JP2016025711A - Dc power reception device - Google Patents

Dc power reception device Download PDF

Info

Publication number
JP2016025711A
JP2016025711A JP2014147492A JP2014147492A JP2016025711A JP 2016025711 A JP2016025711 A JP 2016025711A JP 2014147492 A JP2014147492 A JP 2014147492A JP 2014147492 A JP2014147492 A JP 2014147492A JP 2016025711 A JP2016025711 A JP 2016025711A
Authority
JP
Japan
Prior art keywords
power
potential difference
voltage
circuit
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014147492A
Other languages
Japanese (ja)
Other versions
JP2016025711A5 (en
JP6252390B2 (en
Inventor
直 森田
Sunao Morita
直 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2014147492A priority Critical patent/JP6252390B2/en
Publication of JP2016025711A publication Critical patent/JP2016025711A/en
Publication of JP2016025711A5 publication Critical patent/JP2016025711A5/ja
Application granted granted Critical
Publication of JP6252390B2 publication Critical patent/JP6252390B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Direct Current Feeding And Distribution (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a DC power reception device capable of safely and efficiently receiving DC power.SOLUTION: There is provided the DC power reception device that comprises: a delay circuit for delaying change in a first potential difference which is a potential difference between a positive side output of DC power and a neutral point, and a second potential difference which is a potential difference between the neutral point and a negative side output of the DC power; a comparison circuit which is provided at the subsequent stage of the delay circuit, has a predetermined hysteresis, and compares magnitudes of the first potential difference and the second potential difference; and a changeover circuit for performing, when a result of the comparison circuit's comparison shows that a difference between the first potential difference and the second potential difference is equal to or larger than a predetermined amount, performs changeover in such a way that DC power is received from the larger of the first potential difference and the second potential difference.SELECTED DRAWING: Figure 1

Description

本開示は、直流電力受電装置に関する。   The present disclosure relates to a DC power receiving device.

蓄電池を備えることで、入力電源からの電力が途絶えても、接続されている機器に対して、停電することなく所定の時間電力を蓄電池から供給し続けることができる無停電電源装置の存在が知られている。このような電源装置を需要家単位に拡大して、停電や蓄電池の容量不足等の電力供給の異常発生時に電力を需要家に供給する技術が提案されている(特許文献1、2等参照)。   By providing a storage battery, there is an uninterruptible power supply that can continue to supply power from a storage battery to a connected device for a predetermined time without power failure even if the power from the input power supply is interrupted. It has been. A technology has been proposed in which such a power supply device is expanded to a consumer unit and power is supplied to the consumer when a power supply abnormality such as a power failure or a shortage of storage battery capacity occurs (see Patent Documents 1 and 2). .

特開2011−205871号公報JP 2011-208771 A 特開2013−90560号公報JP 2013-90560 A

直流電力を供給する電力供給システムにおいて、正極線、負極線及び中性線の3線で直流電力を供給する際に、正極線及び負極線で電力を受け取る場合と、正極線または負極線と、中性線とを用いて電力を受け取る場合とがある。しかし、正極線または負極線と、中性線とを用いて電力を受け取る場合、中性線が遮断する等のトラブルが起こると、想定された電圧以上の電圧が、直流電力を受電する機器に印加されてしまう。   In the power supply system for supplying DC power, when supplying DC power with three wires of the positive electrode wire, the negative electrode wire, and the neutral wire, when receiving the power with the positive electrode wire and the negative electrode wire, the positive electrode wire or the negative electrode wire, There is a case where power is received using a neutral wire. However, when power is received using a positive or negative line and a neutral line, if a problem such as the interruption of the neutral line occurs, a voltage higher than the expected voltage is applied to the device that receives the DC power. It will be applied.

また正極線または負極線と、中性線とを用いて電力を受け取る場合、正極線または負極線のいずれか一方からの受電が行われ続けると、直流電力を供給する側のバランスが崩れ、送電効率が悪くなる。   In addition, when power is received using a positive or negative line and a neutral line, if power is continuously received from either the positive line or the negative line, the DC power supply side is unbalanced and power is transmitted. Inefficiency.

そこで本開示では、安全に、かつ効率よく直流電力を受電することが可能な、新規かつ改良された直流電力受電装置を提案する。   Therefore, the present disclosure proposes a new and improved DC power receiving device that can receive DC power safely and efficiently.

本開示によれば、直流電力の正側出力と中性点との間の電位差である第1の電位差及び前記中性点と前記直流電力の負側出力との間の電位差である第2の電位差の変化に遅延を持たせる遅延回路と、前記遅延回路の後段に設けられ、所定のヒステリシスを有し、前記第1の電位差と前記第2の電位差との大小を比較する比較回路と、前記比較回路の比較の結果、前記第1の電位差と前記第2の電位差との差が所定量以上生じると、前記第1の電位差または前記第2の電位差の大きい方から直流電力を受電するよう切り替える切替回路と、を備える、直流電力受電装置が提供される。   According to the present disclosure, a first potential difference that is a potential difference between a positive output of DC power and a neutral point, and a second potential difference that is a potential difference between the neutral point and the negative output of the DC power. A delay circuit that delays a change in potential difference; a comparison circuit that is provided at a subsequent stage of the delay circuit, has a predetermined hysteresis, and compares the magnitudes of the first potential difference and the second potential difference; When the difference between the first potential difference and the second potential difference is greater than or equal to a predetermined amount as a result of the comparison by the comparison circuit, switching is performed so that DC power is received from the larger one of the first potential difference or the second potential difference. There is provided a DC power receiving device including a switching circuit.

以上説明したように本開示によれば、安全に、かつ効率よく直流電力を受電することが可能な、新規かつ改良された直流電力受電装置を提供することができる。   As described above, according to the present disclosure, it is possible to provide a new and improved DC power receiving apparatus that can receive DC power safely and efficiently.

なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。   Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.

本開示の一実施形態に係る直流電力送受電システム1の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the DC power transmission / reception system 1 which concerns on one Embodiment of this indication. 交流3線式電力供給方式による受電回路の例を示す説明図である。It is explanatory drawing which shows the example of the receiving circuit by an alternating current 3-wire type electric power supply system. 直流3線式電力供給方式による受電回路の例を示す説明図である。It is explanatory drawing which shows the example of the receiving circuit by a direct current | flow three-wire type power supply system. 本開示の一実施形態に係る直流電力受電装置200に設けられる受電回路300の構成例を示す説明図である。FIG. 3 is an explanatory diagram illustrating a configuration example of a power receiving circuit 300 provided in a DC power receiving device 200 according to an embodiment of the present disclosure.

以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

なお、説明は以下の順序で行うものとする。
1.本開示の一実施形態
1.1.概要
1.2.構成例
2.まとめ
The description will be made in the following order.
1. One Embodiment of the Present Disclosure 1.1. Outline 1.2. Configuration example 2. Summary

<1.本開示の一実施形態>
[1.1.概要]
本開示の一実施形態について説明する前に、本開示の一実施形態の概要について説明する。
<1. One Embodiment of the Present Disclosure>
[1.1. Overview]
Before describing an embodiment of the present disclosure, an outline of an embodiment of the present disclosure will be described.

各需要家に蓄電池を有するバッテリサーバを備え、商用電源や、太陽光、風力、地熱等の自然エネルギーにより発生した電力を用いて蓄電池に電力を蓄えておき、その蓄電池に蓄えた電力を使って電気製品を動作させる仕組みが、今後ますます普及していくことが想定される。そのような仕組みの普及を踏まえ、上述したように、ある需要家のバッテリサーバにおいて電力が不足した場合に、電力に余裕のある需要家のバッテリサーバから、その電力が不足している需要家のバッテリサーバに電力を融通するシステムが考案されている。電力を需要家同士で供給しあう際は、蓄電池からの電力供給を考慮すると、直流電力による供給が行われることが、効率面を考えると望ましい。   Each customer is equipped with a battery server with a storage battery, and power is stored in the storage battery using power generated by natural energy such as commercial power, solar power, wind power, geothermal heat, and the power stored in the storage battery is used. It is expected that mechanisms for operating electrical products will become increasingly popular in the future. Based on the spread of such a mechanism, as described above, when there is a shortage of power in a battery server of a certain consumer, the battery server of the consumer having a shortage of power from the battery server of the consumer with sufficient power. A system has been devised for accommodating power to a battery server. When power is supplied between consumers, it is desirable from the viewpoint of efficiency that supply with DC power is performed in consideration of power supply from storage batteries.

直流電力の供給方式は様々であるが、中でも、正極線、負極線及び中性線の3線によって直流電力を送電する直流3線式電力供給方式が検討されている。例えば、正極線で100V、負極線で−100Vの電圧が印加され、中性線ではどこか1箇所で接地されることで0V付近の電圧が出力される直流3線式電力供給方式が考えられる。   There are various DC power supply methods, and among them, a DC three-wire power supply method in which DC power is transmitted through three wires of a positive electrode wire, a negative electrode wire, and a neutral wire has been studied. For example, a direct current three-wire power supply system in which a voltage of 100 V is applied to the positive line and a voltage of −100 V is applied to the negative line, and a voltage near 0 V is output by being grounded at somewhere on the neutral line can be considered. .

このような直流3線式電力供給方式で直流電力を供給する電力供給システムにおいて、正極線、負極線及び中性線の3線で直流電力を供給する際に、正極線及び負極線で電力を受け取る場合と、正極線または負極線と、中性線とを用いて電力を受け取る場合とがある。しかし、正極線または負極線と、中性線とを用いて電力を受け取る場合、中性線が遮断する等のトラブルが起こると、想定された電圧以上の電圧が、直流電力を受電する機器に印加されてしまう。   In such a power supply system that supplies DC power using the DC three-wire power supply system, when DC power is supplied through three wires, that is, a positive electrode wire, a negative electrode wire, and a neutral wire, There are cases where the electric power is received using a positive line or a negative line and a neutral line. However, when power is received using a positive or negative line and a neutral line, if a problem such as the interruption of the neutral line occurs, a voltage higher than the expected voltage is applied to the device that receives the DC power. It will be applied.

また正極線または負極線と、中性線とを用いて電力を受け取る場合、正極線または負極線のいずれか一方からの受電が行われ続けると、直流電力を供給する側のバランスが崩れ、送電効率が悪くなる。   In addition, when power is received using a positive or negative line and a neutral line, if power is continuously received from either the positive line or the negative line, the DC power supply side is unbalanced and power is transmitted. The efficiency becomes worse.

そこで本件開示者は、直流電力を受電する際に、安全に、かつ効率よく直流電力を受電することが可能になる技術について鋭意検討を行なった。その結果、本件開示者は、以下で説明するように、直流電力を受電する際に、中性線が遮断する等のトラブルが起こった場合でも定格電圧以上の電圧が掛かってしまう危険性を大きく軽減させ、かつ効率よく直流電力を受電することが可能になる技術を考案するに至った。   Accordingly, the present disclosure has intensively studied a technique that enables receiving DC power safely and efficiently when receiving DC power. As a result, as will be described below, the present disclosure person greatly increases the risk that a voltage higher than the rated voltage will be applied even when trouble such as interruption of the neutral line occurs when receiving DC power. We have devised a technology that can reduce and efficiently receive DC power.

以上、本開示の一実施形態の概要について説明した。続いて、本開示の一実施形態の構成例について説明する。   Heretofore, an overview of an embodiment of the present disclosure has been described. Subsequently, a configuration example of an embodiment of the present disclosure will be described.

[1.2.構成例]
図1は、本開示の一実施形態に係る直流電力送受電システム1の構成例を示す説明図である。以下、図1を用いて本開示の一実施形態に係る直流電力送受電システム1の構成例について説明する。
[1.2. Configuration example]
FIG. 1 is an explanatory diagram illustrating a configuration example of a DC power transmission / reception system 1 according to an embodiment of the present disclosure. Hereinafter, a configuration example of the DC power transmission / reception system 1 according to an embodiment of the present disclosure will be described with reference to FIG.

図1に示した本開示の一実施形態に係る直流電力送受電システム1は、直流による電力の給電を行なうことを目的としたシステムである。図1に示したように、本開示の一実施形態に係る直流電力送受電システム1は、直流電力給電装置100a、100b、100cと、直流電力受電装置200a〜200eと、を含んで構成される。   A DC power transmission / reception system 1 according to an embodiment of the present disclosure illustrated in FIG. 1 is a system intended to supply power by DC. As illustrated in FIG. 1, a DC power transmission / reception system 1 according to an embodiment of the present disclosure includes DC power supply devices 100a, 100b, and 100c, and DC power reception devices 200a to 200e. .

図1では、直流電力給電装置100aはバッテリを備えたバッテリサーバとして図示しており、直流電力給電装置100bは電気自動車として図示しており、直流電力給電装置100cは太陽電池パネルとして図示している。   In FIG. 1, the DC power supply apparatus 100a is illustrated as a battery server including a battery, the DC power supply apparatus 100b is illustrated as an electric vehicle, and the DC power supply apparatus 100c is illustrated as a solar cell panel. .

また図1では、直流電力受電装置200aは洗濯機として、直流電力受電装置200bは冷蔵庫として、直流電力受電装置200cはテレビ受像機として、直流電力受電装置200dはパーソナルコンピュータとして、直流電力受電装置200eは電灯として、それぞれ図示している。直流電力受電装置200a〜200eは、いずれも家庭内において、直流電力を直接受電して動作する装置である。なお、以下の説明において、直流電力受電装置200a〜200eをそれぞれ区別する必要がない場合は、単に直流電力受電装置200と表記することもある。   In FIG. 1, the DC power receiving device 200a is a washing machine, the DC power receiving device 200b is a refrigerator, the DC power receiving device 200c is a television receiver, the DC power receiving device 200d is a personal computer, and the DC power receiving device 200e. Are respectively shown as electric lamps. The DC power receiving devices 200a to 200e are devices that operate by receiving DC power directly in the home. In the following description, when it is not necessary to distinguish the DC power receiving devices 200a to 200e, they may be simply referred to as the DC power receiving device 200.

本開示の一実施形態に係る直流電力送受電システム1は、直流電力給電装置100a、100b、100cから直流電力受電装置200a〜200eへの直流電力の給電を、直流バスライン10を通じて行なう。本実施形態では、直流バスライン10は、正極線、中性線、負極線の3線で構成される。例えば、正極線の定格電圧は+100V、負極線の定格電圧は−100Vでありうる。もちろん正極線や負極線の定格電圧はかかる例に限定されるものではないことは言うまでもない。   The DC power transmission / reception system 1 according to an embodiment of the present disclosure supplies DC power from the DC power supply devices 100 a, 100 b, 100 c to the DC power reception devices 200 a to 200 e through the DC bus line 10. In the present embodiment, the DC bus line 10 is composed of three wires: a positive wire, a neutral wire, and a negative wire. For example, the rated voltage of the positive line may be + 100V, and the rated voltage of the negative line may be −100V. Of course, it goes without saying that the rated voltages of the positive and negative wires are not limited to such examples.

直流電力給電装置100a、100b、100cは、直流バスライン10とそれぞれ電力給電コネクタ20で接続され得る。直流電力受電装置200a〜200eは、直流バスライン10とそれぞれ直流プラグ30で接続され得る。電力給電コネクタ20や直流プラグ30の形状その他の仕様は、直流バスライン10による直流電力の送受電が可能なように構成されるものであれば、どのようなものでも構わない。   The DC power supply devices 100a, 100b, and 100c can be connected to the DC bus line 10 through the power supply connector 20, respectively. The DC power receiving devices 200a to 200e can be connected to the DC bus line 10 by DC plugs 30, respectively. The shape and other specifications of the power feeding connector 20 and the DC plug 30 may be any as long as they are configured so that DC power can be transmitted and received by the DC bus line 10.

図1に示した本開示の一実施形態に係る直流電力送受電システム1では、直流電力を給電する直流電力給電装置100a、100b、100cの内、いずれか1つのみが、直流バスライン10への電力の送受電を制御する制御権を有するように構成されていても良い。例えば直流電力給電装置100aは、直流電力受電装置200aへ直流バスライン10を通じた直流電力の給電を行う場合、まず直流電力給電装置100b、100cとの間で制御権の獲得について調停を行なって、直流電力給電装置100b、100cがともに制御権を得ていなければ直流電力給電装置100aが制御権を得てから、直流電力受電装置200aへ直流電力の給電を行うようにしても良い。   In the DC power transmission / reception system 1 according to the embodiment of the present disclosure illustrated in FIG. 1, only one of the DC power supply devices 100 a, 100 b, and 100 c that supplies DC power is supplied to the DC bus line 10. It may be configured to have a control right to control power transmission / reception. For example, when the DC power supply apparatus 100a supplies DC power to the DC power reception apparatus 200a through the DC bus line 10, the DC power supply apparatus 100a first arbitrates the acquisition of the control right with the DC power supply apparatuses 100b and 100c, If both the DC power supply devices 100b and 100c have no control right, the DC power supply device 100a may acquire the control right and then supply DC power to the DC power reception device 200a.

図1に示した本開示の一実施形態に係る直流電力送受電システム1では、バッテリサーバである直流電力給電装置100aが接続される中性線において1点で接地されている。なお直流電力送受電システムにおいて中性線が接地される場所は図1に示した場所に限定されるものではないが、どこで接地されていても、直流電力送受電システムの全体としてその1点でのみ接地される。   In the DC power transmission / reception system 1 according to the embodiment of the present disclosure illustrated in FIG. 1, the neutral line to which the DC power supply device 100 a that is a battery server is connected is grounded at one point. In addition, the location where the neutral wire is grounded in the DC power transmission / reception system is not limited to the location shown in FIG. 1, but the DC power transmission / reception system as a whole can be at one point regardless of where it is grounded. Only grounded.

図2は、交流3線式電力供給方式による受電回路の例を示す説明図である。また図3は、直流3線式電力供給方式による受電回路の例を示す説明図である。図2に示した交流3線式電力供給方式による受電回路は、中性線から見てAC100Vとなる端子が両側から出ている。片方は他方に対し位相が反転しているため、両端子間の電圧は合計200Vとなる。   FIG. 2 is an explanatory diagram illustrating an example of a power receiving circuit using an AC three-wire power supply method. FIG. 3 is an explanatory diagram showing an example of a power receiving circuit using a DC three-wire power supply system. In the power receiving circuit according to the AC three-wire power supply system shown in FIG. 2, the terminal that becomes 100 VAC as viewed from the neutral line protrudes from both sides. Since one of the phases is inverted with respect to the other, the voltage between both terminals is 200 V in total.

一方の図3に示した直流3線式電力供給方式は、中性線を0Vとして、プラス端子及びマイナス端子が出ており、プラス端子で+100V、マイナス端子で−100Vを受電する。従って直流3線式電力供給方式では、プラス端子とマイナス端子との電位差が200Vとなる構成である。   On the other hand, in the DC three-wire power supply method shown in FIG. 3, the neutral line is set to 0V, the plus terminal and the minus terminal are output, and + 100V is received at the plus terminal and −100V is received at the minus terminal. Therefore, the direct current three-wire power supply system is configured such that the potential difference between the plus terminal and the minus terminal is 200V.

直流電力受電装置200a〜200eは、正極線、中性線、負極線の3線で構成される直流バスライン10から電力を受電する。直流電力受電装置200a〜200eは、正極線および負極線によって電力を受電するものもあれば、正極線または負極線と、中性線とによって電力を受電するものもあり得る。すなわち、正極線の定格電圧は+100V、負極線の定格電圧は−100Vであるとすれば、定格電圧が200Vの機器と、100Vの機器とがあり得る。   The DC power receiving devices 200a to 200e receive power from the DC bus line 10 composed of three wires, a positive wire, a neutral wire, and a negative wire. The DC power receiving devices 200a to 200e may receive power through a positive electrode line and a negative electrode line, and may receive power through a positive electrode or negative electrode line and a neutral line. That is, if the rated voltage of the positive line is + 100V and the rated voltage of the negative line is −100V, there can be a device with a rated voltage of 200V and a device with a voltage of 100V.

正極線の定格電圧は+100V、負極線の定格電圧は−100Vであるとした場合、例えば、パーソナルコンピュータとして図示されている直流電力受電装置200dや、電灯として図示されている直流電力受電装置200eを、正極線または負極線と、中性線とによって電力を受電する機器、すなわち定格電圧が100Vの機器であるとする。   When the rated voltage of the positive line is + 100V and the rated voltage of the negative line is −100V, for example, a DC power receiving device 200d illustrated as a personal computer or a DC power receiving device 200e illustrated as a lamp is used. Suppose that the device receives power by the positive or negative wire and the neutral wire, that is, a device having a rated voltage of 100V.

このような定格電圧が100Vの機器に、誤って正極線および負極線の両方によって200Vの直流電力を受電してしまうと、定格電圧の倍の電圧が印加されてしまうことになる。従って、定格電圧が100Vの機器に、誤って正極線および負極線の両方によって200Vの直流電力を受電してしまうと、機器の破損につながりかねない。   If 200 V DC power is accidentally received by both the positive line and the negative line to a device having such a rated voltage of 100 V, a voltage twice as high as the rated voltage is applied. Therefore, if a device having a rated voltage of 100 V receives 200 V DC power by both the positive and negative wires, the device may be damaged.

また、正極線、負極線及び中性線の3線で直流電力が供給される際に、正極線または負極線のいずれか一方からの受電が行われ続けると、直流電力を供給する側でのバランスが崩れ、送電効率が悪くなる。例えば、正極線の電圧が+95V、負極線の電圧が−100Vとなっている状態で、正極線及び中性線によって受電を行うと正極線の電圧がさらに低下して、直流電力を供給する側でのバランスが崩れることになる。このような場合、受電側では、正極線及び中性線ではなく、負極線及び中性線によって受電を行うように自動的にコントロールされることが望ましい。   In addition, when DC power is supplied from the positive electrode wire, the negative electrode wire, and the neutral wire, if power is continuously received from either the positive electrode wire or the negative electrode wire, the DC power supply side The balance will be lost and the transmission efficiency will deteriorate. For example, when the positive line voltage is +95 V and the negative line voltage is −100 V and power is received by the positive line and the neutral line, the voltage of the positive line further decreases and the DC power is supplied. The balance will be lost. In such a case, it is desirable that the power receiving side is automatically controlled so that power is received not by the positive electrode wire and the neutral wire but by the negative electrode wire and the neutral wire.

そこで本実施形態では、正極線または負極線と、中性線とによって電力を受電する機器において、中性点から見た他の端子の電圧(電圧の絶対値)の高い方を選択し接続するよう構成する。また本実施形態では、正極線または負極線と、中性線とによって電力を受電する機器において、電圧の高い端子を検出する回路を備え、当該回路においてその検出に遅延を持たせ、かつヒステリシスを持たせるよう構成する。   Therefore, in the present embodiment, in a device that receives power through a positive or negative electrode and a neutral wire, the higher one of the voltages (absolute voltage values) of other terminals viewed from the neutral point is selected and connected. Configure as follows. Further, in the present embodiment, in a device that receives power through a positive or negative line and a neutral line, a circuit that detects a terminal having a high voltage is provided, the detection is delayed in the circuit, and hysteresis is provided. Configure to hold.

このように、中性点から見た他の端子の電圧(電圧の絶対値)の高い方を選択し接続するよう構成するとともに、検出に遅延を持たせ、かつヒステリシスを持たせるよう構成することで、本実施形態に係る、正極線または負極線と、中性線とによって電力を受電する機器は、安全に直流電力を受電するとともに、瞬間的な電圧変動に対し頻繁な端子の切り換えを抑えることが可能になる。   In this way, it is configured to select and connect the higher voltage (absolute voltage value) of the other terminal viewed from the neutral point, and to configure the detection with a delay and hysteresis. Thus, according to the present embodiment, the device that receives power through the positive or negative electrode wire and the neutral wire safely receives DC power and suppresses frequent switching of terminals against instantaneous voltage fluctuations. It becomes possible.

以上、図1を用いて本開示の一実施形態に係る直流電力送受電システム1の構成例について説明した。続いて、本開示の一実施形態に係る直流電力受電装置に設けられる受電回路の構成例について説明する。   The configuration example of the DC power transmission / reception system 1 according to an embodiment of the present disclosure has been described above with reference to FIG. Subsequently, a configuration example of a power receiving circuit provided in the DC power receiving device according to an embodiment of the present disclosure will be described.

図4は、本開示の一実施形態に係る直流電力受電装置200に設けられる受電回路300の構成例を示す説明図である。図4に示した受電回路300は、直流バスライン10を通じて送電される直流電力を受電する回路である。以下、図4を用いて本開示の一実施形態に係る直流電力受電装置200に設けられる受電回路300の構成例について説明する。   FIG. 4 is an explanatory diagram illustrating a configuration example of the power receiving circuit 300 provided in the DC power receiving device 200 according to an embodiment of the present disclosure. The power receiving circuit 300 illustrated in FIG. 4 is a circuit that receives DC power transmitted through the DC bus line 10. Hereinafter, a configuration example of the power receiving circuit 300 provided in the DC power receiving device 200 according to an embodiment of the present disclosure will be described with reference to FIG.

図4に示したように、本開示の一実施形態に係る直流電力受電装置200に設けられる受電回路300は、コンパレータIC1及びリレーRY1、RY1−1、RY1−2を含んで構成される。また図4には、正極線または負極線と、中性線とによって、直流バスライン10を通じて送電される直流電力を受電して動作するDC主回路310が示されている。すなわちDC主回路310は、正極線及び負極線で供給される電力の定格電圧の半分の定格電圧で動作する。図4に示した受電回路300は、正極線で+100Vまでの電圧を、負極線で−100Vまでの電圧を、それぞれ受電する設計となっている。   As illustrated in FIG. 4, the power receiving circuit 300 provided in the DC power receiving device 200 according to an embodiment of the present disclosure includes a comparator IC1 and relays RY1, RY1-1, and RY1-2. FIG. 4 also shows a DC main circuit 310 that operates by receiving direct-current power transmitted through the direct-current bus line 10 through a positive line or negative line and a neutral line. That is, the DC main circuit 310 operates at a rated voltage that is half of the rated voltage of the power supplied through the positive and negative lines. The power receiving circuit 300 shown in FIG. 4 is designed to receive a voltage up to +100 V with a positive line and a voltage up to −100 V with a negative line.

コンパレータIC1は、電圧を比較して、比較結果に応じて出力を変化させる素子である。本実施形態では、コンパレータIC1は、正極線及び負極線で供給される電圧を抵抗R1、R2で1/2に分圧した中間の電圧と、中性線の電圧(中性点)とを比較する。本実施形態では、コンパレータIC1で、正極線及び負極線で供給される電圧を抵抗R1、R2で1/2に分圧した中間の電圧と、中性線の電圧(中性点)とを比較することで、正極線の電圧と中性線の電圧との電位差と、中性線の電圧と負極線の電圧との電位差の大小を比較している。そしてコンパレータIC1は、正極線及び負極線で供給される電圧の中間の電圧と、中性線の電圧とを比較した結果をリレーRY1に出力する。中性線は、図4に示したように1点で接地されており、電圧比較の基準となる中性線の電圧は基本的にはグランド電位で変化しない。   The comparator IC1 is an element that compares voltages and changes the output according to the comparison result. In the present embodiment, the comparator IC1 compares an intermediate voltage obtained by dividing the voltage supplied by the positive and negative lines with resistors R1 and R2 and a neutral line voltage (neutral point). To do. In the present embodiment, the comparator IC1 compares the intermediate voltage obtained by dividing the voltage supplied by the positive and negative electrodes with a half of the resistors R1 and R2, and the neutral line voltage (neutral point). By doing so, the potential difference between the voltage of the positive line and the voltage of the neutral line is compared with the magnitude of the potential difference between the voltage of the neutral line and the voltage of the negative line. Then, the comparator IC1 outputs a result obtained by comparing a voltage intermediate between the voltages supplied through the positive line and the negative line with the voltage of the neutral line to the relay RY1. The neutral line is grounded at one point as shown in FIG. 4, and the voltage of the neutral line as a reference for voltage comparison basically does not change with the ground potential.

リレーRY1は、コンパレータIC1の出力に応じてリレーRY1−1、RY1−2の切り替えを行なう。正極線及び負極線で供給される電圧の中間の電圧と、中性線の電圧とを比較した結果が0以上であれば、リレーRY1は、正極線とGNDとをDC主回路310に接続し、結果がマイナスであれば、リレーRY1は、負極線とGNDとをDC主回路310に接続するよう、リレーRY1−1、RY1−2を切り替える。すなわち、中間の電圧の方が中性線の電圧以上であれば、リレーRY1は、正極線とGNDとをDC主回路310に接続するよう動作し、中間の電圧の方が中性線の電圧より低ければ、リレーRY1は、負極線とGNDとをDC主回路310に接続するよう動作する。   The relay RY1 switches the relays RY1-1 and RY1-2 according to the output of the comparator IC1. If the result of comparing the intermediate voltage between the positive line and the negative line and the neutral line is 0 or more, the relay RY1 connects the positive line and GND to the DC main circuit 310. If the result is negative, the relay RY1 switches the relays RY1-1 and RY1-2 to connect the negative electrode line and GND to the DC main circuit 310. That is, if the intermediate voltage is equal to or higher than the neutral line voltage, the relay RY1 operates to connect the positive line and GND to the DC main circuit 310, and the intermediate voltage is the neutral line voltage. If it is lower, the relay RY1 operates to connect the negative line and GND to the DC main circuit 310.

コンパレータIC1は上述したように、正極線及び負極線で供給される電圧の中間の電圧と、中性線の電圧とを比較した結果をリレーRY1に出力する。直流バスライン10の電圧の変動が頻繁に発生すると、正極線及び負極線で供給される電圧の中間の電圧と、中性線の電圧とを比較した結果も頻繁に変化することになる。極線及び負極線で供給される電圧の中間の電圧と、中性線の電圧とを比較した結果が頻繁に変化すると、リレーRY1による切り替え動作も頻繁に発生することになり、スイッチング動作が安定しなくなってしまう。   As described above, the comparator IC1 outputs to the relay RY1 the result of comparing the intermediate voltage supplied between the positive line and the negative line with the neutral line voltage. If the voltage of the DC bus line 10 frequently fluctuates, the result of comparing the voltage between the neutral line voltage and the intermediate voltage supplied by the positive and negative lines also changes frequently. If the result of comparing the intermediate voltage supplied between the polar line and the negative line with the voltage of the neutral line changes frequently, the switching operation by the relay RY1 also frequently occurs, and the switching operation is stable. I will not.

そこで図4に示した受電回路300では、コンパレータIC1の入力側にコンデンサCが設けられる。コンデンサCは、抵抗R1の抵抗値と、コンデンサCの容量との積により、コンパレータIC1の入力側の電圧変化を緩慢にする役割を果たしている。   Therefore, in the power receiving circuit 300 shown in FIG. 4, a capacitor C is provided on the input side of the comparator IC1. The capacitor C plays a role of slowing the voltage change on the input side of the comparator IC1 by the product of the resistance value of the resistor R1 and the capacitance of the capacitor C.

コンパレータIC1の入力側にコンデンサCが設けられて、コンパレータIC1の入力側の電圧変化が緩慢になることで、受電回路300は、コンパレータIC1の入力の瞬間的な変動の発生を抑えている。   Since the capacitor C is provided on the input side of the comparator IC1 and the voltage change on the input side of the comparator IC1 becomes slow, the power receiving circuit 300 suppresses the occurrence of instantaneous fluctuations in the input of the comparator IC1.

そして受電回路300は、コンパレータIC1の入力側の電圧変化が緩慢になることで、コンパレータIC1の出力も頻繁には変化しなくなり、リレーRY1による切り替え動作が頻繁に行われるのを防ぎ、スイッチング動作を安定させることができる。   In the power receiving circuit 300, since the voltage change on the input side of the comparator IC1 becomes slow, the output of the comparator IC1 does not change frequently, and the switching operation by the relay RY1 is prevented from being frequently performed, and the switching operation is performed. It can be stabilized.

なお、抵抗R1の抵抗値や、コンデンサCの容量値は、正極線で及び負極線で供給される電圧値や、切り替えを許容する電位差等の設計値に応じて適宜設定することが可能な値であり、特定の値に限定されるものではない。   Note that the resistance value of the resistor R1 and the capacitance value of the capacitor C can be appropriately set according to design values such as a voltage value supplied by the positive and negative electrodes and a potential difference allowing switching. And is not limited to a specific value.

またコンパレータIC1はヒステリシス機能を有している。コンパレータIC1は、ヒステリシス機能によって、正極線で供給される電圧と、負極線で供給される電圧との中間の電圧と、中性線の電圧との比較の際に、電位差が所定時間継続して所定量以上生れば、リレーRY1−1、RY1−2の切り替えを行うように、リレーRY1−1、RY1−2の切り替え動作を制御することができる。   The comparator IC1 has a hysteresis function. The comparator IC1 uses a hysteresis function to maintain a potential difference for a predetermined time when comparing the voltage between the voltage supplied by the positive line and the voltage supplied by the negative line with the voltage of the neutral line. If more than a predetermined amount is generated, the switching operation of the relays RY1-1 and RY1-2 can be controlled so that the relays RY1-1 and RY1-2 are switched.

なお、コンパレータIC1にヒステリシス機能を持たせるための、コンパレータIC1の内部の回路構成は特定のものに限定されるものではない。またコンパレータIC1にヒステリシス機能を持たせた際のヒステリシス幅は、正極線で及び負極線で供給される電圧値や、切り替えを許容する電位差等の設計値に応じて適宜設定することが可能な値であり、特定の値に限定されるものではない。   Note that the internal circuit configuration of the comparator IC1 for providing the comparator IC1 with a hysteresis function is not limited to a specific one. The hysteresis width when the comparator IC1 is provided with a hysteresis function is a value that can be appropriately set according to a design value such as a voltage value supplied through the positive line and the negative line, or a potential difference that allows switching. And is not limited to a specific value.

本開示の一実施形態に係る直流電力受電装置200に設けられる受電回路300は、図4に示したような構成を有することで、中性点から見た他の端子の電圧(電圧の絶対値)の高い方を選択し接続することができる。   The power receiving circuit 300 provided in the DC power receiving device 200 according to an embodiment of the present disclosure has a configuration as illustrated in FIG. 4, so that the voltage (an absolute value of the voltage) of other terminals viewed from the neutral point. ) Can be selected and connected.

また本開示の一実施形態に係る直流電力受電装置200に設けられる受電回路300は、図4に示したような、電圧の検出に遅延を持たせ、かつヒステリシスを持たせるよう構成することで、DC主回路310に安全に直流電力を受電させることができるとともに、瞬間的な電圧変動に対し頻繁なリレーRY1−1、RY1−2の切り換えを抑えることが可能になる。   Further, the power receiving circuit 300 provided in the DC power receiving device 200 according to an embodiment of the present disclosure is configured to have a delay and a hysteresis in voltage detection as illustrated in FIG. DC power can be safely received by the DC main circuit 310, and frequent switching of the relays RY1-1 and RY1-2 can be suppressed against instantaneous voltage fluctuations.

以上、図4を用いて本開示の一実施形態に係る直流電力受電装置200に設けられる受電回路300の構成例について説明した。   The configuration example of the power receiving circuit 300 provided in the DC power receiving device 200 according to the embodiment of the present disclosure has been described above with reference to FIG.

<2.まとめ>
以上説明したように、本開示の一実施形態によれば、直流電力を受電する際に、中性線が遮断する等のトラブルが起こった場合でも定格電圧以上の電圧が掛かってしまう危険性を大きく軽減させ、かつ効率よく直流電力を受電することが可能な、直流電力受電装置200及び直流電力受電装置200に設けられる受電回路300が提供される。
<2. Summary>
As described above, according to an embodiment of the present disclosure, when receiving DC power, there is a risk that a voltage higher than the rated voltage may be applied even when a trouble such as the interruption of a neutral wire occurs. There are provided a DC power receiving device 200 and a power receiving circuit 300 provided in the DC power receiving device 200 that can greatly reduce and efficiently receive DC power.

本開示の一実施形態に係る受電回路300は、正極線及び負極線で供給される電圧の中間の電圧と、中性線の電圧とをコンパレータIC1で比較する。また本開示の一実施形態に係る受電回路300は、正極線及び負極線で供給される電圧の中間の電圧と、中性線の電圧とを比較した結果を、コンパレータIC1からリレーRY1に出力する。そして本開示の一実施形態に係る受電回路300は、コンパレータIC1の出力に応じて、電圧(電圧の絶対値)が高い方から電圧を受電するようにリレーRY1−1、RY1−2を切り替える。   In the power receiving circuit 300 according to an embodiment of the present disclosure, the comparator IC1 compares an intermediate voltage between the voltages supplied through the positive electrode line and the negative electrode line with the voltage of the neutral line. In addition, the power receiving circuit 300 according to an embodiment of the present disclosure outputs a result of comparing the voltage between the voltage supplied through the positive line and the negative line and the voltage of the neutral line from the comparator IC1 to the relay RY1. . And the power receiving circuit 300 which concerns on one Embodiment of this indication switches relay RY1-1, RY1-2 so that a voltage may be received from the one where a voltage (absolute value of a voltage) is higher according to the output of comparator IC1.

本開示の一実施形態に係る受電回路300は、上述したように動作することで、中性点から見た他の端子の電圧(電圧の絶対値)の高い方を選択して接続することができる。本開示の一実施形態に係る受電回路300は、中性点から見た他の端子の電圧(電圧の絶対値)の高い方を選択して接続するので、直流電力の送電側での電圧バランスを受電側で自動的に調整することが可能になる。   The power receiving circuit 300 according to an embodiment of the present disclosure operates as described above, and can select and connect the higher voltage (absolute voltage value) of the other terminal viewed from the neutral point. it can. Since the power receiving circuit 300 according to an embodiment of the present disclosure selects and connects the higher voltage (absolute voltage value) of the other terminal viewed from the neutral point, the voltage balance on the DC power transmission side is selected. Can be automatically adjusted on the power receiving side.

また本開示の一実施形態に係る受電回路300は、中性点から見た他の端子の電圧(電圧の絶対値)の高い方を選択する際に、コンパレータIC1の入力側にコンデンサCを設け、コンパレータIC1の入力側の電圧変化を緩慢にさせる。コンパレータIC1の入力側の電圧変化が緩慢になることで、本開示の一実施形態に係る受電回路300は、コンパレータIC1の入力の瞬間的な変動の発生を抑えている。   In addition, the power receiving circuit 300 according to an embodiment of the present disclosure includes a capacitor C on the input side of the comparator IC1 when selecting a higher voltage (absolute voltage value) of the other terminal viewed from the neutral point. The voltage change on the input side of the comparator IC1 is made slow. Since the voltage change on the input side of the comparator IC1 becomes slow, the power receiving circuit 300 according to an embodiment of the present disclosure suppresses the occurrence of instantaneous fluctuations in the input of the comparator IC1.

そして本開示の一実施形態に係る受電回路300は、コンパレータIC1の入力側の電圧変化が緩慢になることで、コンパレータIC1の出力も頻繁には変化しなくなり、リレーRY1による切り替え動作が頻繁に行われるのを防ぎ、スイッチング動作を安定させることができる。   In the power receiving circuit 300 according to the embodiment of the present disclosure, the output change of the comparator IC1 does not frequently change because the voltage change on the input side of the comparator IC1 becomes slow, and the switching operation by the relay RY1 is frequently performed. Can be prevented and the switching operation can be stabilized.

以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。   The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.

また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。   Further, the effects described in the present specification are merely illustrative or exemplary and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.

なお、以下のような構成も本開示の技術的範囲に属する。
(1)
直流電力の正側出力と中性点との間の電位差である第1の電位差及び前記中性点と前記直流電力の負側出力との間の電位差である第2の電位差の変化に遅延を持たせる遅延回路と、
前記遅延回路の後段に設けられ、所定のヒステリシスを有し、前記第1の電位差と前記第2の電位差との大小を比較する比較回路と、
前記比較回路の比較の結果、前記第1の電位差と前記第2の電位差との差が所定量以上生じると、前記第1の電位差または前記第2の電位差の大きい方から直流電力を受電するよう切り替える切替回路と、
を備える、直流電力受電装置。
(2)
前記切替回路は、前記第1の電位差と前記第2の電位差との差が所定時間継続して前記所定量以上生じると、前記第1の電位差または前記第2の電位差の大きい方から電力を受電するよう前記正側出力と前記負側出力とを切り替える、前記(1)に記載の直流電力受電装置。
(3)
前記遅延回路は、
前記正側出力と前記負側出力との間の電位差を分圧する抵抗と、
前記比較回路の前段に設けられる容量素子と、
を含む、前記(1)または(2)に記載の直流電力受電装置。
(4)
前記比較回路は、前記正極線及び前記負極線で供給される電圧を前記抵抗で1/2に分圧した中間の電圧と、前記中性線の電圧とを比較する、前記(3)に記載の直流電力受電装置。
(5)
前記比較回路は、コンパレータで構成される、前記(1)〜(4)のいずれかに記載の直流電力受電装置。
(6)
前記切替回路は、前記正側出力及びグランドまたは前記負側出力及びグランドのいずれかで直流電力が受電されるよう切り替える、前記(1)〜(5)のいずれかに記載の直流電力受電装置。
(7)
前記切替回路は、リレーで構成される、前記(6)に記載の直流電力受電装置。
(8)
前記切替回路によって前記第1の電位差または前記第2の電位差の大きい方に切り替えられた直流電力を受電して動作する主回路をさらに備える、前記(1)〜(7)のいずれかに記載の直流電力受電装置。
The following configurations also belong to the technical scope of the present disclosure.
(1)
Delay is caused in the change of the first potential difference, which is the potential difference between the positive side output of the DC power and the neutral point, and the second potential difference, which is the potential difference between the neutral point and the negative side output of the DC power. A delay circuit,
A comparison circuit provided at a subsequent stage of the delay circuit, having a predetermined hysteresis, and comparing the magnitudes of the first potential difference and the second potential difference;
If the difference between the first potential difference and the second potential difference is greater than or equal to a predetermined amount as a result of the comparison by the comparison circuit, DC power is received from the larger one of the first potential difference or the second potential difference. A switching circuit for switching,
A DC power receiving device comprising:
(2)
The switching circuit receives power from a larger one of the first potential difference or the second potential difference when a difference between the first potential difference and the second potential difference continues for a predetermined time and exceeds the predetermined amount. The direct-current power receiving device according to (1), wherein the positive-side output and the negative-side output are switched.
(3)
The delay circuit is
A resistor that divides a potential difference between the positive output and the negative output;
A capacitive element provided in a preceding stage of the comparison circuit;
The DC power receiving device according to (1) or (2), including:
(4)
The comparison circuit according to (3), wherein an intermediate voltage obtained by dividing a voltage supplied by the positive electrode line and the negative electrode line by half with the resistor is compared with a voltage of the neutral line. DC power receiving device.
(5)
The DC power receiving device according to any one of (1) to (4), wherein the comparison circuit includes a comparator.
(6)
The DC power receiving device according to any one of (1) to (5), wherein the switching circuit switches so that DC power is received by any one of the positive output and ground or the negative output and ground.
(7)
The DC power receiving device according to (6), wherein the switching circuit includes a relay.
(8)
The power circuit according to any one of (1) to (7), further including a main circuit that operates by receiving DC power switched to the larger one of the first potential difference and the second potential difference by the switching circuit. DC power receiving device.

1 :直流電力送受電システム
10 :直流バスライン
20 :電力給電コネクタ
30 :直流プラグ
100a〜100c :直流電力給電装置
200、200a〜200e :直流電力受電装置
300 :受電回路
310 :DC主回路
IC1 :コンパレータ
C :コンデンサ
R1、R2 :抵抗
RY1、RY1−2、RY1−3 :リレー
1: DC power transmission / reception system 10: DC bus line 20: Power feeding connector 30: DC plugs 100a to 100c: DC power feeding devices 200, 200a to 200e: DC power receiving device 300: Power receiving circuit 310: DC main circuit IC1: Comparator C: Capacitors R1, R2: Resistors RY1, RY1-2, RY1-3: Relay

Claims (8)

直流電力の正側出力と中性点との間の電位差である第1の電位差及び前記中性点と前記直流電力の負側出力との間の電位差である第2の電位差の変化に遅延を持たせる遅延回路と、
前記遅延回路の後段に設けられ、所定のヒステリシスを有し、前記第1の電位差と前記第2の電位差との大小を比較する比較回路と、
前記比較回路の比較の結果、前記第1の電位差と前記第2の電位差との差が所定量以上生じると、前記第1の電位差または前記第2の電位差の大きい方から直流電力を受電するよう切り替える切替回路と、
を備える、直流電力受電装置。
Delay is caused in the change of the first potential difference, which is the potential difference between the positive side output of the DC power and the neutral point, and the second potential difference, which is the potential difference between the neutral point and the negative side output of the DC power. A delay circuit,
A comparison circuit provided at a subsequent stage of the delay circuit, having a predetermined hysteresis, and comparing the magnitudes of the first potential difference and the second potential difference;
If the difference between the first potential difference and the second potential difference is greater than or equal to a predetermined amount as a result of the comparison by the comparison circuit, DC power is received from the larger one of the first potential difference or the second potential difference. A switching circuit for switching,
A DC power receiving device comprising:
前記切替回路は、前記第1の電位差と前記第2の電位差との差が所定時間継続して前記所定量以上生じると、前記第1の電位差または前記第2の電位差の大きい方から電力を受電するよう前記正側出力と前記負側出力とを切り替える、請求項1に記載の直流電力受電装置。   The switching circuit receives power from a larger one of the first potential difference or the second potential difference when a difference between the first potential difference and the second potential difference continues for a predetermined time and exceeds the predetermined amount. The DC power receiving device according to claim 1, wherein the positive side output and the negative side output are switched so as to perform. 前記遅延回路は、
前記正側出力と前記負側出力との間の電位差を分圧する抵抗と、
前記比較回路の前段に設けられる容量素子と、
を含む、請求項1に記載の直流電力受電装置。
The delay circuit is
A resistor that divides a potential difference between the positive output and the negative output;
A capacitive element provided in a preceding stage of the comparison circuit;
The DC power receiving device according to claim 1, comprising:
前記比較回路は、前記正極線及び前記負極線で供給される電圧を前記抵抗で1/2に分圧した中間の電圧と、前記中性線の電圧とを比較する、請求項3に記載の直流電力受電装置。   4. The comparison circuit according to claim 3, wherein the comparison circuit compares an intermediate voltage obtained by dividing the voltage supplied by the positive electrode line and the negative electrode line by half with the resistance, and the voltage of the neutral line. 5. DC power receiving device. 前記比較回路は、コンパレータで構成される、請求項1に記載の直流電力受電装置。   The DC power receiving apparatus according to claim 1, wherein the comparison circuit includes a comparator. 前記切替回路は、前記正側出力及びグランドまたは前記負側出力及びグランドのいずれかで直流電力が受電されるよう切り替える、請求項1に記載の直流電力受電装置。   The DC power receiving apparatus according to claim 1, wherein the switching circuit performs switching so that DC power is received by any one of the positive output and ground or the negative output and ground. 前記切替回路は、リレーで構成される、請求項6に記載の直流電力受電装置。   The DC power receiving device according to claim 6, wherein the switching circuit is configured by a relay. 前記切替回路によって前記第1の電位差または前記第2の電位差の大きい方に切り替えられた直流電力を受電して動作する主回路をさらに備える、請求項1に記載の直流電力受電装置。
2. The DC power receiving apparatus according to claim 1, further comprising a main circuit that operates by receiving DC power switched to the larger one of the first potential difference and the second potential difference by the switching circuit.
JP2014147492A 2014-07-18 2014-07-18 DC power receiver Expired - Fee Related JP6252390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014147492A JP6252390B2 (en) 2014-07-18 2014-07-18 DC power receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014147492A JP6252390B2 (en) 2014-07-18 2014-07-18 DC power receiver

Publications (3)

Publication Number Publication Date
JP2016025711A true JP2016025711A (en) 2016-02-08
JP2016025711A5 JP2016025711A5 (en) 2017-02-23
JP6252390B2 JP6252390B2 (en) 2017-12-27

Family

ID=55272059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014147492A Expired - Fee Related JP6252390B2 (en) 2014-07-18 2014-07-18 DC power receiver

Country Status (1)

Country Link
JP (1) JP6252390B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028721A (en) * 2017-07-31 2019-02-21 セイコーエプソン株式会社 Terminal device, processing system, program, and method for controlling terminal device
WO2022145353A1 (en) * 2021-01-04 2022-07-07 国立大学法人東北大学 Power system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053674A (en) * 1991-06-25 1993-01-08 Matsushita Electric Works Ltd Switching power supply
JPH1189092A (en) * 1997-09-09 1999-03-30 Osaka Gas Co Ltd Power supply device
JP2011015502A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Power distribution system
JP2013223314A (en) * 2012-04-16 2013-10-28 Sharp Corp Dc switching device, dc system including the same, power storage device, and power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053674A (en) * 1991-06-25 1993-01-08 Matsushita Electric Works Ltd Switching power supply
JPH1189092A (en) * 1997-09-09 1999-03-30 Osaka Gas Co Ltd Power supply device
JP2011015502A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Power distribution system
JP2013223314A (en) * 2012-04-16 2013-10-28 Sharp Corp Dc switching device, dc system including the same, power storage device, and power conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028721A (en) * 2017-07-31 2019-02-21 セイコーエプソン株式会社 Terminal device, processing system, program, and method for controlling terminal device
WO2022145353A1 (en) * 2021-01-04 2022-07-07 国立大学法人東北大学 Power system

Also Published As

Publication number Publication date
JP6252390B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
US8203235B2 (en) AC and DC uninterruptible online power supplies
US9954369B2 (en) Power supply method and apparatus
US10014611B2 (en) Device and method for integrating an electrical element into an electrical circuit under load
WO2016090930A1 (en) Uninterruptible power system
WO2016121273A1 (en) Power control device, power control method, and power control system
EP3230117B1 (en) Method and arrangement for charging of vehicle accumulators
US10199859B2 (en) Uninterruptible power supply system with precharge converter
US10778002B2 (en) Service panel circuit for automatic AC and DC power distribution
CN104756393A (en) Power conversion device and method for diagnosing failure thereof
CN104953696A (en) On-line interactive uninterrupted power source
US20150015068A1 (en) Multi-port Energy Storage System and Control Method Thereof
CN104253461A (en) Charging equipment and power supply method thereof
US10661662B2 (en) Battery charger for electric vehicles
JP6252390B2 (en) DC power receiver
US20210249884A1 (en) Charging Device and Charging System
JP5631173B2 (en) Charger
CN206542324U (en) Power-supply management system
US10418819B2 (en) Control method for power control system, power control system, and power control apparatus
WO2016009917A1 (en) Isolated dc power supply device
CN103259422A (en) Power supply device
JP6481199B2 (en) Power control apparatus, power control method, and power control system
CN106787644B (en) Power management system and power supply method thereof
CN202872450U (en) Cold boot circuit for UPS power supply
JP2020162277A (en) Power supply device and vehicle
CN209748263U (en) Intelligent safe standby power supply system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R151 Written notification of patent or utility model registration

Ref document number: 6252390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees