JP2016025780A - Parallel connection system of ac-dc converter - Google Patents

Parallel connection system of ac-dc converter Download PDF

Info

Publication number
JP2016025780A
JP2016025780A JP2014149334A JP2014149334A JP2016025780A JP 2016025780 A JP2016025780 A JP 2016025780A JP 2014149334 A JP2014149334 A JP 2014149334A JP 2014149334 A JP2014149334 A JP 2014149334A JP 2016025780 A JP2016025780 A JP 2016025780A
Authority
JP
Japan
Prior art keywords
converter
value
active power
converters
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014149334A
Other languages
Japanese (ja)
Other versions
JP6402521B2 (en
Inventor
泰裕 近藤
Yasuhiro Kondo
泰裕 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2014149334A priority Critical patent/JP6402521B2/en
Publication of JP2016025780A publication Critical patent/JP2016025780A/en
Application granted granted Critical
Publication of JP6402521B2 publication Critical patent/JP6402521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a parallel connection system of AC-DC converter capable of improving transient response characteristics and stabilizing a control command value of the AC-DC converter.SOLUTION: A divider 6 divides a power command value Pby a voltage detection value Vbat of a DC voltage source Bat to generate a current command value Ibatof the DC voltage source Bat. An average value calculation section 12 calculates an average value P_all_ave of active power in total AC-DC converters 10a, 10b, .... The average value P_all_ave of active power is used as a power command value P.SELECTED DRAWING: Figure 2

Description

本発明は、直流電圧源に接続された双方向チョッパ回路と、この双方向チョッパ回路と直流リンク部を介して接続されたコンバータユニットと、を有する交流−直流変換装置を複数台並列に接続した交流−直流変換装置の並列接続システムに係り、特に双方向チョッパ回路の直流電圧源の電流指令値の振動を抑制する技術に関する。   In the present invention, a plurality of AC-DC converters having a bidirectional chopper circuit connected to a DC voltage source and a converter unit connected to the bidirectional chopper circuit via a DC link unit are connected in parallel. The present invention relates to an AC-DC converter parallel connection system, and more particularly to a technique for suppressing vibration of a current command value of a DC voltage source of a bidirectional chopper circuit.

従来における交流−直流変換装置の回路構成の一例を図5に示す。 図5に示すように、交流−直流変換装置10は、双方向チョッパ回路2と、直流リンク部3と、コンバータユニット1と、を有している。また、交流−直流変換装置10内の双方向チョッパ回路2の制御ブロック図を図6に示す。 コンバータユニット1の制御は、従来から知られている技術であるため、ここでの説明は省略する。   An example of a circuit configuration of a conventional AC-DC converter is shown in FIG. As shown in FIG. 5, the AC-DC converter 10 includes a bidirectional chopper circuit 2, a DC link unit 3, and a converter unit 1. FIG. 6 shows a control block diagram of the bidirectional chopper circuit 2 in the AC-DC converter 10. Since control of the converter unit 1 is a conventionally known technique, description thereof is omitted here.

図6に示すように、双方向チョッパ回路2の制御部20は、直流リンク電圧検出値Vdcと直流リンク電圧指令値Vdc*が一致するように制御する定電圧制御部(以下、AVRと称する)4と、出力電圧検出値Voutと出力電流検出値Ioutから有効電力を演算する有効電力演算部5と、この有効電力を電力指令値P*とし、直流電圧源Batの電圧検出値Vbatを除算することで直流電圧源Batの電流指令値Ibat*を生成する除算器6と、 直流電圧源Batの電流指令値Ibat*にAVR4の制御出力値を加算する加算器Aと、加算器Aから出力された値と直流電圧源Batの電流検出値Ibatとの偏差を減算器Bから出力して、加算器Aの出力と直流電圧源Batの電流検出値Ibatが一致するように制御する定電流制御部(以下、ACRと称する)7と、ACR7の制御出力値に基づいて双方向チョッパ回路2のゲート信号を生成するPWM信号生成部8と、を備える。 As shown in FIG. 6, the control unit 20 of the bidirectional chopper circuit 2 is a constant voltage control unit (hereinafter referred to as AVR) that controls the DC link voltage detection value Vdc and the DC link voltage command value Vdc * to coincide with each other. 4, the active power calculation unit 5 that calculates the active power from the output voltage detection value Vout and the output current detection value Iout, and this active power as the power command value P *, and divides the voltage detection value Vbat of the DC voltage source Bat. The divider 6 that generates the current command value Ibat * of the DC voltage source Bat, the adder A that adds the control output value of the AVR 4 to the current command value Ibat * of the DC voltage source Bat, and the adder A The difference between the measured value and the detected current value Ibat of the DC voltage source Bat is output from the subtractor B, and the constant current is controlled so that the output of the adder A matches the detected current value Ibat of the DC voltage source Bat Control unit (hereinafter, referred to as ACR) comprises a 7, a PWM signal generating unit 8 for generating a gate signal of the bidirectional chopper circuit 2 on the basis of the control output value of ACR7, the.

