JP2016027351A - Connection structure between lenses and photoelectric composite wiring module - Google Patents

Connection structure between lenses and photoelectric composite wiring module Download PDF

Info

Publication number
JP2016027351A
JP2016027351A JP2012238481A JP2012238481A JP2016027351A JP 2016027351 A JP2016027351 A JP 2016027351A JP 2012238481 A JP2012238481 A JP 2012238481A JP 2012238481 A JP2012238481 A JP 2012238481A JP 2016027351 A JP2016027351 A JP 2016027351A
Authority
JP
Japan
Prior art keywords
optical
lens
substrate
wiring
lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012238481A
Other languages
Japanese (ja)
Inventor
松嶋 直樹
Naoki Matsushima
直樹 松嶋
中條 徳男
Tokuo Nakajo
徳男 中條
俊明 高井
Toshiaki Takai
俊明 高井
里佳 野村
Rika Nomura
里佳 野村
進 石田
Susumu Ishida
進 石田
徹 矢崎
Toru Yazaki
徹 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012238481A priority Critical patent/JP2016027351A/en
Priority to PCT/JP2013/078639 priority patent/WO2014069290A1/en
Publication of JP2016027351A publication Critical patent/JP2016027351A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • G02B6/425Optical features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • G02B6/4231Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment with intermediate elements, e.g. rods and balls, between the elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Light Receiving Elements (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that optical coupling efficiency is significantly reduced due to angle deviation between two lenses so that an optical signal cannot be transmitted.SOLUTION: A connection structure between lenses includes a first lens, a second lens, and elastic bodies on both sides of a back faces of at least one of the first and second lenses.SELECTED DRAWING: Figure 1(a)

Description

本発明は、2枚のレンズ間の接続構造に関し、特に大容量の光信号を一括処理する光電気複合配線モジュールとそれを用いた伝送装置に関する。   The present invention relates to a connection structure between two lenses, and more particularly to a photoelectric composite wiring module that collectively processes a large-capacity optical signal and a transmission device using the same.

近年、情報通信分野において光信号による通信トラフィックの整備が急速に行われており、これまで基幹、メトロ、アクセス系といった数km以上の長い距離において光ファイバ網が展開されてきた。今後はさらに、伝送装置間(数m〜数百m)、装置内(数cm〜数十cm)といった近距離も大容量データを遅延なく処理するために光信号を用いることが有効であり、ルータ、サーバ等の情報機器内部のLSI間またはLSI−バックプレーン間伝送の光化が進められている。   2. Description of the Related Art In recent years, communication traffic using optical signals has been rapidly developed in the information and communication field, and optical fiber networks have been deployed over long distances of several kilometers or more such as trunk, metro, and access systems. In the future, it will be effective to use optical signals to process large volumes of data without delay even at short distances between transmission devices (several meters to several hundreds of meters) and within devices (several centimeters to several tens of centimeters). Opticalization of transmission between LSIs in an information device such as a router and a server or between an LSI and a backplane is being promoted.

光信号による伝送装置を構築する際、重要となるのが光信号を如何に簡便かつ高効率に伝送させるかである。発光素子からの光信号を光ファイバや光導波路等の光配線に効率よく伝搬させる、あるいは光伝送路から伝搬した光信号を受光素子に効率よく入射させることが重要となる。一般に、光素子と光伝送路との光結合効率を良好にするためには、光素子と光伝送路との位置合わせを高精度に行う必要があるが、一方で、量産性や実用性を考慮すると、高精度な位置合わせを行うことによる実装工数が増大や、実装難易度が上昇することは回避しなければならない。   When constructing a transmission device using optical signals, what is important is how to transmit optical signals simply and efficiently. It is important to efficiently propagate an optical signal from the light emitting element to an optical wiring such as an optical fiber or an optical waveguide, or to efficiently enter an optical signal propagated from the optical transmission path to the light receiving element. In general, in order to improve the optical coupling efficiency between the optical element and the optical transmission line, it is necessary to align the optical element and the optical transmission line with high precision. Considering this, it is necessary to avoid an increase in mounting man-hours and an increase in mounting difficulty due to highly accurate alignment.

すなわち、光信号を用いていることを意識させない、従来の電気接続のみの電子部品と同等の簡易的な実装で、電気結合と光結合を同時に行えることが望ましい。さらに、そのような簡易的な実装でも高い光結合効率が得られる実装構造が望まれている。   In other words, it is desirable that electrical coupling and optical coupling can be performed at the same time with a simple mounting equivalent to that of a conventional electronic component with only electrical connection without being conscious of using an optical signal. Furthermore, a mounting structure that can achieve high optical coupling efficiency even with such simple mounting is desired.

例えば、特開2002−189137号公報(特許文献1)においては、光素子を内蔵した光パッケージのリードフレームと基板とをはんだ等で電気的に接合することで、光素子と基板内に形成された光導波路とが光結合する構造となっており、従来方式の電子部品実装で電気接続と光結合を同時に行うことができる。   For example, in Japanese Patent Application Laid-Open No. 2002-189137 (Patent Document 1), the lead frame of an optical package containing an optical element and the substrate are electrically joined with solder or the like to form the optical element and the substrate. The optical waveguide and the optical waveguide are optically coupled, and electrical connection and optical coupling can be performed simultaneously by conventional electronic component mounting.

特開2002−189137号公報JP 2002-189137 A

しかしながら、上記の従来技術では、以下の問題点が生じる。光素子と光導波路との光結合は、2枚のレンズを用いたコリメート光学系を用いている。この光学系は、2枚のレンズ間の、光軸に対して垂直ならびに光軸方向への位置ずれ許容量が大きい。それゆえ、はんだ接合である程度位置ずれが発生したも高い光結合が得られるよう当従来技術にも2枚レンズ構造が用いられている。   However, the above-described conventional technique has the following problems. The optical coupling between the optical element and the optical waveguide uses a collimating optical system using two lenses. This optical system has a large positional displacement tolerance between the two lenses in the direction perpendicular to the optical axis and in the optical axis direction. Therefore, a two-lens structure is also used in this prior art so that a high optical coupling can be obtained even if a positional deviation occurs to some extent by soldering.

しかし、この光学系はレンズ間の角度ずれに対する許容量が小さいという特徴がある。この構造は、リードフレームの歪み、はんだ厚ばらつき、電極の高さばらつき等により、光パッケージ側のレンズ光軸と基板側のレンズ光軸に角度ずれが生じる危険性が多数存在する。また、仮に実装時に光軸が平行であっても、使用時にリードフレームが外力により変形する等の角度ずれが発生する可能性は依然として存在する。すなわち、従来構造は、上記のような実装時および使用時の角度ずれにより光結合効率が大幅に低下し、光信号の伝送ができなくなる課題がある。   However, this optical system is characterized by a small tolerance for the angular deviation between the lenses. In this structure, there are many dangers that an angle deviation occurs between the lens optical axis on the optical package side and the lens optical axis on the substrate side due to lead frame distortion, solder thickness variation, electrode height variation, and the like. Even if the optical axes are parallel during mounting, there is still a possibility that an angle deviation such as deformation of the lead frame due to external force occurs during use. In other words, the conventional structure has a problem that the optical coupling efficiency is significantly lowered due to the angle shift during mounting and use as described above, and the optical signal cannot be transmitted.

本発明の目的は、2枚のレンズ間の角度ずれをなくす接続構造、そしてそれを用いて電気的接続と光結合を同時に簡易に行うことができ、かつ高い光結合効率を確保できる構造を有する光電気複合モジュールを提供すること、ならびにこれを用いた伝送装置を提供することにある。   It is an object of the present invention to have a connection structure that eliminates the angular deviation between two lenses, and a structure that can easily perform electrical connection and optical coupling at the same time and that can ensure high optical coupling efficiency. It is to provide a photoelectric composite module and to provide a transmission device using the same.

上記目的を達成するために、本発明は、2つのレンズの少なくとも一方の背面の両側に弾性体を有することを特徴とする。   In order to achieve the above object, the present invention is characterized by having elastic bodies on both sides of the back surface of at least one of the two lenses.

またさらには電気的接続と光結合を同時に行う構造を有する光電気複合配線モジュールにおいて、
光素子と、光素子を駆動するICと、前記光素子と光配線との光接続を行うための第一のレンズを備えた第一の基板と、電気配線と、光配線と、前記光配線と前記光素子との光接続を行うための第二のレンズを備えた第二の基板を有する光電気複合配線モジュールにおいて、 第一レンズと第二のレンズのいずれかまたは両方の後方に備えた弾性体によりレンズ同士を押し付けて固定する構造を有することを特徴とする。
Furthermore, in the photoelectric composite wiring module having a structure for performing electrical connection and optical coupling simultaneously,
An optical element, an IC for driving the optical element, a first substrate having a first lens for optical connection between the optical element and the optical wiring, an electrical wiring, an optical wiring, and the optical wiring In the photoelectric composite wiring module having a second substrate provided with a second lens for optical connection between the optical element and the optical element, provided behind either or both of the first lens and the second lens It has a structure in which lenses are pressed and fixed by an elastic body.

本発明によれば、簡便な構造で2枚のレンズ間の角度ずれを防止できる。   According to the present invention, an angle shift between two lenses can be prevented with a simple structure.

また従来の電気配線のみの電子回路と同等の簡易的な実装で電気的接続と光結合を同時に行うことができ、かつ高い光結合効率を確保することができる。これにより高信頼で低コストな光電気複合配線モジュールおよびそれを用いた伝送装置を提供することができる。   In addition, electrical connection and optical coupling can be performed simultaneously with a simple mounting equivalent to a conventional electronic circuit using only electrical wiring, and high optical coupling efficiency can be ensured. As a result, it is possible to provide a highly reliable and low-cost photoelectric composite wiring module and a transmission apparatus using the same.

本願発明の更なる構造、効果は以下実施例の説明を踏まえ本願明細書全体からあきらかになる。   Further structures and effects of the present invention will be apparent from the entire description of the present application based on the description of the embodiments below.

本発明による第一の実施の形態を示す断面図である。It is sectional drawing which shows 1st embodiment by this invention. 本発明による第一の実施の形態を示す断面図である。It is sectional drawing which shows 1st embodiment by this invention. 本発明による第一の実施の形態を示す上面図である。It is a top view which shows 1st embodiment by this invention. 本発明による第一の実施の形態を示す上面図である。It is a top view which shows 1st embodiment by this invention. 2枚レンズによるレンズ間の光軸方向ずれを示す模式図である。It is a schematic diagram which shows the optical axis direction shift | offset | difference between the lenses by two lenses. 図3(a)でのずれが発生した際の光結合効率の変動を示す図である。It is a figure which shows the fluctuation | variation of the optical coupling efficiency at the time of the shift | offset | difference in Fig.3 (a). 2枚レンズによるレンズ間の垂直方向ずれを示す模式図である。It is a schematic diagram which shows the vertical direction shift | offset | difference between the lenses by two lenses. 図4(a)でのずれが発生した際の光結合効率の変動を示す図である。It is a figure which shows the fluctuation | variation of the optical coupling efficiency at the time of the shift | offset | difference generate | occur | produced in Fig.4 (a). 2枚レンズによるレンズ間の角度ずれを示す模式図である。It is a mimetic diagram showing angle gap between lenses by two lenses. 図5(a)でのずれが発生した際の光結合効率の変動を示す図である。It is a figure which shows the fluctuation | variation of the optical coupling efficiency at the time of the shift | offset | difference generate | occur | produced in Fig.5 (a). 本発明による第二の実施の形態を示す模式図である。It is a schematic diagram which shows 2nd embodiment by this invention. 本発明による第二の実施の形態を示す模式図である。It is a schematic diagram which shows 2nd embodiment by this invention. 本発明による第二の実施の形態を示す模式図である。It is a schematic diagram which shows 2nd embodiment by this invention. 本発明による第三の実施の形態を示す模式図である。It is a schematic diagram which shows 3rd embodiment by this invention.

以下に、図面を用いて、本発明の実施の形態を詳細に述べる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、図1および図2に本発明の第一の実施の形態を示す。図1は、本発明による光電気複合配線モジュールの断面図である。図1(a)は組立工程を表す図、図1(b)は実装が完了した状態である。図2(a)、図2(b)は上面図である。   First, FIG. 1 and FIG. 2 show a first embodiment of the present invention. FIG. 1 is a cross-sectional view of a photoelectric composite wiring module according to the present invention. FIG. 1A shows an assembly process, and FIG. 1B shows a state where mounting is completed. 2 (a) and 2 (b) are top views.

本光電気複合配線モジュールは、第一の基板1と第二の基板2により構成されている。第一の基板1上には、半導体レーザ、フォトダイオード等の光素子11と、該光素子11用の光送受信回路12が搭載されている。実装方式は、本実施例ではともにはんだバンプ13を用いたフリップチップ実装となっている。光素子11と光送受信回路12とは、はんだバンプと第一の基板1に形成された電気配線14により電気的に接続されている。光素子11が半導体レーザの場合、光送信回路12から電気配線14を介して電気信号が半導体レーザに伝送され、半導体レーザにて電気から光信号に変換される。実装方式に関しては、光素子11、光送受信回路12いずれもフリップチップ実装以外の、例えばダイボンディングとワイヤボンディングの組み合わせでも構わない。   This photoelectric composite wiring module is composed of a first substrate 1 and a second substrate 2. On the first substrate 1, an optical element 11 such as a semiconductor laser or a photodiode and an optical transmission / reception circuit 12 for the optical element 11 are mounted. In this embodiment, the mounting method is flip-chip mounting using the solder bumps 13. The optical element 11 and the optical transmission / reception circuit 12 are electrically connected to each other by a solder bump and an electric wiring 14 formed on the first substrate 1. When the optical element 11 is a semiconductor laser, an electrical signal is transmitted from the optical transmission circuit 12 to the semiconductor laser via the electrical wiring 14, and converted from electricity to an optical signal by the semiconductor laser. Regarding the mounting method, both the optical element 11 and the optical transmission / reception circuit 12 may be a combination of die bonding and wire bonding other than flip-chip mounting.

発光素子から出射される/受光素子に入射する光信号は、第一の基板下方に伝搬される。すなわち、第一の基板1の該光素子11が実装される直下は、伝播する光に対して透明である。本実施例では、第一の基板をガラス材として、透明性を確保している。光素子11の直下には、第一のレンズ15が配置される。このレンズは、発光素子から出射した光を平行光にする、あるいは受光素子に入射する平行光を受光素子のアパーチャに効率よく集光できる形状にしている。これにより、発光素子から出射した光は第一の基板の下方向に平行光を発する形態となる。あるいは、第一の基板1下方から入射した平行光が受光素子に入射する構造になっている。また、第一の基板1には電気配線16が形成されている。スルーホール等により第一の基板1上の光素子11や光送受信回路12が搭載されている面の反対側に電気的に繋がった構造となっている。   An optical signal emitted from the light emitting element / incident on the light receiving element is propagated below the first substrate. That is, the portion immediately below where the optical element 11 is mounted on the first substrate 1 is transparent to the propagating light. In this embodiment, transparency is ensured by using the first substrate as a glass material. A first lens 15 is disposed immediately below the optical element 11. This lens is shaped so that the light emitted from the light emitting element is converted into parallel light, or the parallel light incident on the light receiving element can be efficiently condensed on the aperture of the light receiving element. As a result, the light emitted from the light emitting element emits parallel light downward in the first substrate. Alternatively, parallel light incident from below the first substrate 1 enters the light receiving element. In addition, electrical wiring 16 is formed on the first substrate 1. The structure is electrically connected to the opposite side of the surface on which the optical element 11 and the optical transmission / reception circuit 12 on the first substrate 1 are mounted by a through hole or the like.

図2(a)、図2(b)は、第一の基板の上面図である。第一の基板1上に、発光素子アレイ111、受光素子アレイ112、光送信回路121、光受信回路122が搭載されている。光素子と光送受信回路は、基板上の配線14でしかるべき部分に電気的に接続されている。   FIG. 2A and FIG. 2B are top views of the first substrate. A light emitting element array 111, a light receiving element array 112, an optical transmission circuit 121, and an optical reception circuit 122 are mounted on the first substrate 1. The optical element and the optical transmission / reception circuit are electrically connected to appropriate portions by wiring 14 on the substrate.

本実施例では発光素子アレイと受光素子アレイが同じ基板上に搭載された光トランシーバの形態であるが、発光素子のみ、あるいは受光素子のみであっても構わない。また、本実施例ではアレイ素子が2個設置されているが、1個あるいは3個以上であっても構わない。また、本実施例では一つの光素子アレイに対し1つの光送受信回路という構成だが、これ以外の、例えば一つの光掃除受信回路に2つ以上の光素子アレイの組み合わせ、という構成であっても構わない。   In this embodiment, the light emitting element array and the light receiving element array are in the form of an optical transceiver mounted on the same substrate. However, only the light emitting element or only the light receiving element may be used. In the present embodiment, two array elements are provided, but one or three or more array elements may be provided. Further, in this embodiment, one optical transmission / reception circuit is configured for one optical element array, but other configurations, for example, a combination of two or more optical element arrays in one optical cleaning reception circuit may be used. I do not care.

次に、図1(a)、図1(b)、図2(a)、図2(b)にて第二の基板2について説明する。第二の基板2には、第二のレンズ21を先端に備えた光ファイバ22が配置される。光ファイバ22は、第二の基板に設けられた貫通穴23を通って、第二の基板の裏面方向に配置されている。光ファイバ22と第二の基板2は、バネに代表される弾性体24により繋がっている。また、第二の基板2上には電気ソケット25も設置されている。   Next, the second substrate 2 will be described with reference to FIGS. 1 (a), 1 (b), 2 (a), and 2 (b). An optical fiber 22 having a second lens 21 at the tip is disposed on the second substrate 2. The optical fiber 22 is disposed in the back surface direction of the second substrate through the through hole 23 provided in the second substrate. The optical fiber 22 and the second substrate 2 are connected by an elastic body 24 represented by a spring. An electric socket 25 is also installed on the second substrate 2.

弾性体には例えば、ばね、ゴム、スポンジ等を用いることが出来る。   For example, a spring, rubber, sponge or the like can be used as the elastic body.

第一の基板1の下面の電極17と、第二の基板2上に設置された電気ソケット25の端子26は、電極配置が同じ形状になっており、第一の基板1を電気ソケット上に設置することで電気的な接続ができる構造になっている。   The electrode 17 on the lower surface of the first substrate 1 and the terminal 26 of the electric socket 25 installed on the second substrate 2 have the same electrode arrangement, and the first substrate 1 is placed on the electric socket. It has a structure that can be connected electrically by installing.

一方、光結合部に関しては、第一の基板1に備わる第一のレンズ15と、第二の基板2に備わる第二のレンズ21とが、電気ソケット25に装着した際に対向する形で接触する構造となっている。このとき、第一のレンズの表面19と第二のレンズの表面29は、レンズの光軸に対して略垂直(85〜95度)に形成されている。これらの二つの表面は、第一の基板を電気ソケットに装着する際に接触する。このとき、第二のレンズの後方には該弾性体が存在するため、2つの表面で接している2枚のレンズは、弾性体24の復元力によって押さえつけられている。   On the other hand, with respect to the optical coupling portion, the first lens 15 provided on the first substrate 1 and the second lens 21 provided on the second substrate 2 are in contact with each other when mounted on the electrical socket 25. It has a structure to do. At this time, the surface 19 of the first lens and the surface 29 of the second lens are formed substantially perpendicular (85 to 95 degrees) with respect to the optical axis of the lens. These two surfaces come into contact when the first substrate is attached to the electrical socket. At this time, since the elastic body exists behind the second lens, the two lenses in contact with the two surfaces are pressed by the restoring force of the elastic body 24.

この際、一方のレンズの背面の片側では片当りして角度ずれが発生する可能性が拭い切れないので、レンズ背面の両側に弾性体を配置することが望ましい。より望ましくはゴム輪などのリング状の弾性体である。   At this time, it is desirable to dispose elastic bodies on both sides of the back surface of the lens, since it is impossible to wipe off the possibility that an angle shift occurs due to one side of the back surface of one lens. More desirably, it is a ring-shaped elastic body such as a rubber ring.

第一の基板の第二の基板の電気ソケット25とは、勘合ピン27等により位置合わせされている。その位置合わせ精度は30μm程度である。第一のレンズならびに第二のレンズは、光素子から出射した光信号が第一のレンズで平行光となり、第二のレンズで光ファイバのコアに集光される構造となっている。あるいは、光ファイバから出射した光信号が、第二のレンズで平行光となり、第一のレンズで受光素子に集光される構造になっている。すなわち、当構造における光結合系は2枚レンズ系となっている。   The electrical socket 25 of the second board of the first board is aligned with a fitting pin 27 or the like. The alignment accuracy is about 30 μm. The first lens and the second lens have a structure in which an optical signal emitted from the optical element is converted into parallel light by the first lens and condensed on the core of the optical fiber by the second lens. Alternatively, the optical signal emitted from the optical fiber is converted into parallel light by the second lens and is condensed on the light receiving element by the first lens. That is, the optical coupling system in this structure is a two-lens system.

図3(a)、図4(a)、図5(a)に2枚レンズ系における、レンズ間の位置ずれの発生の模式図と、その際のそれぞれの光結合効率の変動を図3(b)、図4(b)、図5(b)にグラフで示す。   3A, FIG. 4A, and FIG. 5A are schematic diagrams showing the occurrence of positional deviation between the lenses in the two-lens system, and the fluctuation of the optical coupling efficiency at that time in FIG. b), FIG. 4B, and FIG.

図3(a)を簡単に説明すると、一例として、201は光源、202は第1のレンズ、400は光、301は光ファイバ、302は第2のレンズ、500が第2の部材という構成である。   3A is briefly described as an example. In the configuration, 201 is a light source, 202 is a first lens, 400 is light, 301 is an optical fiber, 302 is a second lens, and 500 is a second member. is there.

図3(a)は光軸に対して平行にずれた場合、図4(a)は垂直にずれた場合、図5(c)は角度ずれを起こした場合である。光軸に対し平行なずれに関しては、図3(b)に示すようにほとんど光結合効率は変動しない。垂直方向のずれに対しても図4(b)に示すように1dB低下する位置ずれ量はおおよそ±30μmと、比較的許容量が大きい。   FIG. 3A shows the case where the optical axis is shifted in parallel, FIG. 4A shows the case where the optical axis is shifted vertically, and FIG. 5C shows the case where the angular deviation occurs. Regarding the shift parallel to the optical axis, the optical coupling efficiency hardly fluctuates as shown in FIG. As shown in FIG. 4B, the amount of positional deviation that decreases by 1 dB with respect to the vertical deviation is approximately ± 30 μm, which is relatively large.

一方、角度ずれに関しては、図5(b)に示すように±1度の変化で1dB低下する
本発明において、2枚のレンズの位置合わせは、先に述べた通り勘合ピンを用いる。勘合ピン構造では高精度な位置合わせはできないが、2枚レンズ系の光学特性により高い光結合効率を確保することができる。光軸に平行な方向に関しては、各レンズの表面を突き当てる構造になっており、位置ずれが生じにくい構造になっている。
On the other hand, as shown in FIG. 5B, regarding the angle deviation, in the present invention, which is lowered by 1 dB with a change of ± 1 degree, the alignment pins of the two lenses are used as described above. With the fitting pin structure, high-precision alignment cannot be performed, but high optical coupling efficiency can be ensured by the optical characteristics of the two-lens system. With respect to the direction parallel to the optical axis, the surface of each lens is abutted, and the structure is less likely to cause a positional shift.

レンズ間の角度ずれに関しては、レンズ光軸に垂直な表面同士を突き合わせ、かつ弾性体の復元力によって押し付けられているために、位置ずれを起こすリスクが極めて少ない この2枚のレンズ間を弾性体で結合する方法、および構造自体が本願発明者により案された新規の発明である。   With regard to the angle deviation between the lenses, the surfaces perpendicular to the lens optical axis are abutted and pressed by the restoring force of the elastic body, so there is very little risk of positional displacement. This is a novel invention proposed by the present inventors.

なお、光ファイバ22に関しては、本実施例ではアレイ状のリボンファイバを用いているが、束線状のもの、あるいは1本ずつばらになったものでも構わない。さらには、光導波路が形成されたフィルムを用いても構わない。   As for the optical fiber 22, an array-like ribbon fiber is used in the present embodiment, but it may be bundled or separated one by one. Furthermore, a film in which an optical waveguide is formed may be used.

キャップ31は、水分や塵埃回避のために、必要に応じ取り付けても良い。デバイスの封止方法は、本実施例のようなキャップ以外の、例えばモールディング等の手法を用いても構わない。   The cap 31 may be attached as necessary to avoid moisture and dust. As a device sealing method, a method such as molding other than the cap as in the present embodiment may be used.

以上により、電気接続のみの電子装置と同等の簡易的な実装にて、高効率の光結合を当該実装時に同時できる光電気複合配線モジュールを提供することができる。   As described above, it is possible to provide an opto-electric composite wiring module capable of simultaneously performing high-efficiency optical coupling at the time of mounting by simple mounting equivalent to an electronic device with only electrical connection.

次に、本発明の第二の実施形態について図6(a)、図6(b)、図6(c)を用いて説明する。   Next, a second embodiment of the present invention will be described with reference to FIGS. 6 (a), 6 (b), and 6 (c).

これらの図面は光ファイバ22の設置構造についてのバリエーションを表す断面図である。図6(a)は、弾性体24に、図1(a)に示すようなコイル型のスプリングではなく、板ばね構造を用いたものである。このような構造でもレンズ同士を押し付けることによって復元力が働き、レンズ間の位置変動が発生しにくくなる。また、弾性体として、たとえばゴムに代表される弾性率の小さい樹脂を配置することによっても同様の効果を得ることが可能である。   These drawings are sectional views showing variations of the installation structure of the optical fiber 22. FIG. 6A shows a structure in which a plate spring structure is used for the elastic body 24 instead of the coil-type spring as shown in FIG. Even in such a structure, when the lenses are pressed against each other, a restoring force is exerted, and the positional variation between the lenses is less likely to occur. Further, it is possible to obtain the same effect by disposing a resin having a small elastic modulus represented by rubber, for example, as the elastic body.

次に、図6(b)は、光ファイバ22を第二の基板2の下面でなく上面に引き回す構造である。そのため、第二の基板には、貫通穴23ではなく、上面に溝231を設けており、そこから光ファイバ22を引き出す構造となっている。この溝は、第二の基板2ではなく、電気ソケット25の下面に設けても構わない。第二の基板の上下面のスペースや実装された他の部品配置等に応じて、適切な構造を選べばよい。   Next, FIG. 6B shows a structure in which the optical fiber 22 is routed to the upper surface instead of the lower surface of the second substrate 2. For this reason, the second substrate is provided with a groove 231 on the upper surface instead of the through hole 23, and the optical fiber 22 is drawn from the groove 231. This groove may be provided on the lower surface of the electrical socket 25 instead of the second substrate 2. An appropriate structure may be selected according to the space on the upper and lower surfaces of the second substrate, the placement of other mounted components, and the like.

次に、図6(c)は、第一の基板に備わるレンズ15が、第一の基板と別の部材からなる場合の構造例である。第一の基板1の光素子11搭載部の直下には、貫通穴151が設けられており、光が透過できる構造になっている。レンズ15は、その穴の直下に設けられている。   Next, FIG. 6C is a structural example in the case where the lens 15 provided on the first substrate is made of a member different from the first substrate. A through hole 151 is provided immediately below the optical element 11 mounting portion of the first substrate 1 so that light can pass therethrough. The lens 15 is provided immediately below the hole.

次に、本発明の第三の実施形態として、本発明による光電気融合配線モジュールが伝送装置に適用される形態を、図7を用いて説明する。   Next, as a third embodiment of the present invention, an embodiment in which the optoelectric interconnection module according to the present invention is applied to a transmission device will be described with reference to FIG.

図7において、第二の基板2上には、スイッチLSI等のIC101が搭載されている。IC101は、第二の基板上の電気配線28、電気ソケットの電極26、第一の基板1の配線16等を介して光送受信回路12に電気的に接続されている。すなわち、IC101からの電気信号が光送信回路12に伝送され、さらに光送信回路12から電気信号が発光素子11に伝送され、光信号に変換された後に光ファイバ22を伝搬して光信号が伝送される。あるいは、光ファイバ22を伝搬してきた光信号が受光素子11で電気信号に変換され、光受信回路12を通ってIC101に達する。光ファイバの端部は光コネクタ102が備わっており、ここに別の光ファイバ等を接続することによりボード間やラック間の光伝送が可能となる。   In FIG. 7, an IC 101 such as a switch LSI is mounted on the second substrate 2. The IC 101 is electrically connected to the optical transmission / reception circuit 12 via the electric wiring 28 on the second substrate, the electrode 26 of the electric socket, the wiring 16 of the first substrate 1 and the like. That is, an electrical signal from the IC 101 is transmitted to the optical transmission circuit 12, and further, an electrical signal is transmitted from the optical transmission circuit 12 to the light emitting element 11, and after being converted into an optical signal, the optical signal is transmitted through the optical fiber 22. Is done. Alternatively, the optical signal propagated through the optical fiber 22 is converted into an electric signal by the light receiving element 11 and reaches the IC 101 through the optical receiving circuit 12. An optical connector 102 is provided at the end of the optical fiber, and by connecting another optical fiber or the like to this end, optical transmission between boards or racks becomes possible.

なお、本実施例では、光電気複合配線モジュールとして、図1に示される実施例1の形態を適用しているが、それ以外の実施例2の形態についても適用可能である。   In this embodiment, the configuration of the first embodiment shown in FIG. 1 is applied as the photoelectric composite wiring module. However, the configuration of the second embodiment is also applicable.

1・・・・第一の基板
11・・・光素子
111・・発光素子
112・・受光素子
12・・・光送受信回路
121・・光送信回路
122・・光受信回路
13、131、132・・・はんだバンプ
14・・・第一の基板上の電気配線
15・・・第一の基板に備わるレンズ
151・・・第一の基板に備わる貫通穴
16・・・第一の基板に内装される電気配線
17・・・第一の基板に備わる電極パッド
18・・・勘合ピン穴
19・・・第一のレンズの光軸に垂直な平面
2・・・・第二の基板
21・・・レンズ
22・・・光ファイバ
23・・・第二の基板に備わる貫通穴
231・・溝
24・・・弾性体
25・・・電気ソケット
26・・・電気ソケットの電極
27・・・勘合ピン
28・・・第二の基板上の電気配線
29・・・第一のレンズの光軸に垂直な平面
31・・・キャップ
100・・光電気複合配線モジュール
101・・IC
102・・光コネクタ
DESCRIPTION OF SYMBOLS 1 ...... 1st board | substrate 11 ... Optical element 111 ... Light emitting element 112 ... Light receiving element 12 ... Optical transmission / reception circuit 121 ... Optical transmission circuit 122 ... Optical receiving circuit 13, 131, 132 ..Solder bump 14 ... Electric wiring 15 on first substrate 15 ... Lens 151 provided on first substrate ... Through hole 16 provided on first substrate ... Installed in first substrate Electrical wiring 17 ... Electrode pad 18 provided on the first substrate ... Fitting pin hole 19 ... Plane 2 perpendicular to the optical axis of the first lens 2 ... Second substrate 21 ... Lens 22... Optical fiber 23... Through hole 231 provided in second substrate... Groove 24... Elastic body 25. ... Electric wiring 29 on the second substrate ... perpendicular to the optical axis of the first lens Surface 31 ... cap 100 ... light electrical interconnect module 101 ... IC
102 .. Optical connector

Claims (5)

第一のレンズと、第二のレンズを有し、該第一のレンズと第二のレンズの少なくとも一方の背面の両側に弾性体を備えたことを特徴とするレンズの接続構造。   A lens connection structure comprising a first lens and a second lens, and comprising elastic bodies on both sides of the back surface of at least one of the first lens and the second lens. 請求項1記載のレンズの接続構造を用いたことを特徴とする光学機器。   An optical apparatus using the lens connection structure according to claim 1. 光素子と、光素子を駆動するICと、前記光素子と光配線との光接続を行うための第一のレンズを備えた第一の基板と、
電気配線と、光配線と、前記光配線と前記光素子との光接続を行うための第二のレンズを備えた第二の基板を有する光電気複合配線モジュールにおいて、
第一レンズと第二のレンズのいずれかまたは両方の後方に備えた弾性体によりレンズ同士を押し付けて固定する構造を有する光電気複合配線モジュール。
A first substrate comprising an optical element, an IC for driving the optical element, and a first lens for optically connecting the optical element and the optical wiring;
In the photoelectric composite wiring module having a second substrate provided with an electrical wiring, an optical wiring, and a second lens for optical connection between the optical wiring and the optical element,
A photoelectric composite wiring module having a structure in which lenses are pressed and fixed by an elastic body provided at the rear of either or both of the first lens and the second lens.
光素子と、光素子を駆動するICと、該光素子と光配線との光接続を行うための第一のレンズを備えた第一の基板と、
電気配線と、光配線と、該光配線と該光素子との光接続を行うための第二のレンズを備えた第二の基板を有し
該光素子と該光配線との光接続と、該ICと電気配線との電気接続をコネクタにより同時に行う光電気複合配線モジュールにおいて、
第一レンズの光軸に垂直な平面と、第二のレンズの光軸に垂直な平面とを接触させることで光接合および電気接合を同時に行う構造であって、
第一のレンズ、第二のレンズのいずれかまたは両方の後方に備えた弾性体により該平面を押し付ける構造を有する光電気複合配線モジュール。
A first substrate having an optical element, an IC for driving the optical element, and a first lens for optical connection between the optical element and the optical wiring;
An optical wiring, an optical wiring, and a second substrate having a second lens for optical connection between the optical wiring and the optical element; and an optical connection between the optical element and the optical wiring; In the photoelectric composite wiring module that performs electrical connection between the IC and the electrical wiring simultaneously using a connector,
A structure in which optical joining and electrical joining are performed simultaneously by bringing a plane perpendicular to the optical axis of the first lens into contact with a plane perpendicular to the optical axis of the second lens,
An optoelectric composite wiring module having a structure in which the flat surface is pressed by an elastic body provided at the back of one or both of the first lens and the second lens.
請求項3または4に記載の光電気複合配線モジュールを用いたことを特徴とする伝送装置。 5. A transmission apparatus using the photoelectric composite wiring module according to claim 3 or 4.
JP2012238481A 2012-10-30 2012-10-30 Connection structure between lenses and photoelectric composite wiring module Pending JP2016027351A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012238481A JP2016027351A (en) 2012-10-30 2012-10-30 Connection structure between lenses and photoelectric composite wiring module
PCT/JP2013/078639 WO2014069290A1 (en) 2012-10-30 2013-10-23 Connection structure between lenses, optical equipment, photoelectric composite wiring module, and transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238481A JP2016027351A (en) 2012-10-30 2012-10-30 Connection structure between lenses and photoelectric composite wiring module

Publications (1)

Publication Number Publication Date
JP2016027351A true JP2016027351A (en) 2016-02-18

Family

ID=50627201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238481A Pending JP2016027351A (en) 2012-10-30 2012-10-30 Connection structure between lenses and photoelectric composite wiring module

Country Status (2)

Country Link
JP (1) JP2016027351A (en)
WO (1) WO2014069290A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739295B2 (en) * 2001-03-23 2006-01-25 カンタツ株式会社 Optical instrument with two or more lenses positioned and fixed in the lens barrel
JP2006258835A (en) * 2005-03-15 2006-09-28 Sony Corp Optical waveguide module, photoelectric converter and optical waveguide member

Also Published As

Publication number Publication date
WO2014069290A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
US20180372968A1 (en) Wafer-level integrated opto-electronic module
US9316799B2 (en) Optical module and fabrication method
US7333683B2 (en) Structure and method for mounting LSI package onto photoelectric wiring board, information processing apparatus, optical interface, and photoelectric wiring board
TWI509303B (en) Opto-electronic transceiver module system and method of operation of an opto-electronic module system
JP2007249194A (en) Optical module
KR20070085080A (en) System and method for the fabrication of an electro-optical module
KR20100092861A (en) Optoelectric complex wring module and manufacturing method thereof
US8867231B2 (en) Electronic module packages and assemblies for electrical systems
US20110170831A1 (en) Optical module and manufacturing method of the module
JP2011248361A (en) Signal transmission module having optical waveguide structure
US20140071632A1 (en) Semiconductor device, communication device, and semiconductor package
US8121445B2 (en) Optical device
US8750657B2 (en) Flip-chip optical interface with micro-lens array
CN113272700A (en) Connector plug and active optical cable assembly using same
WO2014141451A1 (en) Optical connector apparatus, optical cable apparatus, and optical interconnect apparatus
CN113841075B (en) Connector plug and active optical cable assembly using same
US8888381B2 (en) Optical module base and optical module
KR100941763B1 (en) Optically and eletrically wired module device and its manufacture method
CN112485868A (en) Photoelectric converter and composite photoelectric plate connection coupling structure
KR101256814B1 (en) All passive aligned optical module and manufacturing method thereof
JP2013057720A (en) Optical module
US9523830B2 (en) Optical module and transmitting device
KR101266710B1 (en) Optical interconnection module
JP4867046B2 (en) Optical module
WO2014069290A1 (en) Connection structure between lenses, optical equipment, photoelectric composite wiring module, and transmission device