JP2016031331A - Flow rate resistance nozzle - Google Patents

Flow rate resistance nozzle Download PDF

Info

Publication number
JP2016031331A
JP2016031331A JP2014154636A JP2014154636A JP2016031331A JP 2016031331 A JP2016031331 A JP 2016031331A JP 2014154636 A JP2014154636 A JP 2014154636A JP 2014154636 A JP2014154636 A JP 2014154636A JP 2016031331 A JP2016031331 A JP 2016031331A
Authority
JP
Japan
Prior art keywords
hole
screw
diameter
shaft
flow resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014154636A
Other languages
Japanese (ja)
Other versions
JP6310355B2 (en
Inventor
古瀬 昭男
Akio Furuse
昭男 古瀬
宣幸 須賀
Noriyuki Suga
宣幸 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Instruments Co Ltd
Original Assignee
Cosmo Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Instruments Co Ltd filed Critical Cosmo Instruments Co Ltd
Priority to JP2014154636A priority Critical patent/JP6310355B2/en
Publication of JP2016031331A publication Critical patent/JP2016031331A/en
Application granted granted Critical
Publication of JP6310355B2 publication Critical patent/JP6310355B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow rate resistance nozzle in which a flow rate value which is set during assembly is not changed.SOLUTION: A holder comprising a shank where a screw is cut on an outer peripheral face thereof and a body having diameter larger than outer diameter of the shank, on one end of the shank coaxially and integrally, has a continuity hole thereon which communicates the shank and the body and penetrates coaxially to a shaft center. Inner diameter of the continuity hole on the shank side is larger than inner diameter of the continuity hole on the body side, and a boundary therebetween has a step part having a surface vertical to the shaft center. A screw is cut on an inner peripheral face on the body side of the continuity hole. A screw-type nozzle comprises: a male screw having a screw part screwed to the screw on the continuity hole on the body side, and a head part disposed on the continuity hole on the shank side; and a tubing whose one end protrudes from the screw part to a penetration hole formed on the male screw coaxially to a center shaft, whose other end is inserted so as to locate in the head part. The tubing is crushed at a part projecting from the screw part, so that a flow rate value becomes a regulated flow rate value at regulated pressure, and an outer peripheral face of the tubing and an inner peripheral face of the penetration hole are fixed to each other in an air-tight state.SELECTED DRAWING: Figure 1

Description

本発明は例えば所定圧で供給する気体の流量を設定するために使用されたり、漏れ検査装置の流量校正のために漏れ量の基準器として使用される流量抵抗ノズルに関する。   The present invention relates to a flow resistance nozzle that is used, for example, to set a flow rate of a gas supplied at a predetermined pressure, or used as a leak amount reference device for flow rate calibration of a leak inspection apparatus.

この種の従来の流量抵抗ノズルとしては、例えば特許文献1に示されている微少リーク弁(以降、流量抵抗ノズルとも呼ぶ)が知られている。その構造は図8に断面で示すように、ほぼ円柱状の台座12と、金属ブロック13と、保護管16とを有している。台座12にはその軸心に貫通孔12Cが形成されている。金属ブロック13は、台座12の一端側から貫通孔12Cより大きい径で同軸に雌ネジ穴12Bが形成されており、金属ブロック13には雌ネジ穴12Bに螺合する雄ネジ部13Aが一端から突出して形成されており、他端にも雄ネジ部13Eが突出形成されている。   As a conventional flow resistance nozzle of this type, for example, a micro leak valve (hereinafter also referred to as a flow resistance nozzle) shown in Patent Document 1 is known. The structure includes a substantially cylindrical base 12, a metal block 13, and a protective tube 16, as shown in cross section in FIG. 8. The pedestal 12 is formed with a through hole 12 </ b> C at its axis. The metal block 13 has a female screw hole 12B coaxially formed with a diameter larger than the through hole 12C from one end side of the pedestal 12, and the metal block 13 has a male screw portion 13A screwed into the female screw hole 12B from one end. It protrudes and is formed with a male screw portion 13E at the other end.

金属ブロック13の軸心に形成された細管貫通孔13Bに細管2が貫通して両端が突出するように装着されており、雄ネジ部13Aには細管貫通孔13Bと同軸にそれより径が大の雌ネジ穴13Dが形成されている。この雌ネジ穴13Dに螺合する雄ネジが外周に切られ、細管2の一端側が挿通された円柱状のシール抑え7の先端が、雌ネジ穴13D内でリング状シール材4を押圧することにより細管2の外周面と金属ブロック13の内周面との間がシールされている。金属ブロック13の外周面と台座12の内周面との間はシール材14及び/又は15によりシールされている。また、シール抑え7から突出した細管2の一端と対向して貫通孔12Cの一端に塵埃を除去するフィルタ17が装着されている。金属ブロック13の雄ネジ部13Eには突出した細管2を保護する保護管16が装着され、必要に応じて保護管16の先端部にもフィルタが設けられる。   The thin tube 2 is mounted so as to penetrate through the thin tube through hole 13B formed in the axial center of the metal block 13 and both ends protrude, and the male screw portion 13A is coaxial with the thin tube through hole 13B and has a larger diameter than that. Female screw holes 13D are formed. A male screw that is screwed into the female screw hole 13D is cut to the outer periphery, and the tip of the cylindrical seal restrainer 7 through which one end of the thin tube 2 is inserted presses the ring-shaped sealing material 4 in the female screw hole 13D. Thus, the space between the outer peripheral surface of the thin tube 2 and the inner peripheral surface of the metal block 13 is sealed. A space between the outer peripheral surface of the metal block 13 and the inner peripheral surface of the pedestal 12 is sealed with a sealing material 14 and / or 15. Further, a filter 17 for removing dust is attached to one end of the through hole 12 </ b> C so as to face one end of the thin tube 2 protruding from the seal restrainer 7. A protective tube 16 that protects the protruding thin tube 2 is attached to the male screw portion 13E of the metal block 13, and a filter is provided at the tip of the protective tube 16 as necessary.

この微少リーク弁を組み立てるには、まず、保護管16を金属ブロック13に装着し、リング状のシール材4とシール抑え7を細管2に装着した状態で細管2を金属ブロック13の細管貫通孔13Bに挿通させ、シール材4を雌ネジ穴13D内に挿入し、雌ネジ穴13Dにシール抑えを回動挿入してシール材4を押圧し、フィルタ17が装着された台座12の雌ネジ穴12Bに金属ブロック13の雄ネジ部13Aをねじ込む。なお、図8に示す特許文献1の微少リーク弁(流量抵抗ノズル)では金属ブロック13にその外周面から細管貫通穴13Bに達するネジ穴13Cが形成されており、規定圧にて規定の流量値となるようネジ6により細管2を潰すことができる。   In order to assemble this micro leak valve, first, the protective tube 16 is attached to the metal block 13, and the thin tube 2 is attached to the thin tube 2 with the ring-shaped sealing material 4 and the seal restrainer 7 attached to the thin tube 2. 13B, the seal material 4 is inserted into the female screw hole 13D, the seal restrainer is rotated and inserted into the female screw hole 13D, the seal material 4 is pressed, and the female screw hole of the base 12 on which the filter 17 is mounted. The male screw portion 13A of the metal block 13 is screwed into 12B. In the micro leak valve (flow resistance nozzle) of Patent Document 1 shown in FIG. 8, a screw hole 13C reaching from the outer peripheral surface to the narrow tube through hole 13B is formed in the metal block 13, and a specified flow rate value at a specified pressure. Then, the thin tube 2 can be crushed by the screw 6.

図9は周知の漏れ検査装置の基本的構成を示すブロック図であり、配管22の一端に空圧源21が接続され、他端には検査対象のワーク28が接続される。配管22には、空圧源21側から順にレギュレータ23、流量計25、作動弁26が直列に挿入されている。また、レギュレータ23と流量計25との間において配管22に圧力ゲージ24が接続されており、作動弁26とワーク28との間において配管22に圧力計27が接続されている。流量計25の流量値の校正を行うには、配管22に接続される漏れ検査の対象となるワーク28の代わりに図8の微少リーク弁の台座12の雄ネジ管12Aを気密に接続し、レギュレータ23を調整して予め決めた規定圧の気体(例えば空気)を供給し、そのときの微少リーク弁からの漏れ量が規定値となるように流量計25の読みを校正する。   FIG. 9 is a block diagram showing a basic configuration of a known leak inspection apparatus. An air pressure source 21 is connected to one end of a pipe 22 and a work 28 to be inspected is connected to the other end. In the pipe 22, a regulator 23, a flow meter 25, and an operation valve 26 are inserted in series in this order from the pneumatic pressure source 21 side. A pressure gauge 24 is connected to the pipe 22 between the regulator 23 and the flow meter 25, and a pressure gauge 27 is connected to the pipe 22 between the operation valve 26 and the work 28. In order to calibrate the flow rate value of the flow meter 25, the male screw pipe 12A of the base 12 of the micro leak valve of FIG. The regulator 23 is adjusted to supply a predetermined pressure of gas (for example, air), and the reading of the flow meter 25 is calibrated so that the leak amount from the minute leak valve at that time becomes a specified value.

実開平03−105773号公報Japanese Utility Model Publication No. 03-105773

図8の流量抵抗ノズルにおいて単体部品としての細管2の流量を予め別の流量測定装置で測定しながら細管を冶具で潰して所定の流量に設定した場合、流量抵抗ノズルの組み立て時に流量が設定された細管を直接取り扱う必要があり、細管を誤って曲げて設定流量が変わってしまう可能性がある。そこで別の流量測定装置での単体部品としての細管の流量設定は行わず、図8のように流量抵抗ノズルを組み立てた後にネジ6を回動して細管2を潰すことにより所定の流量に設定している。しかし、この構造では、ネジ6で細管2を潰すことにより流量を所定値に設定しているので、設定後の細管2とネジ6と金属ブロック13は互いに一体な構造となり、流量抵抗ノズルを組み立てる際に金属ブロック13を台座12に強く締め付けると、締め付け時の歪が細管2と圧接しているネジ6に伝わるため、設定流量値が変化することがあった。そのような場合は、その流量抵抗ノズルを分解して細管2を新しいものと交換し、ネジ6により再度流量を設定して流量抵抗ノズルを組み立てる必要があった。   In the flow resistance nozzle of FIG. 8, when the flow rate of the thin tube 2 as a single part is measured in advance with another flow measurement device and the thin tube is crushed with a jig and set to a predetermined flow rate, the flow rate is set when the flow resistance nozzle is assembled. It is necessary to handle the tubule directly, and there is a possibility that the set flow rate is changed by bending the tubule by mistake. Therefore, the flow rate of the narrow tube as a single part in another flow rate measuring device is not set, but after the flow resistance nozzle is assembled as shown in FIG. doing. However, in this structure, since the flow rate is set to a predetermined value by crushing the thin tube 2 with the screw 6, the thin tube 2, the screw 6 and the metal block 13 after the setting are integrated with each other, and the flow resistance nozzle is assembled. At this time, if the metal block 13 is strongly tightened to the pedestal 12, the set flow rate value may change because the strain at the time of tightening is transmitted to the screw 6 in pressure contact with the thin tube 2. In such a case, it was necessary to disassemble the flow resistance nozzle, replace the thin tube 2 with a new one, set the flow rate again with the screw 6 and assemble the flow resistance nozzle.

この発明の目的は流量抵抗ノズルの組み立て時に設定流量が変化しない流量抵抗ノズルを提供することである。   An object of the present invention is to provide a flow resistance nozzle in which the set flow rate does not change when the flow resistance nozzle is assembled.

上記の課題を解決するために、本発明による流量抵抗ノズルは、
外周面にネジが切られた軸部と、その軸部の一端にその軸部の外径より大きい径を有するボディとを同軸心に有し、上記軸部と上記ボディの軸心を連通して貫通する導通穴が形成されたホルダーと、上記導通穴は上記ボディ側における小径穴部と、上記小径穴部より上記軸部側において上記小径穴部の内径より径が拡大された大径穴部とを同軸心に有し、上記小径穴部と上記大径穴部の境界に軸心と垂直な面を有する段部が形成されており、上記小径穴部の内周面にはネジが切られており、
上記小径穴部に螺合されたネジ部と上記大径穴部に配置された上記ネジ部より大の外径を有する頭部とを一体に有し、上記ネジ部と上記頭部を通って軸心に貫通孔が形成された雄ネジと、上記貫通孔に挿通され、一端が上記ネジ部から突出し、他端が上記貫通孔内に位置する細管とを有するネジ型ノズルと、上記細管の外周面と上記貫通孔の内周面は互いに気密に固定されており、上記細管は、所定の流量となるよう上記ネジ部から突出した部分において潰されており、
上記頭部と上記導通穴の上記段部との間に挟まれたシールパッキングと、
を含むことを特徴とする。
In order to solve the above problems, the flow resistance nozzle according to the present invention is:
A shaft having a threaded outer peripheral surface and a body having a diameter larger than the outer diameter of the shaft at one end of the shaft are coaxially connected, and the shaft and the shaft center of the body communicate with each other. A through hole formed through the holder, the small diameter hole portion on the body side, and a large diameter hole whose diameter is larger than the small diameter hole portion on the shaft side than the small diameter hole portion. A step portion having a surface perpendicular to the shaft center at the boundary between the small diameter hole portion and the large diameter hole portion, and a screw is provided on the inner peripheral surface of the small diameter hole portion. Has been cut,
The screw part screwed into the small-diameter hole part and a head part having an outer diameter larger than the screw part arranged in the large-diameter hole part are integrated, and the screw part and the head part are passed through. A screw type nozzle having a male screw having a through-hole formed in the shaft center, a thin tube inserted into the through-hole, one end protruding from the screw portion, and the other end positioned in the through-hole, and the thin tube The outer peripheral surface and the inner peripheral surface of the through hole are airtightly fixed to each other, and the narrow tube is crushed at a portion protruding from the screw portion so as to have a predetermined flow rate,
Seal packing sandwiched between the head and the step of the conduction hole;
It is characterized by including.

本発明による流量抵抗ノズルにおいては、標準的な雄ネジに形成した貫通孔に細管を挿通して気密固定して形成したネジ型ノズルの雄ネジから突出した部分における細管が所定流量に潰されており、雄ネジの頭部と、ホルダーを貫通する導通穴の中間部に形成した段部との間にシールパッキングを挟むことによりネジ型ノズルの外周面と導通穴の内周面との間を気密にする構成としたので、ネジ型ノズルをホルダーに締め付けても歪みは細管の雄ネジから突出した部分に伝わらず、従って流量抵抗ノズルの組み立て時に設定流量が変化する恐れはなく、正確な流量が設定された流量抵抗ノズルを組み立てることが可能である効果を奏する。   In the flow resistance nozzle according to the present invention, the thin tube in the portion protruding from the male screw of the screw type nozzle formed by inserting the thin tube into a through hole formed in a standard male screw and hermetically fixing is crushed to a predetermined flow rate. The seal packing is sandwiched between the head of the male screw and the step formed in the middle part of the conduction hole that penetrates the holder, so that the gap between the outer peripheral surface of the screw type nozzle and the inner peripheral surface of the conduction hole is reduced. Since the structure is airtight, even if the screw type nozzle is tightened to the holder, the distortion does not propagate to the protruding part from the male thread of the thin tube, so there is no possibility of changing the set flow rate when assembling the flow resistance nozzle, and accurate flow rate There is an effect that it is possible to assemble a flow resistance nozzle in which is set.

この発明の第1実施例による流量抵抗ノズルを示し、Aは側面図、BはAにおいてフィルタとフィルタ押えを外した正面図、CはAにおける軸方向断面図。The flow resistance nozzle by 1st Example of this invention is shown, A is a side view, B is the front view which removed the filter and the filter holder in A, C is an axial sectional view in A. この発明の流量抵抗ノズルに使用されるネジ型ノズルを示し、Aは軸方向断面図、Bはネジ型ノズルの頭部側から見た正面図。The screw type nozzle used for the flow resistance nozzle of this invention is shown, A is an axial sectional view, B is the front view seen from the head side of the screw type nozzle. Aはネジ型ノズルにマイナスネジを使用した場合の頭部側から見た正面図、Bは六角ネジを使用した場合の頭部側から見た正面図。A is a front view seen from the head side when a minus screw is used for the screw type nozzle, and B is a front view seen from the head side when a hexagon screw is used. この発明の第2実施例による流量抵抗ノズルの軸方向断面図。FIG. 6 is an axial sectional view of a flow resistance nozzle according to a second embodiment of the present invention. この発明の第3実施例による流量抵抗ノズルの軸方向断面図。FIG. 6 is an axial sectional view of a flow resistance nozzle according to a third embodiment of the present invention. この発明の第4実施例による流量抵抗ノズルの軸方向断面図。FIG. 9 is an axial sectional view of a flow resistance nozzle according to a fourth embodiment of the present invention. この発明による流量抵抗ノズルの基本的構成を説明するための断面図。Sectional drawing for demonstrating the fundamental structure of the flow resistance nozzle by this invention. 従来技術による流量基準器としての微少リーク弁の軸方向断面図。An axial sectional view of a minute leak valve as a flow rate reference device according to the prior art. 従来の漏れ検査装置の基本的構成ブロック図。The basic block diagram of the conventional leak inspection apparatus.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[第1実施例]
以下にこの発明の第1実施例に係る流量抵抗ノズルを説明する。図1Aは流量抵抗ノズルの側面を示し、図1Bは図1Aにおいて図1Cを参照して後述するフィルタ52とフィルタ押え54を外したときの正面を示し、図1Cは図1Aにおける軸心に沿った断面を示す。流量抵抗ノズルはホルダー30と、ホルダー30内に装着されるネジ型ノズル40と、シールパッキング51と、フィルタ52と、フィルタ押え54を含む。必要に応じて更にホースジョイント60とパッキング64を含んでもよい。
[First embodiment]
The flow resistance nozzle according to the first embodiment of the present invention will be described below. 1A shows a side view of the flow resistance nozzle, FIG. 1B shows a front view when a filter 52 and a filter retainer 54 described later with reference to FIG. 1C in FIG. 1A are removed, and FIG. 1C is along the axis in FIG. A cross section is shown. The flow resistance nozzle includes a holder 30, a screw type nozzle 40 mounted in the holder 30, a seal packing 51, a filter 52, and a filter holder 54. If necessary, a hose joint 60 and a packing 64 may be further included.

この第1実施例ではホルダー30は金属で六角ボルト状に一体形成され、その中心軸を共有して六角頭部32と、六角頭部32の一端面から突出し、六角頭部32より小さい外径を有し、外周面にネジが切られた軸部33と、六角頭部32の軸部33と反対側端面から突出した円柱部31とを有する。ホルダー30にはその中心軸と同軸に一端から他端に貫通する導通穴30bが形成されており、導通穴30bは軸部33側における導通穴33bと、六角頭部32側における導通穴32bと、円柱部31側における導通穴31bとが同軸心で互いに連通した構造となっている。導通穴32bと33bの境界は六角頭部32と軸部33の境界に位置する必要はなく、それより六角頭部32内でも軸部33内でもよく、同様に導通穴31bと32bの境界は円柱部31と六角頭部32の境界に位置する必要はなく、それより円柱部31内でも六角頭部32内でもよい。しかしながら、便宜上、以下においては導通穴31b、32b、33bをそれぞれ円柱部31における導通穴、六角頭部32における導通穴、軸部33における導通穴と呼ぶこともある。円柱部31と六角頭部32はホルダー30のボディ312を構成しており、軸部33はボディ312の一端から突出して形成されているといえる。   In this first embodiment, the holder 30 is made of metal and is integrally formed in a hexagonal bolt shape, sharing the central axis thereof, protruding from the hexagon head 32 and one end surface of the hexagon head 32, and having an outer diameter smaller than the hexagon head 32. And a cylindrical portion 31 protruding from an end surface opposite to the axial portion 33 of the hexagonal head 32. The holder 30 is formed with a conduction hole 30b extending from one end to the other end coaxially with the central axis. The conduction hole 30b includes a conduction hole 33b on the shaft 33 side and a conduction hole 32b on the hexagonal head 32 side. In addition, the conduction hole 31b on the cylindrical portion 31 side has a coaxial communication with each other. The boundary between the conduction holes 32b and 33b does not have to be located at the boundary between the hexagonal head 32 and the shaft portion 33, and may be within the hexagonal head 32 or the shaft portion 33. Similarly, the boundary between the conduction holes 31b and 32b is It is not necessary to be located at the boundary between the cylindrical portion 31 and the hexagonal head 32, and may be located in the cylindrical portion 31 or the hexagonal head 32. However, for the sake of convenience, hereinafter, the conduction holes 31b, 32b, and 33b may be referred to as a conduction hole in the cylindrical portion 31, a conduction hole in the hexagonal head 32, and a conduction hole in the shaft portion 33, respectively. It can be said that the cylindrical portion 31 and the hexagonal head 32 constitute a body 312 of the holder 30, and the shaft portion 33 is formed to protrude from one end of the body 312.

軸部33における導通穴33bの内径は、後述のネジ型ノズル40を構成する雄ネジ41の頭部41Hの外径より大とされている。導通穴32bの内径は導通穴33bの内径より小とされ、その境界は軸心方向とほぼ直角な面を成す段部32sを形成している。円柱部31における導通穴31bの内径は六角頭部32における導通穴32bの内径より大とされている。導通穴31b、33bの内周面にはそれぞれの穴の外端から軸方向中間部までネジが切られており、導通穴32bの内周面には雄ネジ41と螺合するネジが軸方向ほぼ全長に渡って切られている。   The inner diameter of the conduction hole 33b in the shaft portion 33 is set to be larger than the outer diameter of the head 41H of the male screw 41 constituting the screw type nozzle 40 described later. The inner diameter of the conduction hole 32b is smaller than the inner diameter of the conduction hole 33b, and the boundary forms a step 32s that forms a surface substantially perpendicular to the axial direction. The inner diameter of the conduction hole 31 b in the cylindrical portion 31 is larger than the inner diameter of the conduction hole 32 b in the hexagonal head 32. Screws are cut on the inner peripheral surfaces of the conduction holes 31b and 33b from the outer ends of the respective holes to an intermediate portion in the axial direction, and a screw that engages with the male screw 41 is axially provided on the inner peripheral surface of the conduction hole 32b. It is cut over almost the entire length.

ネジ型ノズル40は図2Aに軸方向に沿った断面を、図2Bに頭部側の正面図を示すように雄ネジ41と細管42を有している。雄ネジ41にはその中心軸と同軸に貫通孔41hが形成されており、その貫通孔41hに細管42が挿通され、細管42の外周面と貫通孔41hの内周面との間に接着材43が注入され気密固定されている。雄ネジ41はネジ部41Sと頭部41Hを有する市販の標準的な雄ネジの軸心に沿って貫通孔41hを形成したものであり、図の例では頭部41Hに十字穴41cを有するナベネジを使用した例を示す。貫通孔41hの内径は十字穴41cの中心における内接円の径より小さく、貫通孔41hの一端は十字穴41cの中央底部に開放されている。頭部41Hの、ネジ部41S側端面41Hpは雄ネジの中心軸に対し直角な面を成している。   The screw type nozzle 40 has a male screw 41 and a thin tube 42 as shown in FIG. 2A in a cross section along the axial direction and in FIG. 2B a front view on the head side. A through hole 41h is formed coaxially with the central axis of the male screw 41, and a thin tube 42 is inserted into the through hole 41h. An adhesive is provided between the outer peripheral surface of the thin tube 42 and the inner peripheral surface of the through hole 41h. 43 is injected and airtightly fixed. The male screw 41 is formed by forming a through hole 41h along the axis of a commercially available standard male screw having a screw portion 41S and a head portion 41H. In the example shown in the figure, a pan screw having a cross hole 41c in the head portion 41H. An example using is shown. The inner diameter of the through hole 41h is smaller than the diameter of the inscribed circle at the center of the cross hole 41c, and one end of the through hole 41h is opened at the center bottom of the cross hole 41c. The end surface 41Hp on the screw portion 41S side of the head portion 41H forms a surface perpendicular to the central axis of the male screw.

細管42は例えばステンレス製チューブであり、その一端は、雄ネジ41をドライバで回動してネジ型ノズル40をホルダー30の導通穴30b内に取り付ける際にドライバの先端が細管42の先端に接触しないよう十字穴41cの中央底部より深い貫通孔41h内に位置し、細管42の他端はネジ部41Sから突出している。細管42を雄ネジ41に例えばエポキシ樹脂系、シリコン樹脂系、あるいはシアノアクリレート系などの接着材43で気密に接着固定する。あるいは、接着剤を使用せず、細管42の突出部の外周面とネジ部41Sの先端部を熔接することにより実質的に細管42の外周面と貫通孔41hの内周面を互いに気密固定してもよい。こうして構成したネジ型ノズル40は本発明とは別の流量調整装置により規定圧で細管42の流量が所定値となるよう細管42の突出部の任意の領域が精密に潰される。そのような流量が所定値とされたネジ型ノズル40は、所望の異なる流量値ごとに予め用意しておくことができる。   The thin tube 42 is, for example, a stainless steel tube, and one end of the thin tube 42 contacts the tip of the thin tube 42 when the male screw 41 is rotated by a driver and the screw type nozzle 40 is mounted in the conduction hole 30 b of the holder 30. The other end of the thin tube 42 protrudes from the screw portion 41S, and is located in the through hole 41h deeper than the center bottom of the cross hole 41c. The thin tube 42 is hermetically bonded and fixed to the male screw 41 with an adhesive 43 such as epoxy resin, silicon resin, or cyanoacrylate. Alternatively, without using an adhesive, the outer peripheral surface of the protruding portion of the thin tube 42 and the tip of the screw portion 41S are welded to substantially hermetically fix the outer peripheral surface of the thin tube 42 and the inner peripheral surface of the through hole 41h. May be. The screw-type nozzle 40 constructed in this manner is crushed precisely in any region of the protruding portion of the narrow tube 42 so that the flow rate of the narrow tube 42 becomes a predetermined value at a specified pressure by a flow rate adjusting device different from the present invention. The screw type nozzle 40 having such a flow rate set to a predetermined value can be prepared in advance for each desired different flow rate value.

図1Cに戻って、雄ネジ41の頭部41Hを回してネジ部41Sを導通穴32bにねじ込むことにより導通穴33b内において頭部41Hのネジ部41S側端面41Hpと、導通穴30b内の段部32sとの間にシールパッキング51を挟んで押圧し、雄ネジ41の外周面と導通穴30bの内周面間がシールされる。雄ネジ41の頭部41Hと当接するよう、円板状のフィルタ52が導通穴33b内に装着され、その外側から、外周にネジが切られた環状のフィルタ押え54が導通穴33bにねじ込まれる。これにより空圧源からネジ型ノズル40の頭部41H側に大気圧より高い加圧気体が供給される場合、加圧気体中の塵埃をフィルタ52により除去して細管42の細孔42hの内壁に付着することを防止する。フィルタ押え54は弾性を有するO−リング53を介してフィルタ52を押えるようにしてもよい。   Returning to FIG. 1C, by turning the head portion 41H of the male screw 41 and screwing the screw portion 41S into the conduction hole 32b, the threaded portion 41S side end surface 41Hp of the head portion 41H and the step in the conduction hole 30b in the conduction hole 33b. The seal packing 51 is sandwiched between the portion 32s and pressed to seal between the outer peripheral surface of the male screw 41 and the inner peripheral surface of the conduction hole 30b. A disc-shaped filter 52 is mounted in the conduction hole 33b so as to come into contact with the head 41H of the male screw 41, and an annular filter retainer 54 whose outer periphery is threaded is screwed into the conduction hole 33b from the outside. . Accordingly, when pressurized gas higher than atmospheric pressure is supplied from the pneumatic source to the head 41H side of the screw-type nozzle 40, dust in the pressurized gas is removed by the filter 52, and the inner wall of the pore 42h of the narrow tube 42 is removed. Prevents from adhering to. The filter holder 54 may hold the filter 52 via an elastic O-ring 53.

ホルダー30の軸部33は例えば図9における漏れ検査装置のワーク28と置き換えて配管22に螺合され、六角頭部32の端面に形成された環状溝32gに装着されたシールパッキング34が配管22の端部に設けられた図示してないフランジに圧接シールされてこの発明の流量抵抗ノズルが流量測定系に取り付けられる。その状態で規定圧の加圧気体(例えば空気)が供給され、その時の流量計25の読みがネジ型ノズル40の設定流量値となるよう流量計25の読みを較正する。図1の実施例では、流量抵抗ノズルからの流出気体を図示してないホースで所望の系に供給するためにホースジョイント60がホルダー30に取り付けられている場合を示している。ホースジョイント60は中心軸に導通穴60hを有する円柱状であり、ホルダー30の導通穴31bに切られたネジに螺合するネジ部63と、ネジ部63より外径が大のフランジ部62と、ホースが接続される接続部61を有している。フランジ部62のネジ部63側端面とホルダー30の円柱部31の端面との間にシールパッキング64を挟んで気密が保たれる。   The shaft portion 33 of the holder 30 is replaced with, for example, the work 28 of the leakage inspection apparatus in FIG. 9 and screwed into the pipe 22, and the seal packing 34 mounted in the annular groove 32 g formed on the end face of the hexagonal head 32 is provided in the pipe 22. The flow resistance nozzle of the present invention is attached to a flow rate measurement system by being pressed and sealed to a flange (not shown) provided at the end of the flow rate. In this state, a pressurized gas (for example, air) having a specified pressure is supplied, and the reading of the flow meter 25 is calibrated so that the reading of the flow meter 25 at that time becomes the set flow rate value of the screw type nozzle 40. In the embodiment of FIG. 1, a case where a hose joint 60 is attached to the holder 30 in order to supply an outflow gas from the flow resistance nozzle to a desired system with a hose (not shown) is shown. The hose joint 60 has a cylindrical shape having a conduction hole 60 h on the central axis, a screw portion 63 that is screwed into a screw cut in the conduction hole 31 b of the holder 30, and a flange portion 62 having an outer diameter larger than that of the screw portion 63. And a connecting portion 61 to which the hose is connected. The seal packing 64 is sandwiched between the end surface of the flange portion 62 on the threaded portion 63 side and the end surface of the cylindrical portion 31 of the holder 30 to maintain airtightness.

前述のように規定圧で様々な流量値のネジ型ノズル40を予め用意しておけば、ホルダー30、フィルタ52、フィルタ押え54は交換せずにネジ型ノズル40のみを所望の流量値のものに取り替えることができるので、予め複数の設定流量値が必要とされる場合、用意すべき流量抵抗ノズルの費用が少なくてすむ。これに対し、図8を参照して説明した従来の流量抵抗ノズルの場合、細管2は金属ブロック13及びシール押え7と一体のものとして所定流量に設定されるので、多数の異なる流量を設定する必要がある場合は、それぞれの流量設定された個別製品としての流量抵抗ノズルを用意する必要があり、それだけ費用がかかる。   As described above, if the screw-type nozzle 40 having various flow values at a specified pressure is prepared in advance, the holder 30, the filter 52, and the filter retainer 54 are not replaced, and only the screw-type nozzle 40 has a desired flow rate value. Therefore, when a plurality of set flow values are required in advance, the cost of the flow resistance nozzle to be prepared can be reduced. On the other hand, in the case of the conventional flow resistance nozzle described with reference to FIG. 8, the thin tube 2 is set to a predetermined flow rate as one body with the metal block 13 and the seal presser 7, so that a number of different flow rates are set. When it is necessary, it is necessary to prepare a flow resistance nozzle as an individual product in which each flow rate is set, which is expensive.

上述の実施例では雄ネジ41として十字穴を有するナベネジを使用した例を示したが、図3A及び図3Bに頂面のみを示すように、すわり溝41dを有するマイナスネジでもよいし、六角穴41eを有するボルトでもよく、また、ネジの型としては、ナベネジ以外にもトラスネジ、丸ネジ、平ネジなどであってもよい。その他さまざまな市販の標準ネジに貫通孔41hを開けて使用することができることは明らかである。   In the above-described embodiment, an example in which a pan-head screw having a cross hole is used as the male screw 41 is shown. However, as shown only in the top surface in FIGS. 3A and 3B, a minus screw having a slit groove 41d may be used. The bolt having 41e may be used, and the screw type may be a truss screw, a round screw, a flat screw, or the like in addition to the pan head screw. It is obvious that various other commercially available standard screws can be used with the through hole 41h.

[第2実施例]
図4はこの発明による流量抵抗ノズルの第2実施例を示す。前述の第1実施例による流量抵抗ノズルにおいては、加圧気体の供給側はフィルタ52が設けられているホルダー30の軸部33側に限定されるが、第2実施例の流量抵抗ノズルにおいては、細管42の突出端部側にもフィルタを設けることによりホースジョイント60側から加圧気体を供給する場合にも使用可能とされている。図4に示すようにホルダー30の円柱部31における導通穴31b内にスペーサリング71を挿入し、スペーサリング71の内径より大きな外径を有するフィルタ72を細管42の突出先端と間隔をあけて対向するよう装着し、フィルタ72の、スペーサリング71と反対側を弾性O−リング73を介してホースジョイント60の先端で押圧して固定する。スペーサリング71は細管42の突出先端とフィルタ72との間隔を所定に保つためのものである。その他の構成は第1実施例の場合と同様なので説明を省略する。この第2実施例に拠れば、空圧源が負圧の場合、ホースジョイント60側から流量抵抗ノズルに流入する気体に含まれる塵埃をフィルタ72で除去することにより細管42の細孔42h(図2A参照)の内壁に塵埃が付着するのを防ぐことができる。
[Second Embodiment]
FIG. 4 shows a second embodiment of the flow resistance nozzle according to the present invention. In the flow resistance nozzle according to the first embodiment described above, the supply side of the pressurized gas is limited to the shaft portion 33 side of the holder 30 provided with the filter 52, but in the flow resistance nozzle of the second embodiment, In addition, by providing a filter on the protruding end side of the thin tube 42, it can be used even when pressurized gas is supplied from the hose joint 60 side. As shown in FIG. 4, a spacer ring 71 is inserted into the conduction hole 31 b in the cylindrical portion 31 of the holder 30, and a filter 72 having an outer diameter larger than the inner diameter of the spacer ring 71 is opposed to the protruding tip of the narrow tube 42. The filter 72 is fixed to the side opposite to the spacer ring 71 by pressing the tip of the hose joint 60 through the elastic O-ring 73. The spacer ring 71 is for maintaining a predetermined distance between the protruding tip of the thin tube 42 and the filter 72. Since other configurations are the same as those in the first embodiment, the description thereof is omitted. According to the second embodiment, when the pneumatic pressure source is a negative pressure, the dust contained in the gas flowing into the flow resistance nozzle from the hose joint 60 side is removed by the filter 72, whereby the pores 42h (see FIG. 2A) can be prevented from adhering to the inner wall.

[第3実施例]
前述の第1及び第2実施例の流量抵抗ノズルにおいては、ホルダー30が一体に形成されている場合を示したが、ホルダーを2つのホルダー部により構成した流量抵抗ノズルの実施例を図5に示す。
[Third embodiment]
In the flow resistance nozzles of the first and second embodiments described above, the case where the holder 30 is integrally formed is shown, but an embodiment of the flow resistance nozzle in which the holder is configured by two holder portions is shown in FIG. Show.

図5において外側ホルダー部30Aと内側ホルダー部30Bの組が例えば図1Cにおけるホルダー30に相当する。外側ホルダー部30Aは図1Cにおけるホルダー30と同様に円柱部31Aと六角頭部32Aとこれらより外径が小さい軸部33Aとを有し、軸部33Aには図1Cの場合と同様に、ネジ型ノズル40の頭部41Hより内径が大の導通穴33Abが形成されている。円柱部31Aと六角頭部32Aは外側ホルダー部30Aの基部312Aを構成している。第3実施例では導通穴33Abは六角頭部32A内において内径が拡大され収容穴(第1拡大穴部)32Abとされ、円柱部31Aにおいて更に内径が拡大されたネジ穴(第2拡大穴部)31Abとされている。収容穴32Abの内周面にはネジは切られておらず、ネジ穴31Abの内周面にはネジが切られている。   In FIG. 5, a set of the outer holder portion 30A and the inner holder portion 30B corresponds to, for example, the holder 30 in FIG. 1C. The outer holder portion 30A has a cylindrical portion 31A, a hexagonal head portion 32A, and a shaft portion 33A having a smaller outer diameter than the holder portion 30 in FIG. 1C, and the shaft portion 33A has a screw as in FIG. 1C. A conduction hole 33Ab having an inner diameter larger than the head 41H of the mold nozzle 40 is formed. The cylindrical portion 31A and the hexagonal head portion 32A constitute a base portion 312A of the outer holder portion 30A. In the third embodiment, the conduction hole 33Ab has an inner diameter enlarged in the hexagonal head 32A to be a receiving hole (first enlarged hole part) 32Ab, and a screw hole (second enlarged hole part) in which the inner diameter is further enlarged in the cylindrical part 31A. ) 31Ab. No screw is cut on the inner peripheral surface of the accommodation hole 32Ab, and a screw is cut on the inner peripheral surface of the screw hole 31Ab.

内側ホルダー部30Bは、外径が収容穴32Abよりわずかに小さい円柱部32Bと、その円柱部32Bより外径が大とされ、外周面に外側ホルダー部30Aのネジ穴31Abと螺合するネジが切られたネジ部31Bを有している。円柱部32Bには導通穴32Bbが同軸心に形成されており、その導通穴32Bbはネジ部31Bにおいて径が拡大された導通穴31Bbとされている。導通穴31Bbの内周面にはネジ部31Bの端面側から、ホースジョイント60のネジ部63と螺合するネジが切られている。導通穴32Bbの内周面にはネジ型ノズル40のネジ部41S(図2A参照)が螺合するネジが切られている。円柱部32Bの外周面には環状溝32Bgが形成され、その環状溝32Bgには弾性O−リング35が装着されている。ネジ部31Bを外側ホルダー部30Aのネジ穴31Abに螺合させ、内側ホルダー部30Bを外側ホルダー部30A内に装着させると、円柱部32Bは収容穴32Ab内に収容され、内側ホルダー部30Bの外周面と外側ホルダー部30Aの内周面間は弾性O−リング35によりシールされる。   The inner holder portion 30B has a cylindrical portion 32B whose outer diameter is slightly smaller than the accommodating hole 32Ab, and a screw that is larger in outer diameter than the cylindrical portion 32B and is screwed into the outer peripheral surface of the screw hole 31Ab of the outer holder portion 30A. It has the cut screw part 31B. A conducting hole 32Bb is coaxially formed in the cylindrical part 32B, and the conducting hole 32Bb is a conducting hole 31Bb whose diameter is enlarged in the screw part 31B. A screw that engages with the screw portion 63 of the hose joint 60 is cut from the end surface side of the screw portion 31B on the inner peripheral surface of the conduction hole 31Bb. A screw into which a screw portion 41S (see FIG. 2A) of the screw type nozzle 40 is screwed is cut on the inner peripheral surface of the conduction hole 32Bb. An annular groove 32Bg is formed on the outer peripheral surface of the cylindrical portion 32B, and an elastic O-ring 35 is attached to the annular groove 32Bg. When the screw part 31B is screwed into the screw hole 31Ab of the outer holder part 30A and the inner holder part 30B is mounted in the outer holder part 30A, the cylindrical part 32B is accommodated in the accommodation hole 32Ab, and the outer periphery of the inner holder part 30B. The surface and the inner peripheral surface of the outer holder portion 30 </ b> A are sealed by an elastic O-ring 35.

円柱部32Bの端面32Bsは、導通穴33Abと、拡大された収容穴32Abとの境界の段部32Asに当接し、その状態で円柱部32Bの端面の、導通穴33Ab内に露出した部分(段部)32Bsが図1Cにおける段部32sに相当する。即ち、ネジ型ノズル40は頭部41Hの端面41Hp(図2A参照)と段部32Bsとの間にシールパッキング51を挟むように内側ホルダー30Bの円柱部32Bの導通穴32Bbに螺合装着されている。この第3実施例における外側ホルダー30Aの基部312A(円柱部31Aと六角頭部32A)と、内側ホルダー部30Bとの組(弾性O−リングを含む)が第1実施例におけるボディ312(図1A,C参照)に相当するといえる。また、第3実施例における外側ホルダー部30Aの導通穴33Abと、内側ホルダー部30Bの導通穴32Bb及び31Bbがそれぞれ図1Cにおけるホルダー30の導通穴33b、32b、31bに相当する。その他の構成は第1実施例の場合と同様であり、説明を省略する。   The end surface 32Bs of the cylindrical portion 32B is in contact with the stepped portion 32As at the boundary between the conduction hole 33Ab and the enlarged accommodation hole 32Ab, and in this state, the exposed portion of the end surface of the cylindrical portion 32B within the conduction hole 33Ab (step Part) 32Bs corresponds to the stepped part 32s in FIG. 1C. That is, the screw type nozzle 40 is screwed into the conduction hole 32Bb of the cylindrical portion 32B of the inner holder 30B so that the seal packing 51 is sandwiched between the end surface 41Hp (see FIG. 2A) of the head portion 41H and the step portion 32Bs. Yes. In this third embodiment, a set (including an elastic O-ring) of the base portion 312A (the cylindrical portion 31A and the hexagonal head portion 32A) of the outer holder 30A and the inner holder portion 30B is the body 312 in the first embodiment (FIG. 1A). , C). Further, the conduction holes 33Ab of the outer holder portion 30A and the conduction holes 32Bb and 31Bb of the inner holder portion 30B in the third embodiment correspond to the conduction holes 33b, 32b, 31b of the holder 30 in FIG. 1C, respectively. Other configurations are the same as those in the first embodiment, and a description thereof will be omitted.

[第4実施例]
図5の第3実施例においては、フィルタ52は導通穴32Ab内の軸部Aが位置する領域に配置されているため、軸部33Aの外径はフィルタ52の外径より十分大きくする必要があり、小径の軸部33Aを有する流量抵抗ノズルを構成することは難しい。図1Cの実施例においても同様のことが言える。図6の第4実施例は外径の小さい軸部を有する流量抵抗ノズルの構成を可能とするものである。軸部33Aの導通穴(縮小穴部)33Abはネジ型ノズル40の頭部41H(図2A参照)の外径、及びフィルタ52の外径より小さく、その導通穴33Abは基部312A内、より詳しくは六角頭部32A内において内径が頭部41Hの外径及びフィルタ52の外径よりわずかに大に拡大された導通穴32Ab1とされている。以下は図5の実施例と同様に導通穴32Ab1は六角頭部32A内で更に内径が拡大された収容穴32Ab2とされている。導通穴32Ab1が図5における導通穴33Abに相当し、図6における収容穴32Ab2が図5における収容穴32Abに相当する。導通穴33Abと、拡大された導通穴32Ab1との境界に段部33Asが形成されており、その段部33Asに対接してO−リング53が導通穴32Ab1内に装着され、そのO−リング53と対接してフィルタ52が装着されている。
[Fourth embodiment]
In the third embodiment of FIG. 5, the filter 52 is disposed in the region where the shaft portion A is located in the conduction hole 32 </ b> Ab. It is difficult to construct a flow resistance nozzle having a small diameter shaft portion 33A. The same applies to the embodiment of FIG. 1C. The fourth embodiment of FIG. 6 enables the configuration of a flow resistance nozzle having a shaft portion with a small outer diameter. The conduction hole (reduction hole part) 33Ab of the shaft part 33A is smaller than the outer diameter of the head 41H (see FIG. 2A) of the screw-type nozzle 40 and the outer diameter of the filter 52. The conduction hole 33Ab is more detailed in the base 312A. Is a conduction hole 32Ab1 having an inner diameter slightly larger than the outer diameter of the head 41H and the outer diameter of the filter 52 in the hexagonal head 32A. In the following, like the embodiment of FIG. 5, the conduction hole 32Ab1 is an accommodation hole 32Ab2 whose inner diameter is further enlarged in the hexagonal head 32A. The conduction hole 32Ab1 corresponds to the conduction hole 33Ab in FIG. 5, and the accommodation hole 32Ab2 in FIG. 6 corresponds to the accommodation hole 32Ab in FIG. A step portion 33As is formed at the boundary between the conduction hole 33Ab and the enlarged conduction hole 32Ab1, and an O-ring 53 is mounted in the conduction hole 32Ab1 so as to be in contact with the step portion 33As. And a filter 52 is mounted.

内側ホルダー部30Bの円柱部32Bの環状溝32BgにO−リング35を装着し、円柱部32Bの端面(段部)32Bsとネジ型ノズル40の頭部41Hとの間にシールパッキング51を挟んで導通穴32Bbにネジ型ノズル40が螺合した状態で、内側ホルダー部30Bをネジ穴31Ab側から外側ホルダー部30Aの内側に螺合装着すると、円柱部32Bの端面32Bsは段部32Asと当接し、その状態でネジ型ノズル40の頭部41Hは導通穴32Ab1内においてフィルタ52を、O−リング53を介して段部33Asに押し付けた状態となる。その他の構成は図5の場合と同様であり、説明を省略する。図6における導通穴31Bb,32Bb,32Ab1,33Abの組は図1Cにおける導通穴30b(31b、32b、33bの組)に相当する。   An O-ring 35 is attached to the annular groove 32Bg of the cylindrical part 32B of the inner holder part 30B, and the seal packing 51 is sandwiched between the end face (step part) 32Bs of the cylindrical part 32B and the head part 41H of the screw type nozzle 40. When the inner holder portion 30B is screwed into the outer holder portion 30A from the screw hole 31Ab side in a state where the screw type nozzle 40 is screwed into the conduction hole 32Bb, the end surface 32Bs of the cylindrical portion 32B comes into contact with the step portion 32As. In this state, the head portion 41H of the screw-type nozzle 40 is in a state in which the filter 52 is pressed against the step portion 33As via the O-ring 53 in the conduction hole 32Ab1. Other configurations are the same as those in FIG. The set of conduction holes 31Bb, 32Bb, 32Ab1, and 33Ab in FIG. 6 corresponds to the conduction hole 30b (set of 31b, 32b, and 33b) in FIG. 1C.

この第4実施例によれば、導通穴33Abの内径をフィルタ52の外径及びネジ型ノズル40の頭部41Hの外径より小さくできるので、軸部33Aの外径を図5の場合と比べて小さくすることができる。なお、図1Cのホルダー30が一体構造の場合においては、組み立て時にネジ型ノズル40を導通穴33bから挿入する必要があるので、導通穴33bの内径をネジ型ノズル40の頭部41Hの外径より小さくすることはできない。これに対し、図6のようにホルダーを外側ホルダー部30Aと内側ホルダー部30Bにより構成した場合は、組み立て時にネジ型ノズル40を導通穴33Abに通す必要はないので導通穴33Abの内径を小さくでき、したがって軸部33Aの外径を小さくできる。第3及び第4実施例においても第2実施例と同様に細管42の突出端側にもフィルタを設けてもよい。   According to the fourth embodiment, the inner diameter of the conduction hole 33Ab can be made smaller than the outer diameter of the filter 52 and the outer diameter of the head 41H of the screw-type nozzle 40, so that the outer diameter of the shaft portion 33A is compared with the case of FIG. Can be made smaller. When the holder 30 in FIG. 1C has an integral structure, it is necessary to insert the screw type nozzle 40 from the conduction hole 33b at the time of assembly. Therefore, the inner diameter of the conduction hole 33b is set to the outer diameter of the head 41H of the screw type nozzle 40. It cannot be made smaller. On the other hand, when the holder is constituted by the outer holder portion 30A and the inner holder portion 30B as shown in FIG. 6, it is not necessary to pass the screw type nozzle 40 through the conduction hole 33Ab during assembly, so that the inner diameter of the conduction hole 33Ab can be reduced. Therefore, the outer diameter of the shaft portion 33A can be reduced. Also in the third and fourth embodiments, a filter may be provided on the protruding end side of the narrow tube 42 as in the second embodiment.

[発明の基本的構成]
以上説明した全ての実施例に当てはまるこの発明の基本的構成を、図7を参照して説明する。この発明による流量抵抗ノズルはボディ312と軸部33を有するホルダー30と、ネジ型ノズル40と、シールパッキング51とを含んでいる。ネジ型ノズル40は図2Aに示すように雄ネジ41の中心軸を通って貫通する貫通孔41hに細管42を挿通させ、貫通孔41hの内周面と細管42の外周面間を気密固定したものであり、その状態で所定の気体圧で所定の流量となるようネジ部41Sから突出した部分が予め潰されている。ホルダー30には軸部33とボディ312を貫通して導通穴30bが形成されており、その導通穴30bはボディ312側においてネジ型ノズルのネジ部41Sが螺合されるネジが内周面に切られた小径穴部30b1と、それより軸部33側において小径穴部30b1より内径が大とされ、ネジ型ノズルの頭部41Hを収容する大径穴部30b2を含んでいる。小径穴部30b1と大径穴部30b2の境界に形成された段部32sと、ネジ型ノズル40の頭部41Hとの間にシールパッキング51が挟まれている。
[Basic structure of the invention]
The basic configuration of the present invention that applies to all the embodiments described above will be described with reference to FIG. The flow resistance nozzle according to the present invention includes a holder 30 having a body 312 and a shaft portion 33, a screw-type nozzle 40, and a seal packing 51. As shown in FIG. 2A, the screw type nozzle 40 has a thin tube 42 inserted through a through hole 41 h that passes through the central axis of the male screw 41, and the inner peripheral surface of the through hole 41 h and the outer peripheral surface of the thin tube 42 are hermetically fixed. In this state, a portion protruding from the screw portion 41S is crushed in advance so that a predetermined flow rate is obtained with a predetermined gas pressure. The holder 30 has a through hole 30b formed through the shaft portion 33 and the body 312. The through hole 30b is formed on the inner surface of a screw on which the screw portion 41S of the screw type nozzle is screwed on the body 312 side. The cut small-diameter hole portion 30b1 and the large-diameter hole portion 30b2 that accommodates the head 41H of the screw-type nozzle and has a larger inner diameter than the small-diameter hole portion 30b1 on the shaft 33 side. A seal packing 51 is sandwiched between a step 32s formed at the boundary between the small diameter hole 30b1 and the large diameter hole 30b2 and the head 41H of the screw type nozzle 40.

前述の第1乃至第4実施例の説明から明らかなように、ホルダー30は一体のものであっても、外側ホルダー部と内側ホルダー部の2つから構成されるものであってもよい。   As is clear from the description of the first to fourth embodiments described above, the holder 30 may be integrated or may be composed of two parts, an outer holder part and an inner holder part.

このように、細管42は雄ネジ41のネジ部41Sから突出した部分において所定流量値となるように潰されており、そのような細管42を有するネジ型ノズル40は、雄ネジ41の頭部41Hがホルダー30の導通穴30b内に形成された段部32sにシールパッキング51を挟んで押圧するよう導通穴30b内にねじ込まれるので、ネジ型ノズル40のホルダー30内への取付け時のいかなる歪も細管42の突出部に形成された潰された部分に影響を与えることは無い。   As described above, the thin tube 42 is crushed so as to have a predetermined flow rate value at a portion protruding from the screw portion 41S of the male screw 41, and the screw type nozzle 40 having such a thin tube 42 is connected to the head of the male screw 41. 41H is screwed into the conduction hole 30b so as to press the seal packing 51 between the step 32s formed in the conduction hole 30b of the holder 30, so that any distortion at the time of mounting the screw type nozzle 40 into the holder 30 is achieved. However, the crushed portion formed in the protruding portion of the thin tube 42 is not affected.

本発明は、任意の気体供給系における所定流量の設定に利用したり、流量測定装置の流量校正に利用することができる。   The present invention can be used for setting a predetermined flow rate in an arbitrary gas supply system or for flow rate calibration of a flow rate measuring device.

2:細管
4:シール材
7:シール押え
12:台座
13:金属ブロック
16:保護管
17:フィルタ
30:ホルダー
30b:導通穴
30A:外側ホルダー部
30B:内側ホルダー部
312:ボディ
32:六角頭部
33:軸部
32s:段部
40:ネジ型ノズル
41:雄ネジ
41h:貫通孔
41c:十字穴
41H:頭部
42:細管
43:接着材
51:シールパッキング
52:フィルタ
54:フィルタ押え
60:ホースジョイント
72:フィルタ
2: Thin tube 4: Seal material 7: Seal retainer 12: Base 13: Metal block 16: Protection tube 17: Filter 30: Holder 30b: Conductive hole 30A: Outer holder part 30B: Inner holder part 312: Body 32: Hex head 33: Shaft portion 32s: Step portion 40: Screw type nozzle 41: Male screw 41h: Through hole 41c: Cross hole 41H: Head portion 42: Narrow tube 43: Adhesive material 51: Seal packing 52: Filter 54: Filter presser 60: Hose Joint 72: Filter

Claims (7)

外周面にネジが切られた軸部と、その軸部の一端にその軸部の外径より大きい径を有するボディとを同軸心に有し、上記軸部と上記ボディの軸心を連通して貫通する導通穴が形成されたホルダーと、上記導通穴は上記ボディ側における小径穴部と、上記小径穴部より上記軸部側において上記小径穴部の内径より径が拡大された大径穴部とを同軸心に有し、上記小径穴部と上記大径穴部の境界に軸心と垂直な面を有する段部が形成されており、上記小径穴部の内周面にはネジが切られており、
上記小径穴部に螺合されたネジ部と上記大径穴部に配置された上記ネジ部より大の外径を有する頭部とを一体に有し、上記ネジ部と上記頭部を通って軸心に貫通孔が形成された雄ネジと、上記貫通孔に挿通され、一端が上記ネジ部から突出し、他端が上記貫通孔内に位置する細管とを有するネジ型ノズルと、上記細管の外周面と上記貫通孔の内周面は互いに気密に固定されており、上記細管は、所定の流量となるよう上記ネジ部から突出した部分において潰されており、
上記頭部と上記導通穴の上記段部との間に挟まれたシールパッキングと、
を含むことを特徴とする流量抵抗ノズル。
A shaft having a threaded outer peripheral surface and a body having a diameter larger than the outer diameter of the shaft at one end of the shaft are coaxially connected, and the shaft and the shaft center of the body communicate with each other. A through hole formed through the holder, the small diameter hole portion on the body side, and a large diameter hole whose diameter is larger than the small diameter hole portion on the shaft side than the small diameter hole portion. A step portion having a surface perpendicular to the shaft center at the boundary between the small diameter hole portion and the large diameter hole portion, and a screw is provided on the inner peripheral surface of the small diameter hole portion. Has been cut,
The screw part screwed into the small-diameter hole part and a head part having an outer diameter larger than the screw part arranged in the large-diameter hole part are integrated, and the screw part and the head part are passed through. A screw type nozzle having a male screw having a through-hole formed in the shaft center, a thin tube inserted into the through-hole, one end protruding from the screw portion, and the other end positioned in the through-hole, and the thin tube The outer peripheral surface and the inner peripheral surface of the through hole are airtightly fixed to each other, and the narrow tube is crushed at a portion protruding from the screw portion so as to have a predetermined flow rate,
Seal packing sandwiched between the head and the step of the conduction hole;
A flow resistance nozzle comprising:
請求項1記載の流量抵抗ノズルにおいて、上記ホルダーは金属で一体形成されていることを特徴とする流量抵抗ノズル。   2. The flow resistance nozzle according to claim 1, wherein the holder is integrally formed of metal. 請求項1記載の流量抵抗ノズルにおいて、上記ホルダーは、
上記軸部と、上記軸部の一端に形成されそれより径が大の基部とを一体に有し、上記大径穴部と、上記基部内において上記大径穴部の上記軸部と反対側端で径が拡大された第1拡大穴部と、上記第1拡大穴部の上記軸部と反対側端で径が更に拡大され、上記基部の上記軸部と反対側端まで延長し、内周面にネジが切られた第2拡大穴部とが同軸心で形成された外側ホルダー部と、
上記第1拡大穴部の内径より小さく、上記大径穴部の内径より大の外径を有し、上記第1拡大穴部に挿入され、軸心に上記小径穴部が形成された円柱部と、上記円柱部の、上記軸部と反対側端で外径が拡大され、外周面に上記第2拡大穴部に螺合するネジが切られ、上記小径穴部と同軸心に連通する穴が形成された大径ネジ部とを有する内側ホルダー部と、
上記円柱部の外周面に形成された環状溝に装着され、上記円柱部の外周面と上記第1拡大穴部の内周面との間を気密にするO−リングと、
を含み、上記基部と上記内側ホルダー部が上記ボディを構成し、上記円柱部の上記大径穴部側端面が上記段部を構成していることを特徴とする流量抵抗ノズル。
The flow resistance nozzle according to claim 1, wherein the holder includes:
The shaft portion and a base portion formed at one end of the shaft portion and having a larger diameter than the shaft portion are integrally formed. The large-diameter hole portion and the large-diameter hole portion on the opposite side to the shaft portion in the base portion A first enlarged hole whose diameter is enlarged at the end, and a diameter further enlarged at the end opposite to the shaft part of the first enlarged hole part, extending to an end opposite to the shaft part of the base, An outer holder part in which a second enlarged hole part threaded on the peripheral surface is formed of a coaxial core;
A cylindrical portion having an outer diameter smaller than the inner diameter of the first enlarged hole portion and larger than the inner diameter of the larger diameter hole portion, inserted into the first enlarged hole portion, and having the smaller diameter hole portion formed in the axis. And an outer diameter of the cylindrical portion opposite to the end of the shaft portion, a screw threaded into the second enlarged hole portion is cut on the outer peripheral surface, and a hole communicating coaxially with the small diameter hole portion. An inner holder part having a large-diameter screw part formed with,
An O-ring that is attached to an annular groove formed on the outer peripheral surface of the cylindrical portion, and seals between the outer peripheral surface of the cylindrical portion and the inner peripheral surface of the first enlarged hole portion;
The flow resistance nozzle, wherein the base and the inner holder portion constitute the body, and the end surface on the large-diameter hole side of the columnar portion constitutes the stepped portion.
請求項1乃至3のいずれか記載の流量抵抗ノズルにおいて、上記大径穴部内に上記頭部と対向して装着されたフィルタが設けられており、上記大径穴部は上記軸部の先端まで延長されており、上記フィルタの、上記頭部と反対側にフィルタ押えが上記大径穴部に装着されていることを特徴とする流量抵抗ノズル。   The flow resistance nozzle according to any one of claims 1 to 3, wherein a filter is provided in the large-diameter hole portion so as to face the head portion, and the large-diameter hole portion extends to a tip of the shaft portion. A flow resistance nozzle which is extended and has a filter retainer mounted in the large-diameter hole on the side of the filter opposite to the head. 請求項3記載の流量抵抗ノズルにおいて、上記大径穴部内に上記頭部と対向して装着されたフィルタが設けられており、上記大径穴部は上記フィルタの上記ネジ型ノズルと反対側において内径が上記フィルタの外径より小とされて上記軸部の先端まで伸びた縮小穴部とされ、上記大径穴部と上記縮小穴部の境界は上記基部内に位置することを特徴とする流量抵抗ノズル。   The flow resistance nozzle according to claim 3, wherein a filter mounted opposite to the head is provided in the large-diameter hole, and the large-diameter hole is on the opposite side of the filter from the screw-type nozzle. An inner diameter is made smaller than the outer diameter of the filter and is a reduced hole extending to the tip of the shaft, and a boundary between the larger diameter hole and the reduced hole is located in the base. Flow resistance nozzle. 請求項1乃至3のいずれか記載の流量抵抗ノズルにおいて、上記ボディ側の上記導通穴はその軸方向中間部から上記ボディの、上記軸部と反対側端に渡って径が上記小径穴部より大とされており、上記ボディ側の径が大とされた導通穴内に上記細管の突出端と間隔をあけて対向するように装着されたフィルタを更に含むことを特徴とする流量抵抗ノズル。   The flow resistance nozzle according to any one of claims 1 to 3, wherein the conduction hole on the body side has a diameter from an intermediate portion in the axial direction to an end opposite to the shaft portion of the body from the small diameter hole portion. A flow resistance nozzle characterized by further including a filter mounted to be opposed to the protruding end of the narrow tube in a conducting hole having a large diameter on the body side and spaced from the protruding end of the thin tube. 請求項1乃至6のいずれか記載の流量抵抗ノズルにおいて、上記細管の外周面と上記貫通孔の内周面は接着剤により互いに気密に固定されていることを特徴とする流量抵抗ノズル。   The flow resistance nozzle according to any one of claims 1 to 6, wherein the outer peripheral surface of the thin tube and the inner peripheral surface of the through hole are airtightly fixed to each other by an adhesive.
JP2014154636A 2014-07-30 2014-07-30 Flow resistance nozzle Expired - Fee Related JP6310355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014154636A JP6310355B2 (en) 2014-07-30 2014-07-30 Flow resistance nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154636A JP6310355B2 (en) 2014-07-30 2014-07-30 Flow resistance nozzle

Publications (2)

Publication Number Publication Date
JP2016031331A true JP2016031331A (en) 2016-03-07
JP6310355B2 JP6310355B2 (en) 2018-04-11

Family

ID=55441790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154636A Expired - Fee Related JP6310355B2 (en) 2014-07-30 2014-07-30 Flow resistance nozzle

Country Status (1)

Country Link
JP (1) JP6310355B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215310A (en) * 2016-05-31 2017-12-07 株式会社フクダ Sealability evaluation method, and conductance test method and test device
JP2021032286A (en) * 2019-08-21 2021-03-01 株式会社コスモ計器 Flow resistor, flow adjustment device, and flow adjustment method
CN113369455A (en) * 2021-05-27 2021-09-10 上海恩耀机电有限公司 Machining process and cutting system of die casting
WO2024056680A1 (en) * 2022-09-13 2024-03-21 F. Hoffmann-La Roche Ag Positive control system and method for validating positive control of container closure integrity testing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326870U (en) * 1989-07-24 1991-03-19
JPH03105773U (en) * 1990-02-16 1991-11-01
JPH0972817A (en) * 1995-09-04 1997-03-18 Fukuda:Kk Trace leakage unit for air leakage tester
JPH09508471A (en) * 1994-02-02 1997-08-26 ライボルト アクチエンゲゼルシヤフト Test leak site with capillary to determine leak rate
JP2002107258A (en) * 2000-10-02 2002-04-10 Fukuda:Kk Artificial leak device for air leak tester
US6382011B1 (en) * 2001-05-09 2002-05-07 Mocon, Inc. Apparatus for providing leakage calibration in packages
JP2002537552A (en) * 1999-02-19 2002-11-05 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Test leak device
JP2013200749A (en) * 2012-03-26 2013-10-03 Azbil Taco Co Ltd Ultrafine throttle mechanism and ultrafine throttle part formation method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326870U (en) * 1989-07-24 1991-03-19
JPH03105773U (en) * 1990-02-16 1991-11-01
JPH09508471A (en) * 1994-02-02 1997-08-26 ライボルト アクチエンゲゼルシヤフト Test leak site with capillary to determine leak rate
JPH0972817A (en) * 1995-09-04 1997-03-18 Fukuda:Kk Trace leakage unit for air leakage tester
JP2002537552A (en) * 1999-02-19 2002-11-05 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Test leak device
JP2002107258A (en) * 2000-10-02 2002-04-10 Fukuda:Kk Artificial leak device for air leak tester
US6382011B1 (en) * 2001-05-09 2002-05-07 Mocon, Inc. Apparatus for providing leakage calibration in packages
JP2013200749A (en) * 2012-03-26 2013-10-03 Azbil Taco Co Ltd Ultrafine throttle mechanism and ultrafine throttle part formation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215310A (en) * 2016-05-31 2017-12-07 株式会社フクダ Sealability evaluation method, and conductance test method and test device
JP2021032286A (en) * 2019-08-21 2021-03-01 株式会社コスモ計器 Flow resistor, flow adjustment device, and flow adjustment method
JP7239426B2 (en) 2019-08-21 2023-03-14 株式会社コスモ計器 Flow resistor, flow control device, flow control method
CN113369455A (en) * 2021-05-27 2021-09-10 上海恩耀机电有限公司 Machining process and cutting system of die casting
WO2024056680A1 (en) * 2022-09-13 2024-03-21 F. Hoffmann-La Roche Ag Positive control system and method for validating positive control of container closure integrity testing

Also Published As

Publication number Publication date
JP6310355B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6310355B2 (en) Flow resistance nozzle
JP4700448B2 (en) Differential pressure type flow meter
US4192192A (en) Diaphragm seal assembly
TWI480531B (en) Installation of pressure detectors
US9885437B2 (en) Fluid shunt device
US5535629A (en) Device for measuring pressure with replaceable connector element
US10151657B2 (en) Diaphragm pressure gauge with monitoring function
WO2020075600A1 (en) Pressure sensor
EP3097396B1 (en) A modular load structure assembly having internal strain gaged sensing
US10094726B2 (en) Membrane isolated, gel-filled force sensor
CN111678639A (en) Free field pressure sensor dynamic sensitivity coefficient calibration device
CN107870062A (en) A kind of used in nuclear power station diaphragm type instrument calibration device
US7895897B2 (en) Sensor assembly and use of a sensor assembly
CN203490029U (en) Sealing device for atmospheric pressure meter calibration
CN216846695U (en) MEMS pressure chip test fixture
CN206074179U (en) Used in nuclear power station diaphragm type instrument calibration device
US3744317A (en) Strain gage pressure transducer
US20210054943A1 (en) Flow resistor, flow rate control device, and flow rate control method
CN221077916U (en) Test pressurizing device for brake sensor
JP7169260B2 (en) Physical quantity measuring device
CN105136390A (en) High-temperature pressure sensor testing device and preparation method therefor
CN105444874A (en) Device and method for measuring and calibrating sound intensity
KR101579911B1 (en) Fitting connector tightened and separated by hand for high speed test and calibration
KR20190069191A (en) Pressure transmitter
CN202661219U (en) Double-diaphragm high-static pressure differential pressure gauge and main body oil-filling structure thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180316

R150 Certificate of patent or registration of utility model

Ref document number: 6310355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees