JP2016028887A - Heat-melting lamination type filament for three-dimensional printer, and method for producing the same - Google Patents

Heat-melting lamination type filament for three-dimensional printer, and method for producing the same Download PDF

Info

Publication number
JP2016028887A
JP2016028887A JP2015139592A JP2015139592A JP2016028887A JP 2016028887 A JP2016028887 A JP 2016028887A JP 2015139592 A JP2015139592 A JP 2015139592A JP 2015139592 A JP2015139592 A JP 2015139592A JP 2016028887 A JP2016028887 A JP 2016028887A
Authority
JP
Japan
Prior art keywords
resin
filament
functional
dimensional printer
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015139592A
Other languages
Japanese (ja)
Other versions
JP6860774B2 (en
Inventor
田中 達也
Tatsuya Tanaka
達也 田中
与史彦 荒尾
Yoshihiko Arao
与史彦 荒尾
邦紘 荒木
Kunihiro Araki
邦紘 荒木
松岡 敬
Takashi Matsuoka
敬 松岡
紘宣 松本
Hironobu Matsumoto
紘宣 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2015139592A priority Critical patent/JP6860774B2/en
Publication of JP2016028887A publication Critical patent/JP2016028887A/en
Application granted granted Critical
Publication of JP6860774B2 publication Critical patent/JP6860774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat-melting lamination type filament for a 3D printer capable of obtaining a molded article having a desired function by addition of a filler, which is not obtained only by a thermoplastic matrix resin, without impairing handleability and formability such as flexibility of a conventional filament for a 3D printer; and a method for producing the same.SOLUTION: A heat-melting lamination type filament for a three-dimensional printer is formed of a matrix resin 2 having thermoplasticity, and a functional resin composition containing a functional nanofiller 3 such as a carbon nanotube, a carbon nanofiber, a cellulose nanofiber and a nanoclay which is dispersed into the matrix resin 2 having the thermoplasticity; and achieves higher functionality of a molded article.SELECTED DRAWING: Figure 1

Description

本発明は、熱溶解積層型3次元プリンタ用フィラメント(以下、「3Dプリンタ用フィラメント」と記す)およびその製造方法に関する。   The present invention relates to a filament for a hot melt laminated three-dimensional printer (hereinafter referred to as “3D printer filament”) and a method for producing the same.

多品種少量生産技術として、三次元プリンタ(以下、「3Dプリンタ」と記す)が再注目されている。特に、熱溶解積層法を用いた熱溶解積層型3Dプリンタ(特許文献1参照)は、低価格化が進んでおり、家庭・オフィス用としても需要が高まっている。
すなわち、熱溶解積層型3Dプリンタは、予め熱可塑性樹脂をマトリックスとする樹脂組成物からなる長尺の3Dプリンタ用フィラメントを作製しておき、この3Dプリンタ用フィラメントをプリンタの押出ヘッドに供給し、押出ヘッド内でフィラメントを加熱してマトリックスの熱可塑性樹脂を溶融あるいは半溶融状態にする。そして、その後、押出ヘッドのノズル先端から溶融物あるいは半溶融物を線状に押し出し少しずつ積み上げながら冷却固化させて射出成形では金型が複雑になる、あるいは、成形できないような立体構造を有する造形物を造形できるようになっている。
As a high-mix low-volume production technology, a three-dimensional printer (hereinafter referred to as “3D printer”) is attracting attention again. In particular, a hot melt lamination type 3D printer (see Patent Document 1) using the hot melt lamination method has been reduced in price, and the demand for home and office use is also increasing.
That is, the hot melt laminated 3D printer is prepared in advance with a long filament for a 3D printer made of a resin composition having a thermoplastic resin as a matrix, and the filament for the 3D printer is supplied to the extrusion head of the printer. The filament is heated in the extrusion head to bring the matrix thermoplastic resin into a molten or semi-molten state. After that, the melt or semi-melt is extruded linearly from the nozzle tip of the extrusion head and cooled and solidified while gradually building up, making the mold complicated or difficult to mold with injection molding You can shape objects.

特開平3−158228号公報Japanese Patent Laid-Open No. 3-158228

しかし、熱溶解積層型3Dプリンタは、上記のように3Dプリンタ用フィラメントを溶融あるいは半溶融状態にして押出ヘッドのノズル先端から線状に押し出しながら積層する手法を採用している関係上、3Dプリンタ用フィラメントに使用できる材料は限られ、用途に制限があるのが現状である。また、マトリックス樹脂にフィラーと呼ばれる添加物を加える、あるいは二種類以上の樹脂をブレンドするといった、3Dプリンタ用フィラメントの高機能化は未だ図られていない。   However, the hot melt lamination type 3D printer employs the method of laminating the filament for 3D printer in the molten or semi-molten state and extruding it linearly from the tip of the nozzle of the extrusion head as described above. The materials that can be used for filaments are limited, and there are currently limited applications. In addition, enhancement of the function of the filament for 3D printers such as adding an additive called filler to the matrix resin or blending two or more kinds of resins has not been achieved yet.

本発明は、上記事情に鑑みて、従来の3Dプリンタ用フィラメントの可撓性などの取り扱い性や造形性を損なうことなく、フィラーの添加により熱可塑性マトリックス樹脂だけでは得られない所望の機能が備わった造形物を得ることができる熱溶解積層型3Dプリンタ用フィラメントおよびその製造方法を提供することを目的としている。   In view of the above circumstances, the present invention has a desired function that cannot be obtained only by a thermoplastic matrix resin by adding a filler without impairing handling properties such as flexibility of a filament for a conventional 3D printer and molding properties. It is an object of the present invention to provide a filament for a hot melt laminated 3D printer and a method for manufacturing the same.

上記目的を達成するために、本発明にかかる3Dプリンタ用フィラメントは、熱可塑性を有するマトリックス樹脂と、この熱可塑性を有するマトリックス樹脂中に分散された機能性ナノフィラーを含む機能性樹脂組成物によって形成されていることを特徴としている。   In order to achieve the above object, a filament for 3D printer according to the present invention comprises a functional resin composition comprising a thermoplastic matrix resin and functional nanofillers dispersed in the thermoplastic matrix resin. It is characterized by being formed.

本発明において、熱可塑性を有するマトリックス樹脂としては、熱可塑性樹脂、熱可塑性樹脂エラストマー、ゴムなどが挙げられ、具体的には、アクリロニトリル−ブチレン−スチレン共重合体樹脂(ABS樹脂)、ポリ乳酸(PLA) 樹脂、ポリアミド(PA)樹脂、ポリプロピレン(PP)樹脂、ポリエチレン(PE)樹脂、ポリカーボネート(PC)樹脂、ポリ塩化ビニル、アクリル樹脂、ポリスチレン(PS)樹脂、ポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)などのポリエステル樹脂、ポリウレタン樹脂、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、フッ素樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、液晶ポリマー、ポリアリレート樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン(PEEK)などの芳香族ポリエーテルケトン樹脂などの熱可塑性樹脂だけでなく、エチレン−プロピレン−ジエンゴム(EPDM)などの熱可塑性樹脂エラストマーやゴム、これらの樹脂のアロイが挙げられ、中でもABS樹脂、PLA、PA、PP、PE、PC、PETなどが好適である。   In the present invention, examples of the matrix resin having thermoplasticity include thermoplastic resins, thermoplastic resin elastomers, and rubbers. Specifically, acrylonitrile-butylene-styrene copolymer resin (ABS resin), polylactic acid ( PLA) resin, polyamide (PA) resin, polypropylene (PP) resin, polyethylene (PE) resin, polycarbonate (PC) resin, polyvinyl chloride, acrylic resin, polystyrene (PS) resin, polyethylene terephthalate (PET) and polybutylene terephthalate Polyester resins such as (PBT), polyurethane resins, polyphenylene ether resins, polyacetal resins, polyphenylene sulfide resins, fluororesins, polyamideimide resins, polyethersulfone resins, polysulfone resins, liquid crystal polymers -Not only thermoplastic resins such as aromatic polyetherketone resins such as polyarylate resin, polyetherimide resin and polyetheretherketone (PEEK), but also thermoplastic elastomers such as ethylene-propylene-diene rubber (EPDM) Examples thereof include rubber and alloys of these resins. Among them, ABS resin, PLA, PA, PP, PE, PC, PET and the like are preferable.

機能性ナノフィラーとしては、例えば、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)、カーボンブラック(CB)、グラフェン、銀や銅などの金属ナノ粒子、ナノクレイ、セルロースナノファイバー、シリカナノ粒子などが挙げられる。   Examples of functional nanofillers include carbon nanotubes (CNT), carbon nanofibers (CNF), carbon black (CB), graphene, metal nanoparticles such as silver and copper, nanoclays, cellulose nanofibers, and silica nanoparticles. It is done.

上記CNT、CNF、CB、グラフェンは、配合によって造形物の導電性を高めたり、熱伝導性を高めたり、引張強さや弾性率を高めたりすることができる。グラフェンは、配合によってガス透過性を減少させることもできる。
また、CNTとしては、特に限定されないが、多層カーボンナノチューブが好ましい。
The CNTs, CNFs, CBs, and graphenes can increase the electrical conductivity of the shaped product, increase the thermal conductivity, and increase the tensile strength and elastic modulus by blending. Graphene can also reduce gas permeability by blending.
Further, the CNT is not particularly limited, but a multi-walled carbon nanotube is preferable.

金属ナノ粒子は、配合によって造形物の導電性を高めたり、衝撃強度を高めたりすることができる。
セルロースナノファイバーは、添加によって造形物の引張強さや弾性率を高めたり、ガス透過性を減少させたりすることができる。
シリカナノ粒子は、添加によって造形物の引張強さや弾性率を高めることができる。
The metal nanoparticles can increase the conductivity of the molded article or increase the impact strength by blending.
Cellulose nanofibers can increase the tensile strength and elastic modulus of the shaped article or reduce the gas permeability when added.
Silica nanoparticles can increase the tensile strength and elastic modulus of a shaped article by addition.

ナノクレイは、配合によって造形物の引張強さや弾性率を高めたり、ガス透過性を減少させたりすることができるとともに、耐燃性および耐薬品性の改善を図ることができる。
ナノクレイとしては、特に限定されないが、モンモリロナイト、スメクタイト、イライト、セピオライト、アレルバルダイト、アメサイト、ヘクトライト、タルク、フルオロへクトライト、サポナイト、バイデライト、ノントロナイト、ステベンサイト、ベントナイト、マイカ、フルオロマイカ、バーミキュライト、フルオロバーミキュライト、ハロイサイトなどの層状ケイ酸塩化合物のナノ粒子、これらのナノ粒子表面を有機分子によって化学修飾したものなどが挙げられ、モンモリロナイト、ベントナイトが好ましい。
Nanoclay can increase the tensile strength and elastic modulus of a shaped article, reduce gas permeability, and improve flame resistance and chemical resistance by blending.
Although it is not particularly limited as nanoclay, montmorillonite, smectite, illite, sepiolite, allelevaldite, amesite, hectorite, talc, fluorohectorite, saponite, beidellite, nontronite, stevensite, bentonite, mica, fluoro Examples include nanoparticles of layered silicate compounds such as mica, vermiculite, fluorovermiculite, and halloysite, and those obtained by chemically modifying the surface of these nanoparticles with organic molecules. Montmorillonite and bentonite are preferred.

また、本発明において、上記機能性ナノフィラー、どの方向を測定しても一般的な概念である100nm以下になっているものだけではなく、例えば、長さや幅がミクロンサイズであっても直径や厚さが100nm以下のナノサイズであるものも含まれる。 Further, in the present invention, the functional nanofiller is not limited to the general concept of 100 nm or less, which is a general concept regardless of which direction is measured. Also included are nano-sizes with a thickness of 100 nm or less.

熱可塑性を有する樹脂と機能性ナノフィラーの配合割合は、機能性ナノフィラーが配合されていない従来のフィラメントの可撓性などの取り扱い性を損なうことなく所望の機能を発現できれば、特に限定されないが、熱可塑性を有する樹脂100重量部に対して機能性ナノフィラーが5重量部以下とすることが好ましく、0.5重量部以下とすることがより好ましい。
また、機能性樹脂組成物中に配合される機能性ナノフィラーは、1種でも構わないが、複数種類の機能性ナノフィラーを他の機能性ナノフィラーの機能付与の妨げとならない範囲で配合するようにしても構わない。
さらに、上記機能性樹脂組成物には、機能性ナノフィラーの機能付与の妨げとならない、また、フィラメントの造形性を阻害しない範囲で、必要に応じて、顔料、紫外線吸収剤、酸化防止剤、難燃剤などの他の添加剤を添加配合するようにしても構わない。
The blending ratio of the thermoplastic resin and the functional nanofiller is not particularly limited as long as the desired function can be expressed without impairing the handleability such as flexibility of a conventional filament in which the functional nanofiller is not blended. The functional nanofiller is preferably 5 parts by weight or less, more preferably 0.5 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin.
Moreover, the functional nanofiller to be blended in the functional resin composition may be one kind, but a plurality of types of functional nanofillers are blended within a range that does not hinder the functionalization of other functional nanofillers. It doesn't matter if you do.
Furthermore, in the functional resin composition, as long as it does not hinder the functional imparting of the functional nanofiller, and does not hinder the formability of the filament, as necessary, pigments, ultraviolet absorbers, antioxidants, You may make it mix | blend other additives, such as a flame retardant.

本発明にかかるフィラメントの製造方法は、混練によって熱可塑性を有するマトリックス樹脂中に機能性ナノフィラーが分散状態に配合されたフィラメント形成用機能性樹脂組成物を押出機でフィラメント形状に連続的に押し出すことを特徴としている。
なお、熱可塑性を有する樹脂と機能性ナノフィラーの混練は、超臨界二酸化炭素存在下で行うことが好ましい。
In the method for producing a filament according to the present invention, a functional resin composition for forming a filament in which a functional nanofiller is dispersed in a matrix resin having thermoplasticity by kneading is continuously extruded into a filament shape by an extruder. It is characterized by that.
The kneading of the thermoplastic resin and the functional nanofiller is preferably performed in the presence of supercritical carbon dioxide.

また、上記フィラメント形成用機能性樹脂組成物は、熱可塑性を有するマトリックス樹脂中に機能性ナノフィラーが高濃度で配合された機能性マスターバッチを作製したのち、
この機能性マスターバッチと、熱可塑性を有するマトリックス樹脂ペレットを混練押出機に投入し、混練押出機で混練して、所望割合の機能性ナノフィラーが配合された状態にして押し出して得ることが好ましい。
In addition, the functional resin composition for forming a filament is a functional masterbatch in which a functional nanofiller is blended at a high concentration in a matrix resin having thermoplasticity.
It is preferable that the functional masterbatch and the matrix resin pellets having thermoplasticity are put into a kneading extruder, kneaded with a kneading extruder, and extruded in a state where a desired ratio of functional nanofillers is blended. .

本発明にかかる3Dプリンタ用フィラメントは、以上のように、熱可塑性を有するマトリックス樹脂と、この熱可塑性を有するマトリックス樹脂中に分散された機能性ナノフィラーを含む機能性樹脂組成物によって形成されているので、マトリックス樹脂中に機能性ナノフィラーを少量配合するだけで、高機能化されたものとなる。
そして、少量の機能性ナノフィラーを配合するだけで高機能化できるので、機能性ナノフィラーが従来の3Dプリンタ用フィラメントの可撓性などの取り扱い性を阻害することがなく、また、得られる造形物の表面状態にも影響を与えることがない。
As described above, the filament for 3D printer according to the present invention is formed by a functional resin composition including a matrix resin having thermoplasticity and functional nanofillers dispersed in the matrix resin having thermoplasticity. Therefore, only a small amount of the functional nanofiller is added to the matrix resin, so that it becomes highly functional.
And since it can be highly functionalized only by blending a small amount of functional nanofiller, the functional nanofiller does not hinder the handling properties such as the flexibility of the filament for the conventional 3D printer, and the obtained molding It does not affect the surface condition of objects.

本発明にかかる3Dプリンタ用フィラメントの1つの実施の形態であって、その断面を拡大して模式的にあらわす図である。It is one Embodiment of the filament for 3D printers concerning this invention, Comprising: It is a figure which expands the cross section and represents typically. CNT入り複合材料の評価時のマスターバッチの製造に用いた混練押出機のスクリュ構成を説明する図であって、同図(a)はニーディングスクリュ、同図(b)はミキシングスクリュ、同図(c)はブリスタスクリュをあらわしている。It is a figure explaining the screw composition of the kneading extrusion machine used for manufacture of the master batch at the time of evaluation of the composite material containing CNT, The figure (a) is a kneading screw, The figure (b) is a mixing screw, The figure (C) represents a Bliss task screw. 図2の混練押出機に用いたニーディングディスクの写真写しであるFIG. 3 is a photocopy of a kneading disk used in the kneading extruder of FIG. 図2の混練押出機に用いたミキシングディスクの写真写しであるFIG. 3 is a copy of a mixing disc used in the kneading extruder of FIG. 2. 図2の混練押出機に用いたブリスタディスクを説明する図である。It is a figure explaining the blister disk used for the kneading extruder of FIG. 各スクリュ構成によるCNTの重量分率毎に上記体積抵抗率ρvの中央値をプロットしたグラフである。It is the graph which plotted the median value of the said volume resistivity (rho) v for every weight fraction of CNT by each screw structure. 体積抵抗率の平均値と標準偏差とを比較してあらわすグラフである。It is a graph which compares and shows the average value and standard deviation of volume resistivity. CNT入りPP複合材料の透過型電子顕微鏡写真である。It is a transmission electron micrograph of PP composite material containing CNT. モンモリロナイト入りEPDM複合材料のサンプルD−2、3の作製に用いた混練押出機のスクリュ構成を説明する図である。It is a figure explaining the screw structure of the kneading extruder used for preparation of samples D-2 and 3 of the EPDM composite material containing montmorillonite. モンモリロナイト入りEPDM複合材料の評価で作製したサンプルの引張強さと100%モジュラスの測定結果を対比してあらわすグラフである。It is a graph which compares the tensile strength of the sample produced by evaluation of the EPDM composite material containing a montmorillonite, and the measurement result of 100% modulus. モンモリロナイト入りEPDM複合材料の評価で作製したサンプルの破断伸びの測定結果を対比してあらわすグラフである。It is a graph which compares and shows the measurement result of the breaking elongation of the sample produced by evaluation of the EPDM composite material containing a montmorillonite. 引張強さ、破断伸び、100%モジュラスの測定に用いたJIS3号ダンベル試験片を説明する図である。It is a figure explaining the JIS3 dumbbell test piece used for the measurement of tensile strength, breaking elongation, and 100% modulus. X線回折装置を用いて測定したX線回折パターンを比較してあらわすグラフである。It is a graph which compares and shows the X-ray-diffraction pattern measured using the X-ray-diffraction apparatus. 引張強さおよび弾性率の測定に用いたダンベル試験片を説明する図である。It is a figure explaining the dumbbell test piece used for the measurement of tensile strength and an elasticity modulus. モンモリロナイト入りPP複合材料の変性低分子量ポリオレフィン系樹脂改質剤(MAPP)の添加評価におけるMAPPの添加量と弾性率との関係をあらわすグラフである。It is a graph showing the relationship between the addition amount of MAPP and the elastic modulus in the addition evaluation of the modified low molecular weight polyolefin resin modifier (MAPP) of the PP composite material containing montmorillonite. モンモリロナイト入りPP複合材料の変性低分子量ポリオレフィン系樹脂改質剤(MAPP)の添加評価におけるMAPPの添加量と引張強さとの関係をあらわすグラフである。It is a graph showing the relationship between the addition amount of MAPP and the tensile strength in the addition evaluation of the modified low molecular weight polyolefin resin modifier (MAPP) of the PP composite material containing montmorillonite. CNT入りPLA複合材料の作製に用いたブリスタディスクを説明する図である。It is a figure explaining the blister disk used for preparation of PLA composite material containing CNT. 図17のブリスタディスクを備えたCNT入りPLA複合材料の作製に用いたブリスタスクリュを説明する図である。It is a figure explaining the bristle screw used for preparation of PLA composite material containing CNT provided with the blister disk of FIG. CNT入りPLA複合材料の評価2におけるマスターバッチHの作成に用いた噛み合い型同方向回転二軸押出機のニーディングスクリュを説明する図である。It is a figure explaining the kneading screw of the meshing type same direction rotation twin screw extruder used for preparation of masterbatch H in evaluation 2 of PLA composite material containing CNT.

以下に、本発明の3Dプリンタ用フィラメントを、その実施の形態をあらわす図面を参照しつつ説明する。
図1は、本発明にかかる3Dプリンタ用フィラメントの1つの実施の形態の断面を拡大して模式的にあらわしている。
Below, the filament for 3D printers of this invention is demonstrated, referring drawings showing the embodiment.
FIG. 1 schematically shows an enlarged cross section of one embodiment of a filament for a 3D printer according to the present invention.

図1に示すように、この3Dプリンタ用フィラメント1は、熱可塑性を有するマトリックス樹脂2中に、機能性ナノフィラーであるCNT3が分散混合された機能性樹脂組成物から形成されている。
したがって、マトリックス樹脂中にCNTを少量配合するだけで、導電性を高いものとすることができる。
As shown in FIG. 1, the filament 1 for a 3D printer is formed from a functional resin composition in which CNT3, which is a functional nanofiller, is dispersed and mixed in a matrix resin 2 having thermoplasticity.
Therefore, the conductivity can be increased only by mixing a small amount of CNT in the matrix resin.

そして、少量のCNTを添加するだけで導電性を高めることができるので、CNTが従来の3Dプリンタ用フィラメントの可撓性などの取り扱い性を阻害することがない。しかも、CNTが得られる造形物の表面状態にも影響を与えることがない。
また、上記3Dプリンタ用フィラメント1を用いれば、従来の熱溶融積層型の3Dプリンタ(図示せず)を用いて全体が導電性の高い造形物を得ることができる。さらに、複数の押出ヘッドを備えた3Dプリンタの1つの押出ヘッドに上記3Dプリンタ用フィラメント1をセットし、他の押出ヘッドに従来のフィラメントをセットして、一部が導電性に優れ、残部が導電性の低い造形物を微細かつ容易に作製することができる。
And since electroconductivity can be improved only by adding a small amount of CNT, CNT does not impair the handleability of the conventional 3D printer filament, such as flexibility. Moreover, it does not affect the surface state of the shaped object from which CNTs are obtained.
If the filament 1 for a 3D printer is used, it is possible to obtain a molded article having a high conductivity as a whole using a conventional hot-melt lamination type 3D printer (not shown). Furthermore, the 3D printer filament 1 is set on one extrusion head of a 3D printer having a plurality of extrusion heads, and the conventional filament is set on the other extrusion head. A shaped article with low conductivity can be finely and easily produced.

〔CNT入りPP複合材料の評価〕
(マスターバッチAの作製)
熱可塑性を有する樹脂としてのPP(プライムポリマー社製プライムポリプロJ108M、引張強さ:36MPa 弾性率:2.28GPa)ペレット(以下、「PPペレット」と記す)100重量部に機能性ナノフィラーとしてのCNT(NANOCYL社製NANOCYLTM NC 7000、平均長さ1.5μm、平均径9.5nm、カーボン純度90%)5.26重量部(=5重量%)を噛み合い型同方向回転二軸押出機(Coperion社製 ZSK18、最大回転数1200rpm、スクリュ直径18mm、スクリュ部の長さLとスクリュ径Dの比率L/D=40)に投入し、回転数450rpm、供給量2.25kg/h、温度200℃で混練押し出し、直径約3mm、長さ約5mmのペレット状をしたマスターバッチAを得た。
なお、スクリュは、混練ゾーンが主に図3に示すニーディングディスクによって構成された図2(a)に示すニーディングスクリュを用いた。
[Evaluation of PP composite material with CNT]
(Preparation of master batch A)
PP as a resin having thermoplasticity (Prime Polypro J108M manufactured by Prime Polymer Co., Ltd., tensile strength: 36 MPa, elastic modulus: 2.28 GPa) pellets (hereinafter referred to as “PP pellets”) 100 parts by weight as CNTs as functional nanofillers (NANOCYL TM NC 7000, average length 1.5 μm, average diameter 9.5 nm, carbon purity 90%) 5.26 parts by weight (= 5% by weight) meshing type co-rotating twin screw extruder (Coperion Company ZSK18, maximum rotation speed 1200rpm, screw diameter 18mm, screw length L and screw diameter D ratio L / D = 40), rotation speed 450rpm, supply amount 2.25kg / h, temperature 200 ℃ A master batch A in the form of pellets having a diameter of about 3 mm and a length of about 5 mm was obtained by kneading and extrusion.
In addition, the kneading | mixing zone used the kneading screw shown to Fig.2 (a) by which the kneading zone was mainly comprised by the kneading disc shown in FIG.

(マスターバッチBの作製)
スクリュとして、混練ゾーンが主に図4に示すミキシングディスクによって構成された図2(b)に示すミキシングスクリュを用いた以外はマスターバッチAと同様にしてマスターバッチBを得た。
(Preparation of master batch B)
As a screw, a master batch B was obtained in the same manner as the master batch A except that the mixing screw shown in FIG. 2B in which the kneading zone was mainly composed of the mixing disc shown in FIG. 4 was used.

(マスターバッチCの作製)
スクリュとして、混練ゾーンが主に図5に示すブリスタディスクによって構成された図2(c)に示すブリスタスクリュを用いた以外はマスターバッチAと、同様にしてマスターバッチCを得た。
(Preparation of master batch C)
A master batch C was obtained in the same manner as the master batch A except that the blister task screw shown in FIG. 2 (c) in which the kneading zone was mainly composed of the blister disk shown in FIG. 5 was used as the screw.

(複合材料サンプルの作製)
得られる複合材料サンプルのCNT混合割合が、0.75重量%、1.0重量%、1.5重量%、2.0重量%、2.5重量%、3.0重量%となる割合で上記PPペレットと、マスターバッチA〜Cのそれぞれを、マスターバッチBの作製に用いた図2(b)に示すミキシングスクリュをセットした上記噛み合い型同方向回転二軸押出機に投入し、マスターバッチBの作製と同じ条件において押出機内で混練したのち混練物を押し出すことによってCNT混合割合が、0.75重量%、1.0重量%、1.5重量%、2.0重量%、2.5重量%、3.0重量%の複合材料サンプルをそれぞれ得た。
(Production of composite material sample)
Each of the PP pellets and the master batches A to C is mixed at a ratio of 0.75 wt%, 1.0 wt%, 1.5 wt%, 2.0 wt%, 2.5 wt%, 3.0 wt% of the obtained composite material sample. Is put into the meshing type co-rotating twin screw extruder set with the mixing screw shown in FIG. 2B used for the production of the master batch B, and kneaded in the extruder under the same conditions as the production of the master batch B. Thereafter, the kneaded product was extruded to obtain composite material samples having CNT mixing ratios of 0.75 wt%, 1.0 wt%, 1.5 wt%, 2.0 wt%, 2.5 wt%, and 3.0 wt%, respectively.

上記で得た各複合材料サンプル,上記マスターバッチA〜C、上記PPペレットを、それぞれヒートプレス(河中産業株式会社製HP200 HB)を用いて厚さ2mmの適当な大きさに圧延(プレス速度は3mm/min、荷重は100kN)した。そして、得られた圧延物を60mm角に裁断して、厚さ2mm、縦60mm、横60mmの体積抵抗率用サンプル板をそれぞれ2枚ずつ得た。   Each of the composite material samples obtained above, the master batches A to C, and the PP pellets were rolled to an appropriate size of 2 mm in thickness using a heat press (HP200 HB manufactured by Kawanaka Sangyo Co., Ltd.) 3mm / min, load was 100kN). Then, the obtained rolled product was cut into 60 mm squares, and two sample plates for volume resistivity each having a thickness of 2 mm, a length of 60 mm, and a width of 60 mm were obtained.

各複合材料サンプル、上記マスターバッチA〜C、上記PPペレットから形成された各2枚の体積抵抗率用サンプル板の抵抗R[Ω]を1枚5箇所ずつ、計10箇所で測定した。
なお、抵抗Rは、抵抗率計(三菱化学アナリテック社製、ロレスタGP、4端子4探針法)の4本の針状の電極を直線上に置き、外側の二探針間に一定電流を流し、内側の二探針間に生じる電位差を測定することによって求めた。
そして、得られた抵抗R[Ω]から、以下の定義式(1)を用いて体積抵抗率ρv[Ω・cm]を求めた。
式中、t[cm]は試料の厚さ、RCFは補正係数である。
The resistance R [Ω] of each of the two sample plates for volume resistivity formed from each composite material sample, the master batches A to C, and the PP pellets was measured at 10 locations in total, 10 locations.
The resistance R is a constant current between the two outer probes, with four needle-shaped electrodes of a resistivity meter (Mitsubishi Chemical Analytech, Loresta GP, 4-terminal 4-probe method) placed on a straight line. And the potential difference generated between the two inner probes was measured.
Then, from the obtained resistance R [Ω], the volume resistivity ρv [Ω · cm] was obtained using the following definition formula (1).
In the equation, t [cm] is the thickness of the sample, and RCF is a correction coefficient.

図6は、各スクリュ構成によるCNTの重量分率毎に上記体積抵抗率ρvの中央値をプロットしたグラフである。
図6から、CNT/PP複合材料は、CNTが0.7〜0.9重量%付近でパーコレーション現象が起きることがわかる。
FIG. 6 is a graph in which the median value of the volume resistivity ρv is plotted for each CNT weight fraction by each screw configuration.
From FIG. 6, it can be seen that the percolation phenomenon occurs in the CNT / PP composite material when the CNT is around 0.7 to 0.9% by weight.

また、図6から、ブリスタスクリュ>ミキシングスクリュ>ニーディングスクリュの構成順に少ないCNTの添加量でパーコレーションが発生していることがわかるとともに、体積抵抗率ρvは、パーコレーション発生以降は100〜102 Ω・cmの間で落ち着きそうであることがわかる。
なお、一般的に体積抵抗率ρvが101〜108 Ω・cmの樹脂は導電性樹脂(帯電防止、回路基板の保護)、10-2〜100 Ω・cmの樹脂は電磁波シールド材(各種輻射電波の遮断、金属部品の樹脂化)として用途が考えられている。
In addition, it can be seen from FIG. 6 that percolation occurs with a small amount of added CNTs in the order of the composition of the Bliss task screw> mixing screw> kneading screw, and the volume resistivity ρv is 10 0 to 10 2 after the percolation occurs. It can be seen that it seems to settle between Ω · cm.
Incidentally, generally resin volume resistivity ρv is 10 1 ~10 8 Ω · cm is conductive resin (antistatic protection of the circuit board), 10 -2 ~10 0 Ω · cm resins electromagnetic wave shielding material ( Applications are being considered for blocking various types of radiated radio waves and making metal parts resin.

さらに、図6に示すように、ブリスタスクリュとニーディングスクリュではパーコレーション発生に約0.2重量%のCNT添加量の違いが出ている。このことから、例えば、体積抵抗率104 Ω・cmの導電性樹脂を作製する場合、ブリスタスクリュを用いれば、ニーディングスクリュと比べてCNTの添加量を5分の4程度に抑えられると考えられる。 Further, as shown in FIG. 6, a difference in the amount of CNT added of about 0.2% by weight occurs in the generation of percolation between the bristle screw and the kneading screw. From this, for example, when producing a conductive resin having a volume resistivity of 10 4 Ω · cm, it is considered that the use of a Bliss task screw can reduce the amount of CNT added to about 4/5 compared to a kneading screw. It is done.

図7は、マスターバッチA〜Cのそれぞれを用いて作製したCNTが1.0重量%である複合材料サンプル板の体積抵抗率の平均値と標準偏差とを比較したグラフである。
図7から、ブリスタスクリュ>ミキシングスクリュ>ニーディングスクリュの構成順に同量のCNTの添加量で導電性がよくなるとともに、体積抵抗率のばらつきが少なくなることがわかる。
FIG. 7 is a graph comparing the average value and the standard deviation of the volume resistivity of the composite material sample plate having 1.0% by weight of CNT produced using each of the master batches A to C.
From FIG. 7, it can be seen that the conductivity is improved and the variation in the volume resistivity is reduced with the same amount of CNT added in the order of the configuration of Bliss task screw> Mixing screw> Kneading screw.

また、上記マスターバッチA〜Cのそれぞれからミクロトーム(日本ミクロトーム研究所社製 RMD-5 型)を用い薄さ100nm の薄片を作製し、光学顕微鏡により光を透過させて観察を行った。倍率は150倍で、各条件につき画像6枚の撮影をした。
その結果、ブリスタスクリュ>ミキシングスクリュ>ニーディングスクリュの順にCNTの分散状態が良好になっていることがわかった。すなわち、このことから、押出条件が同じ場合、CNTの分散性においてミキシングとブリスタのスクリュ形状の方がニーディングの形状より優れていると言える。また、ミキシングディスクおよびブリスタディスクと、ニーディングディスクの形状を比較すると、大きな違いの1つに伸長流動が発生するかという点がある。そして伸長流動の点ではブリスタディスクは特に優れているので、CNTの分散には伸長の流れが重要になってくると考えられる。
Moreover, a 100-nm thin piece was produced from each of the master batches A to C using a microtome (RMD-5 type, manufactured by Japan Microtome Laboratories Co., Ltd.), and observation was performed by transmitting light with an optical microscope. The magnification was 150x, and six images were taken for each condition.
As a result, it was found that the dispersion state of CNTs was improved in the order of Bliss task screw> mixing screw> kneading screw. In other words, when the extrusion conditions are the same, it can be said that mixing and blister screw shape are superior to kneading shape in dispersibility of CNTs. Further, when the shapes of the mixing disk and blister disk are compared with the kneading disk, one of the major differences is whether or not elongation flow occurs. And since the blister disk is particularly excellent in terms of elongation flow, it is considered that the elongation flow becomes important for the dispersion of CNTs.

図8に、上記マスターバッチCから得られたCNTの添加量が1.0重量%である複合材料サンプルのTEM写真を示す。
図8から、CNTがマトリックス樹脂中に細かく分散していることがわかる。
FIG. 8 shows a TEM photograph of a composite material sample in which the amount of CNT added from the master batch C is 1.0% by weight.
FIG. 8 shows that CNTs are finely dispersed in the matrix resin.

(実施例1)
上記マスターバッチCから得られたCNTの添加量が1.0重量%である複合材料サンプルをペレット化し、このペレットを用いて3Dプリンタ用のフィラメント押出機(Noztek社製 "The Pro ABS and PLA Filament Extruder for 3D Printers")によって、フィラメント径1.75mmのCNT入りフィラメントA−1を作製した。押出条件は、シリンダ温度190℃とし、フィラメントの巻取りにはフィラメント巻取機(Noztek社製 "Filament Winder")を用いた。
得られたCNT入りフィラメントA−1を造形材料とし、熱溶解積層方式の3Dプリンタ(オープンキューブ社製、SCOOVO X9)を用いて、厚さ2mm、縦60mm、横60mmの板状造形物サンプルA−1を作製した。
Example 1
The composite material sample obtained from the masterbatch C with an addition amount of CNT of 1.0% by weight is pelletized, and the pellet is used to produce a filament extruder for 3D printer ("The Pro ABS and PLA Filament Extruder for Noztek"). 3D Printers ") produced a CNT-containing filament A-1 having a filament diameter of 1.75 mm. The extrusion conditions were a cylinder temperature of 190 ° C., and a filament winder (“Filament Winder” manufactured by Noztek) was used for winding the filament.
Using the obtained CNT-containing filament A-1 as a modeling material, a plate-shaped model sample A having a thickness of 2 mm, a length of 60 mm, and a width of 60 mm was obtained using a hot melt lamination type 3D printer (manufactured by OpenCube, SCOOVO X9). -1 was produced.

(比較例1)
上記PPペレットを用いて上記フィラメント押出機によって、フィラメント径1.75mmのフィラメントB−1を作製した。
このフィラメントB−1を造形材料とし、上記実施例1と同様の熱溶解積層方式の3Dプリンタを用いて、厚さ2mm、縦60mm、横60mmの板状造形物サンプルB−1を作製した。
(Comparative Example 1)
Filament B-1 having a filament diameter of 1.75 mm was produced using the PP pellet by the filament extruder.
Using this filament B-1 as a modeling material, a plate-shaped model sample B-1 having a thickness of 2 mm, a length of 60 mm, and a width of 60 mm was prepared using a 3D printer of the same hot melt lamination method as in Example 1 above.

上記実施例1および比較例1で得られた板状造形物サンプルA−1と板状造形物サンプルB−1の表面状態を比較したところ、板状造形物サンプルA−1と板状造形物サンプルB−1は、表面状態はほとんど変わりがなかった。
また、上記実施例1板状造形物サンプルA−1の体積抵抗率ρvを上記と同様の方法で測定したところ、板状造形物サンプルA−1は、体積抵抗率ρvが、上記複合材料サンプルとほとんど変わらなかった。
When the surface states of the plate-shaped object sample A-1 and the plate-shaped object sample B-1 obtained in Example 1 and Comparative Example 1 were compared, the plate-shaped object sample A-1 and the plate-shaped object sample were compared. Sample B-1 had almost no change in surface condition.
Further, when the volume resistivity ρv of the plate-shaped object sample A-1 in Example 1 was measured by the same method as described above, the plate-shaped object sample A-1 had a volume resistivity ρv of the composite material sample. It was almost the same.

このことからCNTは少量の配合で、高い導電性を付与できるとともに、得られる造形物も添加していない従来のフィラメントと同様の表面状態の造形物が得られると考えられる。
また、本発明のフィラメントを用いて3Dプリンタによって造形した造形物が、フィラメントの原材料となるフィラメント用複合材料と同様の導電性を備えたものとなることがわかる。
From this, it is considered that CNT can give a high conductivity with a small amount of blending, and a shaped article having the same surface state as a conventional filament to which the obtained shaped article is not added.
Moreover, it turns out that the modeling thing modeled by 3D printer using the filament of this invention is provided with the same electroconductivity as the composite material for filaments used as the raw material of a filament.

〔モンモリロナイト入りEPDM複合材料の評価〕
(サンプルD−1の作製)
上記噛み合い型同方向回転二軸押出機(Coperion社製 ZSK18、最大回転数1200rpm、スクリュ直径18mm、スクリュ部の長さLとスクリュ径Dの比率L/D=40)にEPDM(The Dow Chemical company 製(型番4760P)、組成はエチレン67.5%、プロピレン27.5%、ジエン 5.0%である。融点は95℃)と表面に有機化処理を施したモンモリロナイト(Southern Clay Products 製 有機変性モンモリロナイトClosite15)を重量比で90:10の割合で投入し、回転数150rpm、供給量1.0kg/h、温度100℃で混練し、混練物を押し出すことによってモンモリロナイト入りEPDM複合材料のサンプルD−1を得た。型温度は160℃、比エネルギーは0.728kWh/kgであった。
[Evaluation of EPDM composite material containing montmorillonite]
(Preparation of sample D-1)
The above mesh type co-rotating twin screw extruder (Coperion ZSK18, maximum rotation speed 1200rpm, screw diameter 18mm, screw length L to screw diameter D ratio L / D = 40) EPDM (The Dow Chemical company (Model No. 4760P), composition is ethylene 67.5%, propylene 27.5%, diene 5.0%. Melting point is 95 ° C) and organically modified montmorillonite (Organic modified montmorillonite Closite15 from Southern Clay Products) in weight ratio Was added at a ratio of 90:10, kneaded at a rotation speed of 150 rpm, a supply rate of 1.0 kg / h and a temperature of 100 ° C., and the kneaded product was extruded to obtain a sample D-1 of an EPDM composite material containing montmorillonite. The mold temperature was 160 ° C and the specific energy was 0.728kWh / kg.

(サンプルD−2の作製)
図9に示すスクリュ構成の同方向回転二軸混練押出機(日本製鋼所社製同方向回転二軸混練押出機TEX30α)にEPDM(The Dow Chemical company 製(型番4760P)、組成はエチレン67.5%、プロピレン27.5%、ジエン 5.0%である。融点は95℃)と表面に有機化処理を施したモンモリロナイト(Southern Clay Products 製 有機変性モンモリロナイトClosite15)を重量比で90:10の割合で投入し、回転数100rpm、供給量3.89kg/h、温度100℃、0.3kg/hの超臨界二酸化炭素の存在下で混練し、混練物を押し出すことによってモンモリロナイト入り複合材料のサンプルD−2を得た。なお、二酸化炭素濃度は7.8%、バレル圧は8.9MPa、型温度は194℃、比エネルギーは0.779kWh/kgであった。
(Preparation of sample D-2)
The screw configuration shown in FIG. 9 is the same direction rotating twin-screw kneading extruder (Nihon Steel Works Co., Ltd., same-direction rotating twin-screw kneading extruder TEX30α), EPDM (manufactured by The Dow Chemical company (model number 4760P)) Propylene is 27.5% and diene is 5.0%. Melting point is 95 ° C) and montmorillonite (Organic modified montmorillonite Closite15 manufactured by Southern Clay Products) whose surface has been organically treated is added at a ratio of 90:10 by weight, and the rotation speed A composite sample D-2 containing montmorillonite was obtained by kneading in the presence of supercritical carbon dioxide at 100 rpm, a supply rate of 3.89 kg / h, a temperature of 100 ° C., and 0.3 kg / h, and extruding the kneaded material. The carbon dioxide concentration was 7.8%, the barrel pressure was 8.9 MPa, the mold temperature was 194 ° C, and the specific energy was 0.779 kWh / kg.

(サンプルD−3の作製)
図9に示すスクリュ構成の同方向回転二軸混練押出機(日本製鋼所社製同方向回転二軸混練押出機TEX30α)にEPDM(The Dow Chemical company 製(型番4760P)、組成はエチレン67.5%、プロピレン27.5%、ジエン 5.0%である。融点は95℃)と表面に有機化処理を施したモンモリロナイト(Southern Clay Products 製 有機変性モンモリロナイトClosite15)を重量比で90:10の割合で投入し、回転数150rpm、供給量3.89kg/h、温度100℃、0.3 kg/hの超臨界二酸化炭素の存在下で混練し、混練物を押し出すことによってモンモリロナイト入り複合材料のサンプルD−3を得た。なお、二酸化炭素濃度は7.8%、バレル圧は7.7MPa、型温度は227℃、比エネルギーは1.013kWh/kgであった。
(Preparation of sample D-3)
The screw configuration shown in FIG. 9 is the same direction rotating twin-screw kneading extruder (Nihon Steel Works Co., Ltd., same-direction rotating twin-screw kneading extruder TEX30α), EPDM (manufactured by The Dow Chemical company (model number 4760P)) Propylene is 27.5% and diene is 5.0%. Melting point is 95 ° C) and montmorillonite (Organic modified montmorillonite Closite15 manufactured by Southern Clay Products) whose surface has been organically treated is added at a ratio of 90:10 by weight, and the rotation speed Kneading was performed in the presence of supercritical carbon dioxide at 150 rpm, supply rate of 3.89 kg / h, temperature of 100 ° C. and 0.3 kg / h, and the kneaded product was extruded to obtain a sample D-3 of a composite material containing montmorillonite. The carbon dioxide concentration was 7.8%, the barrel pressure was 7.7 MPa, the mold temperature was 227 ° C., and the specific energy was 1.013 kWh / kg.

上記サンプルD−1〜D−3の引張強さ、破断伸び、100%モジュラスを以下のようにして測定し、EPDMのみの場合と比較してその結果を表1に示した。
また、引張強さと100%モジュラスの測定結果を、図10に対比して示すとともに、破断伸びの測定結果を図11に対比して示した。
The tensile strength, breaking elongation, and 100% modulus of the samples D-1 to D-3 were measured as follows, and the results are shown in Table 1 in comparison with the case of EPDM alone.
The measurement results of tensile strength and 100% modulus are shown in comparison with FIG. 10, and the measurement results of elongation at break are shown in comparison with FIG.

(引張強さ、破断伸び、100%モジュラスの測定)
各サンプルを2枚重ねで、150mm×150mmのサイズになるように金型内に並べ、80℃で5分間プレスして厚み2mmのシートに成形し、得られたシートを打ち抜いて、図12に示すJIS3号ダンベル試験片をそれぞれ得た。
得られた試験片のそれぞれについて、引張速度500mm/min、24℃における引張強さ、破断伸び、100%モジュラスを、万能試験機(島津製作所社製Auto graph(AG-100kN))を用いて求めた。
なお、測定はサンプル毎に5回行い、5つの結果の内、最大値と最小値を省き、他の3つの値の平均値を求めた。
また、上記万能試験機によって求まるのは、引張力(N)である。引張強度は単位面積あたりの引張力から求められるが、実際、試験片に収縮が起こっているため、その時々の荷重を試験片の断面積で割った値が真応力となるが、断面積の測定は容易ではない。そこで本試験では、最大荷重を初期断面積で割った値を用いた。
(Measurement of tensile strength, elongation at break, 100% modulus)
Each sample is stacked in two pieces and arranged in a mold so as to have a size of 150 mm x 150 mm, pressed at 80 ° C for 5 minutes to form a sheet with a thickness of 2 mm, and the obtained sheet is punched out. The JIS No. 3 dumbbell specimens shown were obtained.
For each of the obtained test pieces, the tensile strength at 500 mm / min, the tensile strength at 24 ° C, the elongation at break, and the 100% modulus were obtained using a universal testing machine (Auto graph (AG-100kN) manufactured by Shimadzu Corporation). It was.
The measurement was performed five times for each sample, and the maximum value and the minimum value were omitted from the five results, and the average value of the other three values was obtained.
Also, what is obtained by the universal testing machine is the tensile force (N). The tensile strength is obtained from the tensile force per unit area, but since the test piece is actually shrinking, the value obtained by dividing the load at that time by the cross-sectional area of the test piece is the true stress. Measurement is not easy. Therefore, in this test, a value obtained by dividing the maximum load by the initial cross-sectional area was used.

表1、図10、図11に示すように、引張強さ、破断伸び、100%モジュラスは、モンモリロナイトを配合することによって向上するとともに、超臨界二酸化炭素存在下で混練し、混練物を押し出すようにすると、より向上することがわかる。   As shown in Table 1, FIG. 10, and FIG. 11, the tensile strength, elongation at break, and 100% modulus are improved by blending montmorillonite, and are kneaded in the presence of supercritical carbon dioxide to extrude the kneaded product. It turns out that it will improve more if it is.

(モンモリロナイトの分散状態)
上記引張強さ、破断伸び、100%モジュラスの測定と同様にして得た2mm厚のシートを15mm×15mmの大きさに切りとり、X線回折用試験片を得た。
この試験片のX線回折パターンをX線回折装置(リガク社製RINT 2500)を用いて測定し、
その結果を図13に示した。X線回折結果ピークサーチは、リガク社製の粉末X線回折パターン総合解析ソフトJADE6.0 を使用した。
図13に示すように、超臨界二酸化炭素下で作製したサンプルD−2、3の回折ピークはそれぞれ3.0°、2.6°付近に現れている。一方、サンプルD−1の回折ピークは3.5°付近であり、これらを比較すると、前者は後者に比べ低角度側にピークが存在することがわかる。これは超臨界二酸化炭素により、層間間隔が拡がっていることを示す。また、スクリュ回転数が150rpmで作製したサンプルD−3は、サンプルD−2よりさらに拡がっているため、高いスクリュ回転数により発生する高せん断力により層間挿入が進行したと考えられる。
(Dispersed state of montmorillonite)
A 2 mm thick sheet obtained in the same manner as in the measurement of the tensile strength, breaking elongation, and 100% modulus was cut into a size of 15 mm × 15 mm to obtain a test piece for X-ray diffraction.
The X-ray diffraction pattern of this test piece was measured using an X-ray diffractometer (RINT 2500 manufactured by Rigaku Corporation),
The results are shown in FIG. For X-ray diffraction result peak search, powder X-ray diffraction pattern comprehensive analysis software JADE6.0 manufactured by Rigaku Corporation was used.
As shown in FIG. 13, the diffraction peaks of Samples D-2 and 3 prepared under supercritical carbon dioxide appear in the vicinity of 3.0 ° and 2.6 °, respectively. On the other hand, the diffraction peak of sample D-1 is around 3.5 °, and comparing these, it can be seen that the former has a peak on the lower angle side than the latter. This indicates that the interlayer spacing is widened by supercritical carbon dioxide. In addition, sample D-3 produced at a screw rotation speed of 150 rpm is further expanded than sample D-2, and therefore it is considered that interlayer insertion has progressed due to the high shear force generated by the high screw rotation speed.

〔ベントナイト入りポリアミド樹脂複合材料の評価〕
上記噛み合い型同方向回転二軸押出機(Coperion社製 ZSK18、最大回転数1200rpm、スクリュ直径18mm、スクリュ部の長さLとスクリュ径Dの比率L/D=40)にポリアミド樹脂(宇部興産社製UBEナイロン)と、有機変性処理を施した有機変性ベントナイト(ホージュン社製S-BEN)を重量比で97:3の割合で投入し、回転数150rpm、供給量2.25kg/h、温度230℃で混練し、混練物を押し出すとともに、ノズルから出てきた試料を直接採取し、粉砕機でペレット化してサンプルペレットを得た。有機変性ベントナイトは水分を吸収しやすいため、予め80℃で12 時間乾燥したものを使用した。
得られたサンプルペレットを用い射出成形機(東洋機械金属社製射出成形機(PLASTR ET−40V)によって図14に示すダンベル試験片(JIS K 7054)E−1を成形した。
射出条件は、スクリュ回転速度150rpm、射出圧150MPa、背圧5.0MPa、保圧30MPa、シリンダ温度230℃、射出速度50mm/sec、保圧時間15 sec、冷却時間25 sec、金型温度(冷却中の温度)50℃とした。
[Evaluation of bentonite-containing polyamide resin composite]
The above mesh type co-rotating twin screw extruder (Coperion ZSK18, maximum rotation speed 1200rpm, screw diameter 18mm, screw length L to screw diameter D ratio L / D = 40) and polyamide resin (Ube Industries) UBE nylon) and organically modified bentonite (S-BEN manufactured by Hojun Co., Ltd.) with an organic modification treatment are introduced at a weight ratio of 97: 3, rotation speed 150 rpm, supply rate 2.25 kg / h, temperature 230 ° C Kneaded to extrude the kneaded material, and the sample from the nozzle was directly collected and pelletized with a pulverizer to obtain sample pellets. Since the organically modified bentonite easily absorbs moisture, it was previously dried at 80 ° C. for 12 hours.
Using the obtained sample pellets, a dumbbell test piece (JIS K 7054) E-1 shown in FIG. 14 was molded by an injection molding machine (Toyo Machine Metal Co., Ltd. injection molding machine (PLASTR ET-40V)).
Injection conditions are: screw rotation speed 150rpm, injection pressure 150MPa, back pressure 5.0MPa, holding pressure 30MPa, cylinder temperature 230 ℃, injection speed 50mm / sec, holding pressure 15sec, cooling time 25sec, mold temperature (during cooling) The temperature was 50 ° C.

得られたダンベル試験片E−1と、ポリアミド樹脂(宇部興産社製UBEナイロン)のみを用いてダンベル試験片E−1と同様にして射出成形したダンベル試験片E−2の引張強さ、弾性率をそれぞれ測定しその結果を表2に示した。
なお、測定には、引張試験には島津製作所社製Auto graph(AG-100kN)を用いた。弾性率測定のため、島津製作所社製差動トランス式伸び計ST-50-10-10も合わせて用いた。試験は、作製した試験片を上記の装置で、JIS 規格K7161に従い、引張速度1mm/min、20℃における引張強さおよび弾性率を求めた。引張試験は1つの条件につき、9回実施した。そして、9回の結果の内、上位2つの値と下位2つの値を省き、他の5つの値の平均値を求めた。本試験では、引張強度として最大荷重を初期断面積で割った値を用いた。
Tensile strength and elasticity of dumbbell specimen E-2 injection-molded in the same manner as dumbbell specimen E-1 using only the obtained dumbbell specimen E-1 and polyamide resin (UBE nylon manufactured by Ube Industries). The rates were measured and the results are shown in Table 2.
For the measurement, an auto graph (AG-100kN) manufactured by Shimadzu Corporation was used for the tensile test. A differential transformer extensometer ST-50-10-10 manufactured by Shimadzu Corporation was also used for measuring the elastic modulus. In the test, the tensile strength and the elastic modulus at 20 ° C. were determined for the prepared test piece using the above-mentioned apparatus in accordance with JIS standard K7161 at a tensile speed of 1 mm / min. Ten tensile tests were carried out 9 times per condition. Of the nine results, the upper two values and the lower two values were omitted, and an average value of the other five values was obtained. In this test, the value obtained by dividing the maximum load by the initial cross-sectional area was used as the tensile strength.

上記表2から、ベントナイトの添加により、引張強さおよび弾性率が向上することがわかる。   From Table 2 above, it can be seen that the addition of bentonite improves the tensile strength and elastic modulus.

〔モンモリロナイト入りPP複合材料の変性低分子量ポリオレフィン系樹脂改質剤(MAPP)の添加評価〕
上記噛み合い型同方向回転二軸押出機(Coperion社製 ZSK18、最大回転数1200rpm、スクリュ直径18mm、スクリュ部の長さLとスクリュ径Dの比率L/D=40)に、PP(プライムポリマー社製プライムポリプロJ108M)と、MAPP(三洋化成社製ユーメックス1001)と、表面に有機化処理を施したモンモリロナイト(Southern Clay Products 製 有機変性モンモリロナイトClosite15)を投入し、回転数300rpm、供給量1.4kg/h、温度180℃で混練押出して、ノズルから出てきた試料を直接採取し、粉砕機でペレット化して以下の表3に示す配合比のサンプルF−1〜F−6のサンプルペレットをそれぞれ作製した。
[Additional evaluation of modified low molecular weight polyolefin resin modifier (MAPP) of PP composite material containing montmorillonite]
The above-mentioned meshing type co-rotating twin screw extruder (Coperion ZSK18, maximum rotation speed 1200rpm, screw diameter 18mm, screw part length L to screw diameter D ratio L / D = 40), PP (Prime Polymer Co., Ltd.) Prime Polypro J108M), MAPP (Yumex 1001 manufactured by Sanyo Kasei Co., Ltd.), and Montmorillonite (Organic Modified Montmorillonite Closite15 manufactured by Southern Clay Products) whose surface has been organically treated are supplied at a rotational speed of 300 rpm and a supply amount of 1.4 kg / h. Kneading and extruding at a temperature of 180 ° C., directly collecting the sample coming out of the nozzle and pelletizing with a pulverizer to produce sample pellets of samples F-1 to F-6 having the blending ratios shown in Table 3 below did.

射出成形機(東洋機械金属社製射出成形機PLASTR ET−40V)によって、上記F−1〜F−6のそれぞれのサンプルペレットを用いて図14に示すダンベル試験片(JIS K 7054) F−1〜F−6を成形した。 なお、射出条件は、スクリュ回転速度150 rpm、射出圧150MPa、背圧5.0MPa、保圧30MPa、シリンダ温度180℃、射出速度50mm/sec、保圧時間15 sec、冷却時間25 sec、金型温度(冷却中の温度) 50℃とした。   Dumbbell test piece (JIS K 7054) F-1 shown in FIG. 14 using each of the sample pellets F-1 to F-6 by an injection molding machine (injection molding machine PLASTR ET-40V manufactured by Toyo Kikai Kogyo Co., Ltd.) ~ F-6 was molded. The injection conditions are: screw rotation speed 150 rpm, injection pressure 150 MPa, back pressure 5.0 MPa, holding pressure 30 MPa, cylinder temperature 180 ° C, injection speed 50 mm / sec, holding pressure 15 sec, cooling time 25 sec, mold temperature (Temperature during cooling) The temperature was 50 ° C.

上記のようにして得られたダンベル試験片F−1〜F−6のそれぞれについて以下のようにして相対係数を求め、図15に示した。
図15に示すように、MAPPの添加量の増加に伴って弾性率が向上することがわかる。
また、射出成形体サンプルF−1〜F−6の引張強さの相対強さを図15に示した。
図16に示すように、引張強さは、MAPPの添加量が3〜6重量%でピークを示し、その後緩やかに低下して行くことがわかる。
The relative coefficient was calculated | required as follows about each of the dumbbell test pieces F-1 to F-6 obtained as mentioned above, and it showed in FIG.
As shown in FIG. 15, it can be seen that the modulus of elasticity improves as the amount of MAPP added increases.
Moreover, the relative strength of the tensile strength of the injection molded body samples F-1 to F-6 is shown in FIG.
As shown in FIG. 16, it can be seen that the tensile strength shows a peak when the added amount of MAPP is 3 to 6% by weight and then gradually decreases.

〔CNT入りPLA複合材料の評価1〕
(マスターバッチGの作製)
熱可塑性を有する樹脂としてのPLA(Zhejiong Hisun Biomaterials社製REVODE110)ペレット(以下、「PLAペレット」と記す)100重量部に機能性ナノフィラーとしてのCNT(NANOCYL社製NANOCYLTM NC 7000、平均長さ1.5μm、平均径9.5nm、カーボン純度90%)5.26重量部(=5重量%)を噛み合い型同方向回転二軸押出機(Coperion社製 ZSK18、最大回転数1200rpm、スクリュ直径18mm、スクリュ部の長さLとスクリュ径Dの比率L/D=40)に投入し、回転数150rpm、供給量4.5kg/h、温度180℃で混練押し出し、ペレット状のマスターバッチG (直径約3mm、長さ約5mm)を得た。
なお、スクリュは、混練ゾーンが主に図17に示すブリスタディスクによって構成された図18に示すブリスタスクリュを用いた。また、加水分解防止のため、PLAペレットは混錬実験前に80℃で24時間乾燥させた。
[Evaluation of PLA composite material containing CNT 1]
(Preparation of master batch G)
PLA as a resin having thermoplasticity (REVODE110 manufactured by Zhejiong Hisun Biomaterials) (hereinafter referred to as “PLA pellet”) 100 parts by weight CNT as a functional nanofiller (NANOCYL TM NC 7000 manufactured by NANOCYL, average length) 1.5μm, average diameter 9.5nm, carbon purity 90%) 5.26 parts by weight (= 5% by weight) meshing type co-rotating twin screw extruder (Coperion ZSK18, maximum rotation speed 1200rpm, screw diameter 18mm , Put into the length L of the screw part and the ratio L / D = 40 of the screw diameter D, knead and extrude at a rotation speed of 150 rpm, a supply rate of 4.5 kg / h, and a temperature of 180 ° C. 3 mm and a length of about 5 mm).
In addition, the screw task screw shown in FIG. 18 in which the kneading zone was mainly constituted by the blister disk shown in FIG. 17 was used as the screw. In order to prevent hydrolysis, PLA pellets were dried at 80 ° C. for 24 hours before the kneading experiment.

(サンプルペレットG−1の作製)
得られる複合材料サンプルのCNT混合割合が、1.0重量%となる割合で上記PLAペレットと、マスターバッチGを、マスターバッチGの作製に用いた図18に示すブリスタスクリュをセットした上記噛み合い型同方向回転二軸押出機に投入し、回転数150rpm、供給量4.5kg/h、温度180℃で混練し、混練物を押し出すことによって、CNT混合割合が、1.0重量%のCNT入りPLA複合材料サンプルペレットG−1を得た。
(サンプルペレットG−2の作製)
得られる複合材料サンプルのCNT混合割合が、2.0重量%となる割合で上記PLAペレットと、マスターバッチGを、マスターバッチGの作製に用いた図18に示すブリスタスクリュをセットした上記噛み合い型同方向回転二軸押出機に投入し、回転数150rpm、供給量4.5kg/h、温度180℃で混練し、混練物を押し出すことによって、CNTの添加割合が、2.0重量%のCNT入りPLA複合材料サンプルペレットG−2を得た。
(Preparation of sample pellet G-1)
The mesh type same direction in which the PLA pellet and master batch G are used in the production of the master batch G and the bristle screw shown in FIG. Placing into a rotary twin screw extruder, kneading at a rotation speed of 150 rpm, supply rate of 4.5 kg / h, temperature of 180 ° C., and extruding the kneaded product, a CNT-containing PLA composite material sample pellet with a CNT mixing ratio of 1.0 wt% G-1 was obtained.
(Preparation of sample pellet G-2)
The mesh type same direction in which the PLA pellet and the master batch G are used in the production of the master batch G and the bristle screw shown in FIG. Placing into a rotary twin screw extruder, kneading at a rotation speed of 150 rpm, a supply rate of 4.5 kg / h, and a temperature of 180 ° C., and extruding the kneaded product, a CNT-containing PLA composite material sample with a CNT addition ratio of 2.0 wt% Pellet G-2 was obtained.

(サンプルペレットG−3の作製)
上記PLAペレットを上記マスターバッチGと同様に図18に示すブリスタスクリュをセットした上記噛み合い型同方向回転二軸押出機に投入して混練し、混練物を押し出すことによって得た混練ペレットを作製し、この混練ペレットを80℃で2.5時間乾燥させたのち、さらに図18に示すブリスタスクリュをセットした上記噛み合い型同方向回転二軸押出機に投入して混練し、混練物を押し出すことによって比較用サンプルペレットG−3を得た。
(Preparation of sample pellet G-3)
As with the master batch G, the PLA pellets were put into the meshing type co-rotating twin screw extruder set with the bristle screw shown in FIG. 18 and kneaded, and the kneaded pellets obtained by extruding the kneaded material were produced. The kneaded pellets were dried at 80 ° C. for 2.5 hours, and then put into the meshing type co-rotating twin-screw extruder shown in FIG. 18 and kneaded, and the kneaded product was extruded for comparison. Sample pellet G-3 was obtained.

上記のようにして得られたサンプルペレットG−1〜G−3を、80℃で24時間乾燥させたのち、乾燥したサンプルペレットG−1およびG−3をそれぞれ用い、射出成形機(東洋機械金属社製射出成形機PLASTR ET−40V)によって図14に示す形状のダンベル試験片G−1〜G−3をそれぞれ得た。
射出条件は、スクリュ回転速度100rpm、射出圧150MPa、背圧4.0MPa、保圧70MPa、シリンダ温度200℃、射出速度50mm/sec、保圧時間30 sec、冷却時間60sec、金型温度40℃とした。
The sample pellets G-1 to G-3 obtained as described above were dried at 80 ° C. for 24 hours, and then the dried sample pellets G-1 and G-3 were respectively used. Dumbbell test pieces G-1 to G-3 having the shape shown in FIG. 14 were obtained by an injection molding machine PLASTR ET-40V, manufactured by Metal Corporation.
The injection conditions were: screw rotation speed 100rpm, injection pressure 150MPa, back pressure 4.0MPa, holding pressure 70MPa, cylinder temperature 200 ℃, injection speed 50mm / sec, holding pressure 30sec, cooling time 60sec, mold temperature 40 ℃ .

得られたダンベル試験片の引張強さ、弾性率、破断伸びを、JIS K7161に従って、万能試験機(島津製作所社製Auto graph(AG-100kN))および伸び計(島津製作所社製差動トランス式伸び計ST-50-10-10)を用いて求め、その結果を表4に示した。
なお、引張試験は1つの条件につき9回実施し、9回の結果の内、上位2つの値と下位2つの値を省き、残りの5つの値の平均値を求めた。また、本試験では、引張強さとして最大荷重を初期断面積で割った値を用いた。
The tensile strength, elastic modulus, and elongation at break of the obtained dumbbell specimens were measured according to JIS K7161. Universal testing machine (Auto graph (AG-100kN) manufactured by Shimadzu Corporation) and extensometer (differential transformer type manufactured by Shimadzu Corporation) Table 4 shows the results obtained by using an extensometer ST-50-10-10).
The tensile test was performed nine times for one condition, and the upper two values and the lower two values were omitted from the nine results, and the average value of the remaining five values was obtained. In this test, the value obtained by dividing the maximum load by the initial cross-sectional area was used as the tensile strength.

上記表4から、マトリックス樹脂としてのPLAにCNTを配合することによって、引張強さおよび弾性率が低下しないことがわかる。   From Table 4 above, it can be seen that the tensile strength and elastic modulus are not lowered by blending CNT with PLA as a matrix resin.

上記ダンベル試験片G−1およびダンベル試験片G−3のそれぞれから横30mm、縦20mm、厚み4mmの体積抵抗率用サンプル板G−1、G−3を5枚ずつ作製し、各5枚の体積抵抗率用サンプル板G−1、G−3の中心の抵抗R[Ω]を1枚1箇所ずつ抵抗率計(三菱化学アナリテック社製、ハイレスタUP、URSプローブ)を用いて測定し、上記定義式(1)を用いて体積抵抗率ρv[Ω・cm]を求めた。測定方式は定電圧印加/漏洩電流測定方式で、RCFの値は0.273、リミッタ電圧は10V、測定時間は10秒とした。
また、上記ダンベル試験片X−2から、直径25mm、厚さ1.5mmの体積抵抗率用円形サンプル板G−2を5枚作製し、5枚の体積抵抗率用サンプル板G−2のそれぞれについて各1箇所ずつ抵抗率計(三菱化学アナリテック社製、ロレスタGP、4端子4探針法、ASPプローブ)を用いて測定し、上記定義式(1)を用いて体積抵抗率ρvを求めた。
RCFの値は3.362、リミッタ電圧は10V、測定時間は5秒とした。
From each of the dumbbell test piece G-1 and the dumbbell test piece G-3, five volume resistivity sample plates G-1 and G-3 each having a width of 30 mm, a length of 20 mm, and a thickness of 4 mm were prepared. Measure the resistance R [Ω] at the center of each of the volume resistivity sample plates G-1 and G-3 one by one using a resistivity meter (manufactured by Mitsubishi Chemical Analytech, Hiresta UP, URS probe). The volume resistivity ρv [Ω · cm] was determined using the above definition formula (1). The measurement method was a constant voltage application / leakage current measurement method. The RCF value was 0.273, the limiter voltage was 10 V, and the measurement time was 10 seconds.
Further, from the dumbbell test piece X-2, five volume resistivity circular sample plates G-2 having a diameter of 25 mm and a thickness of 1.5 mm were prepared, and each of the five volume resistivity sample plates G-2 was prepared. Each one was measured using a resistivity meter (Mitsubishi Chemical Analytech Co., Ltd., Loresta GP, 4-terminal 4-probe method, ASP probe), and the volume resistivity ρv was determined using the above definition formula (1). .
The RCF value was 3.362, the limiter voltage was 10 V, and the measurement time was 5 seconds.

求められた体積抵抗率用サンプル板G−2とG−3の体積抵抗率ρvの平均値を求め、その結果を対比して、表5に示した。
なお、体積抵抗率ρvの平均値は、それぞれ求められた5つの体積抵抗率の上下1つずつの値を省き、残りの3つの値を平均して求めた。
The average values of the volume resistivity ρv of the obtained volume resistivity sample plates G-2 and G-3 were obtained, and the results were compared with each other and shown in Table 5.
The average value of the volume resistivity ρv was obtained by omitting the upper and lower values of the five obtained volume resistivity values and averaging the remaining three values.

上記表5から、CNTを配合することによって導電性が高くなることがわかる。   From Table 5 above, it can be seen that the conductivity is increased by adding CNT.

上記体積抵抗率用サンプル板G−1、G−3と同じようにして得られた横30mm、縦20mm、厚み4mmの摩擦係数測定用サンプル板G−1、G−3のそれぞれについて、摩擦係数および表面粗さを以下のようにして求めた。   For each of the friction coefficient measurement sample plates G-1 and G-3 having a width of 30 mm, a length of 20 mm and a thickness of 4 mm obtained in the same manner as the volume resistivity sample plates G-1 and G-3, the friction coefficient The surface roughness was determined as follows.

(摩擦係数)
摩擦係数測定用サンプル板G−1、G−3を摩擦摩耗試験機(レスカ社製FRICTION PLAYER FPR 2000)にセットし、測定パラメータ(荷重:1N、回転半径:3.5mm、測定間隔:0.2s、回転数:27.2837rpm、線速度:1cm/s 、目標摺動距離:144m、測定時間:4時間、応力比:1.61719、常温、相手材:SUJ2(高炭素クロム軸受鋼鋼材))でピンオンディスク法により摩耗摩擦試験を行い、摩擦摩耗試験機の応力検出器から値を読み取り、摩擦力を[応力検出器の値/応力比]より算出した。そして、[摩擦力/荷重値]より摩擦係数値を算出した。
(Coefficient of friction)
Friction coefficient measurement sample plates G-1 and G-3 were set on a friction and wear tester (Resca FRICTION PLAYER FPR 2000), and measurement parameters (load: 1 N, turning radius: 3.5 mm, measurement interval: 0.2 s, Rotational speed: 27.2837 rpm, linear velocity: 1 cm / s, target sliding distance: 144 m, measurement time: 4 hours, stress ratio: 1.61719, normal temperature, mating material: SUJ2 (high carbon chromium bearing steel)) pin-on-disk The wear friction test was conducted by the method, the value was read from the stress detector of the friction wear tester, and the friction force was calculated from [value of stress detector / stress ratio]. Then, a friction coefficient value was calculated from [friction force / load value].

(表面粗さ)
摩擦係数測定用サンプル板G−1、G−3の摺動面をレーザー顕微鏡(キーエンス社製形状測定レーザマイクロスコープ VK-X210)を用いて画像解析し、各試料3箇所ずつの表面粗さRaの値を得て、その平均値を求めた。
(Surface roughness)
The sliding surfaces of the friction coefficient measurement sample plates G-1 and G-3 are subjected to image analysis using a laser microscope (shape measurement laser microscope VK-X210 manufactured by Keyence Corporation), and the surface roughness Ra of each of the three samples is measured. Was obtained, and the average value was obtained.

上記のようにして求めた摩擦係数と、表面粗さを表6に対比して示した。   The friction coefficient obtained as described above and the surface roughness are shown in comparison with Table 6.

すなわち、表6から、CNTを1重量%配合することにより、CNTを配合しない場合に比べ、飛躍的に表面摩耗量が減ると言える(実物の目視によっても、大いに差が見られた)。   That is, it can be said from Table 6 that the amount of surface wear is drastically reduced by blending 1% by weight of CNTs compared to the case of not blending CNTs (a great difference was also seen by visual inspection of the actual product).

〔CNT入りPLA複合材料の評価2〕
(マスターバッチHの作製)
熱可塑性を有する樹脂としてのPLA(Zhejiong Hisun Biomaterials社製REVODE110)ペレット(以下、「PLAペレット」と記す)100重量部に機能性ナノフィラーとしてのCNT(NANOCYL社製NANOCYLTM NC 7000、平均長さ1.5μm、平均径9.5nm、カーボン純度90%)5.26重量部(=5重量%)を噛み合い型同方向回転二軸押出機(Coperion社製 ZSK18、最大回転数1200rpm、スクリュ直径18mm、スクリュ部の長さLとスクリュ径Dの比率L/D=40)に投入し、回転数150rpm、供給量3.0kg/h、温度180-220℃で混練押し出し、ペレット状のマスターバッチH (直径約3mm、長さ約5mm)を得た。
なお、スクリュは、混練ゾーンが主に図3に示すニーディングディスクによって構成された、図19に示すニーディングスクリュを用いた。また、加水分解防止のため、PLAペレットは混錬実験前に90℃で3時間真空乾燥させた。
[Evaluation of PLA composite material with CNT 2]
(Preparation of masterbatch H)
PLA as a resin having thermoplasticity (REVODE110 manufactured by Zhejiong Hisun Biomaterials) (hereinafter referred to as “PLA pellet”) 100 parts by weight CNT as a functional nanofiller (NANOCYL TM NC 7000 manufactured by NANOCYL, average length) 1.5μm, average diameter 9.5nm, carbon purity 90%) 5.26 parts by weight (= 5% by weight) meshing type co-rotating twin screw extruder (Coperion ZSK18, maximum rotation speed 1200rpm, screw diameter 18mm , Put into the ratio L / D = 40) of the length L of the screw part and the screw diameter D, knead and extrude at a rotation speed of 150 rpm, a supply rate of 3.0 kg / h, and a temperature of 180-220 ° C., and a pellet-like masterbatch H ( About 3 mm in diameter and about 5 mm in length).
As the screw, the kneading screw shown in FIG. 19 in which the kneading zone was mainly constituted by the kneading disk shown in FIG. 3 was used. In order to prevent hydrolysis, PLA pellets were vacuum dried at 90 ° C. for 3 hours before the kneading experiment.

(射出成形を用いたサンプルH−1の作製)
上記のようにして得られたマスターバッチHを、80℃で24時間乾燥させたのち、乾燥したマスターバッチHを用い、射出成形機(東洋機械金属社製射出成形機PLASTR ET−40V)によって図14に示す形状のダンベル試験片Hをそれぞれ得た。
射出条件は、スクリュ回転速度100rpm、射出圧150MPa、背圧4.0MPa、保圧70MPa、シリンダ温度200℃、射出速度50mm/sec、保圧時間30 sec、冷却時間60sec、金型温度40℃とした。
上記ダンベル試験片Hから横30mm、縦20mm、厚み4mmのサンプル板H−1を5枚作製した。
(Production of sample H-1 using injection molding)
After the master batch H obtained as described above was dried at 80 ° C. for 24 hours, the dried master batch H was used to make a drawing with an injection molding machine (an injection molding machine PLASTR ET-40V manufactured by Toyo Kikai Co., Ltd.). Dumbbell test pieces H having the shape shown in FIG. 14 were obtained.
The injection conditions were: screw rotation speed 100rpm, injection pressure 150MPa, back pressure 4.0MPa, holding pressure 70MPa, cylinder temperature 200 ℃, injection speed 50mm / sec, holding pressure 30sec, cooling time 60sec, mold temperature 40 ℃ .
Five sample plates H-1 having a width of 30 mm, a length of 20 mm, and a thickness of 4 mm were prepared from the dumbbell test piece H.

(モノフィラメントHの作製)
得られたマスターバッチHを3Dプリンタ用のフィラメント押出機(Noztek社製 "The Noztek Pro ABS and PLA Filament Extruder for 3D Printers")に投入し、フィラメント径:1.75mmの3Dプリンタ用モノフィラメントHを得た。押出条件は、シリンダ温度210℃とし、フィラメントの巻取りにはフィラメント巻取機(Noztek社製 "Filament Winder")を用いた。
(Production of monofilament H)
The obtained master batch H was charged into a filament extruder for 3D printers (“The Noztek Pro ABS and PLA Filament Extruder for 3D Printers” manufactured by Noztek) to obtain a monofilament H for a 3D printer having a filament diameter of 1.75 mm. . The extrusion conditions were a cylinder temperature of 210 ° C., and a filament winder (“Filament Winder” manufactured by Noztek) was used for winding the filament.

(3Dプリンタ成形を用いたサンプルH−2の作製)
つぎに、上記のようにして得られたモノフィラメントHを用い、熱溶解積層方式3Dプリンタ(オープンキューブ社製SCOOVO X9)によって、縦30mm×横20mm×厚さ4mmのサンプル板H−2を5枚作製した。
プリント条件は、ノズル温度260℃、ヒートベッド温度80℃、層高さ0.4mm、密度100%、造形速度15mm/sとした。
(Production of sample H-2 using 3D printer molding)
Next, using the monofilament H obtained as described above, five sample plates H-2 of 30 mm in length, 20 mm in width, and 4 mm in thickness are obtained using a hot melt lamination type 3D printer (SCOOVO X9 manufactured by OpenCube). Produced.
The printing conditions were a nozzle temperature of 260 ° C., a heat bed temperature of 80 ° C., a layer height of 0.4 mm, a density of 100%, and a modeling speed of 15 mm / s.

上記サンプル板H−1、H−2の抵抗R[Ω]をアナログテスターを用いて測定した。測定方法は、+、−の両端子を共に表面、かつ任意の距離で接地させることで各サンプル板の最小抵抗値を読み取り、その結果を表7に示した。   The resistance R [Ω] of the sample plates H-1 and H-2 was measured using an analog tester. In the measurement method, the minimum resistance value of each sample plate was read by grounding both the + and-terminals on the surface and at an arbitrary distance, and the results are shown in Table 7.

上記表7から、射出成形品より、3Dプリンタ成形品の方が、表面抵抗を小さくすることができ、例えば、電磁波シールド材、電子デバイス用部品、誘導加熱を利用した発熱部品等への応用が期待できると考えられる。   From Table 7 above, the surface resistance of the 3D printer molded product can be made smaller than that of the injection molded product. For example, it can be applied to electromagnetic shielding materials, electronic device components, heat generating components using induction heating, etc. It can be expected.

本発明のフィラメントは、熱溶解積層方式の3Dプリンタを用いて、高機能性を備えた造形物を作製するのに好適である。   The filament of the present invention is suitable for producing a model having high functionality using a hot melt lamination type 3D printer.

1 フィラメント
2 熱可塑性を有するマトリックス樹脂
3 CNT(機能性ナノフィラー)
1 Filament 2 Thermoplastic matrix resin 3 CNT (functional nanofiller)

Claims (6)

熱溶解積層型3次元プリンタ用フィラメントであって、熱可塑性を有するマトリックス樹脂と、この熱可塑性を有するマトリックス樹脂中に分散された機能性ナノフィラーを含む機能性樹脂組成物によって形成されていることを特徴とする熱溶解積層型3次元プリンタ用フィラメント。   A filament for a hot melt laminate type three-dimensional printer, which is formed of a functional resin composition including a matrix resin having thermoplasticity and functional nanofillers dispersed in the matrix resin having thermoplasticity. A filament for a heat melting laminated three-dimensional printer. 熱可塑性を有するマトリックス樹脂が、アクリロニトリル−ブチレン−スチレン共重合体樹脂,ポリ乳酸樹脂,ポリアミド樹脂,ポリプロピレン樹脂,ポリエチレン樹脂,ポリカーボネート樹脂,ポリ塩化ビニル樹脂,アクリル樹脂 ,ポリスチレン樹脂,ポリエステル樹脂,ポリウレタン樹脂,ポリフェニレンエーテル樹脂,ポリアセタール樹脂,ポリフェニレンサルファイド樹脂,フッ素樹脂,ポリアミドイミド樹脂,ポリエーテルスルホン樹脂,ポリスルホン樹脂,液晶ポリマー,ポリアリレート樹脂,ポリエーテルイミド樹脂,芳香族ポリエーテルケトン樹脂からなる群より選ばれた少なくとも1種である請求項1に記載の熱溶解積層型3次元プリンタ用フィラメント。   Thermoplastic matrix resin is acrylonitrile-butylene-styrene copolymer resin, polylactic acid resin, polyamide resin, polypropylene resin, polyethylene resin, polycarbonate resin, polyvinyl chloride resin, acrylic resin, polystyrene resin, polyester resin, polyurethane resin , Polyphenylene ether resin, polyacetal resin, polyphenylene sulfide resin, fluorine resin, polyamideimide resin, polyethersulfone resin, polysulfone resin, liquid crystal polymer, polyarylate resin, polyetherimide resin, aromatic polyetherketone resin The filament for hot melt lamination type three-dimensional printer according to claim 1, wherein the filament is for at least one kind. 機能性ナノフィラーが、導電性ナノ粒子またはナノファイバーである請求項1または請求項2に記載の熱溶解積層型3次元プリンタ用フィラメント。   The filament for a hot melt laminate type three-dimensional printer according to claim 1 or 2, wherein the functional nanofiller is a conductive nanoparticle or nanofiber. 機能性ナノフィラーが、ナノクレイ粒子である請求項1または請求項2に記載の熱溶解積層型3次元プリンタ用フィラメント。   The filament for a hot melt laminate type three-dimensional printer according to claim 1 or 2, wherein the functional nanofiller is nanoclay particles. 混練によって熱可塑性を有するマトリックス樹脂中に機能性ナノフィラーが分散状態にされたフィラメント形成用機能性樹脂組成物を押出機でフィラメント形状に連続的に押し出すことを特徴とする請求項1〜請求項4のいずれかに記載の熱溶解積層型3次元プリンタ用フィラメントの製造方法。   The functional resin composition for forming a filament in which functional nanofillers are dispersed in a matrix resin having thermoplasticity by kneading is continuously extruded into a filament shape by an extruder. 4. A method for producing a filament for a hot melt laminated three-dimensional printer according to any one of 4 above. 超臨界二酸化炭素存在下で熱可塑性マトリックス樹脂と機能性ナノフィラーを混練する請求項5に記載の熱溶解積層型3次元プリンタ用フィラメントの製造方法。   The method for producing a filament for a hot melt laminated three-dimensional printer according to claim 5, wherein the thermoplastic matrix resin and the functional nanofiller are kneaded in the presence of supercritical carbon dioxide.
JP2015139592A 2014-07-14 2015-07-13 Fused Deposition Modeling Filament Manufacturing Method for 3D Printers Active JP6860774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015139592A JP6860774B2 (en) 2014-07-14 2015-07-13 Fused Deposition Modeling Filament Manufacturing Method for 3D Printers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014143891 2014-07-14
JP2014143891 2014-07-14
JP2015139592A JP6860774B2 (en) 2014-07-14 2015-07-13 Fused Deposition Modeling Filament Manufacturing Method for 3D Printers

Publications (2)

Publication Number Publication Date
JP2016028887A true JP2016028887A (en) 2016-03-03
JP6860774B2 JP6860774B2 (en) 2021-04-21

Family

ID=55435068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139592A Active JP6860774B2 (en) 2014-07-14 2015-07-13 Fused Deposition Modeling Filament Manufacturing Method for 3D Printers

Country Status (1)

Country Link
JP (1) JP6860774B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153680B1 (en) * 2016-03-18 2017-06-28 スターライト工業株式会社 Modeling material for 3D printer, manufacturing method thereof, and three-dimensional modeled object
WO2017141779A1 (en) * 2016-02-18 2017-08-24 スターライト工業株式会社 Nanofiber dispersion, method for producing nanofiber dispersion, powdery nanofibers obtained from dispersion, resin composition including said powdery nanofibers, and molding material for 3d printer in which said resin composition is used
WO2017208979A1 (en) * 2016-06-03 2017-12-07 住友ゴム工業株式会社 Three-dimensional structure
WO2018016680A1 (en) * 2016-07-21 2018-01-25 한국전기연구원 Method for 3d printing carbon nanotube microstructure having high conductivity, and ink to be used therein
WO2018043231A1 (en) 2016-08-30 2018-03-08 大塚化学株式会社 Resin composition, filament and resin powder for three-dimensional printer, and shaped object and production rpocess therefor
JP6323823B1 (en) * 2017-07-14 2018-05-16 兵庫県 Three-dimensional modeling printer using unvulcanized rubber composition as modeling material
CN108360263A (en) * 2018-02-07 2018-08-03 航天材料及工艺研究所 The compound 3D printing composite material high activity Interface enhancer of quick in situ and preparation method
CN108561504A (en) * 2018-06-04 2018-09-21 青岛科技大学 A kind of molding synchronous carrying material of 3D printing and preparation method thereof
WO2019013195A1 (en) * 2017-07-11 2019-01-17 株式会社ナノマテックス Manufacturing system, resin reel, and manufacturing method
JP6472590B1 (en) * 2017-09-04 2019-02-20 大塚化学株式会社 Model and manufacturing method thereof
WO2019044864A1 (en) 2017-09-04 2019-03-07 大塚化学株式会社 Shaped article and method for producing same
WO2019088014A1 (en) * 2017-10-31 2019-05-09 ユニチカ株式会社 Resin composition for molding material of fused deposition molding 3d printer, and filament-shaped molded body thereof
WO2019088243A1 (en) * 2017-11-06 2019-05-09 コニカミノルタ株式会社 Resin composition and method for producing three-dimensional model using same
CN110157167A (en) * 2018-02-08 2019-08-23 肇庆益晟商贸有限公司 A kind of low temperature 3D printing material and its preparation method and application
WO2019189328A1 (en) * 2018-03-27 2019-10-03 ユニチカ株式会社 Resin composition and filament-like molded body formed from same
WO2020049211A1 (en) * 2018-09-06 2020-03-12 Arctic Biomaterials Oy Composite filament
JP2020040299A (en) * 2018-09-11 2020-03-19 第一セラモ株式会社 Method for manufacturing high thermal conductive resin member, and resin member manufactured using the manufacturing method
CN111393734A (en) * 2020-04-23 2020-07-10 四川轻化工大学 Halogen-free flame retardant, halogen-free flame-retardant low-density polyethylene material and preparation method thereof
JP2021503394A (en) * 2017-11-16 2021-02-12 ユニバーシティー オブ メイン システム ボード オブ トラスティーズ Improved filament for 3D printing
CN114672150A (en) * 2022-04-11 2022-06-28 青岛科技大学 High-performance polymer-based composite material with double-network structure and preparation method thereof
US11566118B2 (en) 2016-02-18 2023-01-31 Starlite Co., Ltd. Nanofiber dispersion, method of producing nanofiber dispersion, powdery nanofibers obtainable from the dispersion, resin composition containing the powdery nanofibers ad molding material for 3D printer using the resin composition
WO2023163017A1 (en) 2022-02-25 2023-08-31 株式会社Adeka Thermoplastic resin composition for fused deposition modeling, modeled body, and method for producing same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053871A (en) * 1998-08-07 2000-02-22 Toray Ind Inc Resin composition and its preparation
JP2002535177A (en) * 1999-02-01 2002-10-22 ロウエンダール イクストルージョン エンジニアリング,インコーポレイテッド Screw extruder with improved dispersion mixing element
JP2005138422A (en) * 2003-11-06 2005-06-02 Shinshu Tlo:Kk Three-dimensional shaping apparatus and yarn-like material
JP2009056781A (en) * 2007-09-03 2009-03-19 Yokohama National Univ Shaping method of fine structure
WO2012107991A1 (en) * 2011-02-07 2012-08-16 大陽日酸株式会社 Composite resinous particles, method of producing composite resinous particles, composite resin molded body, and method of producing same
JP2012526885A (en) * 2009-05-12 2012-11-01 アルケマ フランス Fiber substrate, method for producing the fiber substrate, and use thereof
WO2013129659A1 (en) * 2012-03-02 2013-09-06 日立マクセル株式会社 Method for producing molded body, method for producing molded body having plating film, method for producing resin pellets, molded foam having plating film, foam injection molding method, nozzle unit, and injection molding apparatus
WO2013180848A1 (en) * 2012-05-30 2013-12-05 General Electric Company Secondary structures for aircraft engines and processes therefor
WO2014072148A1 (en) * 2012-11-09 2014-05-15 Evonik Industries Ag Use and production of coated filaments for extrusion-based 3d printing processes
WO2015019212A1 (en) * 2013-08-09 2015-02-12 Kimberly-Clark Worldwide, Inc. Polymeric material for three-dimensional printing
WO2015037574A1 (en) * 2013-09-11 2015-03-19 東レ株式会社 Material for fused-deposition-type three-dimensional modeling, and filament for fused-deposition-type 3d printing device
WO2015109141A1 (en) * 2014-01-17 2015-07-23 Lubrizol Advanced Materials, Inc. Methods of using thermoplastic polyurethanes in fused deposition modeling and systems and articles thereof
WO2015130401A2 (en) * 2013-12-26 2015-09-03 Texas Tech University System Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts
WO2015182681A1 (en) * 2014-05-29 2015-12-03 日本合成化学工業株式会社 Support for laminate shaping and laminate shaped article using same, and method for manufacturing laminate shaped article

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053871A (en) * 1998-08-07 2000-02-22 Toray Ind Inc Resin composition and its preparation
JP2002535177A (en) * 1999-02-01 2002-10-22 ロウエンダール イクストルージョン エンジニアリング,インコーポレイテッド Screw extruder with improved dispersion mixing element
JP2005138422A (en) * 2003-11-06 2005-06-02 Shinshu Tlo:Kk Three-dimensional shaping apparatus and yarn-like material
JP2009056781A (en) * 2007-09-03 2009-03-19 Yokohama National Univ Shaping method of fine structure
JP2012526885A (en) * 2009-05-12 2012-11-01 アルケマ フランス Fiber substrate, method for producing the fiber substrate, and use thereof
WO2012107991A1 (en) * 2011-02-07 2012-08-16 大陽日酸株式会社 Composite resinous particles, method of producing composite resinous particles, composite resin molded body, and method of producing same
WO2013129659A1 (en) * 2012-03-02 2013-09-06 日立マクセル株式会社 Method for producing molded body, method for producing molded body having plating film, method for producing resin pellets, molded foam having plating film, foam injection molding method, nozzle unit, and injection molding apparatus
WO2013180848A1 (en) * 2012-05-30 2013-12-05 General Electric Company Secondary structures for aircraft engines and processes therefor
WO2014072148A1 (en) * 2012-11-09 2014-05-15 Evonik Industries Ag Use and production of coated filaments for extrusion-based 3d printing processes
WO2015019212A1 (en) * 2013-08-09 2015-02-12 Kimberly-Clark Worldwide, Inc. Polymeric material for three-dimensional printing
WO2015037574A1 (en) * 2013-09-11 2015-03-19 東レ株式会社 Material for fused-deposition-type three-dimensional modeling, and filament for fused-deposition-type 3d printing device
WO2015130401A2 (en) * 2013-12-26 2015-09-03 Texas Tech University System Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts
WO2015109141A1 (en) * 2014-01-17 2015-07-23 Lubrizol Advanced Materials, Inc. Methods of using thermoplastic polyurethanes in fused deposition modeling and systems and articles thereof
WO2015182681A1 (en) * 2014-05-29 2015-12-03 日本合成化学工業株式会社 Support for laminate shaping and laminate shaped article using same, and method for manufacturing laminate shaped article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHOFNER, M. L. ET AL.: "Nanofiber-Reinforced Polymers Prepared by Fused Deposition Modeling", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 89, JPN6020007423, 2003, pages 3081 - 3090, XP002376649, ISSN: 0004326582 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141779A1 (en) * 2016-02-18 2017-08-24 スターライト工業株式会社 Nanofiber dispersion, method for producing nanofiber dispersion, powdery nanofibers obtained from dispersion, resin composition including said powdery nanofibers, and molding material for 3d printer in which said resin composition is used
US11566118B2 (en) 2016-02-18 2023-01-31 Starlite Co., Ltd. Nanofiber dispersion, method of producing nanofiber dispersion, powdery nanofibers obtainable from the dispersion, resin composition containing the powdery nanofibers ad molding material for 3D printer using the resin composition
JP2017170881A (en) * 2016-03-18 2017-09-28 スターライト工業株式会社 Molding material for 3d printers, method for producing the same, and three-dimensional molding
JP6153680B1 (en) * 2016-03-18 2017-06-28 スターライト工業株式会社 Modeling material for 3D printer, manufacturing method thereof, and three-dimensional modeled object
WO2017208979A1 (en) * 2016-06-03 2017-12-07 住友ゴム工業株式会社 Three-dimensional structure
JPWO2017208979A1 (en) * 2016-06-03 2019-04-04 住友ゴム工業株式会社 3D structure
US11512210B2 (en) 2016-07-21 2022-11-29 Korea Electrotechnology Research Institute Method for 3D printing of carbon nanotube microstructure having high conductivity, and ink used therein
WO2018016680A1 (en) * 2016-07-21 2018-01-25 한국전기연구원 Method for 3d printing carbon nanotube microstructure having high conductivity, and ink to be used therein
WO2018043231A1 (en) 2016-08-30 2018-03-08 大塚化学株式会社 Resin composition, filament and resin powder for three-dimensional printer, and shaped object and production rpocess therefor
US11718732B2 (en) 2016-08-30 2023-08-08 Otsuka Chemical Co., Ltd Resin composition, filament and resin powder for three-dimensional printer, and shaped object and production process therefor
KR20190046782A (en) 2016-08-30 2019-05-07 오츠카 가가쿠 가부시키가이샤 Resin compositions, filaments and resin powders for three-dimensional printers, and sculptures and manufacturing methods thereof
WO2019013195A1 (en) * 2017-07-11 2019-01-17 株式会社ナノマテックス Manufacturing system, resin reel, and manufacturing method
JP2019018440A (en) * 2017-07-14 2019-02-07 兵庫県 Three-dimensional modeling printer using unvulcanized rubber composition as modeling material
JP6323823B1 (en) * 2017-07-14 2018-05-16 兵庫県 Three-dimensional modeling printer using unvulcanized rubber composition as modeling material
KR102518995B1 (en) 2017-09-04 2023-04-05 오츠카 가가쿠 가부시키가이샤 Sculpture and its manufacturing method
WO2019044864A1 (en) 2017-09-04 2019-03-07 大塚化学株式会社 Shaped article and method for producing same
JP6472590B1 (en) * 2017-09-04 2019-02-20 大塚化学株式会社 Model and manufacturing method thereof
KR20200049766A (en) 2017-09-04 2020-05-08 오츠카 가가쿠 가부시키가이샤 Sculpture and its manufacturing method
JP7130256B2 (en) 2017-10-31 2022-09-05 ユニチカ株式会社 RESIN COMPOSITION FOR MODELING MATERIAL FOR FOTUS LAYER METHOD 3D PRINTER AND FILAMENT-FORMED PRODUCT THEREOF
US11608427B2 (en) 2017-10-31 2023-03-21 Unitika Ltd. Resin composition for shaping material of fused deposition modeling method-3D printer and filamentary molded body thereof
WO2019088014A1 (en) * 2017-10-31 2019-05-09 ユニチカ株式会社 Resin composition for molding material of fused deposition molding 3d printer, and filament-shaped molded body thereof
JPWO2019088014A1 (en) * 2017-10-31 2020-11-19 ユニチカ株式会社 Fused Deposition Modeling 3D Printer Resin Composition for Modeling Material and Filamentous Molded Product
WO2019088243A1 (en) * 2017-11-06 2019-05-09 コニカミノルタ株式会社 Resin composition and method for producing three-dimensional model using same
JP2021503394A (en) * 2017-11-16 2021-02-12 ユニバーシティー オブ メイン システム ボード オブ トラスティーズ Improved filament for 3D printing
US11873582B2 (en) 2017-11-16 2024-01-16 University Of Maine System Board Of Trustees Filaments for 3D printing
JP7384417B2 (en) 2017-11-16 2023-11-21 ユニバーシティー オブ メイン システム ボード オブ トラスティーズ Improved filament for 3D printing
CN108360263A (en) * 2018-02-07 2018-08-03 航天材料及工艺研究所 The compound 3D printing composite material high activity Interface enhancer of quick in situ and preparation method
CN110157167A (en) * 2018-02-08 2019-08-23 肇庆益晟商贸有限公司 A kind of low temperature 3D printing material and its preparation method and application
EP3778190A4 (en) * 2018-03-27 2022-01-05 Unitika Ltd. Resin composition and filament-like molded body formed from same
CN111936297A (en) * 2018-03-27 2020-11-13 尤尼吉可株式会社 Resin composition and filament-like molded article comprising same
JPWO2019189328A1 (en) * 2018-03-27 2020-05-28 ユニチカ株式会社 Resin composition and filament-shaped molded article made of the same
WO2019189328A1 (en) * 2018-03-27 2019-10-03 ユニチカ株式会社 Resin composition and filament-like molded body formed from same
CN108561504A (en) * 2018-06-04 2018-09-21 青岛科技大学 A kind of molding synchronous carrying material of 3D printing and preparation method thereof
CN108561504B (en) * 2018-06-04 2023-06-30 青岛科技大学 Synchronous belt material formed by 3D printing and preparation method thereof
WO2020049211A1 (en) * 2018-09-06 2020-03-12 Arctic Biomaterials Oy Composite filament
JP7110040B2 (en) 2018-09-11 2022-08-01 第一セラモ株式会社 Manufacturing method for highly thermally conductive resin member and resin member manufactured using the manufacturing method
JP2020040299A (en) * 2018-09-11 2020-03-19 第一セラモ株式会社 Method for manufacturing high thermal conductive resin member, and resin member manufactured using the manufacturing method
CN111393734A (en) * 2020-04-23 2020-07-10 四川轻化工大学 Halogen-free flame retardant, halogen-free flame-retardant low-density polyethylene material and preparation method thereof
WO2023163017A1 (en) 2022-02-25 2023-08-31 株式会社Adeka Thermoplastic resin composition for fused deposition modeling, modeled body, and method for producing same
CN114672150A (en) * 2022-04-11 2022-06-28 青岛科技大学 High-performance polymer-based composite material with double-network structure and preparation method thereof
CN114672150B (en) * 2022-04-11 2023-09-29 青岛科技大学 High-performance polymer-based composite material with double-network structure and preparation method thereof

Also Published As

Publication number Publication date
JP6860774B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
JP6860774B2 (en) Fused Deposition Modeling Filament Manufacturing Method for 3D Printers
Müller et al. Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical properties
Vidakis et al. Mechanical and electrical properties investigation of 3D-printed acrylonitrile–butadiene–styrene graphene and carbon nanocomposites
Araby et al. Elastomeric composites based on carbon nanomaterials
US9505903B2 (en) Resin composition for EMI shielding, comprising carbon hydride composite
Jeon et al. Exfoliated graphene/thermoplastic elastomer nanocomposites with improved wear properties for 3D printing
Aakyiir et al. Combining hydrophilic MXene nanosheets and hydrophobic carbon nanotubes for mechanically resilient and electrically conductive elastomer nanocomposites
Sanatgar et al. Morphological and electrical characterization of conductive polylactic acid based nanocomposite before and after FDM 3D printing
JP5616943B2 (en) Method for producing conductive resin composition and conductive resin composition
KR101197288B1 (en) Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
Hatui et al. Combined effect of expanded graphite and multiwall carbon nanotubes on the thermo mechanical, morphological as well as electrical conductivity of in situ bulk polymerized polystyrene composites
JP2006526058A (en) Conductive composition and method for producing the same
KR20070108368A (en) Thermally stable thermoplastic resin compositions, methods of manufacture thereof and articles comprising the same
Zhong et al. Properties of polyetherimide/graphite composites prepared using ultrasonic twin‐screw extrusion
Meng et al. Mechanical and functional properties of polyamide/graphene nanocomposite prepared by chemicals free-approach and selective laser sintering
JP2016108524A (en) Conductive resin composition, conductive master batch, molded body, and production method of the same
JP2014133842A (en) Conductive resin composition
Kalaitzidou Exfoliated graphite nanoplatelets as reinforcement for multifunctional polypropylene nanocomposites
KR20090095766A (en) Carbon Nanotube-polymer Nanocomposite Improved In Electrical Conductivity And Preparation Method Thereof
KR102258483B1 (en) A composite material composition having electromagnetic wave shielding function and a shaped product comprising the same
Poosala et al. The Effect of Oxygen‐Plasma Treated Graphene Nanoplatelets upon the Properties of Multiwalled Carbon Nanotube and Polycarbonate Hybrid Nanocomposites Used for Electrostatic Dissipative Applications
Asadi et al. Process-structure-property relationship in polymer nanocomposites
Gill et al. Conduction pathways in CNF/PTFE composite: air oxidized CNFs coated with the incomplete layer of PTFE
KR101301661B1 (en) Manufacturing method of plastic sheets preventing of static electricity with excellent durability
JP6891461B2 (en) Resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210309

R150 Certificate of patent or registration of utility model

Ref document number: 6860774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250