前記AVR4は、目的の制御量のフィードバックであるメジャーループの制御を行う。また、ACR7は、前記メジャーループの内側のフィードバックループであるマイナーループの制御である。   The AVR 4 controls a major loop which is a feedback of a target control amount. ACR 7 is a control of a minor loop which is a feedback loop inside the major loop.

上記のように、双方向チョッパ回路2の制御部20において、有効電力(電力指令値P*)に基づく直流電圧源Batの電流指令値Ibat*をフィードフォワード項としてAVR4の制御出力値に加算することにより、負荷急変などの過渡応答特性を向上することができる。 As described above, the control unit 20 of the bidirectional chopper circuit 2 adds the current command value Ibat * of the DC voltage source Bat based on the active power (power command value P * ) to the control output value of the AVR 4 as a feedforward term. Thus, transient response characteristics such as a sudden load change can be improved.

特開2012−23875号公報JP 2012-23875 A 特開2002−315350号公報JP 2002-315350 A

しかしながら、図7に示すように複数の交流−直流変換装置10a,10bを並列接続し、それぞれの交流−直流変換装置10a,10bを自立運転した場合、横流が発生することがあった。 この横流が発生することにより、 各交流−直流変換装置10a,10bの出力電流検出値Iout1,Iout2の実効値が振動し、有効電力演算結果の電力指令値P*も振動する。この電力指令値P*を直流電圧源Batの電流指令値Ibat*に使用するため、直流電圧源Batの電流検出値Ibatが振動する。 However, when a plurality of AC-DC converters 10a, 10b are connected in parallel and the AC-DC converters 10a, 10b are independently operated as shown in FIG. 7, a cross current may occur. By generating this cross current, the effective values of the output current detection values Iout1 and Iout2 of the AC-DC converters 10a and 10b vibrate, and the power command value P * of the active power calculation result also vibrates. Since this power command value P * is used for the current command value Ibat * of the DC voltage source Bat, the current detection value Ibat of the DC voltage source Bat vibrates.

図7に示す交流−直流変換装置の並列接続システムと同様な回路として、例えば特許文献1が開示されている。交流−直流変換装置では、各々の交流−直流変換装置10の電力指令値P*を直流電圧源Batの電池電圧検出値Vbatで割った値を各々の交流−直流変換装置10の直流電圧源Batの電流指令値Ibat*として使用しているため、各々の交流−直流変換装置10の直流電圧源Batの電流検出値Ioutが振動する。 As a circuit similar to the AC / DC converter parallel connection system shown in FIG. In the AC-DC converter, a value obtained by dividing the power command value P * of each AC-DC converter 10 by the battery voltage detection value Vbat of the DC voltage source Bat is a DC voltage source Bat of each AC-DC converter 10. because of being used as a current command value Ibat *, each exchange - the DC voltage source Bat of the current detection value Iout of the DC converter 10 is vibrated.

ここで、例えば特許文献2の従来技術に記載されているように、並列接続されるインバータ装置の電圧指令値の位相と振幅を合わせることで横流抑制制御できることが従来から知られている。   Here, for example, as described in the prior art of Patent Document 2, it is conventionally known that cross current suppression control can be performed by matching the phase and amplitude of the voltage command value of the inverter devices connected in parallel.

しかし、過渡応答特性を向上させるため、直流電圧源Batの電流指令値Ibat*をフィードフォワード制御とした場合、上記の横流抑制制御を行ったとしても、制御応答遅れや構成部品の特性誤差によって完全に横流を抑制することはできなかった。そのため、直流電圧源Batの電流指令値Ibat*には振動が残り、その電流指令値Ibat*の振動がフィードフォワード制御によって増幅されてしまい、各交流−直流変換装置の制御が安定しないという問題があった。 However, when the current command value Ibat * of the DC voltage source Bat is set to feedforward control in order to improve the transient response characteristics, even if the above-described cross current suppression control is performed, the control response delay and the characteristic error of the component parts cause completeness. The cross current could not be suppressed. Therefore, the remaining vibration to the current command value Ibat * of the DC voltage source Bat, the vibration of the current command value Ibat * is will be amplified by the feed-forward control, the AC - Control of DC converter is a problem of unstable there were.

以上示したようなことから、交流−直流変換装置の並列接続システムにおいて、過渡応答特性を改善させると共に、交流−直流変換装置の制御指令値を安定させることが課題となる。   As described above, in the parallel connection system of AC / DC converters, it is a problem to improve the transient response characteristics and stabilize the control command value of the AC / DC converter.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、直流電圧源に接続され、充電または放電を行う双方向チョッパ回路と、前記双方向チョッパ回路と直流リンク部を介して接続され、直流電力を交流電力に変換し、負荷に交流電力を供給するコンバータユニットと、を有する交流−直流変換装置を複数台並列に接続した交流−直流変換装置の並列接続システムであって、各交流−直流変換装置の前記双方向チョッパ回路の制御部は、直流リンク電圧検出値と直流リンク電圧指令値とに基づいて定電圧制御を行う定電圧制御部と、全交流−直流変換装置における有効電力の平均値を演算し、この有効電力の平均値を電力指令値として出力する平均値演算部と、電力指令値を直流電圧源の電圧検出値で除算することにより直流電圧源の電流指令値を生成する除算器と、直流電圧源の電流指令値に定電圧制御部の制御出力値を加算した値と直流電圧源の電流検出値との偏差出力から定電流制御を行う定電流制御部と、定電流制御部の制御出力値に基づいて双方向チョッパ回路のゲート信号を生成するPWM信号生成部と、を備えたことを特徴とする。   The present invention has been devised in view of the conventional problems, and one aspect thereof is a bidirectional chopper circuit connected to a DC voltage source for charging or discharging, the bidirectional chopper circuit, and a DC link unit. A parallel connection system of AC-DC converters in which a plurality of AC-DC converters connected in parallel are connected to each other through a converter unit for converting DC power into AC power and supplying AC power to a load. The control unit of the bidirectional chopper circuit of each AC-DC converter includes a constant voltage control unit that performs constant voltage control based on a DC link voltage detection value and a DC link voltage command value, and all AC-DC An average value calculation unit that calculates an average value of the active power in the converter and outputs the average value of the active power as a power command value, and DC by dividing the power command value by a voltage detection value of the DC voltage source A divider that generates a current command value for the pressure source, and constant current control from the deviation output between the current command value for the DC voltage source and the control output value of the constant voltage control unit added to the current command value for the DC voltage source And a PWM signal generation unit that generates a gate signal of the bidirectional chopper circuit based on a control output value of the constant current control unit.

また、その一態様として、前記双方向チョッパ回路の制御部は、各交流−直流変換装置における有効電力の変化率と、全交流−直流変換装置における有効電力の平均値の変化率と、を比較し、全交流−直流変換装置における有効電力の平均値の変化率よりも各交流−直流変換装置における有効電力の変化率の方が大きい場合は各交流−直流変換装置における有効電力を電力指令値とし、各交流−直流変換装置における有効電力の変化率よりも全交流−直流変換装置における有効電力の平均値の変化率の方が大きい場合は、全交流−直流変換装置における有効電力の平均値を電力指令値とすることを特徴とする。   Further, as one aspect thereof, the control unit of the bidirectional chopper circuit compares the rate of change of active power in each AC-DC converter with the rate of change of average value of active power in all AC-DC converters. If the rate of change in active power in each AC-DC converter is greater than the rate of change in average value of active power in all AC-DC converters, the active power in each AC-DC converter is the power command value. When the rate of change in the average value of active power in all AC-DC converters is greater than the rate of change in active power in each AC-DC converter, the average value of active power in all AC-DC converters Is a power command value.

また、他の態様として、前記双方向チョッパ回路の制御部は、各交流−直流変換装置における有効電力の変化率が閾値よりも大きい場合は、各交流−直流変換装置における有効電力を電力指令値とし、各交流−直流変換装置における有効電力の変化率が閾値以下の場合は、全交流−直流変換装置における有効電流の平均値を電力指令値とすることを特徴とする。   Moreover, as another aspect, the control unit of the bidirectional chopper circuit, when the rate of change of active power in each AC-DC converter is larger than a threshold value, sets the active power in each AC-DC converter as a power command value. When the rate of change of active power in each AC-DC converter is equal to or less than a threshold value, an average value of effective currents in all AC-DC converters is used as a power command value.

本発明によれば、交流−直流変換装置の並列接続システムにおいて、過渡応答特性を改善させると共に、交流−直流変換装置の制御指令値を安定させることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, in the parallel connection system of an AC-DC converter, while improving a transient response characteristic, it becomes possible to stabilize the control command value of an AC-DC converter.

実施形態1における交流−直流変換装置の並列接続システムを示すブロック図。The block diagram which shows the parallel connection system of the alternating current-direct current converter in Embodiment 1. FIG. 実施形態1における交流−直流変換装置と統括制御装置間の制御を示すブロック図。FIG. 3 is a block diagram showing control between the AC-DC converter and the overall control device in the first embodiment. 交流−直流変換装置の有効電力演算値を示すイメージ図。The image figure which shows the active power calculation value of an AC-DC converter. 実施形態2における交流−直流変換装置と統括制御装置間の制御を示すブロック図。The block diagram which shows the control between the alternating current-direct current converter in Embodiment 2, and an integrated control apparatus. 従来における交流−直流変換装置を示す概略図。Schematic which shows the conventional AC-DC converter. 双方向チョッパ回路の制御部を示すブロック図。The block diagram which shows the control part of a bidirectional chopper circuit. 交流−直流変換装置の並列運転時の出力電流を示す図。The figure which shows the output current at the time of the parallel operation of an AC-DC converter.

以下、本発明に係る交流−直流変換装置の並列接続システムの実施形態1,2を図1〜図4に基づいて説明する。   Hereinafter, Embodiments 1 and 2 of a parallel connection system of AC / DC converters according to the present invention will be described with reference to FIGS.

[実施形態1]
図1は、本実施形態1における交流−直流変換装置の並列接続システムを示す概略図である。本実施形態1における交流−直流変換装置の並列接続システムは、負荷LOADに複数の交流−直流変換装置10a,10b,・・・が並列接続されている。従来技術と異なる点は、交流−直流変換装置10a,10b,・・・に、統括制御装置11を接続した点である。また、交流−直流変換装置10a,10b,・・・と統括制御装置11とは双方向通信できる構成となっている。
[Embodiment 1]
FIG. 1 is a schematic diagram illustrating a parallel connection system of AC-DC converters according to the first embodiment. In the parallel connection system of AC-DC converters in Embodiment 1, a plurality of AC-DC converters 10a, 10b,... Are connected in parallel to a load LOAD. The difference from the prior art is that the overall control device 11 is connected to the AC-DC converters 10a, 10b,. Further, the AC / DC converters 10a, 10b,... And the integrated control device 11 are configured to be capable of bidirectional communication.

各交流−直流変換装置10a,10b,・・・は、図5に示すように、直流電圧源(例えば、二次電池)Batに接続され充電または放電を行う双方向チョッパ回路2と、双方向チョッパ回路2に接続された直流リンク部3と、双方向チョッパ回路2に直流リンク部3を介して接続され直流電力を交流電力に変換し負荷LOADに出力するコンバータユニット1と、出力電圧Vout,出力電流Iout,直流リンク電圧Vdc,直流電圧源の電圧Vbat,直流電圧源の電流Ibatを検出する各検出回路と、を備えている。   As shown in FIG. 5, each AC-DC converter 10a, 10b,... Is connected to a DC voltage source (for example, secondary battery) Bat and is charged with or discharged from a bidirectional chopper circuit 2. A DC link unit 3 connected to the chopper circuit 2, a converter unit 1 connected to the bidirectional chopper circuit 2 via the DC link unit 3 to convert DC power into AC power and output it to the load LOAD, an output voltage Vout, And a detection circuit for detecting an output current Iout, a DC link voltage Vdc, a DC voltage source voltage Vbat, and a DC voltage source current Ibat.

前記双方向チョッパ回路2は、直流電圧源Batの電圧に関わらず直流リンク電圧Vdcを一定に制御する。また、直流リンク部3は、平滑コンデンサCを有する。   The bidirectional chopper circuit 2 controls the DC link voltage Vdc to be constant regardless of the voltage of the DC voltage source Bat. In addition, the DC link unit 3 includes a smoothing capacitor C.

図2は、交流−直流変換装置10a,10b,10c,・・・と統括制御装置11との間で行う制御を示す制御ブロック図である。双方向チョッパ回路2の制御部20は、図2で示す箇所以外は図6と同様である。図2に示すように、 各交流−直流変換装置10a,10b,10c,・・・における有効電力演算部5a,5b,5c,・・・と統括制御装置11における平均値演算部12との間で双方向通信が行われる。   FIG. 2 is a control block diagram illustrating control performed between the AC / DC converters 10a, 10b, 10c,... The control unit 20 of the bidirectional chopper circuit 2 is the same as that shown in FIG. 6 except for the portions shown in FIG. As shown in FIG. 2, between the active power calculators 5 a, 5 b, 5 c,... In each AC-DC converter 10 a, 10 b, 10 c, and so on and the average value calculator 12 in the overall controller 11. Two-way communication is performed.

有効電力演算部5a,5b,5cは、各交流−直流変換装置10a,10b,10c,・・・の出力電圧検出値Vout1,Vout2,Vout3および出力電流検出値Iout1,Iout2,Iout3から電力指令値 P1*,P2*,・・・,Pn*(並列数nの場合)を演算し、統括制御装置11の平均値演算部12に電力指令値P1*,P2*,・・・,Pn*を送信する。 The active power calculators 5a, 5b, 5c are power command values from the output voltage detection values Vout1, Vout2, Vout3 and output current detection values Iout1, Iout2, Iout3 of the AC-DC converters 10a, 10b, 10c,. P1 *, P2 *, ···, calculates the Pn * (for parallel number n), the average value power command value to the operation unit 12 of the integrated control unit 11 P1 *, P2 *, ··· , the Pn * Send.

平均値演算部12は、電力指令値 P1*,P2*,・・・,Pn*から全交流−直流変換装置10a,10b,10c,・・・の電力指令値の平均値P_all_aveを演算し、それぞれの交流−直流変換装置10a,10b,10c,・・・の除算器6に送信する。この平均値P_all_aveを電力指令値P*として、直流電圧源Batの電流制御のフィードフォワード項とする。すなわち、各交流−直流変換装置10a,10b,10c,・・・において個別の電力指令値P*を演算し、その平均値P_all_aveを電力指令値P*として利用する。 Average value computing unit 12, * power command value P1, P2 *, ..., all AC from Pn * - DC converter devices 10a, 10b, 10c, an average value P_all_ave power command value ... is calculated, It transmits to the divider 6 of each AC-DC converter 10a, 10b, 10c, .... The average value P_all_ave is used as a power command value P * and is used as a feedforward term for current control of the DC voltage source Bat. That is, each AC - DC converter 10a, calculates 10b, 10c, a * separate power command value P in., Utilizes an average value P_all_ave as power command value P *.

2台並列運転する交流−直流変換装置10a,10bの有効電力演算値P_local1,P_local2のイメージ を図3に示す。各交流−直流変換装置10a,10bが出力する有効電力演算値P_local1,P_local2は横流の影響で振動する。   FIG. 3 shows an image of the active power calculation values P_local1 and P_local2 of the AC-DC converters 10a and 10b that are operated in parallel. The active power calculation values P_local1 and P_local2 output from the AC-DC converters 10a and 10b vibrate due to the influence of the cross current.

しかし、負荷Loadが要求する電力Ploadが一定であれば、運転台数に関わらず、各交流−直流変換装置10a,10bが出力する有効電力演算値の合計値P_allは振動しない。   However, if the power Pload required by the load Load is constant, the total value P_all of the active power calculation values output from the AC-DC converters 10a and 10b does not vibrate regardless of the number of operating units.

従って、全交流−直流変換装置10a,10b,・・・の有効電力の平均値P_all_aveを、電力指令値P*として直流電圧源Batの電流制御のフィードフ ォワード項とすれば、各交流−直流変換装置10a,10b,・・・が出力する有効電力演算値P_local1,P_local2の振動が電池電流指令値Ibat*に干渉しない。 Therefore, if the average value P_all_ave of the active power of all the AC-DC converters 10a, 10b,... Is used as the power command value P * as a feedforward term for current control of the DC voltage source Bat, each AC-DC converter The vibrations of the active power calculation values P_local1, P_local2 output by the devices 10a, 10b,... Do not interfere with the battery current command value Ibat * .

また、電力指令値P*に基づく直流電圧源Batの電流指令値Ibat*をフィードフォワード項として加算することにより、負荷急変などの過渡応答性を向上させることが可能となる。 Further, by adding the current command value Ibat * of the DC voltage source Bat based on the power command value P * as a feedforward term, it is possible to improve transient response such as sudden load change.

以上示したように、本実施形態1によれば、負荷Loadに並列接続された交流−直流変換装置の過渡応答特性の改善および制御指令値の安定化の両立を図ることが可能となる。   As described above, according to the first embodiment, it is possible to improve both the transient response characteristics of the AC-DC converter connected in parallel to the load Load and to stabilize the control command value.

[実施形態2]
図4は、本実施形態2における交流−直流変換装置10a,10b,10c,・・・と統括制御装置11との間で行う制御を示す制御ブロック図である。
[Embodiment 2]
FIG. 4 is a control block diagram illustrating control performed between the AC / DC converters 10a, 10b, 10c,... And the overall controller 11 in the second embodiment.

本実施形態2では、実施形態1における交流−直流変換装置の並列接続システムに対して、統括制御装置11から出力される全交流−直流変換装置10a,10b,10c,・・・の有効電力演算値の平均値P_all_aveの変化率と、交流−直流変換装置10aの有効電力演算値P_localの変化率の2つの有効電力の変化率を比較する変化率比較器CNPが設けられる。   In the second embodiment, the active power calculation of all the AC-DC converters 10a, 10b, 10c,... Output from the overall control device 11 with respect to the parallel connection system of the AC-DC converters in the first embodiment. A rate-of-change comparator CNP that compares the rate of change of two active powers, that is, the rate of change of the average value P_all_ave of the values and the rate of change of the active power calculation value P_local of the AC-DC converter 10a, is provided.

また、本実施形態2では、変化率比較器CNPの出力信号により、除算器6に送る電力指令値P*を全交流−直流変換装置10a,10b,10c,・・・の有効電力演算値の平均値P_all_aveと、交流−直流変換装置10aの有効電力演算値P_localのうち何れか一方を選択する指令値切替スイッチSWを設けた点が実施形態1と異なる。 In the second embodiment, the power command value P * to be sent to the divider 6 based on the output signal of the change rate comparator CNP is used as the active power calculation value of all the AC-DC converters 10a, 10b, 10c,. The difference from the first embodiment is that a command value changeover switch SW for selecting one of the average value P_all_ave and the active power calculation value P_local of the AC-DC converter 10a is provided.

全交流−直流変換装置10a,10b,10c,・・・の有効電力演算値の平均値P_all_aveと、交流−直流変換装置の有効電力演算値P_localを変化率比較器CNPに入力し、1サンプリング前の有効電力演算値の平均値P_all_ave_oldと現在サンプリングした有効電力演算値の平均値P_all_aveから、有効電力演算値の平均値の変化率ΔP_all_aveを得る。   The average value P_all_ave of the active power calculation values of all the AC-DC converters 10a, 10b, 10c,... And the active power calculation value P_local of the AC-DC converter are input to the change rate comparator CNP, and one sampling before The change rate ΔP_all_ave of the average value of the active power calculation value is obtained from the average value P_all_ave_old of the active power calculation value and the average value P_all_ave of the currently sampled active power calculation value.

また、1サンプリング前の有効電力演算値P_local_oldと現在サンプリングした有効電力演算値P_localから、有効電力検出値の変化率ΔP_localを得る。   Also, the active power detection value change rate ΔP_local is obtained from the active power calculation value P_local_old before one sampling and the currently sampled active power calculation value P_local.

そして、有効電力演算値の平均値の変化率ΔP_all_aveと有効電力演算値の変化率ΔP_localを比較し、有効電力演算値の平均値の変化率ΔP_all_aveの方が大きい場合は有効電力演算値の平均値P_all_aveを、有効電力演算値の変化率ΔP_localの方が大きい場合は有効電力演算値P_localを電力指令値P*として、双方向チョッパ回路2の除算器6に出力し、直流電流指令値Ibat*の演算に用いる。 Then, the change rate ΔP_all_ave of the average value of the active power calculation value is compared with the change rate ΔP_local of the calculation value of the active power, and if the change rate ΔP_all_ave of the average value of the active power calculation value is larger, the average value of the calculation values of the active power When P_all_ave has a larger change rate ΔP_local of the active power calculation value, the active power calculation value P_local is output to the divider 6 of the bidirectional chopper circuit 2 as the power command value P * , and the DC current command value Ibat * is Used for calculation.

また、上記とは異なり、変化率比較器CNPに所定の閾値を予め設定しておき、閾値より交流−直流変換装置10の有効電力演算値 の変化率ΔP_localが大きくなった場合のみ、切替スイッチSWを有効電力演算値P_local側に切替えて電力指令値P*として双方向チョッパの電池電流制御の除算器6に出力し、直流電流指令値Ibat*の演算に用いてもよい。この場合、前記閾値より有効電力演算値の変化率ΔP_localが小さい場合は、 切替スイッチSWを有効電力演算値の平均値P_all_ave側に切替えて電力指令値P*として双方向チョッパ回路2の除算器6に送信し、直流電流指令値Ibat*の演算に用いる。 Also, unlike the above, a predetermined threshold value is set in advance in the change rate comparator CNP, and only when the change rate ΔP_local of the active power calculation value of the AC-DC converter 10 becomes larger than the threshold value, the selector switch SW. May be switched to the active power calculation value P_local side and output as a power command value P * to the battery current control divider 6 of the bidirectional chopper and used for calculation of the DC current command value Ibat * . In this case, when the change rate ΔP_local of the active power calculation value is smaller than the threshold value, the selector switch SW is switched to the average value P_all_ave side of the active power calculation value and used as the power command value P * in the divider 6 of the bidirectional chopper circuit 2. And used for calculation of the DC current command value Ibat * .

実施形態1における交流−直流変換装置の並列接続システムでは、全交流−直流変換装置10a,10b,10c,・・・の有効電力演算値の平均値P_all_aveを 図4の統括制御装置11で演算するため、通信による遅れが発生する場合があり、その通信による遅れで過渡応答性が低下する。本実施形態2では、負荷急変などで出力する有効電力が大きく変化する場合、その時のみ、各交流−直流変換装置10の有効電力演算値P_localを用いるため、過渡応答性を改善することが可能となる。   In the parallel connection system of AC-DC converters in the first embodiment, an average value P_all_ave of active power calculation values of all AC-DC converters 10a, 10b, 10c,... Is calculated by the overall control device 11 of FIG. Therefore, there may be a delay due to communication, and the transient responsiveness deteriorates due to the delay due to the communication. In the second embodiment, when the active power output greatly changes due to a sudden load change or the like, the active power calculation value P_local of each AC-DC converter 10 is used only at that time, so that the transient response can be improved. Become.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

1…コンバータユニット
2…双方向チョッパ回路
3…直流リンク部
4…定電圧制御部(AVR)
5…有効電力演算部
6…除算器
7…定電流制御部(ACR)
8…PWM制御部
10…交流−直流変換装置
11…統括制御装置
12…平均値演算部
CNP…変化率比較器
SW…切替スイッチ
DESCRIPTION OF SYMBOLS 1 ... Converter unit 2 ... Bidirectional chopper circuit 3 ... DC link part 4 ... Constant voltage control part (AVR)
5 ... Active power calculation unit 6 ... Divider 7 ... Constant current control unit (ACR)
DESCRIPTION OF SYMBOLS 8 ... PWM control part 10 ... AC-DC converter 11 ... Overall control apparatus 12 ... Average value calculating part CNP ... Change rate comparator SW ... Changeover switch

Claims (3)

直流電圧源に接続され、充電または放電を行う双方向チョッパ回路と、
前記双方向チョッパ回路と直流リンク部を介して接続され、直流電力を交流電力に変換し、負荷に交流電力を供給するコンバータユニットと、
を有する交流−直流変換装置を複数台並列に接続した交流−直流変換装置の並列接続システムであって、
各交流−直流変換装置の前記双方向チョッパ回路の制御部は、
直流リンク電圧検出値と直流リンク電圧指令値とに基づいて定電圧制御を行う定電圧制御部と、
全交流−直流変換装置における有効電力の平均値を演算し、この有効電力の平均値を電力指令値として出力する平均値演算部と、
電力指令値を直流電圧源の電圧検出値で除算することにより直流電圧源の電流指令値を生成する除算器と、
直流電圧源の電流指令値に定電圧制御部の制御出力値を加算した値と直流電圧源の電流検出値との偏差出力から定電流制御を行う定電流制御部と、
定電流制御部の制御出力値に基づいて双方向チョッパ回路のゲート信号を生成するPWM信号生成部と、
を備えたことを特徴とする交流−直流変換装置の並列接続システム。
A bidirectional chopper circuit connected to a DC voltage source for charging or discharging; and
A converter unit that is connected to the bidirectional chopper circuit via a DC link unit, converts DC power into AC power, and supplies AC power to a load;
A parallel connection system of AC-DC converters in which a plurality of AC-DC converters having
The control unit of the bidirectional chopper circuit of each AC-DC converter is
A constant voltage control unit that performs constant voltage control based on the DC link voltage detection value and the DC link voltage command value;
An average value calculation unit that calculates an average value of active power in all AC-DC converters, and outputs the average value of active power as a power command value;
A divider that generates a current command value of the DC voltage source by dividing the power command value by the voltage detection value of the DC voltage source;
A constant current control unit that performs constant current control from a deviation output between a value obtained by adding the control output value of the constant voltage control unit to the current command value of the DC voltage source and the current detection value of the DC voltage source;
A PWM signal generation unit that generates a gate signal of the bidirectional chopper circuit based on a control output value of the constant current control unit;
A parallel connection system of AC-DC converters, comprising:
前記双方向チョッパ回路の制御部は、
各交流−直流変換装置における有効電力の変化率と、全交流−直流変換装置における有効電力の平均値の変化率と、を比較し、
全交流−直流変換装置における有効電力の平均値の変化率よりも各交流−直流変換装置における有効電力の変化率の方が大きい場合は各交流−直流変換装置における有効電力を電力指令値とし、
各交流−直流変換装置における有効電力の変化率よりも全交流−直流変換装置における有効電力の平均値の変化率の方が大きい場合は、全交流−直流変換装置における有効電力の平均値を電力指令値とすることを特徴とする請求項1記載の交流−直流変換装置の並列接続システム。
The control unit of the bidirectional chopper circuit is
Compare the rate of change of active power in each AC-DC converter with the rate of change in average value of active power in all AC-DC converters,
When the rate of change of active power in each AC-DC converter is greater than the rate of change in average value of active power in all AC-DC converters, the active power in each AC-DC converter is the power command value,
When the rate of change in the average value of active power in all AC-DC converters is greater than the rate of change in active power in each AC-DC converter, the average value of active power in all AC-DC converters The parallel connection system for an AC-DC converter according to claim 1, wherein the system is a command value.
前記双方向チョッパ回路の制御部は、
各交流−直流変換装置における有効電力の変化率が閾値よりも大きい場合は、各交流−直流変換装置における有効電力を電力指令値とし、各交流−直流変換装置における有効電力の変化率が閾値以下の場合は、全交流−直流変換装置における有効電流の平均値を電力指令値とすることを特徴とする請求項1記載の交流−直流変換装置の並列接続システム。
The control unit of the bidirectional chopper circuit is
When the change rate of the active power in each AC-DC converter is larger than the threshold, the active power in each AC-DC converter is used as the power command value, and the change rate of the active power in each AC-DC converter is equal to or less than the threshold. The parallel connection system for an AC-DC converter according to claim 1, wherein an average value of effective currents in all AC-DC converters is used as a power command value.
JP2014149334A 2014-07-23 2014-07-23 AC-DC converter parallel connection system Active JP6402521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014149334A JP6402521B2 (en) 2014-07-23 2014-07-23 AC-DC converter parallel connection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014149334A JP6402521B2 (en) 2014-07-23 2014-07-23 AC-DC converter parallel connection system

Publications (2)

Publication Number Publication Date
JP2016025780A true JP2016025780A (en) 2016-02-08
JP6402521B2 JP6402521B2 (en) 2018-10-10

Family

ID=55272118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014149334A Active JP6402521B2 (en) 2014-07-23 2014-07-23 AC-DC converter parallel connection system

Country Status (1)

Country Link
JP (1) JP6402521B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515164A (en) * 1991-07-05 1993-01-22 Meidensha Corp Power converter
JP2000134803A (en) * 1998-10-20 2000-05-12 Toshiba Corp Power conversion device
JP2002176735A (en) * 2000-09-29 2002-06-21 Sanyo Denki Co Ltd Uninterrupted power supply device, parallel operation type uninterrupted power supply device, inverter device and parallel operation type inverter device
JP2006166499A (en) * 2004-12-02 2006-06-22 Toshiba Corp Power converter
JP2010148173A (en) * 2008-12-16 2010-07-01 Toyota Motor Corp Power supply system, vehicle with the same, and control method for the power supply system
JP2013172494A (en) * 2012-02-20 2013-09-02 Meidensha Corp Secondary battery charging controller and control method of power converter for power storage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515164A (en) * 1991-07-05 1993-01-22 Meidensha Corp Power converter
JP2000134803A (en) * 1998-10-20 2000-05-12 Toshiba Corp Power conversion device
JP2002176735A (en) * 2000-09-29 2002-06-21 Sanyo Denki Co Ltd Uninterrupted power supply device, parallel operation type uninterrupted power supply device, inverter device and parallel operation type inverter device
JP2006166499A (en) * 2004-12-02 2006-06-22 Toshiba Corp Power converter
JP2010148173A (en) * 2008-12-16 2010-07-01 Toyota Motor Corp Power supply system, vehicle with the same, and control method for the power supply system
JP2013172494A (en) * 2012-02-20 2013-09-02 Meidensha Corp Secondary battery charging controller and control method of power converter for power storage

Also Published As

Publication number Publication date
JP6402521B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
US9906070B2 (en) Distributed power source system with storage battery
JP6112463B2 (en) Frequency control method, frequency control apparatus and system
KR101677784B1 (en) Regenarative inverter device and inverter device using power cell unit
JP2021141704A (en) Control system of power converter
JP2012100487A (en) Power system stabilizing apparatus
JP2016019298A (en) Power conversion equipment
JP4614439B2 (en) Uninterruptible power supply and input current control method thereof
US9673748B2 (en) Motor control device and motor control method
JP5245498B2 (en) Power assist device
JP5870740B2 (en) Secondary battery charge control device and secondary battery charge control method of power converter for power storage
JP6402521B2 (en) AC-DC converter parallel connection system
JP2018121379A (en) Controller of frequency conversion system
JP2008092734A (en) Ac power supply unit
JP6138035B2 (en) Power conversion device and control device
JP6534445B2 (en) Power converter
JP2013038960A (en) Output fluctuation suppressing device of distributed power supply and output fluctuation suppressing method of the same
KR101047338B1 (en) Power device
JP2016046997A (en) Distributed power supply system and control method therefor
JP2015109781A (en) System interconnection power conversion device
JP2017153236A (en) Power converter
JP2014135878A (en) Controller of three-phase converter and electric power conversion system using the same
JP2015008561A (en) Low-loss power conversion device and method of controlling the same
JP2019161868A (en) Power supply system and control method for power supply system
KR20190112222A (en) Apparatus for Hybrid Uninterruptible Power Supplying for EV Using Robust Tracking Control
JP2005176567A (en) Two-system changeover feeding device, uninterruptible power supply, and two-system changeover feeding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180827

R150 Certificate of patent or registration of utility model

Ref document number: 6402521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150