定部に固定されている、請求項1に記載のMEMS装置。   The MEMS device according to claim 1, wherein the closed loop is fixed to a fixing portion. 前記磁性体は、N極とS極を両端に有し、
前記N極と前記S極の一方が第3磁極として前記可動部に固定され、他方が第4磁極として前記第1磁極と前記第2磁極との間に配置されており、
前記閉ループは、前記第4磁極と前記第1磁極または前記第2磁極との間に位置する領域の周囲に配置されている、請求項1〜3のいずれか一項に記載のMEMS装置。
The magnetic body has an N pole and an S pole at both ends,
One of the N pole and the S pole is fixed to the movable part as a third magnetic pole, and the other is arranged as a fourth magnetic pole between the first magnetic pole and the second magnetic pole,
4. The MEMS device according to claim 1, wherein the closed loop is disposed around a region located between the fourth magnetic pole and the first magnetic pole or the second magnetic pole. 5.
基板と、
磁性体を有し、前記基板に対して相対的に傾動可能な可動部と、
前記磁性体に磁場を印加可能な第1磁極および第2磁極を含む固定部と、
前記磁性体に対して、前記第1磁極側または前記第2磁極側に設けられた、スイッチにより開閉可能な導電性の開閉ループと、を備えており、
前記開閉ループは、そのループ面が前記磁場の方向と交差する向きで配置されており、
前記可動部が傾動したときに、前記開閉ループが、前記磁性体と前記第1磁極または前記第2磁極との間に位置する領域の周囲に位置する場合には、そのスイッチが閉じられ、前記開閉ループが、前記磁性体と前記第1磁極または前記第2磁極との間に位置する領域内に位置する場合には、そのスイッチが開かれる、MEMS装置。
A substrate,
A movable part having a magnetic body and tiltable relative to the substrate;
A fixed portion including a first magnetic pole and a second magnetic pole capable of applying a magnetic field to the magnetic body;
A conductive open / close loop provided on the first magnetic pole side or the second magnetic pole side, which can be opened and closed by a switch, with respect to the magnetic body,
The open / close loop is arranged in a direction in which the loop surface intersects the direction of the magnetic field,
When the movable part is tilted, if the open / close loop is located around a region located between the magnetic body and the first magnetic pole or the second magnetic pole, the switch is closed, The MEMS device, wherein the switch is opened when the open / close loop is located in a region located between the magnetic body and the first magnetic pole or the second magnetic pole.
前記第1磁極と前記第2磁極は、電磁石であり、
前記MEMS装置は、前記第1磁極と前記第2磁極に入力する電流信号を制御することによって、前記第1磁極と前記第2磁極の磁場を制御する制御装置をさらに備えており、
前記閉ループまたは前記開閉ループに誘導電流が流れないときと比較して、前記閉ループまたは前記開閉ループに誘導電流が流れるときに、前記第1磁極と前記第2磁極の磁場の位相がdt進む場合に、前記制御装置は、前記第1磁極と前記第2磁極に入力する電流信号の位相をdt遅らせる、請求項1〜5のいずれか一項に記載のMEMS装置。
The first magnetic pole and the second magnetic pole are electromagnets,
The MEMS device further includes a control device that controls a magnetic field of the first magnetic pole and the second magnetic pole by controlling a current signal input to the first magnetic pole and the second magnetic pole,
When the phase of the magnetic field of the first magnetic pole and the second magnetic pole advances by dt when the induced current flows through the closed loop or the open / close loop compared to when the induced current does not flow through the closed loop or the open / close loop. The MEMS device according to any one of claims 1 to 5, wherein the control device delays a phase of a current signal input to the first magnetic pole and the second magnetic pole by dt.
JP2014156711A 2014-07-31 2014-07-31 MEMS equipment Expired - Fee Related JP6365077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014156711A JP6365077B2 (en) 2014-07-31 2014-07-31 MEMS equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014156711A JP6365077B2 (en) 2014-07-31 2014-07-31 MEMS equipment

Publications (2)

Publication Number Publication Date
JP2016033613A true JP2016033613A (en) 2016-03-10
JP6365077B2 JP6365077B2 (en) 2018-08-01

Family

ID=55452538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014156711A Expired - Fee Related JP6365077B2 (en) 2014-07-31 2014-07-31 MEMS equipment

Country Status (1)

Country Link
JP (1) JP6365077B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213623A1 (en) * 2019-04-19 2020-10-22 パイオニア株式会社 Movable device
CN112558290A (en) * 2019-09-25 2021-03-26 日本电产株式会社 Driver and optical scanning device
WO2021100803A1 (en) * 2019-11-19 2021-05-27 パイオニア株式会社 Mirror scanner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004644A1 (en) * 2004-06-29 2006-01-12 Nicolas Loebel Optical scanner
JP2009069676A (en) * 2007-09-14 2009-04-02 Ricoh Co Ltd Optical scanner
EP2157467A2 (en) * 2008-08-21 2010-02-24 Samsung Electronics Co., Ltd. MEMS Mirror, Mirror Scanner, Optical Scanning Unit and Image Forming Apparatus including the Optical Scanning Unit
US20100142020A1 (en) * 2008-12-04 2010-06-10 Samsung Electronics Co., Ltd. Scanner and image forming apparatus including the same
JP2011197233A (en) * 2010-03-18 2011-10-06 Toyota Central R&D Labs Inc Optical deflector
JP2013125165A (en) * 2011-12-15 2013-06-24 Ricoh Co Ltd Optical measurement device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004644A1 (en) * 2004-06-29 2006-01-12 Nicolas Loebel Optical scanner
JP2008505359A (en) * 2004-06-29 2008-02-21 ローベル ニコラス Optical scanner
JP2009069676A (en) * 2007-09-14 2009-04-02 Ricoh Co Ltd Optical scanner
EP2157467A2 (en) * 2008-08-21 2010-02-24 Samsung Electronics Co., Ltd. MEMS Mirror, Mirror Scanner, Optical Scanning Unit and Image Forming Apparatus including the Optical Scanning Unit
JP2010049259A (en) * 2008-08-21 2010-03-04 Samsung Electronics Co Ltd Micro electro-mechanical system mirror, mirror scanner, optical scanning unit and image forming device using optical scanning unit
US20100142020A1 (en) * 2008-12-04 2010-06-10 Samsung Electronics Co., Ltd. Scanner and image forming apparatus including the same
JP2011197233A (en) * 2010-03-18 2011-10-06 Toyota Central R&D Labs Inc Optical deflector
JP2013125165A (en) * 2011-12-15 2013-06-24 Ricoh Co Ltd Optical measurement device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213623A1 (en) * 2019-04-19 2020-10-22 パイオニア株式会社 Movable device
CN112558290A (en) * 2019-09-25 2021-03-26 日本电产株式会社 Driver and optical scanning device
US11662573B2 (en) 2019-09-25 2023-05-30 Nidec Corporation Actuator and optical scanning device
WO2021100803A1 (en) * 2019-11-19 2021-05-27 パイオニア株式会社 Mirror scanner
EP4047410A4 (en) * 2019-11-19 2023-11-08 Pioneer Corporation Mirror scanner

Also Published As

Publication number Publication date
JP6365077B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP5768803B2 (en) MEMS equipment
JP4827993B2 (en) Drive device
JP6365077B2 (en) MEMS equipment
JP2011173074A (en) Vibration motor
US20130207760A1 (en) Multipole magnet
KR20140094544A (en) Vibration transducer and actuator
WO2015092907A1 (en) Drive device
US20160122178A1 (en) Driving apparatus
CN110177318A (en) Vibration-sound generating device and electronic product
WO2021000088A1 (en) Vibration motor
US10931185B2 (en) Linear vibration motor
WO2013065126A1 (en) Actuator
JP2014199326A (en) Driving device
JP2018042363A (en) Voice coil motor
JP6363778B2 (en) Torque motor
JP2017005872A (en) Linear actuator
JP4958195B2 (en) Drive device
CA2571681A1 (en) Optical scanner
JP2013021779A (en) Inertia drive actuator
JP2004112937A (en) Magnetic actuator and tactile display device
JP2011128203A (en) Optical device
JP2010098461A (en) Flat speaker
JP4896270B1 (en) Drive device
CN116846119B (en) Motor structure
JP2011203764A (en) Driving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6365077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees