JP2016031200A - Combustion method of gas burner for low calorie gas, and gas burner for low calorie gas - Google Patents

Combustion method of gas burner for low calorie gas, and gas burner for low calorie gas Download PDF

Info

Publication number
JP2016031200A
JP2016031200A JP2014154362A JP2014154362A JP2016031200A JP 2016031200 A JP2016031200 A JP 2016031200A JP 2014154362 A JP2014154362 A JP 2014154362A JP 2014154362 A JP2014154362 A JP 2014154362A JP 2016031200 A JP2016031200 A JP 2016031200A
Authority
JP
Japan
Prior art keywords
gas
burner
combustion
chamber
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014154362A
Other languages
Japanese (ja)
Inventor
貴史 大田
Takashi Ota
貴史 大田
直人 熊谷
Naoto Kumagai
直人 熊谷
徳永 宏彦
Hirohiko Tokunaga
宏彦 徳永
岡本 豊
Yutaka Okamoto
豊 岡本
裕司 白石
Yuji Shiraishi
裕司 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2014154362A priority Critical patent/JP2016031200A/en
Publication of JP2016031200A publication Critical patent/JP2016031200A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gas Burners (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably burn a fuel gas of a low calorific value even when a combustion load is low or a combustion air ratio is high.SOLUTION: A thermal insulation body 12 is provided which has an inner annular part 12i made of a refractory material and outwardly fitted with an outer annular part 12o made of a heat insulation material. A thermal insulation chamber 13 is formed in the inner annular part 12i. A mixed gas MG in which a fuel gas FG with a low calorific value and a combustion air FA are mixed is injected from a mixed gas outlet 26 into the thermal insulation chamber 13. An ignited flame is thermally insulated and combusted in the thermal insulation chamber 13.SELECTED DRAWING: Figure 1

Description

本発明は、高炉などの金属製造プロセスや化学プラントなどから発生される低発熱量の燃料ガスを安定燃焼させるガスバーナの燃焼方法およびガスバーナに関する。   The present invention relates to a combustion method of a gas burner and a gas burner for stably burning a fuel gas having a low calorific value generated from a metal manufacturing process such as a blast furnace or a chemical plant.

低発熱量の燃料ガスを良好に安定燃焼させるガスバーナに関する従来技術は、特許文献1に開示されるように、先端ほど広がる円錐状の先端面を有する焚口部材内に、空気ノズルを形成するとともに、空気ノズルの同一軸心上にガスノズルを配置する。そして、空気ノズル内に旋回翼を配置することにより、ガスノズルの周囲から旋回空気流を噴出させる。ガスノズルは小径部を介して先端部を閉鎖し、小径部の周囲に、旋回空気流中に燃料ガスを噴射する複数のガス噴射口を形成したものである。これらガス噴射口は、大径のガス噴射口と小径のガス噴射口を交互に配置している。   Prior art related to a gas burner that satisfactorily and stably burns fuel gas with a low calorific value, as disclosed in Patent Document 1, forms an air nozzle in a mouth member having a conical tip surface that extends toward the tip, A gas nozzle is disposed on the same axis of the air nozzle. And a swirl air flow is ejected from the circumference | surroundings of a gas nozzle by arrange | positioning a swirl | wing blade in an air nozzle. The gas nozzle closes the tip portion through a small diameter portion, and has a plurality of gas injection ports for injecting fuel gas into the swirling air flow around the small diameter portion. In these gas injection ports, large-diameter gas injection ports and small-diameter gas injection ports are alternately arranged.

実公平01−025871号公報Japanese Utility Model Publication No. 01-025871

しかしながら、上記構成では、低発熱量の燃料ガスを燃焼させる時に、燃焼負荷が低くかったり、また高い空気比で燃焼させる場合、燃焼が安定しないという問題があった。また着火のために使用するパイロットバーナは常時着火しておき、助燃しておかないと、失火するおそれがあった。   However, in the above configuration, there is a problem that when the fuel gas having a low calorific value is combusted, the combustion load is low, or when combustion is performed at a high air ratio, the combustion is not stable. In addition, the pilot burner used for ignition always ignites, and there is a risk of misfire if it is not supplemented.

本発明は上記問題点を解決して、燃焼負荷が低い場合や燃焼空気比が高い場合でも、低発熱量の燃料ガスを安定して燃焼させることができ、またパイロットバーナなどによる助燃が不要となるガスバーナの燃焼方法およびガスバーナを提供することを目的とする。   The present invention solves the above problems, and can stably burn a fuel gas with a low calorific value even when the combustion load is low or the combustion air ratio is high, and no auxiliary combustion by a pilot burner or the like is required. It is an object of the present invention to provide a combustion method for a gas burner and a gas burner.

本発明に係る低カロリーガス用ガスバーナの燃焼方法は、
耐火材製の内環状部に、断熱材からなる外環状部を外嵌して保温体を形成するとともに、混合ガス出口から低発熱量の燃料ガスと燃焼空気とを混合した混合ガスを、前記内環状部に形成された保温室に噴射し、着火された火炎を、前記保温体により保温しつつ前記保温室内で燃焼させることを特徴とする。
The combustion method of the gas burner for low calorie gas according to the present invention is as follows:
The outer annular portion made of a heat insulating material is externally fitted to the inner annular portion made of a refractory material to form a heat retaining body, and a mixed gas obtained by mixing a low calorific fuel gas and combustion air from the mixed gas outlet, It is characterized by burning the flame which was injected and ignited in the heat retention room formed in the inner annular part inside the heat retention room while being kept warm by the heat retaining body.

また本発明に係る低カロリーガス用ガスバーナは、
バーナ本体に、バーナ軸心に沿って設けられた燃焼空気通路と、この燃焼空気通路の外周部に設けられた燃焼ガス通路と、前記燃焼空気通路の先端部に設けられた閉鎖部と、この閉鎖部の手前で前記燃焼空気通路の燃焼空気を、前記燃焼ガス通路の燃料ガス中に噴射して燃料ガスと燃焼空気とを混合する複数の噴射空気孔と、前記閉鎖部の外周部の混合ガス出口に設けられた旋回翼と、を備え、
燃焼室の壁面に貫設した保温体の基端部に、前記バーナ本体を設置し、
前記バーナ本体の先端側の前記保温体に、前記混合ガス出口より大径に形成された保温室と、前記混合ガス出口と略同一内径に形成されて前記保温室と前記燃焼室とを接続する案内室とをバーナ軸心に沿って連続して形成したことを特徴とする。
The gas burner for low calorie gas according to the present invention is
In the burner body, a combustion air passage provided along the burner axis, a combustion gas passage provided in an outer peripheral portion of the combustion air passage, a closing portion provided in a front end portion of the combustion air passage, A plurality of injection air holes for injecting the combustion air in the combustion air passage into the fuel gas in the combustion gas passage before the closing portion to mix the fuel gas and the combustion air, and mixing of the outer peripheral portion of the closing portion A swirl vane provided at the gas outlet,
The burner body is installed at the base end of the heat retaining body penetrating the wall of the combustion chamber,
The warmer at the tip side of the burner body is connected to the warmer chamber having a larger diameter than the mixed gas outlet and the warmer chamber and the combustion chamber formed to have substantially the same inner diameter as the mixed gas outlet. The guide chamber is formed continuously along the burner axis.

本発明に係る低カロリーガス用ガスバーナの燃焼方法によれば、耐火材と断熱材からなる保温体に形成された保温室内で、混合ガスを燃焼させることにより、保温室で火炎に対する耐熱性と保温性とを両立させて、混合ガスの火炎を良好に保温することができる。そしてこの火炎の保温により、燃焼負荷が低い場合や燃焼空気比が高い場合であっても、低発熱量の燃料ガスを安定して燃焼させることができる。さらに火炎が保温されることで、パイロットバーナなどによる助燃がなくても、安定した燃焼が可能となる。   According to the combustion method of the gas burner for low calorie gas according to the present invention, the heat resistance and the heat insulation against the flame in the thermal insulation by burning the mixed gas in the thermal insulation formed in the thermal insulation body composed of the refractory material and the heat insulating material. This makes it possible to keep the flame of the mixed gas in good condition. By keeping the flame warm, even when the combustion load is low or the combustion air ratio is high, the fuel gas having a low calorific value can be stably burned. Further, by keeping the flame warm, stable combustion is possible even without supplementary combustion by a pilot burner or the like.

また、低カロリーガス用ガスバーナによれば、保温室の前方に、火炎を導出する案内室を連続して形成し、案内室の内径を、保温室より内径が小さくかつ混合ガス出口と略同一に形成することにより、燃焼ガスの不安定な偏流を防止しつつ火炎を安定させ、放熱を減少させて保温効果を向上させることができる。   Further, according to the gas burner for low calorie gas, a guide chamber for leading out the flame is continuously formed in front of the thermal storage chamber, and the inner diameter of the guide chamber is smaller than the thermal storage chamber and substantially the same as the mixed gas outlet. By forming, it is possible to stabilize the flame while preventing unstable drift of the combustion gas, to reduce heat radiation, and to improve the heat retaining effect.

さらに、燃焼室の壁面開口部に設置した保温体に、バーナ本体を設置するとともに、前記保温体にバーナ本体の混合ガス出口より大径に形成した保温室と、案内室とを形成したので、混合ガス出口から噴射される混合ガスの火炎を包囲して十分に保温することができ、低発熱量のガスを、低燃焼負荷や高燃焼空気比であっても安定して燃焼させることができる。またパイロットバーナなどによる助燃も不要にすることができる。さらに案内室により、燃焼ガスの不安定な偏流を防止しつつ火炎を安定させ、放熱を減少させて保温効果を向上させることができる。さらにまた、案内室の設置により、保温室出口付近の耐火物の欠損変形を防ぐとともに、流速の増大により火炎の指向性を高め安定燃焼を図ることができる。   Furthermore, since the burner body was installed in the heat retaining body installed at the wall surface opening of the combustion chamber, and the heat retaining room formed in the heat retaining body with a larger diameter than the mixed gas outlet of the burner body, and the guide chamber, The flame of the mixed gas injected from the mixed gas outlet can be surrounded and sufficiently kept warm, and the gas with a low calorific value can be stably burned even at a low combustion load and a high combustion air ratio. . In addition, auxiliary combustion with a pilot burner or the like can be eliminated. Further, the guide chamber can stabilize the flame while preventing unstable drift of the combustion gas, reduce heat radiation, and improve the heat retaining effect. Furthermore, the installation of the guide chamber can prevent the refractory from being lost and deformed near the exit of the greenhouse, and can increase the directivity of the flame by increasing the flow velocity to achieve stable combustion.

また、保温体に、耐火材製の内環状部と、この内環状部の外周に設けられた断熱材製の外環状部を具備したので、火炎に対する耐熱性と保温性とを両立させて、良好に火炎を保温することができる。   Moreover, since the heat retaining body has an inner annular portion made of a refractory material and an outer annular portion made of a heat insulating material provided on the outer periphery of the inner annular portion, both heat resistance against heat and heat retaining properties are achieved. It can keep the flame well.

さらに、燃料ガス通路を形成する内筒部に形成したテーパ部に、内面側周囲に面取りが形成された複数の噴射空気孔を形成したので、燃焼空気の圧力損失を大幅に低減することができ、燃焼騒音や振動の発生を抑制して、送風機の出力やランニングコストを低減することができる。   Furthermore, since the plurality of injection air holes with chamfers formed around the inner surface side are formed in the tapered portion formed in the inner cylinder portion forming the fuel gas passage, the pressure loss of the combustion air can be greatly reduced. The generation of combustion noise and vibration can be suppressed, and the output and running cost of the blower can be reduced.

本発明に係るガスバーナの実施例1の使用状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the use condition of Example 1 of the gas burner which concerns on this invention. 同ガスバーナの縦断面図である。It is a longitudinal cross-sectional view of the same gas burner. テーパ部に形成された噴射空気孔を示す部分拡大縦断面図である。It is a partial expanded longitudinal cross-sectional view which shows the injection air hole formed in the taper part. 本発明に係るガスバーナの実施例2を示す縦断面図である。It is a longitudinal cross-sectional view which shows Example 2 of the gas burner which concerns on this invention. 本発明に係るガスバーナの実施例3を示す縦断面図である。It is a longitudinal cross-sectional view which shows Example 3 of the gas burner which concerns on this invention. 本発明に係るガスバーナの実施例4を示す縦断面図である。It is a longitudinal cross-sectional view which shows Example 4 of the gas burner which concerns on this invention.

[実施例1]
以下、本発明の実施例を図面に基づいて説明する。
本発明に係る低カロリーガス用ガスバーナは、たとえば発熱量が約3.4MJ/Nm(約800kcalNm)の高炉ガス(BFG)を、低負荷や高空気比で安定した燃焼が可能なものである。特に、発熱量が、最大5.02MJ/Nm(1200kcalNm)以下で、2.42MJ/Nm(580kcalNm)以上の低発熱量の燃料ガスに好適で、高炉ガス以外に、化学プラントなどから発生される低発熱量の燃料ガスを良好に燃焼させることができる。
[Example 1]
Embodiments of the present invention will be described below with reference to the drawings.
Low calorie gas burner according to the present invention, for example, a blast furnace gas (BFG) calorific value of about 3.4MJ / Nm 3 (approximately 800kcalNm 3), those capable of stable combustion with low load and high air ratio is there. In particular, heating value, maximum 5.02MJ / Nm 3 (1200kcalNm 3) below, suitable 2.42MJ / Nm 3 (580kcalNm 3) or more low heating value of the fuel gas, in addition to the blast furnace gas, chemical plants etc. The fuel gas having a low calorific value generated from the fuel can be burned well.

図1および図2に示すように、本発明の特徴は、バーナ本体11から噴射される混合ガスMGを、保温体12に形成された保温室13に噴射して燃焼させ、この火炎を保温室13と案内室14で包囲し、燃焼ガスを案内室14から燃焼室31に導出する。この保温室13は、保温空間に収容する燃焼ガスを介して火炎を包み込み、保温可能な十分な広さを有している。   As shown in FIG. 1 and FIG. 2, the feature of the present invention is that the mixed gas MG injected from the burner body 11 is injected and burned into a heat retaining chamber 13 formed in the heat retaining body 12, and this flame is retained. 13 and the guide chamber 14, and the combustion gas is led out from the guide chamber 14 to the combustion chamber 31. The warming chamber 13 has a sufficient size to wrap the flame through the combustion gas accommodated in the warming space and to keep warm.

燃焼室31は、耐火材31aと外殻材31bとで形成されており、燃焼室31の一壁面に形成された開口部32に保温体12が嵌合されており、この保温体12の軸心方向(バーナ軸心O)に沿って保温室13と案内室14が連続して形成されている。そして、保温室13の基端側に、バーナ本体11がバーナ軸心Oiに沿って設置される。   The combustion chamber 31 is formed of a refractory material 31 a and an outer shell material 31 b, and the heat retaining body 12 is fitted into an opening 32 formed on one wall surface of the combustion chamber 31. A warming chamber 13 and a guide chamber 14 are continuously formed along the center direction (burner axis O). And the burner main body 11 is installed along the burner axial center Oi on the base end side of the warm storage room 13.

保温体12は、内周側で保温室13および案内室14を形成する耐火材製の内環状部12iと、この内環状部12iと外殻材31bの間に設けられた断熱材製の外環状部12oとで構成されている。そして、熱から保護するために、外環状部12oの先端部は、燃焼室31から所定距離後退した位置に図示しているが、少なくとも保温体12全長を囲む方が最適であり、また十分な保温性能が得られるのであれば、保温体12の少なくとも一部を囲むように配置してもよい。なお、内環状部12iと同じくらいに耐熱性能が得られる断熱材製の外環状部12oであれば、保温室13および案内室14の全長を覆うように配置することもできる。そして、内環状部12iにより耐熱性を確保するとともに、外環状部12oにより保温性を確保し、さらに外殻材31bにより強度を確保している。この保温体12により保温室13を高温に保持して低発熱量の燃料ガスによる火炎を安定燃焼させるように構成されている。   The heat retaining body 12 includes an inner annular portion 12i made of a refractory material that forms the thermal insulation 13 and the guide chamber 14 on the inner peripheral side, and an outer portion made of a heat insulating material provided between the inner annular portion 12i and the outer shell material 31b. It is comprised with the annular part 12o. And in order to protect from heat, the front-end | tip part of the outer annular part 12o is illustrated in the position retreated by the predetermined distance from the combustion chamber 31, but it is optimal that it surrounds at least the heat insulation body 12 full length, and is enough. If the heat retaining performance is obtained, the heat retaining body 12 may be disposed so as to surround at least a part thereof. In addition, if it is the outer annular part 12o made of a heat insulating material that can obtain heat resistance performance as much as the inner annular part 12i, it can be arranged so as to cover the entire length of the thermal storage room 13 and the guide room 14. The inner annular portion 12i ensures heat resistance, the outer annular portion 12o ensures heat retention, and the outer shell material 31b ensures strength. The heat retaining body 12 is held at a high temperature by the heat retaining body 12 so that a flame with a low calorific value fuel gas is stably combusted.

バーナ本体11は、燃焼空気通路22を形成する内筒部21がバーナ軸心Oに沿って配置され、この内筒部21に同一軸心(バーナ軸心O)上に外筒部23が外嵌されている。この内筒部21と外筒部23の間に、燃料ガスFGを供給する燃料ガス通路24が形成されている。24aは燃料ガスFGの通過を許すスペーサである。   In the burner main body 11, an inner cylinder portion 21 that forms a combustion air passage 22 is disposed along the burner axis O, and an outer cylinder portion 23 is disposed on the inner cylinder portion 21 on the same axis (burner axis O). It is fitted. A fuel gas passage 24 for supplying the fuel gas FG is formed between the inner cylinder portion 21 and the outer cylinder portion 23. A spacer 24a allows passage of the fuel gas FG.

さらに内筒部21の先端側に、先端側ほど縮径されたテーパ部29が形成され、このテーパ部29に、周方向に所定間隔をあけて複数の噴射空気孔28が穿設されている。また内筒部21の先端部に、燃焼空気通路22を閉塞する閉鎖部25が形成されており、閉鎖部25の外周部に、燃料ガス通路24と略同一内径の混合ガス出口26が形成されている。そして、この混合ガス出口26に、混合ガスMGを旋回して噴射する複数の旋回翼27が周方向に沿って設けられている。   Further, a tapered portion 29 having a diameter reduced toward the distal end side is formed on the distal end side of the inner cylinder portion 21, and a plurality of ejection air holes 28 are formed in the tapered portion 29 at predetermined intervals in the circumferential direction. . A closed portion 25 that closes the combustion air passage 22 is formed at the distal end portion of the inner cylinder portion 21, and a mixed gas outlet 26 having substantially the same inner diameter as the fuel gas passage 24 is formed at the outer peripheral portion of the closed portion 25. ing. A plurality of swirl vanes 27 that swirl and inject the mixed gas MG are provided along the circumferential direction at the mixed gas outlet 26.

保温体12に形成された保温室13が、たとえばバーナ軸心Oを中心とする半径:r(d1/2)略球体状に形成されている。また案内室14が混合ガス出口26と略同一内径で、バーナ軸心Oに沿う円柱状に形成されている。   A warming chamber 13 formed in the heat retaining body 12 is formed, for example, in a substantially spherical shape with a radius: r (d1 / 2) centered on the burner axis O. The guide chamber 14 is formed in a cylindrical shape along the burner axis O with substantially the same inner diameter as the mixed gas outlet 26.

ここで、燃焼空気通路22の燃焼空気FAが、噴射空気孔28から燃料ガス通路24中の燃料ガスFG中に噴射されて混合され、この混合ガスMGが旋回翼27により旋回されて混合ガス出口26から保温室13内に噴射される。さらに保温室13で混合ガスMGが着火されて燃焼され、火炎が案内室14から燃焼室31に向かって導出される。この保温室13は、火炎より大きく形成され、火炎を形成しない閉鎖部25の前部と、保温室13の外周部に、高温の燃焼ガス流を循環保持する保温空間がそれぞれ形成される。したがって、高温の燃焼ガス流により、火炎が包囲されて高温に保持される。これにより、発熱量が低い燃料ガスFGを使用する場合、低い燃料負荷で燃焼されたり、高い空気比で燃焼される場合であっても、十分に火炎を保温して燃焼状態を保持し、安定した燃焼が可能となる。   Here, the combustion air FA in the combustion air passage 22 is injected and mixed into the fuel gas FG in the fuel gas passage 24 from the injection air hole 28, and this mixed gas MG is swirled by the swirl vanes 27 to be mixed gas outlet. 26 is injected into the warming chamber 13. Further, the mixed gas MG is ignited and combusted in the warming chamber 13, and the flame is led out from the guide chamber 14 toward the combustion chamber 31. The warming chamber 13 is formed larger than the flame, and a warming space for circulating and holding a high-temperature combustion gas flow is formed in the front portion of the closed portion 25 that does not form a flame and the outer peripheral portion of the warming chamber 13. Therefore, the flame is surrounded and kept at a high temperature by the hot combustion gas flow. As a result, when the fuel gas FG with a low calorific value is used, even if it is burned at a low fuel load or burned at a high air ratio, the flame is kept warm and the combustion state is kept stable. Combustion becomes possible.

ところで、このガスバーナの前方に配置されて着火に使用するパイロットバーナ(図示せず)は、低発熱量の燃料ガスを使用する場合、助燃用として継続して燃焼させることが多い。しかし、本発明のガスバーナでは、着火後に保温室13が十分に昇温され高温状態が保持されていることから、パイロットバーナなどによる助燃は不要となり、パイロットバーナを消火しても、良好な燃焼状態が保持できる。これは後述する実験によりその効果が判明している。   By the way, a pilot burner (not shown) disposed in front of the gas burner and used for ignition is often continuously burned for auxiliary combustion when using a fuel gas having a low calorific value. However, in the gas burner of the present invention, since the temperature-retaining room 13 is sufficiently heated after ignition and the high-temperature state is maintained, no auxiliary combustion by a pilot burner or the like is required, and even if the pilot burner is extinguished, a good combustion state Can hold. The effect of this has been clarified by experiments to be described later.

ここで、保温室13の大きさについて説明する。
混合ガス出口26(燃料ガス通路24)の内径:dとすると、
閉鎖部25の外径:d0は、(1/6)×d以上で、(1/2)×d以下に形成される。これは、閉鎖部25の外径:d0が(1/6)×d未満であると、火炎を保温する保温空間が少なくなるためであり、d0が(1/2)×dを超えると、混合ガスMGの混合状態が低下するためである。
Here, the size of the storage room 13 will be described.
When the inner diameter of the mixed gas outlet 26 (fuel gas passage 24) is d,
The outer diameter d0 of the closing part 25 is (1/6) × d or more and (1/2) × d or less. This is because when the outer diameter of the closed portion 25: d0 is less than (1/6) × d, there is less heat insulation space for keeping the flame warm, and when d0 exceeds (1/2) × d, This is because the mixed state of the mixed gas MG is lowered.

また保温室13の内径:d1は、(4/3)×d以上で、(13/6)×d以下に形成される。また保温室13のバーナ軸心O方向の長さ:L1は、(1/3)×d以上で、(3/2)×d以下に形成される。これは、保温室13の内径:d1が(4/3)×d未満であると、火炎を保温する保温空間が少なくなり保温効果が低下するためであり、d1が(13/6)×dを超えると、燃焼ガスに不安定な偏流が生じやすく、振動や燃焼騒音の要因となるためである。そして、保温室13の長さ:L1が(1/3)×d未満であると、保温空間が少なくなり保温性が低下するためである。またL1が(3/2)×d以上になると、燃焼ガスに不安定な偏流が生じやすく、かつ放熱による温度低下が生じるためである。   Further, the inner diameter d1 of the thermal storage chamber 13 is (4/3) × d or more and (13/6) × d or less. Further, the length L1 of the warming chamber 13 in the burner axis O direction is formed to be (1/3) × d or more and (3/2) × d or less. This is because if the inner diameter d1 of the thermal insulation chamber 13 is less than (4/3) × d, the thermal insulation space for retaining the flame is reduced and the thermal insulation effect is reduced, and d1 is (13/6) × d. This is because an unstable drift is likely to occur in the combustion gas, resulting in vibration and combustion noise. And when the length: L1 of the thermal insulation 13 is less than (1/3) × d, the thermal insulation space is reduced and the thermal insulation performance is lowered. Further, if L1 is (3/2) × d or more, unstable drift tends to occur in the combustion gas, and the temperature decreases due to heat dissipation.

さらに案内室14の内径:d2は、(5/6)×d以上で、(7/6)×d以下に形成される。また案内室14のバーナ軸心O方向の長さ:L2は、(1/6)×d以上で、(1/2)×d以下に形成される。これは、案内室14の内径:d2が(5/6)×d未満では、火炎の流速が増大して圧力損失が増大し、燃焼騒音が増大するからであり、d2が(1/2)×dを超えると、火炎が不安定になり、放熱が増大して保温効果が低下するためである。また案内室14の長さ:L2が(1/6)×d未満となると、耐火材が焼損しやすく、L2が(1/2)×dを超えると、耐火材および断熱材のコストが必要以上にかかるためである。   Furthermore, the inner diameter d2 of the guide chamber 14 is (5/6) × d or more and (7/6) × d or less. The length L2 of the guide chamber 14 in the burner axis O direction is formed to be (1/6) × d or more and (1/2) × d or less. This is because if the inner diameter d2 of the guide chamber 14 is less than (5/6) × d, the flow velocity of the flame increases, the pressure loss increases, and the combustion noise increases, so that d2 is (1/2). If xd is exceeded, the flame becomes unstable, heat dissipation increases, and the heat retention effect decreases. Further, when the length of the guide chamber 14: L2 is less than (1/6) × d, the refractory material is easily burned out, and when L2 exceeds (1/2) × d, the cost of the refractory material and the heat insulating material is required. This is because of the above.

さらにまた、保温体12の外径:d3が、2.0×d以上、3.0×d以下に形成される。これは保温体12の外径:d3が2.0×d未満では、十分な保温作用が得られないからであり、d3が3.0×dを超えると、製造コストが嵩み、燃焼室への取付が困難となるおそれがあるからである。   Furthermore, the outer diameter d3 of the heat retaining body 12 is formed to be 2.0 × d or more and 3.0 × d or less. This is because if the outer diameter of the heat retaining body 12: d3 is less than 2.0 × d, sufficient heat retaining action cannot be obtained. If d3 exceeds 3.0 × d, the manufacturing cost increases, and the combustion chamber This is because it may be difficult to attach to the camera.

ところで、燃焼空気FAの圧力損失が大きいと、燃焼騒音の増加や振動が発生、送風機の出力増大やランニングコストの増加に繋がる。このため、図3に示すように、本発明のガスバーナでは、テーパ部29に貫通形成された噴射空気孔28の内面に、面取り部28aをそれぞれ形成している。各噴射空気孔28はそれぞれ直径:Dとすると、テーパ部29の厚み:T(噴射空気孔28の長さ)は≒(1/2)×Dであり、面取り部28aの幅:C≒(1/10)×Dである。したがって、噴射空気孔28の直径:D=8mm〜27mmの場合、面取り部28aの幅はC=0.8mm〜2.7mmとなる。   By the way, if the pressure loss of the combustion air FA is large, an increase in combustion noise and vibration occur, leading to an increase in blower output and an increase in running cost. For this reason, as shown in FIG. 3, in the gas burner of the present invention, chamfered portions 28 a are respectively formed on the inner surfaces of the blast air holes 28 formed through the tapered portion 29. Assuming that each jet air hole 28 has a diameter: D, the thickness of the tapered portion 29: T (the length of the jet air hole 28) is approximately (1/2) × D, and the width of the chamfered portion 28a is C≈ ( 1/10) × D. Therefore, when the diameter of the ejection air hole 28 is D = 8 mm to 27 mm, the width of the chamfered portion 28 a is C = 0.8 mm to 2.7 mm.

この面取り部28aによる圧力損失:ΔPは、空気の密度:ρ、燃焼空気の平均流速:v、損失係数:ζとすると、
ΔP=ζ×(1/2)×ρv…(式1)で求められる。
Pressure loss: ΔP due to the chamfered portion 28a is as follows: air density: ρ, combustion air average flow velocity: v, loss factor: ζ
ΔP = ζ × (1/2) × ρv 2 (Expression 1)

この(式1)により、D=19mm、C≒2mm、噴射空気孔28の平均流速が75.8m/sの場合、燃焼空気FAの圧力損失を約32%低減できることがわかる。
上記のように、各噴射空気孔28の内面に形成された面取り部28aにより、燃焼空気FAの圧力損失を約32%程度低減することができ、燃焼騒音や振動の発生を抑制して、送風機の出力やランニングコストを低減することができる。
From this (Equation 1), it is understood that when D = 19 mm, C≈2 mm, and the average flow velocity of the injection air hole 28 is 75.8 m / s, the pressure loss of the combustion air FA can be reduced by about 32%.
As described above, the chamfered portion 28a formed on the inner surface of each injection air hole 28 can reduce the pressure loss of the combustion air FA by about 32%, suppress the generation of combustion noise and vibration, and the blower. Output and running cost can be reduced.

ここで、保温室13を球体形に形成したが、図4に示すように、楕円形の回転体や、図5に示す直角台形の回転体形、図6に示す台形の回転体形であってもよい。
次に、保温室13を直角台形の回転体形に形成した図5に示すガスバーナを使用して、高炉ガス[BFG、発熱量は約3.4MJ/Nm(約800kcalNm)]による燃焼試験を行った結果を、表1に示す。なお、この実験に使用したガスバーナの保温体の形状は、混合ガス出口26の内径:dとすると、閉鎖部25の外径:d0=0.21×d、保温室13の内径:d1=1.46×d、案内室14の内径:d2=1.04×d、保温体12の外径:d3=2.5×d、保温室13の長さL1=0.625×d、案内室14のL2=0.42×dである。

Figure 2016031200
Here, the storage room 13 is formed in a spherical shape. However, as shown in FIG. 4, an elliptical rotating body, a right-angled trapezoidal rotating body shape shown in FIG. 5, or a trapezoidal rotating body shape shown in FIG. Good.
Next, using the gas burner shown in FIG. 5 in which the warming chamber 13 is formed into a right-angle trapezoidal rotating body, a combustion test using a blast furnace gas [BFG, calorific value is about 3.4 MJ / Nm 3 (about 800 kcal Nm 3 )] is performed. The results are shown in Table 1. The shape of the heat retaining body of the gas burner used in this experiment is as follows. When the inner diameter of the mixed gas outlet 26 is d, the outer diameter of the closed portion 25 is d0 = 0.21 × d, and the inner diameter of the warming chamber 13 is d1 = 1. .46 × d, inner diameter of the guide chamber 14: d2 = 1.04 × d, outer diameter of the heat insulator 12: d3 = 2.5 × d, length L1 = 0.625 × d of the warming chamber 13, guidance chamber 14 L2 = 0.42 × d.
Figure 2016031200

上記実験によれば、上記高炉ガスを燃料ガスFGとして燃焼空気比(以下、空気比という)1.1〜1.4で燃焼させた場合、燃焼空気温度が常温、200℃加熱共に、燃焼負荷100%および75%で良好な燃焼状態が得られた。また燃焼負荷50%で比較的良好な燃焼状態が得られ、さらに燃焼負荷25%でも燃焼状態が保持できた。空気比1.6および1.8では、燃焼空気温度が200℃加熱の場合は、実験設備の能力の関係で空気比が確保できなかったが、燃焼空気温度が常温の場合に、空気比1.1〜1.4と同様に良好な結果が得られた。したがって、このガスバーナの設計を行う際は、燃焼負荷が75〜100%となるように設計するとよいことが判明した。そして、これら実験は、着火に用いたパイロットバーナを実験中は点火せずに行っており、パイロットバーナによる助燃が不要なことが確認でき、低負荷でも燃焼性はよく、燃焼に関して問題がないことが判明するとともに、パイロットバーナなどによる助燃が不要なことが確認できた。   According to the above experiment, when the blast furnace gas is used as the fuel gas FG and burned at a combustion air ratio (hereinafter referred to as air ratio) of 1.1 to 1.4, the combustion air temperature is both normal temperature and 200 ° C., and the combustion load Good combustion conditions were obtained at 100% and 75%. A relatively good combustion state was obtained at a combustion load of 50%, and the combustion state could be maintained even at a combustion load of 25%. At an air ratio of 1.6 and 1.8, when the combustion air temperature was 200 ° C. heating, the air ratio could not be ensured due to the capacity of the experimental equipment, but when the combustion air temperature was normal temperature, the air ratio was 1 Good results were obtained as in .1 to 1.4. Therefore, it has been found that the gas burner should be designed so that the combustion load is 75 to 100%. These experiments were performed without igniting the pilot burner used for ignition during the experiment, and it was confirmed that there was no need for auxiliary combustion by the pilot burner. As a result, it was confirmed that no supplementary combustion with a pilot burner was required.

また高炉ガス(約3.4MJ/Nm)に窒素ガスを添加して、発熱量を約2.93MJ/Nm(約700kcalNm)と2.42MJ/Nm(580kcalNm)まで低下させた燃料ガスFGを使用し、空気比が1.1で燃焼実験No.6およびNo.7を行った。この結果、発熱量が約2.93MJ/NmのNo.6では、燃焼空気温度が200℃で、かつ燃焼負荷が100%および75%の場合、良好な燃焼状態が確認された。また発熱量が約2.530MJ/Nmの燃焼実験No.7では、燃焼空気温度が200℃で、かつ燃焼負荷が100%の場合、良好な燃焼状態が確認された。 Also by adding nitrogen gas to the blast furnace gas (about 3.4MJ / Nm 3), it was reduced to the heating value of about 2.93MJ / Nm 3 (approximately 700kcalNm 3) and 2.42MJ / Nm 3 (580kcalNm 3) Using fuel gas FG, combustion ratio no. 6 and no. 7 was performed. As a result, the calorific value was about 2.93 MJ / Nm 3 No. In No. 6, a good combustion state was confirmed when the combustion air temperature was 200 ° C. and the combustion load was 100% and 75%. In addition, a combustion experiment No. 2 having a calorific value of about 2.530 MJ / Nm 3 In No. 7, a good combustion state was confirmed when the combustion air temperature was 200 ° C. and the combustion load was 100%.

上記実施例1〜4によれば、耐火材からなる内環状部12iと断熱材からなる外環状体12oとを備えた保温体12に、保温室13を形成し、混合ガス出口26から保温室13に混合ガスを噴射して燃焼させる。耐熱性と保温性を有する保温室13により、混合ガスMGの火炎を良好に保温することができ、火炎を良好に保温することにより、燃焼負荷が低い場合や燃焼空気比が高い場合であっても、低発熱量の燃料ガスFGを安定して燃焼させることができる。さらに火炎が保温されることで、着火時に使用するパイロットバーナなどによる助燃がなくても、安定した燃焼が可能となる。   According to the said Examples 1-4, the thermal insulation 13 was formed in the heat insulating body 12 provided with the inner annular part 12i which consists of a refractory material, and the outer annular body 12o which consists of heat insulation materials, and the thermal insulation from the mixed gas exit 26 13 is injected with a mixed gas and burned. It is a case where the flame of the mixed gas MG can be well kept by the heat-retaining room 13 having heat resistance and heat-retaining properties, and by keeping the flame well, the combustion load is low or the combustion air ratio is high. However, the fuel gas FG having a low calorific value can be stably burned. Further, by keeping the flame warm, stable combustion is possible even without the aid of a pilot burner used at the time of ignition.

また、保温室13の前方に、火炎を燃焼室31に導出する案内室14を連続して形成し、案内室14の内径を保温室13より小さく、かつ混合ガス出口と略同一内径に形成することにより、火炎を安定させるとともに、放熱を減少させて火炎の保温効果を向上させることができ、保温室13出口付近の耐火物の欠損変形を防ぐとともに、流速の増大により火炎の指向性を高め安定燃焼を図ることができる。   In addition, a guide chamber 14 that leads the flame to the combustion chamber 31 is continuously formed in front of the warm chamber 13, and the inner diameter of the guide chamber 14 is smaller than that of the warm chamber 13 and substantially the same inner diameter as the mixed gas outlet. As a result, the flame can be stabilized, and the heat retention effect can be improved by reducing the heat dissipation, and the refractory near the outlet of the warming chamber 13 is prevented from being deformed, and the directivity of the flame is increased by increasing the flow velocity. Stable combustion can be achieved.

さらに、保温体12に、耐火材製の内環状部12iと、この内環状部12iの外周部に設けられた断熱材製の外環状部12oを具備したので、火炎に対する耐熱性と保温とを両立させて火炎を良好に保温することができる。   Furthermore, since the heat retaining body 12 is provided with an inner annular portion 12i made of a refractory material and an outer annular portion 12o made of a heat insulating material provided on the outer peripheral portion of the inner annular portion 12i, heat resistance and heat retention against a flame are provided. Both flames can be kept warm well.

さらにまた、内筒部のテーパ部29に、内面側周囲に面取り部28aが形成された複数の噴射空気孔28を形成したので、燃焼空気の圧力損失を大幅に低減することができ、燃焼騒音や振動の発生を抑制して、送風機の出力やランニングコストを低減することができる。これにより、燃焼空気通路に接続された配管途中に、たとえば蓄熱式熱交換器などの開口部があった場合の漏れ損失の低減を図ることができる。   Furthermore, since the plurality of injection air holes 28 having chamfered portions 28a formed around the inner surface side are formed in the tapered portion 29 of the inner cylinder portion, the pressure loss of the combustion air can be greatly reduced, and the combustion noise And the occurrence of vibrations can be suppressed, and the output and running cost of the blower can be reduced. As a result, leakage loss can be reduced when there is an opening such as a heat storage heat exchanger in the middle of the piping connected to the combustion air passage.

O バーナ軸心
FG 燃料ガス
FA 燃焼空気
MG 混合ガス
11 バーナ本体
12 保温体
12i 内環状部
12o 外環状部
13 保温室
14 案内室
21 内筒部
22 燃焼空気通路
23 外筒部
24 燃料ガス通路
25 閉鎖部
26 混合ガス出口
27 旋回翼
28 噴射空気孔
28a 面取り部
29 テーパ部
31 燃焼室
O Burner shaft center FG Fuel gas FA Combustion air MG Mixed gas 11 Burner body 12 Heat insulator 12i Inner annular portion 12o Outer annular portion 13 Warm-holding chamber 14 Guide chamber 21 Inner cylinder portion 22 Combustion air passage 23 Outer cylinder portion 24 Fuel gas passage 25 Closed portion 26 Mixed gas outlet 27 Swivel blade 28 Injection air hole 28a Chamfered portion 29 Tapered portion 31 Combustion chamber

Claims (7)

耐火材製の内環状部に、断熱材からなる外環状部を外嵌して保温体を形成するとともに、混合ガス出口から低発熱量の燃料ガスと燃焼空気とを混合した混合ガスを、前記内環状部に形成された保温室に噴射し、着火された火炎を、前記保温体により保温しつつ前記保温室内で燃焼させる
ことを特徴とする低カロリーガス用ガスバーナの燃焼方法。
The outer annular portion made of a heat insulating material is externally fitted to the inner annular portion made of a refractory material to form a heat retaining body, and a mixed gas obtained by mixing a low calorific fuel gas and combustion air from the mixed gas outlet, A combustion method of a gas burner for low calorie gas, characterized in that a flame that is injected and ignited into a heat retaining chamber formed in an inner annular portion is burned in the heat retaining chamber while being kept warm by the heat retaining body.
燃料ガスの発熱量が2.42MJ/Nm以上で、5.02MJ/Nm以下である
ことを特徴とする請求項1記載の低カロリーガス用ガスバーナの燃焼方法。
The combustion method of the gas burner for low-calorie gas according to claim 1, wherein the calorific value of the fuel gas is 2.42 MJ / Nm 3 or more and 5.02 MJ / Nm 3 or less.
保温体内で保温室の前方に、火炎を導出する案内室が連続して形成され、
前記保温室は、その内径が混合ガス出口より大きく形成され、
前記案内室は、その内径が前記混合ガス出口と略同一に形成された
ことを特徴とする請求項1または2記載の低カロリーガス用ガスバーナの燃焼方法。
A guide chamber that leads out the flame is continuously formed in front of the warming chamber in the warming body,
The warming chamber is formed such that its inner diameter is larger than the mixed gas outlet,
The method for burning a low-calorie gas gas burner according to claim 1 or 2, wherein the guide chamber has an inner diameter substantially the same as that of the mixed gas outlet.
バーナ本体に、バーナ軸心に沿って設けられた燃焼空気通路と、この燃焼空気通路の外周部に設けられた燃焼ガス通路と、前記燃焼空気通路の先端部に設けられた閉鎖部と、この閉鎖部の手前で前記燃焼空気通路の燃焼空気を、前記燃焼ガス通路の燃料ガス中に噴射して燃料ガスと燃焼空気とを混合する複数の噴射空気孔と、前記閉鎖部の外周部の混合ガス出口に設けられた旋回翼と、を備え、
燃焼室の壁面に貫設した保温体の基端部に、前記バーナ本体を設置し、
前記バーナ本体の先端側の前記保温体に、前記混合ガス出口より大径に形成された保温室と、前記混合ガス出口と略同一内径に形成されて前記保温室と前記燃焼室とを接続する案内室とをバーナ軸心に沿って連続して形成した
ことを特徴とする低カロリーガス用ガスバーナ。
In the burner body, a combustion air passage provided along the burner axis, a combustion gas passage provided in an outer peripheral portion of the combustion air passage, a closing portion provided in a front end portion of the combustion air passage, A plurality of injection air holes for injecting the combustion air in the combustion air passage into the fuel gas in the combustion gas passage before the closing portion to mix the fuel gas and the combustion air, and mixing of the outer peripheral portion of the closing portion A swirl vane provided at the gas outlet,
The burner body is installed at the base end of the heat retaining body penetrating the wall of the combustion chamber,
The warmer at the tip side of the burner body is connected to the warmer chamber having a larger diameter than the mixed gas outlet and the warmer chamber and the combustion chamber formed to have substantially the same inner diameter as the mixed gas outlet. A gas burner for low-calorie gas, characterized in that a guide chamber is formed continuously along the burner axis.
保温体は、内周側で保温室および案内室に臨む耐火材製の内環状部と、この内環状部の外周部に設けられた断熱材製の外環状部と、を具備した
ことを特徴とする請求項4記載の低カロリーガス用ガスバーナ。
The heat insulator is provided with an inner annular portion made of a refractory material facing the warming chamber and the guide room on the inner peripheral side, and an outer annular portion made of heat insulating material provided on the outer peripheral portion of the inner annular portion. The gas burner for low-calorie gas according to claim 4.
混合ガス出口の内径をdとすると、
保温室の内径は、4/3×d以上で、13/6×d以下、保温室のバーナ軸心方向の長さは、1/3×d以上で、3/2×d以下であり、
案内室の内径は、5/6×d以上で、7/6×d以下、案内室のバーナ軸心方向の長さは、1/6×d以上で、1/2×d以下である
ことを特徴とする請求項4または5記載の低カロリーガス用ガスバーナ。
If the inner diameter of the mixed gas outlet is d,
The inner diameter of the warm chamber is 4/3 × d or more and 13/6 × d or less, and the length of the warm chamber in the burner axial direction is 1/3 × d or more and 3/2 × d or less,
The inner diameter of the guide chamber is 5/6 × d or more and 7/6 × d or less, and the length of the guide chamber in the axial direction of the burner is 1/6 × d or more and 1/2 × d or less. The gas burner for low-calorie gas according to claim 4 or 5.
燃料ガス通路を形成する内筒部の先端部に、先端側ほど縮径されたテーパ部を形成するとともに、このテーパ部に周方向に沿って複数の空気噴射孔を形成し、
前記空気噴射孔で内筒部の内面側周囲に面取りを形成した
ことを特徴とする請求項4乃至6のいずれか一項に記載の低カロリーガス用ガスバーナ。
A tapered portion having a diameter reduced toward the distal end side is formed at the distal end portion of the inner cylinder portion forming the fuel gas passage, and a plurality of air injection holes are formed along the circumferential direction in the tapered portion,
The gas burner for low-calorie gas according to any one of claims 4 to 6, wherein a chamfer is formed around the inner surface side of the inner cylinder portion at the air injection hole.
JP2014154362A 2014-07-30 2014-07-30 Combustion method of gas burner for low calorie gas, and gas burner for low calorie gas Pending JP2016031200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014154362A JP2016031200A (en) 2014-07-30 2014-07-30 Combustion method of gas burner for low calorie gas, and gas burner for low calorie gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154362A JP2016031200A (en) 2014-07-30 2014-07-30 Combustion method of gas burner for low calorie gas, and gas burner for low calorie gas

Publications (1)

Publication Number Publication Date
JP2016031200A true JP2016031200A (en) 2016-03-07

Family

ID=55441686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154362A Pending JP2016031200A (en) 2014-07-30 2014-07-30 Combustion method of gas burner for low calorie gas, and gas burner for low calorie gas

Country Status (1)

Country Link
JP (1) JP2016031200A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242977Y2 (en) * 1972-05-20 1977-09-30
JPS5254043Y2 (en) * 1971-04-20 1977-12-07
JPS5524816A (en) * 1978-08-01 1980-02-22 Hitachi Zosen Corp Electrolytic radius chamfering
JPS62120577U (en) * 1986-01-22 1987-07-31
JPH02306009A (en) * 1989-05-19 1990-12-19 Kobe Steel Ltd Low calorie gas burner
JPH0942615A (en) * 1995-07-25 1997-02-14 Takao Ueshima Burner device
JPH109539A (en) * 1996-06-19 1998-01-16 ▲浜▼中 和平 Rotary kiln type incinerator
JPH11257614A (en) * 1998-03-12 1999-09-21 Chugai Ro Co Ltd Low calorific gas combustion burner
JP3113171U (en) * 2005-05-30 2005-09-02 知床クリーンサービス有限会社 Soil heat treatment equipment
JP2009099264A (en) * 2007-10-12 2009-05-07 Hitachi Ltd Solid oxide fuel cell power generation system and its starting method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254043Y2 (en) * 1971-04-20 1977-12-07
JPS5242977Y2 (en) * 1972-05-20 1977-09-30
JPS5524816A (en) * 1978-08-01 1980-02-22 Hitachi Zosen Corp Electrolytic radius chamfering
JPS62120577U (en) * 1986-01-22 1987-07-31
JPH02306009A (en) * 1989-05-19 1990-12-19 Kobe Steel Ltd Low calorie gas burner
JPH0942615A (en) * 1995-07-25 1997-02-14 Takao Ueshima Burner device
JPH109539A (en) * 1996-06-19 1998-01-16 ▲浜▼中 和平 Rotary kiln type incinerator
JPH11257614A (en) * 1998-03-12 1999-09-21 Chugai Ro Co Ltd Low calorific gas combustion burner
JP3113171U (en) * 2005-05-30 2005-09-02 知床クリーンサービス有限会社 Soil heat treatment equipment
JP2009099264A (en) * 2007-10-12 2009-05-07 Hitachi Ltd Solid oxide fuel cell power generation system and its starting method

Similar Documents

Publication Publication Date Title
TWI426132B (en) Pulverized coal injection lance
KR101278280B1 (en) Low nitrogen oxide burner
JP2009299955A (en) Burner combustion method and high-speed jet type diffusive combustion type burner
JP5687163B2 (en) Radiant tube burner
JP2008107032A (en) Long flame burner and radiant tube type heater
JP3877440B2 (en) Burner equipment for heating furnace
JP2016031200A (en) Combustion method of gas burner for low calorie gas, and gas burner for low calorie gas
JP4775398B2 (en) Radiant heating device
US20130037013A1 (en) Burner for heating system
CN107614976B (en) Radiant tube burner
US9518306B2 (en) Top-firing hot blast stove
KR20120082647A (en) Low nitrogen oxide burner
TWI649517B (en) Burner structure
KR102367727B1 (en) Regenerative burner
JP6206290B2 (en) Multiple tubular flame burner
KR20130061167A (en) Low nitrogen oxide burner
JP6123720B2 (en) Multi-tube tubular flame burner
JP7389778B2 (en) Burna
JP2011247444A (en) Tubular flame burner
KR200319201Y1 (en) Air cooling type industrial burner
KR20200058968A (en) Burner apparatus
JP4971008B2 (en) Gas burner
JP6303716B2 (en) Drying equipment for blast furnace
CN108644762A (en) A kind of igniter of coal burner
IT202100013535A1 (en) BURNER, APPARATUS AND METHOD FOR FIRING CERAMIC ARTIFACTS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190402