JP2016024228A - Method of manufacturing laminated optical film - Google Patents

Method of manufacturing laminated optical film Download PDF

Info

Publication number
JP2016024228A
JP2016024228A JP2014146066A JP2014146066A JP2016024228A JP 2016024228 A JP2016024228 A JP 2016024228A JP 2014146066 A JP2014146066 A JP 2014146066A JP 2014146066 A JP2014146066 A JP 2014146066A JP 2016024228 A JP2016024228 A JP 2016024228A
Authority
JP
Japan
Prior art keywords
optical film
active energy
energy ray
adhesive composition
curable adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014146066A
Other languages
Japanese (ja)
Other versions
JP6376872B2 (en
Inventor
武士 斉藤
Takeshi Saito
武士 斉藤
山崎 達也
Tatsuya Yamazaki
達也 山崎
池田 哲朗
Tetsuro Ikeda
哲朗 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2014146066A priority Critical patent/JP6376872B2/en
Priority to PCT/JP2015/070138 priority patent/WO2016010030A1/en
Priority to KR1020177000625A priority patent/KR102376576B1/en
Priority to CN201580037490.5A priority patent/CN106661386B/en
Priority to TW108121759A priority patent/TWI708682B/en
Priority to TW104122902A priority patent/TWI713460B/en
Publication of JP2016024228A publication Critical patent/JP2016024228A/en
Priority to JP2018138687A priority patent/JP6931629B2/en
Application granted granted Critical
Publication of JP6376872B2 publication Critical patent/JP6376872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/04Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving separate application of adhesive ingredients to the different surfaces to be joined
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a laminated optical film, which uses an adhesive layer having high adhesivity and superior water resistance when laminating two different types of optical films.SOLUTION: A method of manufacturing a laminated optical film comprising at least a first optical film and second optical film laminated together via an adhesive layer formed by curing an active energy ray-curable adhesive composition is disclosed, the active energy ray-curable adhesive composition containing at least two different types of active energy ray-curable adhesive compositions and including a first active energy ray-curable adhesive composition and a second active energy ray-curable adhesive composition. A coating step is performed, in which an adhesion surface of the first optical film is coated with the first active energy ray-curable adhesive composition and an adhesion surface of the second optical film is coated with the second active energy ray-curable adhesive composition.SELECTED DRAWING: Figure 1

Description

本発明は、活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された接着剤層を介して、少なくとも第1光学フィルムおよび第2光学フィルムが積層された積層光学フィルムの製造方法に関する。当該積層光学フィルムは液晶表示装置(LCD)、有機EL表示装置、CRT、PDPなどの画像表示装置を形成しうる。   The present invention relates to a method for producing a laminated optical film in which at least a first optical film and a second optical film are laminated via an adhesive layer formed by curing an active energy ray-curable adhesive composition. The laminated optical film can form an image display device such as a liquid crystal display device (LCD), an organic EL display device, a CRT, or a PDP.

時計、携帯電話、PDA、ノートパソコン、パソコン用モニタ、DVDプレーヤー、TVなどでは液晶表示装置が急激に市場展開している。液晶表示装置は、液晶のスイッチングによる偏光状態を可視化させたものであり、その表示原理から、偏光子が用いられる。特に、TVなどの用途では、ますます高輝度、高コントラスト、広い視野角が求められ、偏光フィルムにおいてもますます高透過率、高偏光度、高い色再現性などが求められている。   Liquid crystal display devices are rapidly expanding in watches, mobile phones, PDAs, notebook computers, personal computer monitors, DVD players, TVs, and the like. The liquid crystal display device visualizes the polarization state by switching of the liquid crystal, and a polarizer is used from the display principle. In particular, in applications such as TV, higher brightness, higher contrast, and wider viewing angle are required, and polarizing films are also required to have higher transmittance, higher degree of polarization, and higher color reproducibility.

偏光子としては、高透過率、高偏光度を有することから、例えばポリビニルアルコール(以下、単に「PVA」ともいう)にヨウ素を吸着させ、延伸した構造のヨウ素系偏光子が最も一般的に広く使用されている。一般的に偏光フィルムは、ポリビニルアルコール系の材料を水に溶かしたいわゆる水系接着剤によって、偏光子の両面に透明保護フィルムを貼り合わせたものが用いられている(下記特許文献1および特許文献2)。透明保護フィルムとしては、透湿度の高いトリアセチルセルロースなどが用いられる。前記水系接着剤を用いた場合(いわゆるウェットラミネーション)には、偏光子と透明保護フィルムとを貼り合わせた後に、乾燥工程が必要となる。   As the polarizer, since it has a high transmittance and a high degree of polarization, for example, an iodine-based polarizer having a stretched structure by adsorbing iodine to polyvinyl alcohol (hereinafter also simply referred to as “PVA”) is most widely used. It is used. In general, a polarizing film in which a transparent protective film is bonded to both surfaces of a polarizer by a so-called aqueous adhesive in which a polyvinyl alcohol-based material is dissolved in water is used (Patent Document 1 and Patent Document 2 below). ). As the transparent protective film, triacetyl cellulose having a high moisture permeability is used. When the water-based adhesive is used (so-called wet lamination), a drying process is required after the polarizer and the transparent protective film are bonded together.

一方、前記水系接着剤の代わりに、活性エネルギー線硬化型接着剤が提案されている。活性エネルギー線硬化型接着剤を用いて偏光フィルムを製造する場合には、乾燥工程を必要としないため、偏光フィルムの生産性を向上させることができる。例えば、本発明者らにより、N−置換アミド系モノマーを硬化性成分として使用した、ラジカル重合型の活性エネルギー線硬化型接着剤が提案されている(下記特許文献3および特許文献4)。   On the other hand, an active energy ray-curable adhesive has been proposed instead of the water-based adhesive. When manufacturing a polarizing film using an active energy ray hardening-type adhesive, since a drying process is not required, productivity of a polarizing film can be improved. For example, the present inventors have proposed radical polymerization-type active energy ray-curable adhesives using N-substituted amide monomers as curable components (Patent Documents 3 and 4 below).

特開2006−220732号公報JP 2006-220732 A 特開2001−296427号公報JP 2001-296427 A 特開2012−052000号公報JP2012-052000A 特開2012−068593号公報JP 2012-068593 A

特許文献3および4に記載の活性エネルギー線硬化型接着剤を用いて形成された接着剤層は、例えば60℃温水に6時間浸漬後の色抜け、ハガレの有無を評価する耐水性試験に関しては、十分クリア可能である。しかしながら近年では、積層光学フィルム用接着剤に対し、例えば水に浸漬(飽和)させた後の端部爪剥がしを行った場合のハガレの有無を評価する、より過酷な耐水性試験をクリアできる程の、さらなる耐水性の向上が求められつつある。したがって、特許文献3および4に記載の活性エネルギー線硬化型接着剤も含めて、現在まで報告されている積層光学フィルム用接着剤については、耐水性の点でさらなる改良の余地があるのが実情であった。   The adhesive layer formed using the active energy ray-curable adhesive described in Patent Documents 3 and 4 is, for example, a water resistance test for evaluating the presence or absence of color loss or peeling after immersion in warm water at 60 ° C. for 6 hours. It is clear enough. In recent years, however, the adhesive for laminated optical films can be cleared of a more severe water resistance test that evaluates the presence or absence of peeling when, for example, peeling off an end nail after being immersed (saturated) in water. Further improvement of water resistance is being demanded. Therefore, the adhesives for laminated optical films reported up to now including the active energy ray-curable adhesives described in Patent Documents 3 and 4 have room for further improvement in terms of water resistance. Met.

ところで、近年では有機高分子材料に対し、二律背反的な特性を要求されることも多く、単一の有機高分子材料ではかかる要求特性を満たすことが困難になっているのが実情である。二律背反的な要求特性を満足させるために、有機高分子材料に異なる性質を有する異種材料を加え、複合化する技術が多くの分野で提案されている。接着技術においては、例えば異なる2種の被着体を接着させる場合、各々の被着体との接着性を高めるために、接着剤層を2層構造となるように形成することが考えられる。しかしながら、接着剤層を2層構造に形成した場合、その界面に応力が集中し、接着剤層の接着力が低下する恐れがある。特に近年、薄型化が要求される積層光学フィルム用接着剤では、接着剤層を2層構造とする技術の確立は困難であり、本発明者らが知り得る限り、そのような報告例は無い。   By the way, in recent years, an organic polymer material is often required to have a trade-off characteristic, and it is actually difficult to satisfy the required characteristic with a single organic polymer material. In order to satisfy the contradictory required characteristics, techniques for adding and compounding different kinds of materials having different properties to organic polymer materials have been proposed in many fields. In the bonding technique, for example, when two different types of adherends are bonded, it is conceivable to form the adhesive layer so as to have a two-layer structure in order to improve the adhesion to each adherend. However, when the adhesive layer is formed in a two-layer structure, stress concentrates on the interface, and the adhesive force of the adhesive layer may be reduced. Particularly, in recent years, it is difficult to establish a technique for forming an adhesive layer with a two-layer structure in an adhesive for laminated optical films that is required to be thin, and there is no such report as far as the present inventors can know. .

上記のとおり、特に薄型化が要求される積層光学フィルム用接着剤の分野においては、異なる2種の光学フィルムを接着させる際、接着性を高めつつ耐水性を高める技術を開発することは困難であるのが実情であった。   As described above, in the field of adhesives for laminated optical films, particularly where thinning is required, it is difficult to develop a technology that increases water resistance while increasing adhesion when two different optical films are bonded. There was a real situation.

本発明は、上記課題解決のために開発されたものであり、異なる2種の光学フィルムを積層させる際に高い接着力を示し、かつ耐水性に優れた接着剤層を備える積層光学フィルムの製造方法を提供することを目的とする。   The present invention has been developed to solve the above-described problems, and exhibits a high adhesive force when laminating two different types of optical films, and manufactures a laminated optical film having an adhesive layer excellent in water resistance. It aims to provide a method.

積層させる光学フィルムが互いに異なるものである場合、例えば親水性の観点からも異なる特性を示すため、これら光学フィルムを積層させるための接着剤層を2層構造に形成することは、光学フィルム同士の接着力向上の観点からは有利であるが、接着剤層内での界面剥離などにより、却って接着力低下の恐れがあることは前記のとおりである。   When the optical films to be laminated are different from each other, for example, to show different properties from the viewpoint of hydrophilicity, forming an adhesive layer for laminating these optical films in a two-layer structure is Although it is advantageous from the viewpoint of improving the adhesive strength, as described above, there is a possibility that the adhesive strength may decrease due to interfacial peeling in the adhesive layer.

一方、第1活性エネルギー線硬化型接着剤組成物と第2活性エネルギー線硬化型接着剤組成物とを含む、少なくとも2種類以上の異なる活性エネルギー線硬化型接着剤組成物を含有する活性エネルギー線硬化型接着剤組成物を介して、2枚の光学フィルムを貼合わせた後、活性エネルギー線を照射して、第1光学フィルムおよび第2光学フィルムを接着させる製造方法によれば、2種類以上の異なる活性エネルギー線硬化型接着剤組成物を使用した場合であっても、接着剤層内での界面剥離が起こり難いことを本発明者らは見出した。本発明はかかる発見に基づき完成されたものであり、下記構成を備える。 On the other hand, an active energy ray containing at least two or more different active energy ray curable adhesive compositions, including the first active energy ray curable adhesive composition and the second active energy ray curable adhesive composition. According to the production method in which the first optical film and the second optical film are bonded by irradiating active energy rays after bonding two optical films through the curable adhesive composition. The present inventors have found that even when active energy ray-curable adhesive compositions having different values are used, interfacial peeling does not easily occur in the adhesive layer. The present invention has been completed based on this discovery, and has the following configuration.

即ち本発明は、活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された接着剤層を介して、少なくとも第1光学フィルムおよび第2光学フィルムが積層された積層光学フィルムの製造方法であって、前記活性エネルギー線硬化型接着剤組成物は、第1活性エネルギー線硬化型接着剤組成物および第2活性エネルギー線硬化型接着剤組成物を含む、少なくとも2種類以上の異なる活性エネルギー線硬化型接着剤組成物を含有するものであり、前記第1光学フィルムの貼合面に前記第1活性エネルギー線硬化型接着剤組成物を塗工し、さらに前記第2光学フィルムの貼合面に前記第2活性エネルギー線硬化型接着剤組成物を塗工する塗工工程と、前記第1光学フィルムおよび前記第2光学フィルムを貼り合わせる貼合工程と、前記第1光学フィルム面側または前記第2光学フィルム面側から活性エネルギー線を照射して、前記活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された前記接着剤層を介して、前記第1光学フィルムおよび前記第2光学フィルムを接着させる接着工程とを含むことを特徴とする積層光学フィルムの製造方法、に関する。 That is, the present invention is a method for producing a laminated optical film in which at least a first optical film and a second optical film are laminated via an adhesive layer formed by curing an active energy ray-curable adhesive composition. The active energy ray-curable adhesive composition includes at least two different active energy rays including a first active energy ray-curable adhesive composition and a second active energy ray-curable adhesive composition. It contains a curable adhesive composition, the first active energy ray-curable adhesive composition is applied to the bonding surface of the first optical film, and the bonding surface of the second optical film is further applied. A coating step of coating the second active energy ray-curable adhesive composition, a bonding step of bonding the first optical film and the second optical film, Through the adhesive layer formed by irradiating active energy rays from the first optical film surface side or the second optical film surface side and curing the active energy ray-curable adhesive composition, The manufacturing method of the lamination | stacking optical film characterized by including the adhesion process to adhere | attach a 1st optical film and a said 2nd optical film.

上記積層光学フィルムの製造方法によれば、第1光学フィルムの貼合面に塗工された第1活性エネルギー線硬化型接着剤組成物と、第2光学フィルムの貼合面に塗工された第2活性エネルギー線硬化型接着剤組成物とが流動性がある状態で貼り合わされる。その結果、第1活性エネルギー線硬化型接着剤組成物と第2活性エネルギー線硬化型接着剤組成物とが異なる組成のものであっても、その2層間においてある程度の相溶化が進むため、接着剤層が2層構造を形成するのではなく、成分傾斜構造を形成する。そのため、第1活性エネルギー線硬化型接着剤組成物および第2活性エネルギー線硬化型接着剤組成物間での界面剥離は起こり難い。したがって、第1光学フィルムと親和性の高い第1活性エネルギー線硬化型接着剤組成物を適宜選択し、かつ第2光学フィルムと親和性の高い第2活性エネルギー線硬化型接着剤組成物を適宜選択することにより、接着剤層内の層間剥離を防止しつつ、第1光学フィルムと第2光学フィルムとの間で良好な接着性を有する積層光学フィルムを製造することができる。   According to the manufacturing method of the laminated optical film, the first active energy ray-curable adhesive composition applied to the bonding surface of the first optical film and the bonding surface of the second optical film were applied. The second active energy ray-curable adhesive composition is bonded in a fluid state. As a result, even if the first active energy ray-curable adhesive composition and the second active energy ray-curable adhesive composition are different from each other, a certain degree of compatibilization proceeds between the two layers. The agent layer does not form a two-layer structure, but forms a component gradient structure. Therefore, interface peeling between the first active energy ray-curable adhesive composition and the second active energy ray-curable adhesive composition hardly occurs. Therefore, the first active energy ray-curable adhesive composition having high affinity with the first optical film is appropriately selected, and the second active energy ray-curable adhesive composition having high affinity with the second optical film is appropriately selected. By selecting, the laminated optical film which has favorable adhesiveness between a 1st optical film and a 2nd optical film can be manufactured, preventing delamination in an adhesive bond layer.

また、本発明に係る積層光学フィルムの製造方法は、活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された接着剤層を介して、少なくとも第1光学フィルムおよび第2光学フィルムが積層された積層光学フィルムの製造方法であって、前記活性エネルギー線硬化型接着剤組成物は、第1活性エネルギー線硬化型接着剤組成物および第2活性エネルギー線硬化型接着剤組成物を含む、少なくとも2種類以上の異なる活性エネルギー線硬化型接着剤組成物を含有するものであり、前記第1光学フィルムの貼合面に前記第1活性エネルギー線硬化型接着剤組成物を塗工し、前記第1活性エネルギー線硬化型接着剤組成物を塗工した塗工面に、さらに前記第2活性エネルギー線硬化型接着剤組成物を上塗り塗工する塗工工程と、第1光学フィルム上に塗工された第2活性エネルギー線硬化型接着剤組成物の塗工面側から前記第2光学フィルムを貼り合わせる貼合工程と、前記第1光学フィルム面側または前記第2光学フィルム面側から活性エネルギー線を照射して、前記活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された前記接着剤層を介して、前記第1光学フィルムおよび前記第2光学フィルムを接着させる接着工程とを含むことを特徴とする積層光学フィルムの製造方法、に関する。   In the method for producing a laminated optical film according to the present invention, at least the first optical film and the second optical film are laminated via an adhesive layer formed by curing the active energy ray-curable adhesive composition. A method for producing a laminated optical film, wherein the active energy ray-curable adhesive composition includes a first active energy ray-curable adhesive composition and a second active energy ray-curable adhesive composition, Containing at least two different active energy ray-curable adhesive compositions, applying the first active energy ray-curable adhesive composition to the bonding surface of the first optical film, A coating step in which the second active energy ray-curable adhesive composition is further overcoated on the coating surface coated with the first active energy ray-curable adhesive composition; A bonding step of bonding the second optical film from the coating surface side of the second active energy ray-curable adhesive composition coated on the optical film, and the first optical film surface side or the second optical film; The first optical film and the second optical film are bonded via the adhesive layer formed by irradiating active energy rays from the surface side and curing the active energy ray-curable adhesive composition. The manufacturing method of the laminated optical film characterized by including the adhesion process to make.

上記積層光学フィルムの製造方法によれば、第1光学フィルムの貼合面に塗工された第1活性エネルギー線硬化型接着剤組成物に対し、第2活性エネルギー線硬化型接着剤組成物が上塗り塗工される。そして、第1光学フィルムの貼合面に塗工された第1活性エネルギー線硬化型接着剤組成物と、第1活性エネルギー線硬化型接着剤組成物を塗工した塗工面に塗工された第2活性エネルギー線硬化型接着剤組成物とが流動性がある状態で接する。これにより、第1活性エネルギー線硬化型接着剤組成物と第2活性エネルギー線硬化型接着剤組成物とが異なる組成のものであっても、これらの界面である程度の相溶化が進み、成分傾斜構造が形成される。そのため、第1活性エネルギー線硬化型接着剤組成物および第2活性エネルギー線硬化型接着剤組成物間での界面剥離は起こり難い。したがって、第1光学フィルムと親和性の高い第1活性エネルギー線硬化型接着剤組成物を適宜選択し、かつ第2光学フィルムと親和性の高い第2活性エネルギー線硬化型接着剤組成物を適宜選択することにより、接着剤層内の層間剥離を防止しつつ、第1光学フィルムと第2光学フィルムとが良好な接着性を有する積層光学フィルムを製造することができる。   According to the manufacturing method of the said laminated optical film, with respect to the 1st active energy ray hardening-type adhesive composition coated on the bonding surface of the 1st optical film, a 2nd active energy ray hardening-type adhesive composition is The top coat is applied. And it applied to the coating surface which applied the 1st active energy ray hardening-type adhesive composition coated on the bonding surface of a 1st optical film, and the 1st active energy ray hardening-type adhesive composition. The second active energy ray-curable adhesive composition is in contact with the fluidity state. As a result, even if the first active energy ray curable adhesive composition and the second active energy ray curable adhesive composition have different compositions, a certain degree of compatibilization proceeds at these interfaces, and the component gradient A structure is formed. Therefore, interface peeling between the first active energy ray-curable adhesive composition and the second active energy ray-curable adhesive composition hardly occurs. Therefore, the first active energy ray-curable adhesive composition having high affinity with the first optical film is appropriately selected, and the second active energy ray-curable adhesive composition having high affinity with the second optical film is appropriately selected. By selecting, it is possible to produce a laminated optical film in which the first optical film and the second optical film have good adhesiveness while preventing delamination in the adhesive layer.

上記積層光学フィルムの製造方法において、前記第1活性エネルギー線硬化型接着剤組成物の液粘度が、前記第2活性エネルギー線硬化型接着剤組成物の液粘度よりも高いことが好ましい。第1光学フィルムの貼合面に塗工された第1活性エネルギー線硬化型接着剤組成物に対し、第2活性エネルギー線硬化型接着剤組成物を上塗りする場合、第1活性エネルギー線硬化型接着剤組成物の液粘度が、第2活性エネルギー線硬化型接着剤組成物の液粘度よりも高いと、第2活性エネルギー線硬化型接着剤組成物を第1活性エネルギー線硬化型接着剤組成物上に確実に塗工することができる。   In the method for producing a laminated optical film, the liquid viscosity of the first active energy ray-curable adhesive composition is preferably higher than the liquid viscosity of the second active energy ray-curable adhesive composition. When overcoating the second active energy ray-curable adhesive composition with respect to the first active energy ray-curable adhesive composition coated on the bonding surface of the first optical film, the first active energy ray-curable type is applied. When the liquid viscosity of the adhesive composition is higher than the liquid viscosity of the second active energy ray curable adhesive composition, the second active energy ray curable adhesive composition is changed to the first active energy ray curable adhesive composition. It can be reliably applied on the object.

上記積層光学フィルムの製造方法において、前記第1光学フィルムおよび前記第2光学フィルムに対する、前記活性エネルギー線硬化型接着剤組成物の接触角が5〜50度であることが好ましい。かかる構成によれば、第1光学フィルムおよび第2光学フィルムに対し、活性エネルギー線硬化型接着剤組成物の濡れ性が優れるため、最終的に得られる積層光学フィルムの層間接着性が十分に確保できる。   In the method for producing a laminated optical film, it is preferable that a contact angle of the active energy ray-curable adhesive composition with respect to the first optical film and the second optical film is 5 to 50 degrees. According to such a configuration, the wettability of the active energy ray-curable adhesive composition is excellent with respect to the first optical film and the second optical film, so that the interlayer adhesiveness of the finally obtained laminated optical film is sufficiently ensured. it can.

上記積層光学フィルムの製造方法において、前記第1光学フィルムおよび前記第2光学フィルムが、ポリビニルアルコール系偏光子、アクリル樹脂フィルム、シクロオレフィン樹脂フィルム、ポリエステル樹脂フィルムおよびポリオレフィン樹脂フィルムからなる群より選択される少なくとも1種の光学フィルムであることが好ましく、前記第1光学フィルムおよび前記第2光学フィルムが、前記アクリル樹脂フィルム、前記シクロオレフィン樹脂フィルム、前記ポリエステル樹脂フィルムおよび前記ポリオレフィン樹脂フィルムからなる群より選択される少なくとも1種の光学フィルムであることが好ましい。積層する光学フィルムが前記記載のものであると、積層させる際に高い接着力を示し、かつ耐水性に優れた接着剤層を備える積層光学フィルムを製造することができる。   In the method for producing a laminated optical film, the first optical film and the second optical film are selected from the group consisting of a polyvinyl alcohol polarizer, an acrylic resin film, a cycloolefin resin film, a polyester resin film, and a polyolefin resin film. Preferably, the first optical film and the second optical film are selected from the group consisting of the acrylic resin film, the cycloolefin resin film, the polyester resin film, and the polyolefin resin film. It is preferable that it is at least one optical film selected. When the optical film to be laminated is as described above, it is possible to produce a laminated optical film having an adhesive layer exhibiting high adhesive force when laminated and having excellent water resistance.

上記積層光学フィルムの製造方法において、前記アクリル樹脂フィルム、前記シクロオレフィン樹脂フィルム、前記ポリエステル樹脂フィルムおよび前記ポリオレフィン樹脂フィルムが、その貼合面に、アクリル樹脂、ポリウレタン樹脂、ポリビニルアルコール樹脂、メラミン樹脂およびオキサゾリン基含有樹脂からなる群より選択される少なくとも1種の樹脂を含有する易接着層が形成されたものである場合、さらに積層光学フィルムの接着性が高まるため好ましい。   In the method for producing a laminated optical film, the acrylic resin film, the cycloolefin resin film, the polyester resin film, and the polyolefin resin film have an acrylic resin, a polyurethane resin, a polyvinyl alcohol resin, a melamine resin, In the case where an easy adhesion layer containing at least one resin selected from the group consisting of oxazoline group-containing resins is formed, it is preferable because the adhesiveness of the laminated optical film is further increased.

上記積層光学フィルムの製造方法において、前記第1光学フィルムおよび前記第2光学フィルムが、前記アクリル樹脂フィルム、前記シクロオレフィン樹脂フィルム、前記ポリエステル樹脂フィルムおよび前記ポリオレフィン樹脂フィルムからなる群より選択される少なくとも1種の光学フィルムである場合であって、かつ前記活性エネルギー線硬化型接着剤組成物は、SP値が18〜21(MJ/m1/2であるラジカル重合性化合物を25〜98重量%含有する場合、以下の効果を奏する。具体的には、前記特定の光学フィルムを使用した場合であって、かつ活性エネルギー線硬化型接着剤組成物が所定のSP値を示すラジカル重合性化合物を所定量含有する場合、接着剤層と光学フィルムとの間に相溶層が形成される。その結果、さらに積層光学フィルムの接着性が高まるため好ましい。 In the method for producing a laminated optical film, at least the first optical film and the second optical film are selected from the group consisting of the acrylic resin film, the cycloolefin resin film, the polyester resin film, and the polyolefin resin film. In the case of one type of optical film, the active energy ray-curable adhesive composition contains 25 to 98 radical polymerizable compounds having an SP value of 18 to 21 (MJ / m 3 ) 1/2. When it is contained by weight, the following effects are obtained. Specifically, when the specific optical film is used and the active energy ray-curable adhesive composition contains a predetermined amount of a radical polymerizable compound exhibiting a predetermined SP value, A compatible layer is formed between the optical film and the optical film. As a result, the adhesive property of the laminated optical film is further increased, which is preferable.

上記積層光学フィルムの製造方法において、前記第1光学フィルムおよび前記第2光学フィルムの一方が前記ポリビニルアルコール系偏光子であり、前記ポリビニルアルコール系偏光子の貼合面に塗工される前記活性エネルギー線硬化型接着剤組成物が、ヒドロキシル基含有ラジカル重合性化合物を含有することが好ましい。かかる構成によれば、ポリビニルアルコール系偏光子と接着剤層との接着力がさらに高まるため好ましい。   In the method for producing a laminated optical film, one of the first optical film and the second optical film is the polyvinyl alcohol polarizer, and the active energy is applied to a bonding surface of the polyvinyl alcohol polarizer. It is preferable that the wire curable adhesive composition contains a hydroxyl group-containing radical polymerizable compound. This configuration is preferable because the adhesive force between the polyvinyl alcohol polarizer and the adhesive layer is further increased.

TOF−SIMSを利用した接着剤層における成分傾斜構造の評価方法を示す概略図Schematic which shows the evaluation method of the component inclination structure in the adhesive bond layer using TOF-SIMS

本発明に係る積層光学フィルムは、活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された接着剤層を介して、少なくとも第1光学フィルムおよび第2光学フィルムが積層されたものであり、接着剤層は、活性エネルギー線硬化型接着剤組成物に活性エネルギー線を照射して得られた硬化物層により形成される。   The laminated optical film according to the present invention is obtained by laminating at least a first optical film and a second optical film via an adhesive layer formed by curing an active energy ray-curable adhesive composition. The adhesive layer is formed of a cured product layer obtained by irradiating an active energy ray-curable adhesive composition with active energy rays.

活性エネルギー線硬化型接着剤組成物は、電子線硬化型、紫外線硬化型、可視光線硬化型などに大別することができる。さらには、紫外線硬化型、可視光線硬化型接着剤は、ラジカル重合硬化型接着剤とカチオン重合型接着剤に区分出来る。本発明において、波長範囲10nm〜380nm未満の活性エネルギー線を紫外線、波長範囲380nm〜800nmの活性エネルギー線を可視光線として表記する。   Active energy ray curable adhesive compositions can be broadly classified into electron beam curable, ultraviolet curable, visible light curable, and the like. Furthermore, ultraviolet curable and visible light curable adhesives can be classified into radical polymerization curable adhesives and cationic polymerization adhesives. In the present invention, an active energy ray having a wavelength range of 10 nm to less than 380 nm is expressed as ultraviolet light, and an active energy ray having a wavelength range of 380 nm to 800 nm is expressed as visible light.

ラジカル重合硬化型接着剤を構成する化合物としては、ラジカル重合性化合物が挙げられる。ラジカル重合性化合物は、(メタ)アクリロイル基、ビニル基等の炭素−炭素二重結合のラジカル重合性の官能基を有する化合物が挙げられる。これら硬化性成分は、単官能ラジカル重合性化合物または二官能以上の多官能ラジカル重合性化合物のいずれも用いることができる。また、これらラジカル重合性化合物は、1種を単独で、または2種以上を組み合わせて用いることができる。これらラジカル重合性化合物としては、例えば、(メタ)アクリロイル基を有する化合物が好適である。本発明において使用する活性エネルギー線硬化型接着剤組成物は、主成分として(メタ)アクリロイル基を有する化合物を含有することが好ましく、具体的には活性エネルギー線硬化型接着剤組成物の全量を100重量%としたとき、(メタ)アクリロイル基を有する化合物を50重量%以上含有することが好ましく、80重量%以上含有することがより好ましい。なお、本発明において、(メタ)アクリロイルとは、アクリロイル基および/またはメタクリロイル基を意味し、「(メタ)」は以下同様の意味である。   Examples of the compound constituting the radical polymerization curable adhesive include a radical polymerizable compound. Examples of the radical polymerizable compound include compounds having a radical polymerizable functional group of a carbon-carbon double bond such as a (meth) acryloyl group and a vinyl group. As these curable components, either a monofunctional radical polymerizable compound or a bifunctional or higher polyfunctional radical polymerizable compound can be used. Moreover, these radically polymerizable compounds can be used individually by 1 type or in combination of 2 or more types. As these radically polymerizable compounds, for example, compounds having a (meth) acryloyl group are suitable. The active energy ray-curable adhesive composition used in the present invention preferably contains a compound having a (meth) acryloyl group as a main component. Specifically, the total amount of the active energy ray-curable adhesive composition is When the content is 100% by weight, the compound having a (meth) acryloyl group is preferably contained in an amount of 50% by weight or more, and more preferably 80% by weight or more. In the present invention, (meth) acryloyl means an acryloyl group and / or methacryloyl group, and “(meth)” has the same meaning hereinafter.

<単官能ラジカル重合性化合物>
単官能ラジカル重合性化合物としては、例えば、(メタ)アクリルアミド基を有する(メタ)アクリルアミド誘導体が挙げられる。(メタ)アクリルアミド誘導体は、偏光子や各種の透明保護フィルムとの接着性を確保するうえで、また、重合速度が速く生産性に優れる点で好ましい。(メタ)アクリルアミド誘導体の具体例としては、例えば、N−メチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−ブチル(メタ)アクリルアミド、N−ヘキシル(メタ)アクリルアミド等のN−アルキル基含有(メタ)アクリルアミド誘導体;N−メチロール(メタ)アクリルアミド、N−ヒドロキシエチル(メタ)アクリルアミド、N−メチロール−N−プロパン(メタ)アクリルアミド等のN−ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体;アミノメチル(メタ)アクリルアミド、アミノエチル(メタ)アクリルアミド等のN−アミノアルキル基含有(メタ)アクリルアミド誘導体;N−メトキシメチルアクリルアミド、N−エトキシメチルアクリルアミド等のN−アルコキシ基含有(メタ)アクリルアミド誘導体;メルカプトメチル(メタ)アクリルアミド、メルカプトエチル(メタ)アクリルアミド等のN−メルカプトアルキル基含有(メタ)アクリルアミド誘導体;などが挙げられる。また、(メタ)アクリルアミド基の窒素原子が複素環を形成している複素環含有(メタ)アクリルアミド誘導体としては、例えば、N−アクリロイルモルホリン、N−アクリロイルピペリジン、N−メタクリロイルピペリジン、N−アクリロイルピロリジン等があげられる。
<Monofunctional radical polymerizable compound>
Examples of the monofunctional radical polymerizable compound include (meth) acrylamide derivatives having a (meth) acrylamide group. A (meth) acrylamide derivative is preferable in terms of securing adhesiveness with a polarizer and various transparent protective films, and having a high polymerization rate and excellent productivity. Specific examples of (meth) acrylamide derivatives include, for example, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N -N-alkyl group-containing (meth) acrylamide derivatives such as butyl (meth) acrylamide, N-hexyl (meth) acrylamide; N-methylol (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-methylol-N- N-hydroxyalkyl group-containing (meth) acrylamide derivatives such as propane (meth) acrylamide; N-aminoalkyl group-containing (meth) acrylamide derivatives such as aminomethyl (meth) acrylamide and aminoethyl (meth) acrylamide; N-methoxymethyl N-alkoxy group-containing (meth) acrylamide derivatives such as acrylamide and N-ethoxymethylacrylamide; N-mercaptoalkyl group-containing (meth) acrylamide derivatives such as mercaptomethyl (meth) acrylamide and mercaptoethyl (meth) acrylamide; It is done. Examples of the heterocyclic-containing (meth) acrylamide derivative in which the nitrogen atom of the (meth) acrylamide group forms a heterocyclic ring include, for example, N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, and N-acryloylpyrrolidine. Etc.

前記(メタ)アクリルアミド誘導体のなかでも、偏光子や各種の透明保護フィルムとの接着性の点から、N−ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体が好ましく、また、単官能ラジカル重合性化合物としては、例えば、(メタ)アクリロイルオキシ基を有する各種の(メタ)アクリル酸誘導体が挙げられる。具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2−メチル−2−ニトロプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ペンチル(メタ)アクリレート、t−ペンチル(メタ)アクリレート、3−ペンチル(メタ)アクリレート、2,2−ジメチルブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n−オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、4−メチル−2−プロピルペンチル(メタ)アクリレート、n−オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1−20)アルキルエステル類が挙げられる。   Among the (meth) acrylamide derivatives, N-hydroxyalkyl group-containing (meth) acrylamide derivatives are preferable from the viewpoint of adhesion to polarizers and various transparent protective films, and monofunctional radically polymerizable compounds are also preferred. Examples include various (meth) acrylic acid derivatives having a (meth) acryloyloxy group. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-methyl-2-nitropropyl (meth) acrylate, n-butyl ( (Meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 4-methyl-2-propylpentyl ( (Meth) acrylate, n-o Tadeshiru (meth) (meth) acrylic acid (1-20 carbon atoms) such as acrylates alkyl esters.

また、前記(メタ)アクリル酸誘導体としては、例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート等のアラルキル(メタ)アクリレート;2−イソボルニル(メタ)アクリレート、2−ノルボルニルメチル(メタ)アクリレート、5−ノルボルネン−2−イル−メチル(メタ)アクリレート、3−メチル−2−ノルボルニルメチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレ−ト、ジシクロペンテニルオキシエチル(メタ)アクリレ−ト、ジシクロペンタニル(メタ)アクリレ−ト、等の多環式(メタ)アクリレート;2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−メトキシメトキシエチル(メタ)アクリレート、3−メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、アルキルフェノキシポリエチレングリコール(メタ)アクリレート等のアルコキシ基またはフェノキシ基含有(メタ)アクリレート;等が挙げられる。   Examples of the (meth) acrylic acid derivative include cycloalkyl (meth) acrylates such as cyclohexyl (meth) acrylate and cyclopentyl (meth) acrylate; aralkyl (meth) acrylates such as benzyl (meth) acrylate; 2-isobornyl (Meth) acrylate, 2-norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl-2-norbornylmethyl (meth) acrylate, dicyclopentenyl (meth) ) Polycyclic (meth) acrylates such as acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate; 2-methoxyethyl (meth) acrylate, 2-ethoxy Ethyl (meth) acrylate, 2 Alkoxy or phenoxy group-containing methoxymethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxyethyl (meth) acrylate, alkylphenoxypolyethylene glycol (meth) acrylate, etc. ) Acrylate;

また、前記(メタ)アクリル酸誘導体としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、6−ヒドロキシヘキシル(メタ)アクリレート、8−ヒドロキシオクチル(メタ)アクリレート、10−ヒドロキシデシル(メタ)アクリレート、12−ヒドロキシラウリル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートや、[4−(ヒドロキシメチル)シクロヘキシル]メチルアクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート等の水酸基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等のエポキシ基含有(メタ)アクリレート;2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,2−トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート等のハロゲン含有(メタ)アクリレート;ジメチルアミノエチル(メタ)アクリレート等のアルキルアミノアルキル(メタ)アクリレート;3−オキセタニルメチル(メタ)アクリレート、3−メチルーオキセタニルメチル(メタ)アクリレート、3−エチルーオキセタニルメチル(メタ)アクリレート、3−ブチルーオキセタニルメチル(メタ)アクリレート、3−ヘキシルーオキセタニルメチル(メタ)アクリレート等のオキセタン基含有(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート、ブチロラクトン(メタ)アクリレート、などの複素環を有する(メタ)アクリレートや、ヒドロキシピバリン酸ネオペンチルグリコール(メタ)アクリル酸付加物、p−フェニルフェノール(メタ)アクリレート等が挙げられる。   Examples of the (meth) acrylic acid derivative include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4- Hydroxyalkyl (meth) acrylates such as hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate And [4- (hydroxymethyl) cyclohexyl] methyl acrylate, cyclohexanedimethanol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate and other hydroxyl group-containing (Meth) acrylate; glycidyl (meth) acrylate, epoxy group-containing (meth) acrylate such as 4-hydroxybutyl (meth) acrylate glycidyl ether; 2,2,2-trifluoroethyl (meth) acrylate, 2,2,2- Trifluoroethylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoropropyl (meth) acrylate, octafluoropentyl (meth) acrylate, heptadecafluorodecyl (meth) acrylate, 3-chloro-2-hydroxypropyl Halogen-containing (meth) acrylates such as (meth) acrylates; alkylaminoalkyl (meth) acrylates such as dimethylaminoethyl (meth) acrylate; 3-oxetanylmethyl (meth) acrylates, 3 Oxetane group-containing (meth) acrylates such as methyl-oxetanylmethyl (meth) acrylate, 3-ethyl-oxetanylmethyl (meth) acrylate, 3-butyl-oxetanylmethyl (meth) acrylate, 3-hexyloxoxanylmethyl (meth) acrylate, etc. ; (Meth) acrylate having a heterocyclic ring such as tetrahydrofurfuryl (meth) acrylate and butyrolactone (meth) acrylate, neopentyl glycol (meth) acrylic acid hydroxypivalate, p-phenylphenol (meth) acrylate, etc. Is mentioned.

また、単官能ラジカル重合性化合物としては、(メタ)アクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸、イソクロトン酸などのカルボキシル基含有モノマーが挙げられる。   Examples of the monofunctional radically polymerizable compound include carboxyl group-containing monomers such as (meth) acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.

また、単官能ラジカル重合性化合物としては、例えば、N−ビニルピロリドン、N−ビニル−ε−カプロラクタム、メチルビニルピロリドン等のラクタム系ビニルモノマー;ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリン等の窒素含有複素環を有するビニル系モノマー等が挙げられる。   Examples of the monofunctional radical polymerizable compound include lactam vinyl monomers such as N-vinylpyrrolidone, N-vinyl-ε-caprolactam, and methylvinylpyrrolidone; vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, Examples thereof include vinyl monomers having a nitrogen-containing heterocyclic ring such as vinyl pyrrole, vinyl imidazole, vinyl oxazole, and vinyl morpholine.

また、単官能ラジカル重合性化合物としては、活性メチレン基を有するラジカル重合性化合物を用いることができる。活性メチレン基を有するラジカル重合性化合物は、末端または分子中に(メタ)アクリル基などの活性二重結合基を有し、かつ活性メチレン基を有する化合物である。活性メチレン基としては、例えばアセトアセチル基、アルコキシマロニル基、またはシアノアセチル基などが挙げられる。前記活性メチレン基がアセトアセチル基であることが好ましい。活性メチレン基を有するラジカル重合性化合物の具体例としては、例えば2−アセトアセトキシエチル(メタ)アクリレート、2−アセトアセトキシプロピル(メタ)アクリレート、2−アセトアセトキシ−1−メチルエチル(メタ)アクリレートなどのアセトアセトキシアルキル(メタ)アクリレート;2−エトキシマロニルオキシエチル(メタ)アクリレート、2−シアノアセトキシエチル(メタ)アクリレート、N−(2−シアノアセトキシエチル)アクリルアミド、N−(2−プロピオニルアセトキシブチル)アクリルアミド、N−(4−アセトアセトキシメチルベンジル)アクリルアミド、N−(2−アセトアセチルアミノエチル)アクリルアミドなどが挙げられる。活性メチレン基を有するラジカル重合性化合物は、アセトアセトキシアルキル(メタ)アクリレートであることが好ましい。   Moreover, as a monofunctional radically polymerizable compound, the radically polymerizable compound which has an active methylene group can be used. The radical polymerizable compound having an active methylene group is a compound having an active methylene group having an active double bond group such as a (meth) acryl group at the terminal or in the molecule. Examples of the active methylene group include an acetoacetyl group, an alkoxymalonyl group, and a cyanoacetyl group. The active methylene group is preferably an acetoacetyl group. Specific examples of the radical polymerizable compound having an active methylene group include 2-acetoacetoxyethyl (meth) acrylate, 2-acetoacetoxypropyl (meth) acrylate, 2-acetoacetoxy-1-methylethyl (meth) acrylate, and the like. Acetoacetoxyalkyl (meth) acrylate; 2-ethoxymalonyloxyethyl (meth) acrylate, 2-cyanoacetoxyethyl (meth) acrylate, N- (2-cyanoacetoxyethyl) acrylamide, N- (2-propionylacetoxybutyl) Examples include acrylamide, N- (4-acetoacetoxymethylbenzyl) acrylamide, and N- (2-acetoacetylaminoethyl) acrylamide. The radical polymerizable compound having an active methylene group is preferably acetoacetoxyalkyl (meth) acrylate.

<多官能ラジカル重合性化合物>
また、二官能以上の多官能ラジカル重合性化合物としては、例えば、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジアクリレート、2−エチル−2−ブチルプロパンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオぺンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、EO変性ジグリセリンテトラ(メタ)アクリレート等の(メタ)アクリル酸と多価アルコールとのエステル化物、9,9−ビス[4−(2−(メタ)アクリロイルオキシエトキシ)フェニル]フルオレンがあげられる。具体例としては、アロニックスM−220(東亞合成社製)、ライトアクリレート1,9ND−A(共栄社化学社製)、ライトアクリレートDGE−4A(共栄社化学社製)、ライトアクリレートDCP−A(共栄社化学社製)、SR−531(Sartomer社製)、CD−536(Sartomer社製)等が挙げられる。また必要に応じて、各種のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートや、各種の(メタ)アクリレート系モノマー等が挙げられる。
<Polyfunctional radical polymerizable compound>
Examples of the bifunctional or higher polyfunctional radical polymerizable compound include tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9. -Nonanediol di (meth) acrylate, 1,10-decanediol diacrylate, 2-ethyl-2-butylpropanediol di (meth) acrylate, bisphenol A di (meth) acrylate, bisphenol A ethylene oxide adduct di (meth) ) Acrylate, bisphenol A propylene oxide adduct di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, neopentyl glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) Acryte, cyclic trimethylolpropane formal (meth) acrylate, dioxane glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta Esterified products of (meth) acrylic acid and polyhydric alcohols such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, EO-modified diglycerin tetra (meth) acrylate, 9,9-bis [4- (2- (Meth) acryloyloxyethoxy) phenyl] fluorene. Specific examples include Aronix M-220 (manufactured by Toagosei Co., Ltd.), light acrylate 1,9ND-A (manufactured by Kyoeisha Chemical Co., Ltd.), light acrylate DGE-4A (manufactured by Kyoeisha Chemical Co., Ltd.), light acrylate DCP-A (Kyoeisha Chemical Co., Ltd.). SR-531 (manufactured by Sartomer), CD-536 (manufactured by Sartomer), and the like. Moreover, various epoxy (meth) acrylates, urethane (meth) acrylates, polyester (meth) acrylates, various (meth) acrylate monomers, and the like are included as necessary.

なお、本発明において、接着させる光学フィルムがアクリル樹脂フィルム、シクロオレフィン樹脂フィルム、ポリエステル樹脂フィルムおよびポリオレフィン樹脂フィルムからなる群より選択される少なくとも1種の光学フィルムである場合であって、活性エネルギー線硬化型接着剤組成物が、組成物の全量を100重量%としたとき、SP値が18〜21(MJ/m1/2であるラジカル重合性化合物を25〜98重量%含有する場合、より好ましくは30〜90重量%含有する場合、さらに好ましくは40〜80重量%含有する場合、接着剤層と光学フィルムとの間に相溶層が形成される。その結果、さらに積層光学フィルムの接着性が高まるため好ましい。 In the present invention, the optical film to be bonded is at least one optical film selected from the group consisting of an acrylic resin film, a cycloolefin resin film, a polyester resin film, and a polyolefin resin film, and an active energy ray When the curable adhesive composition contains 25 to 98% by weight of a radically polymerizable compound having an SP value of 18 to 21 (MJ / m 3 ) 1/2 when the total amount of the composition is 100% by weight. When containing 30 to 90% by weight, more preferably 40 to 80% by weight, a compatible layer is formed between the adhesive layer and the optical film. As a result, the adhesive property of the laminated optical film is further increased, which is preferable.

ここで、本発明におけるSP値(溶解性パラメータ)の算出法について、以下に説明する。 Here, the calculation method of the SP value (solubility parameter) in the present invention will be described below.

(溶解度パラメーター(SP値)の算出法)
本発明において、ラジカル重合性化合物や偏光子、各種透明保護フィルムなどの溶解度パラメーター(SP値)は、FEDORSの算出法[「ポリマー・エンジニアリング・アンド・サイエンス(POLYMER ENG.& SCI.)」,第14巻,第2号(1974),第148〜154ページ参照]すなわち、
(Calculation method of solubility parameter (SP value))
In the present invention, the solubility parameter (SP value) of a radically polymerizable compound, a polarizer, various transparent protective films and the like is calculated by the FEDORS calculation method [“Polymer Engineering and Science (POLYMER ENG. & SCI.)”, No. 14, Vol. 2 (1974), pages 148-154]

(ただしΔEIは原子または基に帰属する25℃における蒸発エネルギー、ΔVIは25℃におけるモル体積である)にて計算して求めることができる。 Where ΔEI is the evaporation energy at 25 ° C. belonging to the atom or group, and ΔVI is the molar volume at 25 ° C.

上記の数式中のΔEIおよびΔVIに、主な分子中のI個の原子および基に与えられた一定の数値を示す。また、原子または基に対して与えられたΔEおよびΔVの数値の代表例を、以下の表1に示す。   In the above formulas, ΔEI and ΔVI represent constant numerical values given to I atoms and groups in the main molecule. Table 1 below shows typical examples of numerical values of ΔE and ΔV given to atoms or groups.

SP値が18〜21(MJ/m1/2であるラジカル重合性化合物の具体例としては、例えば、トリプロピレングリコールジアクリレート(SP値19.0(MJ/m1/2)、1,9−ノナンジオールジアクリレート(SP値19.2(MJ/m1/2)、トリシクロデカンジメタノールジアクリレート(SP値20.3(MJ/m1/2)、環状トリメチロールプロパンフォルマルアクリレート(SP値19.1(MJ/m1/2)、ジオキサングリコールジアクリレート(SP値19.4(MJ/m1/2)、EO変性ジグリセリンテトラアクリレート(SP値20.9(MJ/m1/2)などが挙げられる。なお、SP値が18〜21(MJ/m1/2であるラジカル重合性化合物としては市販品も好適に使用可能であり、例えばアロニックスM−220(東亞合成社製、SP値19.0(MJ/m1/2)、ライトアクリレート1,9ND−A(共栄社化学社製、SP値19.2(MJ/m1/2)、ライトアクリレートDGE−4A(共栄社化学社製、SP値20.9(MJ/m1/2)、ライトアクリレートDCP−A(共栄社化学社製、SP値20.3(MJ/m1/2)、SR−531(SARTOMER社製、SP値19.1(MJ/m1/2)、CD−536(SARTOMER社製、SP値19.4(MJ/m1/2)などが挙げられる。 Specific examples of the radical polymerizable compound having an SP value of 18 to 21 (MJ / m 3 ) 1/2 include, for example, tripropylene glycol diacrylate (SP value 19.0 (MJ / m 3 ) 1/2 ) 1,9-nonanediol diacrylate (SP value 19.2 (MJ / m 3 ) 1/2 ), tricyclodecane dimethanol diacrylate (SP value 20.3 (MJ / m 3 ) 1/2 ), Cyclic trimethylolpropane formal acrylate (SP value 19.1 (MJ / m 3 ) 1/2 ), dioxane glycol diacrylate (SP value 19.4 (MJ / m 3 ) 1/2 ), EO-modified diglycerin tetra Acrylate (SP value 20.9 (MJ / m 3 ) 1/2 ) and the like. In addition, a commercial item can also be used suitably as a radically polymerizable compound whose SP value is 18-21 (MJ / m < 3 >) < 1/2 >, for example, Aronix M-220 (made by Toagosei Co., Ltd., SP value 19. 0 (MJ / m 3 ) 1/2 ), light acrylate 1,9ND-A (manufactured by Kyoeisha Chemical Co., Ltd., SP value 19.2 (MJ / m 3 ) 1/2 ), light acrylate DGE-4A (Kyoeisha Chemical Co., Ltd.) Manufactured, SP value 20.9 (MJ / m 3 ) 1/2 ), light acrylate DCP-A (manufactured by Kyoeisha Chemical Co., SP value 20.3 (MJ / m 3 ) 1/2 ), SR-531 (SARTOMER) And SP-value 19.1 (MJ / m 3 ) 1/2 ), CD-536 (manufactured by SARTOMER, SP value 19.4 (MJ / m 3 ) 1/2 ), and the like.

本発明に係る積層光学フィルムの製造方法においては、使用する活性エネルギー線硬化型接着剤組成物が、第1活性エネルギー線硬化型接着剤組成物および第2活性エネルギー線硬化型接着剤組成物を含む、少なくとも2種類以上の異なる活性エネルギー線硬化型接着剤組成物を含有する点が特徴である。「活性エネルギー線硬化型接着剤組成物が異なる」とは、含有するラジカル重合性化合物および組成比が異なることにより、例えば親水性/疎水性の観点から、活性エネルギー線硬化型接着剤組成物が異なる特性を有することを意味する。本発明に係る製造方法において製造される積層光学フィルムが例えば、偏光子の少なくとも一方の面に、接着剤層を介して透明保護フィルムが積層された偏光フィルムである場合、偏光子は親水性を示す一方で、透明保護フィルムは疎水性を示す傾向がある。したがって、本発明において、第1光学フィルムが偏光子、第2光学フィルムが透明保護フィルムである場合は、接着性を高めるために、第1光学フィルム側に配される第1活性エネルギー線硬化型接着剤組成物は親水性であることが好ましく、第2活性エネルギー線硬化型接着剤組成物は疎水性であることが好ましい。   In the method for producing a laminated optical film according to the present invention, the active energy ray-curable adhesive composition to be used is a first active energy ray-curable adhesive composition and a second active energy ray-curable adhesive composition. It is characterized by containing at least two or more different active energy ray-curable adhesive compositions. “Active energy ray-curable adhesive composition is different” means that the radically polymerizable compound and the composition ratio are different, for example, from the viewpoint of hydrophilicity / hydrophobicity, the active energy ray-curable adhesive composition is It means having different characteristics. When the laminated optical film produced in the production method according to the present invention is, for example, a polarizing film in which a transparent protective film is laminated on at least one surface of the polarizer via an adhesive layer, the polarizer is hydrophilic. On the other hand, transparent protective films tend to be hydrophobic. Therefore, in this invention, when a 1st optical film is a polarizer and a 2nd optical film is a transparent protective film, in order to improve adhesiveness, the 1st active energy ray hardening type distribute | arranged to the 1st optical film side The adhesive composition is preferably hydrophilic, and the second active energy ray-curable adhesive composition is preferably hydrophobic.

本発明において、活性エネルギー線硬化型接着剤組成物が含有するラジカル重合性化合物の親水性および疎水性を評価する指標としては、logPowが挙げられる。オクタノール/水分配係数(logPow)は、物質の親油性を表す指標であり、オクタノール/水の分配係数の対数値を意味する。logPowが高いということは親油性であることを意味し、即ち、吸水率が低いことを意味する。logPow値は測定することも可能(JIS−Z−7260記載のフラスコ浸とう法)だが、計算によって算出することもできる。本明細書では、ケンブリッジソフト社製Chem Draw Ultraで計算されたlogPow値を用いる。   In the present invention, logPow is an index for evaluating the hydrophilicity and hydrophobicity of the radical polymerizable compound contained in the active energy ray-curable adhesive composition. The octanol / water partition coefficient (logPow) is an index representing the lipophilicity of a substance, and means the logarithmic value of the octanol / water partition coefficient. High logPow means that it is lipophilic, that is, low water absorption. The logPow value can be measured (flask immersion method described in JIS-Z-7260), but can also be calculated. In this specification, the logPow value calculated by Chem Draw Ultra manufactured by Cambridge Soft is used.

特に、本発明において、第1光学フィルムが偏光子、第2光学フィルムが透明保護フィルムである場合、第1光学フィルム側に配される第1活性エネルギー線硬化型接着剤組成物は、logPowがー1〜1であるA成分を含有することが好ましく、第2活性エネルギー線硬化型接着剤組成物はlogPowが2〜7であるB成分を含有することが好ましい。このような構成において、(i)第1光学フィルムの貼合面に第1活性エネルギー線硬化型接着剤組成物を塗工し、さらに第2光学フィルムの貼合面に第2活性エネルギー線硬化型接着剤組成物を塗工する場合、あるいは、(ii)第1光学フィルムの貼合面に第1活性エネルギー線硬化型接着剤組成物を塗工し、第1活性エネルギー線硬化型接着剤組成物を塗工した塗工面に、さらに第2活性エネルギー線硬化型接着剤組成物を上塗り塗工する場合、偏光子と透明保護フィルムとの間に介在する接着剤層は、偏光子側において、高い親水性を示すA成分の濃度が高くなるような成分傾斜構造を有する。このため、偏光子と透明保護フィルムとが優れた接着性を示し、かつ耐水性に優れた接着剤層を備える偏光フィルムを製造することができる。   In particular, in the present invention, when the first optical film is a polarizer and the second optical film is a transparent protective film, the first active energy ray-curable adhesive composition disposed on the first optical film side has a log Pow of It is preferable to contain the A component which is -1-1, and it is preferable that the 2nd active energy ray hardening-type adhesive composition contains the B component whose logPow is 2-7. In such a configuration, (i) the first active energy ray-curable adhesive composition is applied to the bonding surface of the first optical film, and the second active energy beam curing is further applied to the bonding surface of the second optical film. Or (ii) applying the first active energy ray-curable adhesive composition to the bonding surface of the first optical film, and applying the first active energy ray-curable adhesive. When the second active energy ray-curable adhesive composition is further overcoated on the coated surface on which the composition is applied, the adhesive layer interposed between the polarizer and the transparent protective film is on the polarizer side. It has a component gradient structure in which the concentration of the A component exhibiting high hydrophilicity is high. For this reason, a polarizer and a transparent protective film show the adhesiveness which was excellent, and a polarizing film provided with the adhesive bond layer excellent in water resistance can be manufactured.

なお、例えば偏光フィルムの接着剤層において、A成分の濃度が厚み方向で変化する成分傾斜構造を有することの確認方法については、例えば飛行時間型二次イオン質量分析法(Time of Flight Secondary Ion Mass Spectrometry: TOF−SIMS)を利用する方法が挙げられる。TOF−SIMSの原理は、超高真空下で試料に一次イオンビーム(例えば1E12 ions/cm以下)を照射すると、試料の最表面(深さ数Å程度)のみから二次イオンが放出され、二次イオンを飛行時間型(TOF型)質量分析計へ導入することにより、質量スペクトルが得られる。この原理を利用して、試料最表面に存在する元素組成や化合物の化学構造の情報が得られる。さらに本発明においては、透明保護フィルムと偏光子との間に介在する接着剤層における厚み方向での成分傾斜構造を確認するため、クラスターイオンエッチング法を利用することができる。 For example, in the adhesive layer of the polarizing film, a method for confirming that the component A has a component gradient structure in which the concentration of the component A changes in the thickness direction is, for example, time of flight secondary ion mass spectrometry (Time of Flight Secondary Ion Mass). The method of using Spectrometry (TOF-SIMS) is mentioned. The principle of TOF-SIMS is that when a sample is irradiated with a primary ion beam (for example, 1E12 ions / cm 2 or less) under an ultra-high vacuum, secondary ions are released only from the outermost surface of the sample (a depth of about several millimeters). A mass spectrum is obtained by introducing secondary ions into a time-of-flight (TOF type) mass spectrometer. By utilizing this principle, information on the chemical composition of the elemental composition and compound existing on the outermost surface of the sample can be obtained. Furthermore, in this invention, in order to confirm the component inclination structure in the thickness direction in the adhesive bond layer interposed between a transparent protective film and a polarizer, a cluster ion etching method can be used.

以下に、「クラスターイオンエッチング法」について説明する。例えば単原子イオンビーム(Ar、Csなど)をエッチングイオンとして用いた一般的なエッチング法を利用して、接着剤層の表面をエッチングした場合、接着剤層表面の分子構造が破壊され、ダメージ層が形成される。この場合、TOF−SIMSを利用して該表面の質量スペクトルを得ようとしても、ダメージ層の影響で、接着剤層の表面の正確な質量スペクトルを測定することができない。一方、「Arガスクラスターイオン(Arn)」をエッチングイオンとして用いた「クラスターイオンエッチング法」を利用する場合、エッチング後の接着剤層の表面に付与されるダメージが低くなり、ダメージ層が形成されないため、エッチング後の接着剤層の表面は、エッチング前の該表面の分子構造を保持している。したがって、TOF−SIMSを利用することにより、正確に接着剤層の表面の質量スペクトルを測定することができる。 The “cluster ion etching method” will be described below. For example, when the surface of the adhesive layer is etched using a general etching method using a monoatomic ion beam (Ar + , Cs +, etc.) as etching ions, the molecular structure on the surface of the adhesive layer is destroyed, A damage layer is formed. In this case, even if an attempt is made to obtain the mass spectrum of the surface using TOF-SIMS, an accurate mass spectrum of the surface of the adhesive layer cannot be measured due to the influence of the damaged layer. On the other hand, when the “cluster ion etching method” using “Ar gas cluster ions (Arn + )” as etching ions is used, damage applied to the surface of the adhesive layer after etching is reduced, and a damaged layer is formed. Therefore, the surface of the adhesive layer after etching retains the molecular structure of the surface before etching. Therefore, the mass spectrum of the surface of the adhesive layer can be accurately measured by using TOF-SIMS.

図1にTOF−SIMSを利用した接着剤層における厚み方向での成分傾斜構造の評価方法を示す概略図を示す。図1の(I)は、本発明において製造可能な積層光学フィルムである偏光フィルムの一例を示し、かかる偏光フィルムでは、偏光子1の両面に接着剤層3を介して透明保護フィルム2が積層されている。まず、(I)で示す偏光フィルムの透明保護フィルム2(図1の(I)では上側透明保護フィルム2)をミクロトームで水平切削し、接着剤層3に接する透明保護フィルム2の厚みを薄くする((II))。次に、(III)に示すとおり、TOF−SIMSを利用し、薄く切削された透明保護フィルム2の表面の質量スペクトルを測定することで、該表面の組成を分析する。次に、(IV)に示すとおり、「クラスターイオンエッチング法」を利用して、薄く切削された透明保護フィルム2表面をエッチングした後、TOF−SIMSを利用し、該表面の組成を分析する。さらに(V)に示すとおり、「クラスターイオンエッチング法」を利用して、透明保護フィルム2表面をエッチングすることにより、接着剤層3の、透明保護フィルム2側の表面を析出させ、TOF−SIMSを利用し、該表面の組成を分析する。これ以降、「クラスターイオンエッチング法」を利用したエッチング処理と、TOF−SIMSを利用し、析出した接着剤層3の表面の組成の分析とを繰り返し、最終的に偏光子表面に到達するまでエッチング処理と接着剤層3(さらには偏光子1)の表面の組成の分析を継続して行う。上記で説明した手法により、本発明においては、透明保護フィルムと偏光子との間に介在する接着剤層における、厚み方向での成分傾斜構造を確認することができる。   The schematic which shows the evaluation method of the component inclination structure in the thickness direction in the adhesive bond layer using TOF-SIMS in FIG. 1 is shown. (I) of FIG. 1 shows an example of a polarizing film that is a laminated optical film that can be produced in the present invention. In such a polarizing film, a transparent protective film 2 is laminated on both surfaces of a polarizer 1 with an adhesive layer 3 interposed therebetween. Has been. First, the transparent protective film 2 of the polarizing film shown in (I) (the upper transparent protective film 2 in FIG. 1 (I)) is horizontally cut with a microtome to reduce the thickness of the transparent protective film 2 in contact with the adhesive layer 3. ((II)). Next, as shown in (III), the composition of the surface is analyzed by measuring the mass spectrum of the surface of the thin transparent protective film 2 using TOF-SIMS. Next, as shown in (IV), after etching the surface of the transparent protective film 2 thinly cut using the “cluster ion etching method”, the composition of the surface is analyzed using TOF-SIMS. Further, as shown in (V), the surface of the transparent protective film 2 is deposited by etching the surface of the transparent protective film 2 using the “cluster ion etching method”, and TOF-SIMS Is used to analyze the composition of the surface. Thereafter, the etching process using the “cluster ion etching method” and the analysis of the composition of the surface of the deposited adhesive layer 3 are repeated using TOF-SIMS, and etching is performed until the surface finally reaches the polarizer surface. Processing and analysis of the composition of the surface of the adhesive layer 3 (and the polarizer 1) are continued. By the method demonstrated above, in this invention, the component inclination structure in the thickness direction in the adhesive bond layer interposed between a transparent protective film and a polarizer can be confirmed.

logPowが−1〜1であるA成分としては、前記記載のラジカル重合性化合物のうち、logPowが−1〜1である化合物を任意に使用可能であるが、具体的には例えばヒドロキシエチルアクリルアミド(商品名「HEAA」、興人社製、LogPow;−0.56)、N−ビニルホルムアミド(商品名「ビームセット770」、荒川化学社製、LogPow;−0.25)、アクリロイルモルフォリン(商品名「ACMO」、興人社製、LogPow;−0.20)、γブチロラクトンアクリレート(商品名「GBLA」、大阪有機化学工業社製、LogPow;0.19)、アクリル酸2量体(商品名「β−CEA」、ダイセル社製、LogPow;0.2)、N−ビニルピロリドン(商品名「NVP」、日本触媒社製、LogPow;0.24)、アセトアセトキシエチルメタクリレート(商品名「AAEM」、日本合成化学社製、LogPow;0.27)、2−ヒドロキシエチルアクリレート(商品名「HEA」、大阪有機化学工業社製、LogPow;0.28)、グリシジルメタクリレート(商品名「ライトエステルG」、共栄社化学製、LogPow;0.57)、ジメチルアクリルアミド(商品名「DMAA」、興人社製、LogPow;0.58)、テトラヒドロフルフリルアルコールアクリル酸多量体エステル(商品名「ビスコート#150D」、大阪有機化学工業社製、LogPow;0.60)、4−ヒドロキシブチルアクリレート(商品名「4−HBA」、大阪有機化学工業社製、LogPow;0.68)、アクリル酸(商品名「アクリル酸」、三菱化学社製、LogPow;0.69)、トリエチレングリコールジアクリレート(商品名「ライトアクリレート3EG−A」、共栄社化学社製、LogPow;0.72)などが挙げられる。これらの中でも、本発明においてはlogPowが−1〜1であるA成分として、(メタ)アクリルアミド誘導体を使用することが好ましく、さらにはヒドロキシエチルアクリルアミド、アクリロイルモルフォリン、またはジメチルアクリルアミドの使用が好ましい。(メタ)アクリルアミド誘導体以外では、4−ヒドロキシブチルアクリレートの使用が好ましい。   As the A component having a log Pow of −1 to 1, among the radical polymerizable compounds described above, a compound having a log Pow of −1 to 1 can be arbitrarily used. Specifically, for example, hydroxyethyl acrylamide ( Product name “HEAA”, manufactured by Kojin Co., Ltd., LogPow; −0.56), N-vinylformamide (trade name “Beamset 770”, manufactured by Arakawa Chemical Co., Ltd., LogPow; −0.25), acryloylmorpholine (product) Name “ACMO”, manufactured by Kojin Co., Ltd., LogPow; −0.20), γ-butyrolactone acrylate (trade name “GBLA”, manufactured by Osaka Organic Chemical Industry Co., Ltd., LogPow; 0.19), acrylic acid dimer (trade name) “Β-CEA”, manufactured by Daicel Corporation, LogPow; 0.2), N-vinylpyrrolidone (trade name “NVP”, manufactured by Nippon Shokubai Co., Ltd., LogPo) w; 0.24), acetoacetoxyethyl methacrylate (trade name “AAEM”, manufactured by Nippon Synthetic Chemical Co., Ltd., LogPow; 0.27), 2-hydroxyethyl acrylate (trade name “HEA”, manufactured by Osaka Organic Chemical Industries, Ltd., LogPow; 0.28), glycidyl methacrylate (trade name “Light Ester G”, manufactured by Kyoeisha Chemical Co., Ltd., LogPow; 0.57), dimethylacrylamide (trade name “DMAA”, manufactured by Kojin Co., Ltd., LogPow; 0.58), Tetrahydrofurfuryl alcohol acrylic acid multimer ester (trade name “Biscoat # 150D”, manufactured by Osaka Organic Chemical Industry Co., Ltd., LogPow; 0.60), 4-hydroxybutyl acrylate (trade name “4-HBA”, Osaka Organic Chemical Industries, Ltd.) Company, LogPow; 0.68), acrylic acid (trade name “acrylic acid”) Manufactured by Mitsubishi Chemical Corporation, LogPow; 0.69), triethylene glycol diacrylate (trade name "LIGHT ACRYLATE 3EG-A" manufactured by Kyoeisha Chemical Co., Ltd., LogPow; 0.72), and the like. Among these, in this invention, it is preferable to use a (meth) acrylamide derivative as A component whose logPow is -1 to 1, and also use of hydroxyethyl acrylamide, acryloyl morpholine, or dimethyl acrylamide is preferable. Other than (meth) acrylamide derivatives, 4-hydroxybutyl acrylate is preferably used.

第1光学フィルムが偏光子である場合、第1活性エネルギー線硬化型接着剤組成物はlogPowが−1〜1であるA成分を含有することが好ましい。さらに、接着剤層の接着力と耐水性とを向上するために、第1活性エネルギー線硬化型接着剤組成物の全量を100重量%としたとき、logPowが−1〜1であるA成分の含有量は、5〜95重量%であることが好ましく、30〜80重量%であることがより好ましい。   When the first optical film is a polarizer, the first active energy ray-curable adhesive composition preferably contains an A component having a logPow of −1 to 1. Furthermore, in order to improve the adhesive strength and water resistance of the adhesive layer, when the total amount of the first active energy ray-curable adhesive composition is 100% by weight, the log Pow is −1 to 1, The content is preferably 5 to 95% by weight, and more preferably 30 to 80% by weight.

本発明において、logPowが2〜7である成分をB成分としたとき、かかるB成分は高い疎水性を示す。logPowが2〜7であるB成分としては、前記記載のラジカル重合性化合物のうち、logPowが2〜7である化合物を任意に使用可能であるが、具体的には例えばジシクロペンテニルアクリレ−ト(商品名「ファンクリルFA−511AS」、日立化成社製、LogPow;2.26)、アクリル酸ブチル(商品名「アクリル酸ブチル」、三菱化学社製、LogPow;2.35)、1,6−ヘキサンジオールジアクリレート(商品名「ライトアクリレート1.6HX−A」、共栄社化学社製、LogPow;2.43)、ジシクロペンタニルアクリレ−ト(商品名「ファンクリルFA−513AS」、日立化成社製、LogPow;2.58)、ジメチロール−トリシクロデカンジアクリレート(商品名「ライトアクリレートDCP−A」、共栄社化学社製、LogPow;3.05)、イソボルニルアクリレート(商品名「ライトアクリレートIB−XA」、共栄社化学社製、LogPow;3.27)、ヒドロキシピバリン酸ネオペンチルグリコールアクリル酸付加物(商品名「ライトアクリレートHPP−A」、共栄社化学社製、LogPow;3.35)、1,9−ノナンジオールジアクリレート(商品名「ライトアクリレート1,9ND−A」、共栄社化学社製、LogPow;3.68)、o−フェニルフェノールEO変性アクリレート(商品名「ファンクリルFA−301A」、日立化成社製、LogPow;3.98)、2−エチルヘキシルオキセタン(商品名「アロンオキセタンOXT−212」、東亞合成社製、LogPow;4.24)、ビスフェノール−A−ジグリシジルエーテル(商品名「JER828」、三菱化学社製、LogPow;4.76)、ビスフェノールA EO6モル変性ジアクリレート(商品名「FA−326A」、日立化成社製、LogPow;4.84)、ビスフェノールA EO4モル変性ジアクリレート(商品名「FA−324A」、日立化成社製、LogPow;5.15)、ビスフェノールA PO2モル変性ジアクリレート(商品名「FA−P320A」、日立化成社製、LogPow;6.10)、ビスフェノールA PO3モル変性ジアクリレート(商品名「FA−P323A」、日立化成社製、LogPow;6.26)、ビスフェノールA PO4モル変性ジアクリレート(商品名「FA−P324A」、日立化成社製、LogPow;6.43)などが挙げられる。これらの中でも、本発明においてはlogPowが2〜7であるB成分として、多官能(メタ)アクリレートを使用することが好ましく、さらには1,6−ヘキサンジオールジアクリレート)、ジメチロール−トリシクロデカンジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールアクリル酸付加物、1,9−ノナンジオールジアクリレート、2−エチルヘキシルオキセタン、ビスフェノール−A−ジグリシジルエーテル、ビスフェノールA EO6モル変性ジアクリレート、ビスフェノールA EO4モル変性ジアクリレート、ビスフェノールA PO2モル変性ジアクリレート、ビスフェノールA PO3モル変性ジアクリレート、またはビスフェノールA PO4モル変性ジアクリレートの使用が好ましい。   In the present invention, when a component having a log Pow of 2 to 7 is a B component, the B component exhibits high hydrophobicity. As the B component having a log Pow of 2 to 7, a compound having a log Pow of 2 to 7 among the radical polymerizable compounds described above can be arbitrarily used. Specifically, for example, dicyclopentenyl acrylate- (Trade name “Fancryl FA-511AS”, manufactured by Hitachi Chemical Co., Ltd., LogPow; 2.26), butyl acrylate (trade name “butyl acrylate”, manufactured by Mitsubishi Chemical Corporation, LogPow; 2.35), 1, 6-hexanediol diacrylate (trade name “Light acrylate 1.6HX-A”, manufactured by Kyoeisha Chemical Co., Ltd., LogPow; 2.43), dicyclopentanyl acrylate (trade name “Fancryl FA-513AS”, Hitachi Chemical Co., Ltd., LogPow; 2.58), dimethylol-tricyclodecane diacrylate (trade name “Light Acrylate DC”) -A ", manufactured by Kyoeisha Chemical Co., Ltd., LogPow; 3.05), isobornyl acrylate (trade name" Light Acrylate IB-XA ", manufactured by Kyoeisha Chemical Co., Ltd., LogPow; 3.27), hydroxypivalate neopentyl glycol acrylic Acid adduct (trade name “light acrylate HPP-A”, manufactured by Kyoeisha Chemical Co., Ltd., LogPow; 3.35), 1,9-nonanediol diacrylate (trade name “light acrylate 1,9ND-A”, Kyoeisha Chemical Co., Ltd.) Manufactured by LogPow; 3.68), o-phenylphenol EO modified acrylate (trade name “Fancryl FA-301A”, manufactured by Hitachi Chemical Co., Ltd., LogPow; 3.98), 2-ethylhexyloxetane (trade name “Aron Oxetane OXT” -212 ", manufactured by Toagosei Co., Ltd., LogPow; 4.24), Bisuf Nord-A-diglycidyl ether (trade name “JER828”, manufactured by Mitsubishi Chemical Corporation, LogPow; 4.76), bisphenol A EO6 molar modified diacrylate (trade name “FA-326A”, manufactured by Hitachi Chemical Co., Ltd., LogPow; 4 .84), bisphenol A EO4 mole modified diacrylate (trade name “FA-324A”, manufactured by Hitachi Chemical Co., Ltd., LogPow; 5.15), bisphenol A PO2 mole modified diacrylate (trade name “FA-P320A”, Hitachi Chemical) LogPow; 6.10), bisphenol A PO3 molar modified diacrylate (trade name “FA-P323A”, Hitachi Chemical, LogPow; 6.26), bisphenol A PO4 molar modified diacrylate (trade name “FA”) -P324A ", manufactured by Hitachi Chemical Co., Ltd., LogPow; 6.4 ), And the like. Among these, in this invention, it is preferable to use polyfunctional (meth) acrylate as B component whose logPow is 2-7, Furthermore, 1, 6- hexanediol diacrylate), dimethylol- tricyclodecanedi. Acrylate, hydroxypivalate neopentyl glycol acrylic acid adduct, 1,9-nonanediol diacrylate, 2-ethylhexyl oxetane, bisphenol-A-diglycidyl ether, bisphenol A EO6 mole modified diacrylate, bisphenol A EO4 mole modified diacrylate The use of bisphenol A PO2 mole modified diacrylate, bisphenol A PO3 mole modified diacrylate, or bisphenol A PO4 mole modified diacrylate is preferred.

第2光学フィルムが透明保護フィルムである場合、第2活性エネルギー線硬化型接着剤組成物はlogPowが2〜7であるB成分を含有することが好ましい。さらに、接着剤層の接着力と耐水性とを向上するためには、第2活性エネルギー線硬化型接着剤組成物の全量を100重量%としたとき、logPowが2〜7であるB成分の含有量は、30〜95重量%であることが好ましく、50〜80重量%であることがより好ましい。   When the second optical film is a transparent protective film, the second active energy ray-curable adhesive composition preferably contains a B component having a logPow of 2 to 7. Furthermore, in order to improve the adhesive strength and water resistance of the adhesive layer, when the total amount of the second active energy ray-curable adhesive composition is 100% by weight, the log Pow is 2-7. The content is preferably 30 to 95% by weight, and more preferably 50 to 80% by weight.

活性エネルギー線硬化型接着剤組成物は、活性エネルギー線に電子線などを用いる場合には、当該活性エネルギー線硬化型接着剤組成物は光重合開始剤を含有することは必要ではないが、活性エネルギー線に紫外線または可視光線を用いる場合には、光重合開始剤を含有するのが好ましい。   When an active energy ray-curable adhesive composition uses an electron beam or the like as the active energy ray, the active energy ray-curable adhesive composition does not need to contain a photopolymerization initiator. When ultraviolet rays or visible rays are used for the energy rays, it is preferable to contain a photopolymerization initiator.

<光重合開始剤>
ラジカル重合性化合物を用いる場合の光重合開始剤は、活性エネルギー線によって適宜に選択される。紫外線または可視光線により硬化させる場合には紫外線または可視光線開裂の光重合開始剤が用いられる。前記光重合開始剤は単独で使用してもよいが、複数の光重合開始剤を混合して使用する場合、硬化速度や硬化性を調整することができるため好ましい。前記光重合開始剤としては、例えば、ベンジル、ベンゾフェノン、ベンゾイル安息香酸、3,3′−ジメチル−4−メトキシベンゾフェノンなどのベンゾフェノン系化合物;4−(2−ヒドロキシエトキシ)フェニル(2−ヒドロキシ−2−プロピル)ケトン、α−ヒドロキシ−α,α´−ジメチルアセトフェノン、2−メチル−2−ヒドロキシプロピオフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン 、2−ヒロドキシ−1−{4−[4−(2−ヒドロキシ−2−メチル−プロピオニル)−ベンジル]フェニル}−2−メチル−プロパン−1−オンなどの芳香族ケトン化合物;メトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフエノン、2,2−ジエトキシアセトフェノン、2−メチル−1−[4−(メチルチオ)−フェニル]−2−モルホリノプロパン−1などのアセトフェノン系化合物;べンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル、べンゾインブチルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどの芳香族ケタール系化合物;2−ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1−フェノン−1,1―プロパンジオン−2−(o−エトキシカルボニル)オキシムなどの光活性オキシム系化合物;チオキサンソン、2−クロロチオキサンソン、2−メチルチオキサンソン、2,4−ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4−ジクロロチオキサンソン、2,4−ジエチルチオキサンソン、2,4−ジイソプロピルチオキサンソン、ドデシルチオキサントンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどがあげられる。
<Photopolymerization initiator>
The photopolymerization initiator in the case of using the radical polymerizable compound is appropriately selected depending on the active energy ray. In the case of curing by ultraviolet light or visible light, a photopolymerization initiator for ultraviolet light or visible light cleavage is used. Although the said photoinitiator may be used independently, when mixing and using a some photoinitiator, since a cure rate and curability can be adjusted, it is preferable. Examples of the photopolymerization initiator include benzophenone compounds such as benzyl, benzophenone, benzoylbenzoic acid, and 3,3′-dimethyl-4-methoxybenzophenone; 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2) -Propyl) ketone, [alpha] -hydroxy- [alpha], [alpha] '-dimethylacetophenone, 2-methyl-2-hydroxypropiophenone, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl]- 2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propane Aromatic ketone compounds such as -1-one; methoxyacetophenone, 2,2-dimeth Acetophenone compounds such as ci-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- (methylthio) -phenyl] -2-morpholinopropane-1; benzoin methyl Benzoin ether compounds such as ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, and anisoin methyl ether; aromatic ketal compounds such as benzyldimethyl ketal; aromatics such as 2-naphthalenesulfonyl chloride Sulfonyl chloride compounds; photoactive oxime compounds such as 1-phenone-1,1-propanedione-2- (o-ethoxycarbonyl) oxime; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2, 4-dimethylthioxa Thioxanthone compounds such as Son, Isopropylthioxanthone, 2,4-Dichlorothioxanthone, 2,4-Diethylthioxanthone, 2,4-Diisopropylthioxanthone, Dodecylthioxanthone; Camphorquinone; Halogenated ketone; Acyl Phosphinoxide; acyl phosphonate and the like.

前記光重合開始剤の配合量は、活性エネルギー線硬化型接着剤組成物の全量を100重量%としたとき、20重量%以下である。光重合開始剤の配合量は、0.01〜20重量%であるのが好ましく、さらには、0.05〜10重量%、さらには0.1〜5重量%であるのが好ましい。   The blending amount of the photopolymerization initiator is 20% by weight or less when the total amount of the active energy ray-curable adhesive composition is 100% by weight. The blending amount of the photopolymerization initiator is preferably 0.01 to 20% by weight, more preferably 0.05 to 10% by weight, and further preferably 0.1 to 5% by weight.

また本発明の積層光学フィルム用硬化型接着剤を、硬化性成分としてラジカル重合性化合物を含有する可視光線硬化型で用いる場合には、特に380nm以上の光に対して高感度な光重合開始剤を用いることが好ましい。380nm以上の光に対して高感度な光重合開始剤については後述する。   When the curable adhesive for laminated optical films of the present invention is used in a visible light curable type containing a radical polymerizable compound as a curable component, it is a photopolymerization initiator particularly sensitive to light of 380 nm or more. Is preferably used. A photopolymerization initiator that is highly sensitive to light of 380 nm or more will be described later.

前記光重合開始剤としては、下記一般式(1)で表される化合物;   As said photoinitiator, the compound represented by following General formula (1);

(式中、RおよびRは−H、−CHCH、−iPrまたはClを示し、RおよびRは同一または異なっても良い)を単独で使用するか、あるいは一般式(1)で表される化合物と後述する380nm以上の光に対して高感度な光重合開始剤とを併用することが好ましい。一般式(1)で表される化合物を使用した場合、380nm以上の光に対して高感度な光重合開始剤を単独で使用した場合に比べて接着性に優れる。一般式(1)で表される化合物の中でも、RおよびRが−CHCHであるジエチルチオキサントンが特に好ましい。接着剤中の一般式(1)で表される化合物の組成比率は、活性エネルギー線硬化型接着剤組成物の全量を100重量%としたとき、0.1〜5重量%であることが好ましく、0.5〜4重量%であることがより好ましく、0.9〜3重量%であることがさらに好ましい。 (Wherein R 1 and R 2 represent —H, —CH 2 CH 3 , —iPr or Cl, and R 1 and R 2 may be the same or different), respectively, or a general formula ( It is preferable to use together the compound represented by 1) and a photopolymerization initiator that is highly sensitive to light of 380 nm or more, which will be described later. When the compound represented by the general formula (1) is used, the adhesiveness is excellent as compared with a case where a photopolymerization initiator having high sensitivity to light of 380 nm or more is used alone. Among the compounds represented by the general formula (1), diethylthioxanthone in which R 1 and R 2 are —CH 2 CH 3 is particularly preferable. The composition ratio of the compound represented by the general formula (1) in the adhesive is preferably 0.1 to 5% by weight when the total amount of the active energy ray-curable adhesive composition is 100% by weight. 0.5 to 4% by weight is more preferable, and 0.9 to 3% by weight is even more preferable.

また、必要に応じて重合開始助剤を添加することが好ましい。重合開始助剤としては、トリエチルアミン、ジエチルアミン、N−メチルジエタノールアミン、エタノールアミン、4−ジメチルアミノ安息香酸、4−ジメチルアミノ安息香酸メチル、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミルなどが挙げられ、4−ジメチルアミノ安息香酸エチルが特に好ましい。重合開始助剤を使用する場合、その添加量は、硬化性成分の全量100重量部に対して、通常0〜5重量部、好ましくは0〜4重量部、最も好ましくは0〜3重量部である。   Moreover, it is preferable to add a polymerization initiation assistant as required. Examples of polymerization initiators include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, and the like. Among them, ethyl 4-dimethylaminobenzoate is particularly preferable. When using a polymerization initiation aid, the amount added is usually 0 to 5 parts by weight, preferably 0 to 4 parts by weight, most preferably 0 to 3 parts by weight, based on 100 parts by weight of the total amount of the curable component. is there.

また、必要に応じて公知の光重合開始剤を併用することができる。UV吸収能を有する透明保護フィルムは、380nm以下の光を透過しないため、光重合開始剤としては、380nm以上の光に対して高感度な光重合開始剤を使用することが好ましい。具体的には、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルホリニル)フェニル]−1−ブタノン、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウムなどが挙げられる。   Moreover, a well-known photoinitiator can be used together as needed. Since the transparent protective film having UV absorbing ability does not transmit light of 380 nm or less, it is preferable to use a photopolymerization initiator that is highly sensitive to light of 380 nm or more as the photopolymerization initiator. Specifically, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 2- (Dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine Oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole) 1-yl) -phenyl) titanium and the like.

特に、光重合開始剤として、一般式(1)の光重合開始剤に加えて、さらに下記一般式(2)で表される化合物;   In particular, as a photopolymerization initiator, in addition to the photopolymerization initiator of the general formula (1), a compound represented by the following general formula (2);

(式中、R、RおよびRは−H、−CH、−CHCH、−iPrまたはClを示し、R、RおよびRは同一または異なっても良い)を使用することが好ましい。一般式(2)で表される化合物としては、市販品でもある2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オン(商品名:IRGACURE907 メーカー:BASF)が好適に使用可能である。その他、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1(商品名:IRGACURE369 メーカー:BASF)、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルホリニル)フェニル]−1−ブタノン(商品名:IRGACURE379 メーカー:BASF)が感度が高いため好ましい。 Wherein R 3 , R 4 and R 5 represent —H, —CH 3 , —CH 2 CH 3 , —iPr or Cl, and R 3 , R 4 and R 5 may be the same or different. It is preferable to use it. As the compound represented by the general formula (2), 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (trade name: IRGACURE907 manufacturer: BASF) which is also a commercially available product is suitable. Can be used. In addition, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (trade name: IRGACURE369 manufacturer: BASF), 2- (dimethylamino) -2-[(4-methylphenyl) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (trade name: IRGACURE379 manufacturer: BASF) is preferable because of its high sensitivity.

本発明においては、上記光重合開始剤の中でも、ヒドロキシル基含有光重合開始剤を使用することが好ましい。活性エネルギー線硬化型接着剤組成物が、重合開始剤としてヒドロキシル基含有光重合開始剤を含有する場合、偏光子側のA成分の濃度が高い接着剤層への溶解性が高まり、接着剤層の硬化性が高まる。ヒドロキシル基を有する光重合開始剤としては、例えば2−メチル−2−ヒドロキシプロピオフェノン(商品名「DAROCUR1173」、BASF社製)、1−ヒドロキシシクロヘキシルフェニルケトン(商品名「IRGACURE184」、BASF社製)、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(商品名「IRGACURE2959」、BASF社製) 、2−ヒロドキシ−1−{4−[4−(2−ヒドロキシ−2−メチル−プロピオニル)−ベンジル]フェニル}−2−メチル−プロパン−1−オン(商品名「IRGACURE127」、BASF社製)などが挙げられる。特に1−ヒドロキシシクロヘキシルフェニルケトンはA成分の濃度が高い接着剤層への溶解性が特に優れるためより好ましい。   In the present invention, among the photopolymerization initiators, it is preferable to use a hydroxyl group-containing photopolymerization initiator. When the active energy ray-curable adhesive composition contains a hydroxyl group-containing photopolymerization initiator as a polymerization initiator, the solubility in the adhesive layer having a high concentration of the component A on the polarizer side is increased, and the adhesive layer The curability of is increased. Examples of the photopolymerization initiator having a hydroxyl group include 2-methyl-2-hydroxypropiophenone (trade name “DAROCUR1173”, manufactured by BASF), 1-hydroxycyclohexyl phenyl ketone (trade name “IRGACURE184”, manufactured by BASF). ), 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one (trade name “IRGACURE2959”, manufactured by BASF), 2-hydroxy-1- Examples include {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one (trade name “IRGACURE127”, manufactured by BASF). In particular, 1-hydroxycyclohexyl phenyl ketone is more preferable because it has particularly excellent solubility in an adhesive layer having a high concentration of component A.

<活性メチレン基を有するラジカル重合性化合物と、水素引き抜き作用のあるラジカル重合開始剤>
上記活性エネルギー線硬化型接着剤組成物において、ラジカル重合性化合物として、活性メチレン基を有するラジカル重合性化合物を用いる場合には、水素引き抜き作用のあるラジカル重合開始剤と組み合わせて用いるのが好ましい。かかる構成によれば、特に高湿度環境または水中から取り出した直後(非乾燥状態)であっても、偏光フィルムの有する接着剤層の接着性が著しく向上する。この理由は明らかでは無いが、以下の原因が考えられる。つまり、活性メチレン基を有するラジカル重合性化合物は、接着剤層を構成する他のラジカル重合性化合物とともに重合しつつ、接着剤層中のベースポリマーの主鎖および/または側鎖に取り込まれ、接着剤層を形成する。かかる重合過程において、水素引き抜き作用のあるラジカル重合開始剤が存在すると、接着剤層を構成するベースポリマーが形成されつつ、活性メチレン基を有するラジカル重合性化合物から、水素が引き抜かれ、メチレン基にラジカルが発生する。そして、ラジカルが発生したメチレン基とPVAなどの偏光子の水酸基とが反応し、接着剤層と偏光子との間に共有結合が形成される。その結果、特に非乾燥状態であっても、偏光フィルムの有する接着剤層の接着性が著しく向上するものと推測される。
<Radical polymerizable compound having active methylene group and radical polymerization initiator having hydrogen abstraction action>
In the active energy ray-curable adhesive composition, when a radical polymerizable compound having an active methylene group is used as the radical polymerizable compound, it is preferably used in combination with a radical polymerization initiator having a hydrogen abstracting action. According to such a configuration, the adhesiveness of the adhesive layer of the polarizing film is remarkably improved even in a high humidity environment or immediately after being taken out from water (non-dried state). The reason for this is not clear, but the following causes are considered. That is, the radical polymerizable compound having an active methylene group is taken into the main chain and / or side chain of the base polymer in the adhesive layer while polymerizing together with other radical polymerizable compounds constituting the adhesive layer. An agent layer is formed. In such a polymerization process, when a radical polymerization initiator having a hydrogen abstracting action is present, a base polymer constituting the adhesive layer is formed, while hydrogen is extracted from the radical polymerizable compound having an active methylene group to form a methylene group. Radicals are generated. And the methylene group which the radical generate | occur | produced, and the hydroxyl group of polarizers, such as PVA, react, and a covalent bond is formed between an adhesive bond layer and a polarizer. As a result, it is speculated that the adhesiveness of the adhesive layer of the polarizing film is remarkably improved even in a non-dry state.

本発明においては、水素引き抜き作用のあるラジカル重合開始剤として、例えばチオキサントン系ラジカル重合開始剤、ベンゾフェノン系ラジカル重合開始剤などが挙げられる。前記ラジカル重合開始剤は、チオキサントン系ラジカル重合開始剤であることが好ましい。チオキサントン系ラジカル重合開始剤としては、例えば上記一般式(1)で表される化合物が挙げられる。一般式(1)で表される化合物の具体例としては、例えば、チオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、イソプロピルチオキサントン、クロロチオキサントンなどが挙げられる。一般式(1)で表される化合物の中でも、RおよびRが−CHCHであるジエチルチオキサントンが特に好ましい。 In the present invention, examples of the radical polymerization initiator having a hydrogen abstracting action include thioxanthone radical polymerization initiators and benzophenone radical polymerization initiators. The radical polymerization initiator is preferably a thioxanthone radical polymerization initiator. Examples of the thioxanthone radical polymerization initiator include compounds represented by the above general formula (1). Specific examples of the compound represented by the general formula (1) include thioxanthone, dimethylthioxanthone, diethylthioxanthone, isopropylthioxanthone, and chlorothioxanthone. Among the compounds represented by the general formula (1), diethylthioxanthone in which R 1 and R 2 are —CH 2 CH 3 is particularly preferable.

上記活性エネルギー線硬化型接着剤組成物において、活性メチレン基を有するラジカル重合性化合物と、水素引き抜き作用のあるラジカル重合開始剤を含有する場合には、硬化性成分の全量を100重量%としたとき、前記活性メチレン基を有するラジカル重合性化合物を1〜50重量%、およびラジカル重合開始剤を、硬化性成分の全量100重量部に対して0.1〜10重量部含有することが好ましい。   In the active energy ray-curable adhesive composition, when the radical polymerizable compound having an active methylene group and a radical polymerization initiator having a hydrogen abstracting action are contained, the total amount of the curable component is 100% by weight. In this case, it is preferable to contain 1 to 50% by weight of the radical polymerizable compound having an active methylene group and 0.1 to 10 parts by weight of the radical polymerization initiator with respect to 100 parts by weight of the total amount of the curable component.

上述のとおり、本発明においては、水素引き抜き作用のあるラジカル重合開始剤の存在下で、活性メチレン基を有するラジカル重合性化合物のメチレン基にラジカルを発生させ、かかるメチレン基とPVAなどの偏光子の水酸基とが反応し、共有結合を形成する。したがって、活性メチレン基を有するラジカル重合性化合物のメチレン基にラジカルを発生させ、かかる共有結合を十分に形成するために、硬化性成分の全量を100重量%としたとき、活性メチレン基を有するラジカル重合性化合物を1〜50重量%含有するのが好ましく、さらには3〜30重量%含有することがより好ましい。耐水性を十分に向上させて非乾燥状態での接着性を向上させるには活性メチレン基を有するラジカル重合性化合物は1重量%以上とするのが好ましい。一方、50重量%を超えると、接着剤層の硬化不良が発生する場合がある。また、水素引き抜き作用のあるラジカル重合開始剤は、硬化性成分の全量100重量部に対して0.1〜10重量部含有することが好ましく、さらには0.3〜9重量部含有することがより好ましい。水素引き抜き反応が十分に進行させるには、ラジカル重合開始剤を0.1重量部以上用いることが好ましい。一方場合があり、10重量部を超えると、組成物中で完全に溶解しない場合がある。   As described above, in the present invention, a radical is generated in the methylene group of a radical polymerizable compound having an active methylene group in the presence of a radical polymerization initiator having a hydrogen abstraction function, and the methylene group and a polarizer such as PVA are used. React with a hydroxyl group to form a covalent bond. Therefore, in order to generate radicals in the methylene group of the radical polymerizable compound having an active methylene group and to sufficiently form such a covalent bond, when the total amount of the curable component is 100% by weight, the radical having an active methylene group. The content of the polymerizable compound is preferably 1 to 50% by weight, and more preferably 3 to 30% by weight. In order to sufficiently improve the water resistance and improve the adhesion in a non-dry state, the radical polymerizable compound having an active methylene group is preferably 1% by weight or more. On the other hand, if it exceeds 50% by weight, the adhesive layer may be poorly cured. Moreover, it is preferable to contain 0.1-10 weight part with respect to 100 weight part of whole quantity of a sclerosing | hardenable component, and, as for the radical polymerization initiator which has a hydrogen abstraction effect | action, it is further contained 0.3-9 weight part. More preferred. In order for the hydrogen abstraction reaction to proceed sufficiently, it is preferable to use 0.1 parts by weight or more of a radical polymerization initiator. On the other hand, if it exceeds 10 parts by weight, it may not completely dissolve in the composition.

<カチオン重合硬化型接着剤>
カチオン重合硬化型接着剤の硬化性成分としては、エポキシ基やオキセタニル基を有する化合物が挙げられる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有するものであれば特に限定されず、一般に知られている各種の硬化性エポキシ化合物を用いることができる。好ましいエポキシ化合物として、分子内に少なくとも2個のエポキシ基と少なくとも1個の芳香環を有する化合物(芳香族系エポキシ化合物)や、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個は脂環式環を構成する隣り合う2個の炭素原子との間で形成されている化合物(脂環式エポキシ化合物)等が例として挙げられる。ただし接着剤層において、A成分に関し成分傾斜構造を実現するために、カチオン重合硬化型接着剤を使用する場合であっても、活性エネルギー線硬化型接着剤組成物は、オクタノール/水分配係数を表すlogPowが−1〜1であるA成分と、logPowが2〜7であるB成分とを含有する必要がある。
<Cationic polymerization curable adhesive>
Examples of the curable component of the cationic polymerization curable adhesive include compounds having an epoxy group or an oxetanyl group. The compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various generally known curable epoxy compounds can be used. As a preferable epoxy compound, a compound having at least two epoxy groups and at least one aromatic ring in the molecule (aromatic epoxy compound), or at least two epoxy groups in the molecule, at least one of them. Examples thereof include a compound (alicyclic epoxy compound) formed between two adjacent carbon atoms constituting an alicyclic ring. However, the active energy ray-curable adhesive composition has an octanol / water partition coefficient even in the case where a cationic polymerization curable adhesive is used to realize a component gradient structure in the adhesive layer in the adhesive layer. It is necessary to contain an A component whose logPow is −1 to 1 and a B component whose logPow is 2 to 7.

<光カチオン重合開始剤>
カチオン重合硬化型接着剤は、硬化性成分として以上説明したエポキシ化合物及びオキセタン化合物を含有し、これらはいずれもカチオン重合により硬化するものであることから、光カチオン重合開始剤が配合される。この光カチオン重合開始剤は、可視光線、紫外線、X線、電子線等の活性エネルギー線の照射によって、カチオン種又はルイス酸を発生し、エポキシ基やオキセタニル基の重合反応を開始する。
<Photocationic polymerization initiator>
The cationic polymerization curable adhesive contains the epoxy compound and the oxetane compound described above as curable components, and these are cured by cationic polymerization, and therefore, a photocationic polymerization initiator is blended therein. This cationic photopolymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and starts a polymerization reaction of an epoxy group or an oxetanyl group.

<その他の成分>
本発明に係る活性エネルギー線硬化型接着剤組成物は、下記成分を含有しても良い。
<Other ingredients>
The active energy ray-curable adhesive composition according to the present invention may contain the following components.

<アクリル系オリゴマー>
本発明において使用する活性エネルギー線硬化型接着剤組成物は、前記ラジカル重合性化合物に係る硬化性成分、あるいはカチオン重合硬化型接着剤に加えて、(メタ)アクリルモノマーを重合してなるアクリル系オリゴマーを含有することができる。活性エネルギー線硬化型接着剤組成物が、非重合性の(メタ)アクリルモノマーを重合してなるアクリル系オリゴマーを含有する場合、偏光子および透明保護フィルム間に介在する接着剤組成物の成分の偏在が進行し易くなり、A成分の濃度が厚み方向で変化する成分傾斜構造がより得られ易くなる。このため、接着剤層の偏光子および透明保護フィルムとの接着性および耐水性がさらに高まるため好ましい。さらに、活性エネルギー線硬化型接着剤組成物中にアクリル系オリゴマー成分を含有することで、該組成物に活性エネルギー線を照射・硬化させる際の硬化収縮を低減し、接着剤と、偏光子および透明保護フィルムなどの被着体との界面応力を低減することができる。その結果、接着剤層と被着体との接着性の低下を抑制することができる。硬化物層(接着剤層)の成分傾斜構造をより確実に得るために、さらには硬化収縮を十分に抑制するためには、活性エネルギー線硬化型接着剤組成物の全量を100重量%としたとき、アクリル系オリゴマーの含有量を5〜30重量%とすることが好ましく、10〜20重量%とすることがより好ましい。
<Acrylic oligomer>
The active energy ray-curable adhesive composition used in the present invention is an acrylic composition obtained by polymerizing a (meth) acrylic monomer in addition to the curable component of the radical polymerizable compound or the cationic polymerization curable adhesive. An oligomer can be contained. When the active energy ray-curable adhesive composition contains an acrylic oligomer obtained by polymerizing a non-polymerizable (meth) acrylic monomer, the component of the adhesive composition interposed between the polarizer and the transparent protective film The uneven distribution easily proceeds, and the component gradient structure in which the concentration of the component A changes in the thickness direction is more easily obtained. For this reason, since adhesiveness with the polarizer and transparent protective film of an adhesive bond layer, and water resistance further improve, it is preferable. Furthermore, by containing an acrylic oligomer component in the active energy ray-curable adhesive composition, the shrinkage of curing when the active energy ray is irradiated and cured on the composition is reduced, and the adhesive, the polarizer, Interfacial stress with an adherend such as a transparent protective film can be reduced. As a result, it is possible to suppress a decrease in adhesiveness between the adhesive layer and the adherend. In order to more surely obtain the component gradient structure of the cured product layer (adhesive layer), and to sufficiently suppress the curing shrinkage, the total amount of the active energy ray-curable adhesive composition was set to 100% by weight. When the content of the acrylic oligomer is preferably 5 to 30% by weight, more preferably 10 to 20% by weight.

活性エネルギー線硬化型接着剤組成物は、塗工時の作業性や均一性を考慮した場合、低粘度であることが好ましいため、(メタ)アクリルモノマーを重合してなるアクリル系オリゴマー(A)も低粘度であることが好ましい。低粘度であるアクリル系オリゴマーとしては、重量平均分子量(Mw)が15000以下のものが好ましく、10000以下のものがより好ましく、5000以下のものが特に好ましい。一方、偏光子および透明保護フィルム間に介在する接着剤組成物の成分の偏在をより進行させるためには、アクリル系オリゴマー(A)の重量平均分子量(Mw)が500以上であることが好ましく、1000以上であることがより好ましく、1500以上であることが特に好ましい。アクリル系オリゴマー(A)を構成する(メタ)アクリルモノマーとしては、具体的には例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2−メチル−2−ニトロプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、S−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ペンチル(メタ)アクリレート、t−ペンチル(メタ)アクリレート、3−ペンチル(メタ)アクリレート、2,2−ジメチルブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n−オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、4−メチル−2−プロピルペンチル(メタ)アクリレート、N−オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1−20)アルキルエステル類、さらに、例えば、シクロアルキル(メタ)アクリレート(例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレートなど)、アラルキル(メタ)アクリレート(例えば、ベンジル(メタ)アクリレートなど)、多環式(メタ)アクリレート(例えば、2−イソボルニル(メタ)アクリレート、2−ノルボルニルメチル(メタ)アクリレート、5−ノルボルネン−2−イル−メチル(メタ)アクリレート、3−メチル−2−ノルボルニルメチル(メタ)アクリレートなど)、ヒドロキシル基含有(メタ)アクリル酸エステル類(例えば、ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2,3−ジヒドロキシプロピルメチル−ブチル(メタ)メタクリレートなど)、アルコキシ基またはフェノキシ基含有(メタ)アクリル酸エステル類(2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−メトキシメトキシエチル(メタ)アクリレート、3−メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなど)、エポキシ基含有(メタ)アクリル酸エステル類(例えば、グリシジル(メタ)アクリレートなど)、ハロゲン含有(メタ)アクリル酸エステル類(例えば、2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,2−トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレートなど)、アルキルアミノアルキル(メタ)アクリレート(例えば、ジメチルアミノエチル(メタ)アクリレートなど)などが挙げられる。これら(メタ)アクリレートは、単独使用または2種類以上併用することができる。アクリル系オリゴマー(A)の具体例としては、東亞合成社製「ARUFON」、綜研化学社製「アクトフロー」、BASFジャパン社製「JONCRYL」などが挙げられる。   The active energy ray-curable adhesive composition preferably has a low viscosity in consideration of workability and uniformity during coating. Therefore, an acrylic oligomer (A) obtained by polymerizing a (meth) acrylic monomer. It is also preferable that the viscosity is low. The acrylic oligomer having a low viscosity preferably has a weight average molecular weight (Mw) of 15000 or less, more preferably 10,000 or less, and particularly preferably 5000 or less. On the other hand, in order to further promote the uneven distribution of the components of the adhesive composition interposed between the polarizer and the transparent protective film, the weight average molecular weight (Mw) of the acrylic oligomer (A) is preferably 500 or more, It is more preferably 1000 or more, and particularly preferably 1500 or more. Specific examples of the (meth) acrylic monomer constituting the acrylic oligomer (A) include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2 -Methyl-2-nitropropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, S-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-octyl (meth) acrylate, 2 -Ethylhexyl (meth) acryl (Meth) acrylic acid (carbon number 1-20) alkyl esters such as 4-methyl-2-propylpentyl (meth) acrylate and N-octadecyl (meth) acrylate, and further, for example, cycloalkyl (meth) Acrylate (eg, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, etc.), aralkyl (meth) acrylate (eg, benzyl (meth) acrylate, etc.), polycyclic (meth) acrylate (eg, 2-isobornyl (meth) Acrylate, 2-norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl-2-norbornylmethyl (meth) acrylate, etc.), hydroxyl group-containing (meth) Acrylic esters (e.g., Droxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2,3-dihydroxypropylmethyl-butyl (meth) methacrylate, etc.), alkoxy group or phenoxy group-containing (meth) acrylic acid esters (2-methoxyethyl ( (Meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-methoxymethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxyethyl (meth) acrylate, etc.), epoxy Group-containing (meth) acrylic acid esters (for example, glycidyl (meth) acrylate), halogen-containing (meth) acrylic acid esters (for example, 2,2,2-trifluoroethyl (meth) acrylate, 2,2 , 2-trifluoroethylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoropropyl (meth) acrylate, octafluoropentyl (meth) acrylate, heptadecafluorodecyl (meth) acrylate, etc.), alkylaminoalkyl (Meth) acrylate (for example, dimethylaminoethyl (meth) acrylate etc.) etc. are mentioned. These (meth) acrylates can be used alone or in combination of two or more. Specific examples of the acrylic oligomer (A) include “ARUFON” manufactured by Toagosei Co., Ltd., “Act Flow” manufactured by Soken Chemical Co., Ltd., “JONCRYL” manufactured by BASF Japan.

アクリル系オリゴマー(A)が液体である場合は、接着剤組成物への溶解性を考慮する必要がないため好適に用いられる。アクリル系オリゴマー(A)は、ガラス転移温度(Tg)が25℃未満の場合に通常液体である。また、接着剤組成物との相溶性と接着剤層中の成分の偏在を両立するためには、アクリル系オリゴマー(A)は極性官能基を含有することが好ましい。極性官能基としてはヒドロキシル基、エポキシ基、カルボキシル基、アルコキシシリル基などが挙げられる。具体的に例えば、「ARUFON UHシリーズ」、「ARUFON UCシリーズ」、「ARUFON UFシリーズ」、「ARUFON UGシリーズ」、「ARUFON USシリーズ」(いずれも東亞合成社製)などが挙げられる。中でも、偏光子との相互作用による接着性の向上が見込まれることから、エポキシ基を含有することが好ましい。具体的に例えば、「ARUFON UG−4000」、「ARUFON UG−4010」(いずれも東亞合成社製)が挙げられる。   When the acrylic oligomer (A) is a liquid, it is preferably used because it is not necessary to consider the solubility in the adhesive composition. The acrylic oligomer (A) is usually a liquid when the glass transition temperature (Tg) is less than 25 ° C. In order to achieve both compatibility with the adhesive composition and uneven distribution of components in the adhesive layer, the acrylic oligomer (A) preferably contains a polar functional group. Examples of the polar functional group include a hydroxyl group, an epoxy group, a carboxyl group, and an alkoxysilyl group. Specific examples include “ARUFON UH series”, “ARUFON UC series”, “ARUFON UF series”, “ARUFON UG series”, “ARUFON US series” (all manufactured by Toagosei Co., Ltd.). Especially, since the adhesive improvement by interaction with a polarizer is anticipated, it is preferable to contain an epoxy group. Specific examples include “ARUFON UG-4000” and “ARUFON UG-4010” (both manufactured by Toagosei Co., Ltd.).

<光酸発生剤>
上記活性エネルギー線硬化型接着剤組成物において、光酸発生剤を含有することができる。上記活性エネルギー線硬化型樹脂組成物に、光酸発生剤を含有する場合、光酸発生剤を含有しない場合に比べて、接着剤層の耐水性および耐久性を飛躍的に向上することができる。光酸発生剤は、下記一般式(3)で表すことができる。
<Photo acid generator>
The active energy ray-curable adhesive composition can contain a photoacid generator. When the active energy ray-curable resin composition contains a photoacid generator, the water resistance and durability of the adhesive layer can be dramatically improved as compared with the case where no photoacid generator is contained. . The photoacid generator can be represented by the following general formula (3).

一般式(3)
(ただし、Lは、任意のオニウムカチオンを表す。また、Xは、PF6 、SbF
、AsF 、SbCl 、BiCl 、SnCl 、ClO 、ジチオカルバメートアニオン、SCN−よりからなる群より選択されるカウンターアニオンを表す。)
一般式(3)を構成するオニウムカチオンLとして好ましいオニウムカチオンの構造としては、下記一般式(4)〜一般式(12)から選ばれるオニウムカチオンをあげることができる。
General formula (3)
(However, L + represents an arbitrary onium cation. X represents PF6 6 , SbF.
It represents a counter anion selected from the group consisting of 6 , AsF 6 , SbCl 6 , BiCl 5 , SnCl 6 , ClO 4 , dithiocarbamate anion, and SCN—. )
Preferred examples of the onium cation structure as the onium cation L + constituting the general formula (3) include onium cations selected from the following general formulas (4) to (12).

一般式(4)
General formula (4)

一般式(5)
General formula (5)

一般式(6)
General formula (6)

一般式(7)
General formula (7)

一般式(8)
General formula (8)

一般式(9)
General formula (9)

一般式(10)
General formula (10)

一般式(11)
Formula (11)

一般式(12)
(上記一般式(4)−(12)中、ただし、R、RおよびRは、それぞれ独立に、水素原子、置換もしくは未置換のアルキル基、置換もしくは未置換のアルケニル基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基、置換もしくは未置換のアルコキシル基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換の複素環オキシ基、置換もしくは未置換のアシル基、置換もしくは未置換のカルボニルオキシ基、置換もしくは未置換のオキシカルボニル基、またはハロゲン原子より選ばれる基を表す。Rは、R、RおよびRに記載した基と同様の基を表す。Rは、置換もしくは未置換のアルキル基、置換もしくは未置換のアルキルチオ基を表す。RおよびRは、それぞれ独立に、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシル基を表す。Rは、ハロゲン原子、水酸基、カルボキシル基、メルカプト基、シアノ基、ニトロ基、置換もしくは未置換のカルバモイル基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルケニル基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基、置換もしくは未置換のアルコキシル基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換の複素環オキシ基、置換もしくは未置換のアルキルチオ基、置換もしくは未置換のアリールチオ基、置換もしくは未置換の複素環チオ基、置換もしくは未置換のアシル基、置換もしくは未置換のカルボニルオキシ基、置換もしくは未置換のオキシカルボニル基のいずれかを表す。Ar、Arは、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基のいずれかを表す。Xは、酸素もしくは硫黄原子を表す。iは0〜5の整数を表す。jは0〜4の整数を表す。kは0〜3の整数を表す。また、隣接したR同士、ArとAr、RとR、RとR、RとR、RとR、RとR、RとR、RとR、もしくはRとRは、相互に結合した環状構造であってもよい。)
Formula (12)
(In the general formulas (4) to (12), R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, substituted or An unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted alkoxyl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted heterocyclic oxy group, a substituted or unsubstituted acyl group, R 4 represents a group selected from a substituted or unsubstituted carbonyloxy group, a substituted or unsubstituted oxycarbonyl group, or a halogen atom, and R 4 represents a group similar to the groups described in R 1 , R 2 and R 3. .R 5 is a substituted or unsubstituted alkyl group, is .R 6 and R 7 represents a substituted or unsubstituted alkylthio group, independently, be substituted Represents an unsubstituted alkyl group, a substituted or unsubstituted alkoxyl group, and R represents a halogen atom, a hydroxyl group, a carboxyl group, a mercapto group, a cyano group, a nitro group, a substituted or unsubstituted carbamoyl group, a substituted or unsubstituted group. Alkyl group, substituted or unsubstituted alkenyl group, substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkoxyl group, substituted or unsubstituted aryloxy group, substituted or unsubstituted Heterocyclic oxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted arylthio group, substituted or unsubstituted heterocyclic thio group, substituted or unsubstituted acyl group, substituted or unsubstituted carbonyloxy group, substituted or .Ar 4 represent either a non-substituted oxycarbonyl group, Ar Represents a substituted or unsubstituted aryl group, .X represent either a substituted or unsubstituted heterocyclic group, an oxygen or sulfur atom .i is .j is 0-4 represents an integer of 0 to 5 K represents an integer of 0 to 3. Adjacent Rs, Ar 4 and Ar 5 , R 2 and R 3 , R 2 and R 4 , R 3 and R 4 , R 1 and R 2 , R 1 and R 3 , R 1 and R 4 , R 1 and R, or R 1 and R 5 may be a cyclic structure bonded to each other.)

一般式(4)に該当するオニウムカチオン(スルホニウムカチオン):
ジメチルフェニルスルホニウム、ジメチル(o−フルオロフェニル)スルホニウム、ジメ
チル(m−クロロフェニル)スルホニウム、ジメチル(p−ブロモフェニル)スルホニウム、ジメチル(p−シアノフェニル)スルホニウム、ジメチル(m−ニトロフェニル)スルホニウム、ジメチル(2,4,6−トリブロモフェニル)スルホニウム、ジメチル(ペンタフルオロフェニル)スルホニウム、ジメチル(p−(トリフルオロメチル)フェニル)スルホニウム、ジメチル(p−ヒドロキシフェニル)スルホニウム、ジメチル(p−メルカプトフェニル)スルホニウム、ジメチル(p−メチルスルフィニルフェニル)スルホニウム、ジメチル(p−メチルスルホニルフェニル)スルホニウム、ジメチル(o−アセチルフェニル)スルホニウム、ジメチル(o−ベンゾイルフェニル)スルホニウム、ジメチル(p−メチルフェニル)スルホニウム、ジメチル(p−イソプロピルフェニル)スルホニウム、ジメチル(p−オクタデシルフェニル)スルホニウム、ジメチル(p−シクロヘキシルフェニル)スルホニウム、ジメチル(p−メトキシフェニル)スルホニウム、ジメチル(o−メトキシカルボニルフェニル)スルホニウム、ジメチル(p−フェニルスルファニルフェニル)スルホニウム、(7−メトキシ−2−オキソ−2H−クロメン−4−イル)ジメチルスルホニウム、(4−メトキシナフタレン−1−イル)ジメチルスルホニウム、ジメチル(p−イソプロポキシカルボニルフェニル)スルホニウム、ジメチル(2−ナフチル)スルホニウム、ジメチル(9−アンスリル)スルホニウム、ジエチルフェニルスルホニウム、メチルエチルフェニルスルホニウム、メチルジフェニルスルホニウム、トリフェニルスルホニウム、ジイソプロピルフェニルスルホニウム、ジフェニル(4−フェニルスルファニル−フェニル)−スルホニウム、4,4’−ビス(ジフェニルスルホニウム)ジフェニルスルフィド、4,4’−ビス[ジ[(4−(2−ヒドロキシ−エトキシ)−フェニル)]スルホニウム]]ジフェニルスルフィド、4,4’−ビス(ジフェニルスルホニウム)ビフェニレン、ジフェニル(o−フルオロフェニル)スルホニウム、ジフェニル(m−クロロフェニル)スルホニウム、ジフェニル(p−ブロモフェニル)スルホニウム、ジフェニル(p−シアノフェニル)スルホニウム、ジフェニル(m−ニトロフェニル)スルホニウム、ジフェニル(2,4,6−トリブロモフェニル)スルホニウム、ジフェニル(ペンタフルオロフェニル)スルホニウム、ジフェニル(p−(トリフルオロメチル)フェニル)スルホニウム、ジフェニル(p−ヒドロキシフェニル)スルホニウム、ジフェニル(p−メルカプトフェニル)スルホニウム、ジフェニル(p−メチルスルフィニルフェニル)スルホニウム、ジフェニル(p−メチルスルホニルフェニル)スルホニウム、ジフェニル(o−アセチルフェニル)スルホニウム、ジフェニル(o−ベンゾイルフェニル)スルホニウム、ジフェニル(p−メチルフェニル)スルホニウム、ジフェニル(p−イソプロピルフェニル)スルホニウム、ジフェニル(p−オクタデシルフェニル)スルホニウム、ジフェニル(p−シクロヘキシルフェニル)スルホニウム、ジフェニル(p−メトキシフェニル)スルホニウム、ジフェニル(o−メトキシカルボニルフェニル)スルホニウム、ジフェニル(p−フェニルスルファニルフェニル)スルホニウム、(7−メトキシ−2−オキソ−2H−クロメン−4−イル)ジフェニルスルホニウム、(4−メトキシナフタレン−1−イル)ジフェニルスルホニウム、ジフェニル(p−イソプロポキシカルボニルフェニル)スルホニウム、ジフェニル(2−ナフチル)スルホニウム、ジフェニル(9−アンスリル)スルホニウム、エチルジフェニルスルホニウム、メチルエチル(o−トリル)スルホニウム、メチルジ(p−トリル)スルホニウム、トリ(p−トリル)スルホニウム、ジイソプロピル(4−フェニルスルファニルフェニル)スルホニウム、ジフェニル(2−チエニル)スルホニウム、ジフェニル(2−フリル)スルホニウム、ジフェニル(9−エチル−9Hカルバゾール−3−イル)スルホニウム等を挙げることができるが、これらに限定されるものではない。
Onium cation (sulfonium cation) corresponding to general formula (4):
Dimethylphenylsulfonium, dimethyl (o-fluorophenyl) sulfonium, dimethyl (m-chlorophenyl) sulfonium, dimethyl (p-bromophenyl) sulfonium, dimethyl (p-cyanophenyl) sulfonium, dimethyl (m-nitrophenyl) sulfonium, dimethyl ( 2,4,6-tribromophenyl) sulfonium, dimethyl (pentafluorophenyl) sulfonium, dimethyl (p- (trifluoromethyl) phenyl) sulfonium, dimethyl (p-hydroxyphenyl) sulfonium, dimethyl (p-mercaptophenyl) sulfonium , Dimethyl (p-methylsulfinylphenyl) sulfonium, dimethyl (p-methylsulfonylphenyl) sulfonium, dimethyl (o-acetylphenyl) sulfonium Dimethyl (o-benzoylphenyl) sulfonium, dimethyl (p-methylphenyl) sulfonium, dimethyl (p-isopropylphenyl) sulfonium, dimethyl (p-octadecylphenyl) sulfonium, dimethyl (p-cyclohexylphenyl) sulfonium, dimethyl (p-methoxy) Phenyl) sulfonium, dimethyl (o-methoxycarbonylphenyl) sulfonium, dimethyl (p-phenylsulfanylphenyl) sulfonium, (7-methoxy-2-oxo-2H-chromen-4-yl) dimethylsulfonium, (4-methoxynaphthalene- 1-yl) dimethylsulfonium, dimethyl (p-isopropoxycarbonylphenyl) sulfonium, dimethyl (2-naphthyl) sulfonium, dimethyl (9-anthryl) Rufonium, diethylphenylsulfonium, methylethylphenylsulfonium, methyldiphenylsulfonium, triphenylsulfonium, diisopropylphenylsulfonium, diphenyl (4-phenylsulfanyl-phenyl) -sulfonium, 4,4′-bis (diphenylsulfonium) diphenyl sulfide, 4, 4′-bis [di [(4- (2-hydroxy-ethoxy) -phenyl)] sulfonium]] diphenyl sulfide, 4,4′-bis (diphenylsulfonium) biphenylene, diphenyl (o-fluorophenyl) sulfonium, diphenyl ( m-chlorophenyl) sulfonium, diphenyl (p-bromophenyl) sulfonium, diphenyl (p-cyanophenyl) sulfonium, diphenyl (m-nitrophenyl) ) Sulfonium, diphenyl (2,4,6-tribromophenyl) sulfonium, diphenyl (pentafluorophenyl) sulfonium, diphenyl (p- (trifluoromethyl) phenyl) sulfonium, diphenyl (p-hydroxyphenyl) sulfonium, diphenyl (p -Mercaptophenyl) sulfonium, diphenyl (p-methylsulfinylphenyl) sulfonium, diphenyl (p-methylsulfonylphenyl) sulfonium, diphenyl (o-acetylphenyl) sulfonium, diphenyl (o-benzoylphenyl) sulfonium, diphenyl (p-methylphenyl) ) Sulfonium, diphenyl (p-isopropylphenyl) sulfonium, diphenyl (p-octadecylphenyl) sulfonium, diphenyl (p-si Rohexylphenyl) sulfonium, diphenyl (p-methoxyphenyl) sulfonium, diphenyl (o-methoxycarbonylphenyl) sulfonium, diphenyl (p-phenylsulfanylphenyl) sulfonium, (7-methoxy-2-oxo-2H-chromene-4- Yl) diphenylsulfonium, (4-methoxynaphthalen-1-yl) diphenylsulfonium, diphenyl (p-isopropoxycarbonylphenyl) sulfonium, diphenyl (2-naphthyl) sulfonium, diphenyl (9-anthryl) sulfonium, ethyldiphenylsulfonium, methyl Ethyl (o-tolyl) sulfonium, methyldi (p-tolyl) sulfonium, tri (p-tolyl) sulfonium, diisopropyl (4-phenylsulfanyl) Nyl) sulfonium, diphenyl (2-thienyl) sulfonium, diphenyl (2-furyl) sulfonium, diphenyl (9-ethyl-9Hcarbazol-3-yl) sulfonium, and the like, but are not limited thereto. .

一般式(5)に該当するオニウムカチオン(スルホキソニウムカチオン):
ジメチルフェニルスルホキソニウム、ジメチル(o−フルオロフェニル)スルホキソニウム、ジメチル(m−クロロフェニル)スルホキソニウム、ジメチル(p−ブロモフェニル)スルホキソニウム、ジメチル(p−シアノフェニル)スルホキソニウム、ジメチル(m−ニトロフェニル)スルホキソニウム、ジメチル(2,4,6−トリブロモフェニル)スルホキソニウム、ジメチル(ペンタフルオロフェニル)スルホキソニウム、ジメチル(p−(トリフルオロメチル)フェニル)スルホキソニウム、ジメチル(p−ヒドロキシフェニル)スルホキソニウム、ジメチル(p−メルカプトフェニル)スルホキソニウム、ジメチル(p−メチルスルフィニルフェニル)スルホキソニウム、ジメチル(p−メチルスルホニルフェニル)スルホキソニウム、ジメチル(o−アセチルフェニル)スルホキソニウム、ジメチル(o−ベンゾイルフェニル)スルホキソニウム、ジメチル(p−メチルフェニル)スルホキソニウム、ジメチル(p−イソプロピルフェニル)スルホキソニウム、ジメチル(p−オクタデシルフェニル)スルホキソニウム、ジメチル(p−シクロヘキシルフェニル)スルホキソニウム、ジメチル(p−メトキシフェニル)スルホキソニウム、ジメチル(o−メトキシカルボニルフェニル)スルホキソニウム、ジメチル(p−フェニルスルファニルフェニル)スルホキソニウム、(7−メトキシ−2−オキソ−2H−クロメン−4−イル)ジメチルスルホキソニウム、(4−メトキシナフタレン−1−イル)ジメチルスルホキソニウム、ジメチル(p−イソプロポキシカルボニルフェニル)スルホキソニウム、ジメチル(2−ナフチル)スルホキソニウム、ジメチル(9−アンスリル)スルホキソニウム、ジエチルフェニルスルホキソニウム、メチルエチルフェニルスルホキソニウム、メチルジフェニルスルホキソニウム、トリフェニルスルホキソニウム、ジイソプロピルフェニルスルホキソニウム、ジフェニル(4−フェニルスルファニル−フェニル)−スルホキソニウム、4,4’−ビス(ジフェニルスルホキソニウム)ジフェニルスルフィド、4,4’−ビス[ジ[(4−(2−ヒドロキシ−エトキシ)−フェニル)] スルホキソニウム]ジフェニルスルフィド、4,4’−ビス(ジフェニルスルホキソニウム)ビフェニレン、ジフェニル(o−フルオロフェニル)スルホキソニウム、ジフェニル(m−クロロフェニル)スルホキソニウム、ジフェニル(p−ブロモフェニル)スルホキソニウム、ジフェニル(p−シアノフェニル)スルホキソニウム、ジフェニル(m−ニトロフェニル)スルホキソニウム、ジフェニル(2,4,6−トリブロモフェニル)スルホキソニウム、ジフェニル(ペンタフルオロフェニル)スルホキソニウム、ジフェニル(p−(トリフルオロメチル)フェニル)スルホキソニウム、ジフェニル(p−ヒドロキシフェニル)スルホキソニウム、ジフェニル(p−メルカプトフェニル)スルホキソニウム、ジフェニル(p−メチルスルフィニルフェニル)スルホキソニウム、ジフェニル(p−メチルスルホニルフェニル)スルホキソニウム、ジフェニル(o−アセチルフェニル)スルホキソニウム、ジフェニル(o−ベンゾイルフェニル)スルホキソニウム、ジフェニル(p−メチルフェニル)スルホキソニウム、ジフェニル(p−イソプロピルフェニル)スルホキソニウム、ジフェニル(p−オクタデシルフェニル)スルホキソニウム、ジフェニル(p−シクロヘキシルフェニル)スルホキソニウム、ジフェニル(p−メトキシフェニル)スルホキソニウム、ジフェニル(o−メトキシカルボニルフェニル)スルホキソニウム、ジフェニル(p−フェニルスルファニルフェニル)スルホキソニウム、(7−メトキシ−2−オキソ−2H−クロメン−4−イル)ジフェニルスルホキソニウム、(4−メトキシナフタレン−1−イル)ジフェニルスルホキソニウム、ジフェニル(p−イソプロポキシカルボニルフェニル)スルホキソニウム、ジフェニル(2−ナフチル)スルホキソニウム、ジフェニル(9−アンスリル)スルホキソニウム、エチルジフェニルスルホキソニウム、メチルエチル(o−トリル)スルホキソニウム、メチルジ(p−トリル)スルホキソニウム、トリ(p−トリル)スルホキソニウム、ジイソプロピル(4−フェニルスルファニルフェニル)スルホキソニウム、ジフェニル(2−チエニル)スルホキソニウム、ジフェニル(2−フリル)スルホキソニウム、ジフェニル(9−エチル−9Hカルバゾール−3−イル)スルホキソニウム等を挙げることができるが、これらに限定されるものではない。
Onium cation corresponding to general formula (5) (sulfoxonium cation):
Dimethylphenylsulfoxonium, dimethyl (o-fluorophenyl) sulfoxonium, dimethyl (m-chlorophenyl) sulfoxonium, dimethyl (p-bromophenyl) sulfoxonium, dimethyl (p-cyanophenyl) sulfoxonium, dimethyl (M-nitrophenyl) sulfoxonium, dimethyl (2,4,6-tribromophenyl) sulfoxonium, dimethyl (pentafluorophenyl) sulfoxonium, dimethyl (p- (trifluoromethyl) phenyl) sulfoxonium , Dimethyl (p-hydroxyphenyl) sulfoxonium, dimethyl (p-mercaptophenyl) sulfoxonium, dimethyl (p-methylsulfinylphenyl) sulfoxonium, dimethyl (p-methylsulfonylphenyl) sulfoxo , Dimethyl (o-acetylphenyl) sulfoxonium, dimethyl (o-benzoylphenyl) sulfoxonium, dimethyl (p-methylphenyl) sulfoxonium, dimethyl (p-isopropylphenyl) sulfoxonium, dimethyl (p- Octadecylphenyl) sulfoxonium, dimethyl (p-cyclohexylphenyl) sulfoxonium, dimethyl (p-methoxyphenyl) sulfoxonium, dimethyl (o-methoxycarbonylphenyl) sulfoxonium, dimethyl (p-phenylsulfanylphenyl) sulfo Xonium, (7-methoxy-2-oxo-2H-chromen-4-yl) dimethylsulfoxonium, (4-methoxynaphthalen-1-yl) dimethylsulfoxonium, dimethyl (p-isopropoxyca) Bonylphenyl) sulfoxonium, dimethyl (2-naphthyl) sulfoxonium, dimethyl (9-anthryl) sulfoxonium, diethylphenylsulfoxonium, methylethylphenylsulfoxonium, methyldiphenylsulfoxonium, triphenylsulfoxonium Ni, diisopropylphenylsulfoxonium, diphenyl (4-phenylsulfanyl-phenyl) -sulfoxonium, 4,4′-bis (diphenylsulfoxonium) diphenyl sulfide, 4,4′-bis [di [(4- ( 2-hydroxy-ethoxy) -phenyl)] sulfoxonium] diphenyl sulfide, 4,4′-bis (diphenylsulfoxonium) biphenylene, diphenyl (o-fluorophenyl) sulfoxonium, diphenyl (m-chloro) Phenyl) sulfoxonium, diphenyl (p-bromophenyl) sulfoxonium, diphenyl (p-cyanophenyl) sulfoxonium, diphenyl (m-nitrophenyl) sulfoxonium, diphenyl (2,4,6-tribromophenyl) ) Sulfoxonium, diphenyl (pentafluorophenyl) sulfoxonium, diphenyl (p- (trifluoromethyl) phenyl) sulfoxonium, diphenyl (p-hydroxyphenyl) sulfoxonium, diphenyl (p-mercaptophenyl) sulfoxo Ni, diphenyl (p-methylsulfinylphenyl) sulfoxonium, diphenyl (p-methylsulfonylphenyl) sulfoxonium, diphenyl (o-acetylphenyl) sulfoxonium, diphenyl (o-benzoy) Ruphenyl) sulfoxonium, diphenyl (p-methylphenyl) sulfoxonium, diphenyl (p-isopropylphenyl) sulfoxonium, diphenyl (p-octadecylphenyl) sulfoxonium, diphenyl (p-cyclohexylphenyl) sulfoxonium, Diphenyl (p-methoxyphenyl) sulfoxonium, diphenyl (o-methoxycarbonylphenyl) sulfoxonium, diphenyl (p-phenylsulfanylphenyl) sulfoxonium, (7-methoxy-2-oxo-2H-chromene-4- Yl) diphenylsulfoxonium, (4-methoxynaphthalen-1-yl) diphenylsulfoxonium, diphenyl (p-isopropoxycarbonylphenyl) sulfoxonium, diphenyl (2-naphthyl) Sulfoxonium, diphenyl (9-anthryl) sulfoxonium, ethyldiphenylsulfoxonium, methylethyl (o-tolyl) sulfoxonium, methyldi (p-tolyl) sulfoxonium, tri (p-tolyl) sulfoxonium , Diisopropyl (4-phenylsulfanylphenyl) sulfoxonium, diphenyl (2-thienyl) sulfoxonium, diphenyl (2-furyl) sulfoxonium, diphenyl (9-ethyl-9Hcarbazol-3-yl) sulfoxonium, etc. However, it is not limited to these.

一般式(6)に該当するオニウムカチオン(ホスホニウムカチオン):
ホスホニウムカチオンの例:
トリメチルフェニルホスホニウム、トリエチルフェニルホスホニウム、テトラフェニルホスホニウム、トリフェニル(p−フルオロフェニル)ホスホニウム、トリフェニル(o−クロロフェニル)ホスホニウム、トリフェニル(m−ブロモフェニル)ホスホニウム、トリフェニル(p−シアノフェニル)ホスホニウム、トリフェニル(m−ニトロフェニル)ホスホニウム、トリフェニル(p−フェニルスルファニルフェニル)ホスホニウム、(7−メトキシ−2−オキソ−2H−クロメン−4−イル)トリフェニルホスホニウム、トリフェニル(o−ヒドロキシフェニル)ホスホニウム、トリフェニル(o−アセチルフェニル)ホスホニウム、トリフェニル(m−ベンゾイルフェニル)ホスホニウム、トリフェニル(p−メチルフェニル)ホスホニウム、トリフェニル(p−イソプロポキシフェニル)ホスホニウム、トリフェニル(o−メトキシカルボニルフェニル)ホスホニウム、トリフェニル(1−ナフチル)ホスホニウム、トリフェニル(9−アンスリル)ホスホニウム、トリフェニル(2−チエニル) ホスホニウム、トリフェニル(2−フリル) ホスホニウム、トリフェニル(9−エチル−9Hカルバゾール−3−イル) ホスホニウム等を挙げることができるが、これらに限定されるものではない。
Onium cation (phosphonium cation) corresponding to the general formula (6):
Examples of phosphonium cations:
Trimethylphenylphosphonium, triethylphenylphosphonium, tetraphenylphosphonium, triphenyl (p-fluorophenyl) phosphonium, triphenyl (o-chlorophenyl) phosphonium, triphenyl (m-bromophenyl) phosphonium, triphenyl (p-cyanophenyl) phosphonium , Triphenyl (m-nitrophenyl) phosphonium, triphenyl (p-phenylsulfanylphenyl) phosphonium, (7-methoxy-2-oxo-2H-chromen-4-yl) triphenylphosphonium, triphenyl (o-hydroxyphenyl) ) Phosphonium, triphenyl (o-acetylphenyl) phosphonium, triphenyl (m-benzoylphenyl) phosphonium, triphenyl (p-methylphenyl) phospho Phonium, triphenyl (p-isopropoxyphenyl) phosphonium, triphenyl (o-methoxycarbonylphenyl) phosphonium, triphenyl (1-naphthyl) phosphonium, triphenyl (9-anthryl) phosphonium, triphenyl (2-thienyl) phosphonium , Triphenyl (2-furyl) phosphonium, triphenyl (9-ethyl-9Hcarbazol-3-yl) phosphonium, and the like, but are not limited thereto.

一般式(7)に該当するオニウムカチオン(ピリジニウムカチオン):
ピリジニウムカチオンの例:
N−フェニルピリジニウム、N−(o−クロロフェニル)ピリジニウム、N−(m−クロロフェニル)ピリジニウム、N−(p−シアノフェニル)ピリジニウム、N−(o−ニトロフェニル)ピリジニウム、N−(p−アセチルフェニル)ピリジニウム、N−(p−イソプロピルフェニル)ピリジニウム、N−(p−オクタデシルオキシフェニル)ピリジニウム、N−(p−メトキシカルボニルフェニル)ピリジニウム、N−(9−アンスリル)ピリジニウム、2−クロロ−1−フェニルピリジニウム、2−シアノ−1−フェニルピリジニウム、2−メチル−1−フェニルピリジニウム、2−ビニル−1−フェニルピリジニウム、2−フェニル−1−フェニルピリジニウム、1,2−ジフェニルピリジニウム、2−メトキシ−1−フェニルピリジニウム、2−フェノキシ−1−フェニルピリジニウム、2−アセチル−1−(p−トリル)ピリジニウム、2−メトキシカルボニル−1−(p−トリル)ピリジニウム、3−フルオロ−1−ナフチルピリジニウム、4−メチル−1−(2−フリル)ピリジニウム、N−メチルピリジニウム、N−エチルピリジニウム等を挙げることができるが、これらに限定されるものではない。
Onium cation corresponding to general formula (7) (pyridinium cation):
Examples of pyridinium cations:
N-phenylpyridinium, N- (o-chlorophenyl) pyridinium, N- (m-chlorophenyl) pyridinium, N- (p-cyanophenyl) pyridinium, N- (o-nitrophenyl) pyridinium, N- (p-acetylphenyl) ) Pyridinium, N- (p-isopropylphenyl) pyridinium, N- (p-octadecyloxyphenyl) pyridinium, N- (p-methoxycarbonylphenyl) pyridinium, N- (9-anthryl) pyridinium, 2-chloro-1- Phenylpyridinium, 2-cyano-1-phenylpyridinium, 2-methyl-1-phenylpyridinium, 2-vinyl-1-phenylpyridinium, 2-phenyl-1-phenylpyridinium, 1,2-diphenylpyridinium, 2-methoxy- 1-phenylpi Dinium, 2-phenoxy-1-phenylpyridinium, 2-acetyl-1- (p-tolyl) pyridinium, 2-methoxycarbonyl-1- (p-tolyl) pyridinium, 3-fluoro-1-naphthylpyridinium, 4-methyl Examples thereof include, but are not limited to, -1- (2-furyl) pyridinium, N-methylpyridinium, N-ethylpyridinium, and the like.

一般式(8)に該当するオニウムカチオン(キノリニウムカチオン):
キノリニウムカチオンの例:
N−メチルキノリニウム、N−エチルキノリニウム、N−フェニルキノリニウム、N−ナフチルキノリニウム、N−(o−クロロフェニル)キノリニウム、N−(m−クロロフェニル)キノリニウム、N−(p−シアノフェニル)キノリニウム、N−(o−ニトロフェニル)キノリニウム、N−(p−アセチルフェニル)キノリニウム、N−(p−イソプロピルフェニル)キノリニウム、N−(p−オクタデシルオキシフェニル)キノリニウム、N−(p−メトキシカルボニルフェニル)キノリニウム、N−(9−アンスリル)キノリニウム、2−クロロ−1−フェニルキノリニウム、2−シアノ−1−フェニルキノリニウム、2−メチル−1−フェニルキノリニウム、2−ビニル−1−フェニルキノリニウム、2−フェニル−1−フェニルキノリニウム、1,2−ジフェニルキノリニウム、2−メトキシ−1−フェニルキノリニウム、2−フェノキシ−1−フェニルキノリニウム、2−アセチル−1−フェニルキノリニウム、2−メトキシカルボニル−1−フェニルキノリニウム、3−フルオロ−1−フェニルキノリニウム、4−メチル−1−フェニルキノリニウム、2−メトキシ−1−(p−トリル)キノリニウム、2−フェノキシ−1−(2−フリル)キノリニウム、2−アセチル−1−(2−チエニル)キノリニウム、2−メトキシカルボニル−1−メチルキノリニウム、3−フルオロ−1−エチルキノリニウム、4−メチル−1−イソプロピルキノリニウム等を挙げることができるが、これらに限定されるものではない。
Onium cation (quinolinium cation) corresponding to general formula (8):
Examples of quinolinium cations:
N-methylquinolinium, N-ethylquinolinium, N-phenylquinolinium, N-naphthylquinolinium, N- (o-chlorophenyl) quinolinium, N- (m-chlorophenyl) quinolinium, N- (p -Cyanophenyl) quinolinium, N- (o-nitrophenyl) quinolinium, N- (p-acetylphenyl) quinolinium, N- (p-isopropylphenyl) quinolinium, N- (p-octadecyloxyphenyl) quinolinium, N- ( p-methoxycarbonylphenyl) quinolinium, N- (9-anthryl) quinolinium, 2-chloro-1-phenylquinolinium, 2-cyano-1-phenylquinolinium, 2-methyl-1-phenylquinolinium, 2-vinyl-1-phenylquinolinium, 2-phenyl-1-phenyl Norinium, 1,2-diphenylquinolinium, 2-methoxy-1-phenylquinolinium, 2-phenoxy-1-phenylquinolinium, 2-acetyl-1-phenylquinolinium, 2-methoxycarbonyl-1 -Phenylquinolinium, 3-fluoro-1-phenylquinolinium, 4-methyl-1-phenylquinolinium, 2-methoxy-1- (p-tolyl) quinolinium, 2-phenoxy-1- (2- Furyl) quinolinium, 2-acetyl-1- (2-thienyl) quinolinium, 2-methoxycarbonyl-1-methylquinolinium, 3-fluoro-1-ethylquinolinium, 4-methyl-1-isopropylquinolinium However, it is not limited to these.

一般式(9)に該当するオニウムカチオン(イソキノリニウムカチオン):
イソキノリニウムカチオンの例:
N−フェニルイソキノリニウム、N−メチルイソキノリニウム、N−エチルイソキノリニウム、N−(o−クロロフェニル)イソキノリニウム、N−(m−クロロフェニル)イソキノリニウム、N−(p−シアノフェニル)イソキノリニウム、N−(o−ニトロフェニル)イソキノリニウム、N−(p−アセチルフェニル)イソキノリニウム、N−(p−イソプロピルフェニル)イソキノリニウム、N−(p−オクタデシルオキシフェニル)イソキノリニウム、N−(p−メトキシカルボニルフェニル)イソキノリニウム、N−(9−アンスリル)イソキノリニウム、1,2−ジフェニルイソキノリニウム、N−(2−フリル)イソキノリニウム、N−(2−チエニル)イソキノリニウム、N−ナフチルイソキノリニウム等を挙げることができるが、これらに限定されるものではない。
Onium cation (isoquinolinium cation) corresponding to the general formula (9):
Examples of isoquinolinium cations:
N-phenylisoquinolinium, N-methylisoquinolinium, N-ethylisoquinolinium, N- (o-chlorophenyl) isoquinolinium, N- (m-chlorophenyl) isoquinolinium, N- (p-cyanophenyl) Isoquinolinium, N- (o-nitrophenyl) isoquinolinium, N- (p-acetylphenyl) isoquinolinium, N- (p-isopropylphenyl) isoquinolinium, N- (p-octadecyloxyphenyl) isoquinolinium, N- (p-methoxycarbonyl) Phenyl) isoquinolinium, N- (9-anthryl) isoquinolinium, 1,2-diphenylisoquinolinium, N- (2-furyl) isoquinolinium, N- (2-thienyl) isoquinolinium, N-naphthylisoquinolinium, etc. To mention That, without being limited thereto.

一般式(10)に該当するオニウムカチオン(ベンゾオキサゾリウムカチオン、ベンゾチアゾリウムカチオン):
ベンゾオキサゾリウムカチオンの例:
N−メチルベンゾオキサゾリウム、N−エチルベンゾオキサゾリウム、N−ナフチルベンゾオキサゾリウム、N−フェニルベンゾオキサゾリウム、N−(p−フルオロフェニル)ベンゾオキサゾリウム、N−(p−クロロフェニル)ベンゾオキサゾリウム、N−(p−シアノフェニル)ベンゾオキサゾリウム、N−(o−メトキシカルボニルフェニル)ベンゾオキサゾリウム、N−(2−フリル)ベンゾオキサゾリウム、N−(o−フルオロフェニル)ベンゾオキサゾリウム、N−(p−シアノフェニル)ベンゾオキサゾリウム、N−(m−ニトロフェニル)ベンゾオキサゾリウム、N−(p−イソプロポキシカルボニルフェニル)ベンゾオキサゾリウム、N−(2−チエニル)ベンゾオキサゾリウム、N−(m−カルボキシフェニル)ベンゾオキサゾリウム、2−メルカプト−3−フェニルベンゾオキサゾリウム、2−メチル−3−フェニルベンゾオキサゾリウム、2−メチルチオ−3−(4−フェニルスルファニルフェニル)ベンゾオキサゾリウム、6−ヒドロキシ−3−(p−トリル)ベンゾオキサゾリウム、7−メルカプト−3−フェニルベンゾオキサゾリウム、4,5−ジフルオロ−3−エチルベンゾオキサゾリウム等を挙げることができるが、これらに限定されるものではない。
Onium cation corresponding to general formula (10) (benzoxazolium cation, benzothiazolium cation):
Examples of benzoxazolium cations:
N-methylbenzoxazolium, N-ethylbenzoxazolium, N-naphthylbenzoxazolium, N-phenylbenzoxazolium, N- (p-fluorophenyl) benzoxazolium, N- (p- Chlorophenyl) benzoxazolium, N- (p-cyanophenyl) benzoxazolium, N- (o-methoxycarbonylphenyl) benzoxazolium, N- (2-furyl) benzoxazolium, N- (o -Fluorophenyl) benzoxazolium, N- (p-cyanophenyl) benzoxazolium, N- (m-nitrophenyl) benzoxazolium, N- (p-isopropoxycarbonylphenyl) benzoxazolium, N- (2-thienyl) benzoxazolium, N- (m-carboxyphenyl) ben Oxazolium, 2-mercapto-3-phenylbenzoxazolium, 2-methyl-3-phenylbenzoxazolium, 2-methylthio-3- (4-phenylsulfanylphenyl) benzoxazolium, 6-hydroxy-3- (P-tolyl) benzoxazolium, 7-mercapto-3-phenylbenzoxazolium, 4,5-difluoro-3-ethylbenzoxazolium, and the like can be mentioned, but are not limited thereto. Absent.

ベンゾチアゾリウムカチオンの例:
N−メチルベンゾチアゾリウム、N−エチルベンゾチアゾリウム、N−フェニルベンゾチアゾリウム、N−(1−ナフチル)ベンゾチアゾリウム、N−(p−フルオロフェニル)ベンゾチアゾリウム、N−(p−クロロフェニル)ベンゾチアゾリウム、N−(p−シアノフェニル)ベンゾチアゾリウム、N−(o−メトキシカルボニルフェニル)ベンゾチアゾリウム、N−(p−トリル)ベンゾチアゾリウム、N−(o−フルオロフェニル)ベンゾチアゾリウム、N−(m−ニトロフェニル)ベンゾチアゾリウム、N−(p−イソプロポキシカルボニルフェニル)ベンゾチアゾリウム、N−(2−フリル)ベンゾチアゾリウム、N−(4−メチルチオフェニル)ベンゾチアゾリウム、N−(4−フェニルスルファニルフェニル)ベンゾチアゾリウム、N−(2−ナフチル)ベンゾチアゾリウム、N−(m−カルボキシフェニル)ベンゾチアゾリウム、2−メルカプト−3−フェニルベンゾチアゾリウム、2−メチル−3−フェニルベンゾチアゾリウム、2−メチルチオ−3−フェニルベンゾチアゾリウム、6−ヒドロキシ−3−フェニルベンゾチアゾリウム、7−メルカプト−3−フェニルベンゾチアゾリウム、4,5−ジフルオロ−3−フェニルベンゾチアゾリウム等を挙げることができるが、これらに限定されるものではない。
Examples of benzothiazolium cations:
N-methylbenzothiazolium, N-ethylbenzothiazolium, N-phenylbenzothiazolium, N- (1-naphthyl) benzothiazolium, N- (p-fluorophenyl) benzothiazolium, N -(P-chlorophenyl) benzothiazolium, N- (p-cyanophenyl) benzothiazolium, N- (o-methoxycarbonylphenyl) benzothiazolium, N- (p-tolyl) benzothiazolium, N- (o-fluorophenyl) benzothiazolium, N- (m-nitrophenyl) benzothiazolium, N- (p-isopropoxycarbonylphenyl) benzothiazolium, N- (2-furyl) benzothia Zorium, N- (4-methylthiophenyl) benzothiazolium, N- (4-phenylsulfanylphenyl) benzothiazo , N- (2-naphthyl) benzothiazolium, N- (m-carboxyphenyl) benzothiazolium, 2-mercapto-3-phenylbenzothiazolium, 2-methyl-3-phenylbenzothiazolium 2-methylthio-3-phenylbenzothiazolium, 6-hydroxy-3-phenylbenzothiazolium, 7-mercapto-3-phenylbenzothiazolium, 4,5-difluoro-3-phenylbenzothiazolium However, it is not limited to these.

一般式(11)に該当するオニウムカチオン(フリルもしくはチエニルヨードニウムカチオン):
ジフリルヨードニウム、ジチエニルヨードニウム、ビス(4,5−ジメチル−2−フリル)ヨードニウム、ビス(5−クロロ−2−チエニル)ヨードニウム、ビス(5−シアノ−2−フリル)ヨードニウム、ビス(5−ニトロ−2−チエニル)ヨードニウム、ビス(5−アセチル−2−フリル)ヨードニウム、ビス(5−カルボキシ−2−チエニル)ヨードニウム、ビス(5−メトキシカルボニル−2−フリル)ヨードニウム、ビス(5−フェニル−2−フリル)ヨードニウム、ビス(5−(p−メトキシフェニル)−2−チエニル)ヨードニウム、ビス(5−ビニル−2−フリル)ヨードニウム、ビス(5−エチニル−2−チエニル)ヨードニウム、ビス(5−シクロヘキシル−2−フリル)ヨードニウム、ビス(5−ヒドロキシ−2−チエニル)ヨードニウム、ビス(5−フェノキシ−2−フリル)ヨードニウム、ビス(5−メルカプト−2−チエニル)ヨードニウム、ビス(5−ブチルチオ−2−チエニル)ヨードニウム、ビス(5−フェニルチオ−2−チエニル)ヨードニウム等を挙げることができるが、これらに限定されるものではない。
Onium cation corresponding to general formula (11) (furyl or thienyl iodonium cation):
Difuryl iodonium, dithienyl iodonium, bis (4,5-dimethyl-2-furyl) iodonium, bis (5-chloro-2-thienyl) iodonium, bis (5-cyano-2-furyl) iodonium, bis (5- Nitro-2-thienyl) iodonium, bis (5-acetyl-2-furyl) iodonium, bis (5-carboxy-2-thienyl) iodonium, bis (5-methoxycarbonyl-2-furyl) iodonium, bis (5-phenyl) -2-furyl) iodonium, bis (5- (p-methoxyphenyl) -2-thienyl) iodonium, bis (5-vinyl-2-furyl) iodonium, bis (5-ethynyl-2-thienyl) iodonium, bis ( 5-cyclohexyl-2-furyl) iodonium, bis (5-hydroxy-2-thio) Nyl) iodonium, bis (5-phenoxy-2-furyl) iodonium, bis (5-mercapto-2-thienyl) iodonium, bis (5-butylthio-2-thienyl) iodonium, bis (5-phenylthio-2-thienyl) Although iodonium etc. can be mentioned, it is not limited to these.

一般式(12)に該当するオニウムカチオン(ジアリールヨードニウムカチオン):
ジフェニルヨードニウム、ビス(p−トリル)ヨードニウム、ビス(p−オクチルフェニル)ヨードニウム、ビス(p−オクタデシルフェニル)ヨードニウム、ビス(p−オクチルオキシフェニル)ヨードニウム、ビス(p−オクタデシルオキシフェニル)ヨードニウム、フェニル(p−オクタデシルオキシフェニル)ヨードニウム、4−イソプロピル−4’−メチルジフェニルヨードニウム、(4−イソブチルフェニル)−p−トリルヨードニウム、ビス(1−ナフチル)ヨードニウム、ビス(4−フェニルスルファニルフェニル)ヨードニウム、フェニル(6−ベンゾイル−9−エチル−9H−カルバゾール−3−イル)ヨードニウム、(7−メトキシ−2−オキソ−2H−クロメン−3−イル)−4’−イソプロピルフェニルヨードニウム等を挙げることができるが、これらに限定されるものではない。
Onium cation corresponding to general formula (12) (diaryliodonium cation):
Diphenyliodonium, bis (p-tolyl) iodonium, bis (p-octylphenyl) iodonium, bis (p-octadecylphenyl) iodonium, bis (p-octyloxyphenyl) iodonium, bis (p-octadecyloxyphenyl) iodonium, phenyl (P-octadecyloxyphenyl) iodonium, 4-isopropyl-4′-methyldiphenyliodonium, (4-isobutylphenyl) -p-tolyliodonium, bis (1-naphthyl) iodonium, bis (4-phenylsulfanylphenyl) iodonium, Phenyl (6-benzoyl-9-ethyl-9H-carbazol-3-yl) iodonium, (7-methoxy-2-oxo-2H-chromen-3-yl) -4'-isopropylphenyliodonium Although and the like, but is not limited thereto.

次に、一般式(3)中のカウンターアニオンXについて説明する。 Next, the counter anion X in the general formula (3) will be described.

一般式(3)中のカウンターアニオンXは原理的に特に限定されるものではないが、非求核性アニオンが好ましい。カウンターアニオンXが非求核性アニオンの場合、分子内に共存するカチオンや併用される各種材料における求核反応が起こりにくいため、結果として一般式(2)で表記される光酸発生剤自身やそれを用いた組成物の経時安定性を向上させることが可能である。ここでいう非求核性アニオンとは、求核反応を起こす能力が低いアニオンを指す。このようなアニオンとしては、PF 、SbF 、AsF 、SbCl 、BiCl 、SnCl 、ClO 、ジチオカルバメートアニオン、SCN等が挙げられる。 The counter anion X in the general formula (3) is not particularly limited in principle, but a non-nucleophilic anion is preferable. When the counter anion X is a non-nucleophilic anion, the nucleophilic reaction in the cations coexisting in the molecule and various materials used in combination is unlikely to occur. As a result, the photoacid generator itself represented by the general formula (2) It is possible to improve the aging stability of a composition using the same. The non-nucleophilic anion here refers to an anion having a low ability to cause a nucleophilic reaction. Examples of such anions include PF 6 , SbF 6 , AsF 6 , SbCl 6 , BiCl 5 , SnCl 6 , ClO 4 , dithiocarbamate anion, SCN − and the like.

上記した例示アニオンの中で、一般式(3)中のカウンターアニオンX−として特に好ましいものとしては、PF 、SbF およびAsF が挙げられ、特に好まし
くは、PF 、SbF が挙げられる。
Among the exemplary anions described above, particularly preferable ones as the general formula (3) in counter anion X- is, PF 6 -, SbF 6 - and AsF 6 - and the like, particularly preferably, PF 6 -, SbF 6 - and the like.

したがって、本発明で使用可能な光酸発生剤を構成する好ましいオニウム塩の具体例としては、上記例示の一般式(3)〜一般式(12)で表されるオニウムカチオンの構造の具体例とPF 、SbF 、AsF 、SbCl 、BiCl 、SnCl 、ClO 、ジチオカルバメートアニオン、SCNより選ばれるアニオンとからなるオニウム塩である。 Therefore, as a specific example of a preferable onium salt constituting the photoacid generator that can be used in the present invention, a specific example of the structure of the onium cation represented by the above general formulas (3) to (12) An onium salt composed of an anion selected from PF 6 , SbF 6 , AsF 6 , SbCl 6 , BiCl 5 , SnCl 6 , ClO 4 , dithiocarbamate anion, and SCN .

具体的には、「サイラキュアーUVI−6992」、「サイラキュアーUVI−6974」(以上、ダウ・ケミカル日本株式会社製)、「アデカオプトマーSP150」、「アデカオプトマーSP152」、「アデカオプトマーSP170」、「アデカオプトマーSP172」(以上、株式会社ADEKA製)、「IRGACURE250」(チバスペシャルティーケミカルズ社製)、「CI−5102」、「CI−2855」(以上、日本曹達社製)、「サンエイドSI−60L」、「サンエイドSI−80L」、「サンエイドSI−100L」、「サンエイドSI−110L」、「サンエイドSI−180L」(以上、三新化学社製)、「CPI−100P」、「CPI−100A」(以上、サンアプロ株式会社製)、「WPI−069」、「WPI−113」、「WPI−116」、「WPI−041」、「WPI−044」、「WPI−054」、「WPI−055」、「WPAG−281」、「WPAG−567」、「WPAG−596」(以上、和光純薬社製)が本発明の光酸発生剤の好ましい具体例として挙げられる。   Specifically, “Syracure UVI-6922”, “Syracure UVI-6974” (above, manufactured by Dow Chemical Japan Co., Ltd.), “Adekaoptomer SP150”, “Adekaoptomer SP152”, “Adekaoptomer” “SP170”, “Adekaoptomer SP172” (manufactured by ADEKA Corporation), “IRGACURE250” (manufactured by Ciba Specialty Chemicals), “CI-5102”, “CI-2855” (manufactured by Nippon Soda Co., Ltd.), “Sun-Aid SI-60L”, “Sun-Aid SI-80L”, “Sun-Aid SI-100L”, “Sun-Aid SI-110L”, “Sun-Aid SI-180L” (above, manufactured by Sanshin Chemical Co., Ltd.), “CPI-100P”, “CPI-100A” (San Apro Co., Ltd.), “WPI-069 , “WPI-113”, “WPI-116”, “WPI-041”, “WPI-044”, “WPI-054”, “WPI-055”, “WPAG-281”, “WPAG-567”, “ “WPAG-596” (manufactured by Wako Pure Chemical Industries, Ltd.) is a preferred specific example of the photoacid generator of the present invention.

光酸発生剤の含有量は、硬化性成分の全量100重量部に対して、10重量部以下であり、0.01〜10重量部であることが好ましく、0.05〜5重量部であることがより好ましく、0.1〜3重量部であることが特に好ましい。   Content of a photo-acid generator is 10 weight part or less with respect to 100 weight part of whole quantity of a sclerosing | hardenable component, It is preferable that it is 0.01-10 weight part, It is 0.05-5 weight part. It is more preferable that the amount is 0.1 to 3 parts by weight.

<アルコキシ基、エポキシ基いずれかを含む化合物>
上記活性エネルギー線硬化型接着剤組成物において、光酸発生剤とアルコキシ基、エポキシ基いずれかを含む化合物を併用することができる。
<Compound containing either alkoxy group or epoxy group>
In the active energy ray-curable adhesive composition, a compound containing a photoacid generator and either an alkoxy group or an epoxy group can be used in combination.

(エポキシ基を有する化合物及び高分子)
分子内に1個以上のエポキシ基を有する化合物又は分子内に2個以上のエポキシ基を有する高分子(エポキシ樹脂)を用いる場合は、エポキシ基との反応性を有する官能基を分子内に二つ以上有する化合物を併用してもよい。ここでエポキシ基との反応性を有する官能基とは、例えば、カルボキシル基、フェノール性水酸基、メルカプト基、1級又は2級の芳香族アミノ基等が挙げられる。これらの官能基は、3次元硬化性を考慮して、一分子中に2つ以上有することが特に好ましい。
(Compound having epoxy group and polymer)
When using a compound having one or more epoxy groups in the molecule or a polymer (epoxy resin) having two or more epoxy groups in the molecule, two functional groups having reactivity with the epoxy group are contained in the molecule. Two or more compounds may be used in combination. Here, examples of the functional group having reactivity with an epoxy group include a carboxyl group, a phenolic hydroxyl group, a mercapto group, a primary or secondary aromatic amino group, and the like. It is particularly preferable to have two or more of these functional groups in one molecule in consideration of three-dimensional curability.

分子内に1個以上のエポキシ基を有する高分子としては、例えば、エポキシ樹脂が挙げられ、ビスフェノールAとエピクロルヒドリンから誘導されるビスフェノールA型エポキシ樹脂、ビスフェノールFとエピクロルヒドリンから誘導されるビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フルオレン型エポキシ樹脂、3官能型エポキシ樹脂や4官能型エポキシ樹脂等の多官能型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂肪族鎖状エポキシ樹脂等があり、これらのエポキシ樹脂はハロゲン化されていてもよく、水素添加されていてもよい。市販されているエポキシ樹脂製品としては、例えばジャパンエポキシレジン株式会社製のJERコート828、1001、801N、806、807、152、604、630、871、YX8000、YX8034、YX4000、DIC株式会社製のエピクロン830、EXA835LV、HP4032D、HP820、株式会社ADEKA製のEP4100シリーズ、EP4000シリーズ、EPUシリーズ、ダイセル化学株式会社製のセロキサイドシリーズ(2021、2021P、2083、2085、3000等)、エポリードシリーズ、EHPEシリーズ、新日鐵化学社製のYDシリーズ、YDFシリーズ、YDCNシリーズ、YDBシリーズ、フェノキシ樹脂(ビスフェノール類とエピクロルヒドリンより合成されるポリヒドロキシポリエーテルで両末端にエポキシ基を有する;YPシリーズ等)、ナガセケムテックス社製のデナコールシリーズ、共栄社化学社製のエポライトシリーズ等が挙げられるがこれらに限定されるものではない。これらのエポキシ樹脂は、2種以上を併用してもよい。なお、接着剤層のガラス転移温度Tgを計算する際には、エポキシ基を有する化合物及び高分子を計算には入れないこととする。   Examples of the polymer having one or more epoxy groups in the molecule include epoxy resins, bisphenol A type epoxy resins derived from bisphenol A and epichlorohydrin, bisphenol F type epoxy derived from bisphenol F and epichlorohydrin. Resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin, alicyclic epoxy resin, diphenyl ether type epoxy resin, hydroquinone type epoxy resin, Polyfunctional epoxy resins such as naphthalene type epoxy resin, biphenyl type epoxy resin, fluorene type epoxy resin, trifunctional type epoxy resin and tetrafunctional type epoxy resin, There are lysidyl ester type epoxy resins, glycidyl amine type epoxy resins, hydantoin type epoxy resins, isocyanurate type epoxy resins, aliphatic chain epoxy resins, etc. These epoxy resins may be halogenated and hydrogenated. It may be. As commercially available epoxy resin products, for example, JER Coat 828, 1001, 801N, 806, 807, 152, 604, 630, 871, YX8000, YX8034, YX4000 manufactured by Japan Epoxy Resin Co., Ltd., Epicron manufactured by DIC Corporation 830, EXA835LV, HP4032D, HP820, EP4100 series, EP4000 series, EPU series, manufactured by ADEKA Co., Ltd., Celoxide series (2021, 2021P, 2083, 2085, 3000, etc.) manufactured by Daicel Chemical Industries, Ltd., Eporide series, EHPE Series, YD series, YDF series, YDCN series, YDB series, phenoxy resin (polyethylene synthesized from bisphenols and epichlorohydrin) B carboxymethyl having an epoxy group at both ends with polyether; YP series, etc.), Nagase ChemteX Corporation of Denacol series manufactured by Kyoeisha but Chemical Co. Epo light series, and the like are not limited thereto. Two or more of these epoxy resins may be used in combination. In calculating the glass transition temperature Tg of the adhesive layer, the compound having an epoxy group and the polymer are not included in the calculation.

(アルコキシル基を有する化合物及び高分子)
分子内にアルコキシル基を有する化合物としては、分子内に1個以上のアルコキシル基を有するものであれば特に制限なく、公知のものを使用できる。このような化合物としては、メラミン化合物、アミノ樹脂、シランカップリング剤などが代表として挙げられる。なお、接着剤層のガラス転移温度Tgを計算する際には、アルコキシル基を有する化合物及び高分子を計算には入れないこととする。
(Compounds and polymers having an alkoxyl group)
The compound having an alkoxyl group in the molecule is not particularly limited as long as it has one or more alkoxyl groups in the molecule, and known compounds can be used. Representative examples of such compounds include melamine compounds, amino resins, and silane coupling agents. In calculating the glass transition temperature Tg of the adhesive layer, the compound and polymer having an alkoxyl group are not included in the calculation.

アルコキシ基、エポキシ基いずれかを含む化合物の配合量は、硬化性成分の全量100重量部に対して、通常、30重量部以下であり、組成物中の化合物の含有量が多すぎると、接着性が低下し、落下試験に対する耐衝撃性が悪化する場合がある。組成物中の化合物の含有量は、20重量部以下であることがより好ましい。一方、耐水性の点から、組成物中、化合物を2重量部以上含有することが好ましく、5重量部以上含有することがより好ましい。   The compounding amount of the compound containing either an alkoxy group or an epoxy group is usually 30 parts by weight or less with respect to 100 parts by weight of the total amount of the curable component, and if the content of the compound in the composition is too large, May deteriorate and impact resistance against drop test may deteriorate. The content of the compound in the composition is more preferably 20 parts by weight or less. On the other hand, from the viewpoint of water resistance, the composition preferably contains 2 parts by weight or more, more preferably 5 parts by weight or more.

<シランカップリング剤>
本発明の偏光フィルム用硬化型接着剤が活性エネルギー線硬化性硬化型の場合には、シランカップリング剤は、活性エネルギー線硬化性の化合物を使用することが好ましいが、活性エネルギー線硬化性でなくても同様の耐水性を付与することができる。
<Silane coupling agent>
When the polarizing film curable adhesive of the present invention is an active energy ray-curable curable adhesive, it is preferable to use an active energy ray-curable compound as the silane coupling agent. Even if not, the same water resistance can be imparted.

シランカップリング剤の具体例としては、活性エネルギー線硬化性の化合物としてビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシランなどが挙げられる。   Specific examples of the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, and 3-glycid as active energy ray-curable compounds. Xylpropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxy Examples thereof include silane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-acryloxypropyltrimethoxysilane.

好ましくは、3−メタクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシランである。   Preferable are 3-methacryloxypropyltrimethoxysilane and 3-acryloxypropyltrimethoxysilane.

活性エネルギー線硬化性ではないシランカップリング剤の具体例としては、アミノ基を有するシランカップリング剤(D1)が好ましい。アミノ基を有するシランカップリング剤(D1)の具体例としては、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリイソプロポキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリイソプロポキシシラン、γ−(2−(2−アミノエチル)アミノエチル)アミノプロピルトリメトキシシラン、γ−(6−アミノヘキシル)アミノプロピルトリメトキシシラン、3−(N−エチルアミノ)−2−メチルプロピルトリメトキシシラン、γ−ウレイドプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−ベンジル−γ−アミノプロピルトリメトキシシラン、N−ビニルベンジル−γ−アミノプロピルトリエトキシシラン、N−シクロヘキシルアミノメチルトリエトキシシラン、N−シクロヘキシルアミノメチルジエトキシメチルシラン、N−フェニルアミノメチルトリメトキシシラン、(2−アミノエチル)アミノメチルトリメトキシシラン、N,N’−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン等のアミノ基含有シラン類;N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン等のケチミン型シラン類を挙げることができる。   As a specific example of the silane coupling agent that is not active energy ray-curable, a silane coupling agent (D1) having an amino group is preferable. Specific examples of the silane coupling agent (D1) having an amino group include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltriisopropoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropyltriethoxysilane , Γ- (2-aminoethyl) aminopropylmethyldiethoxysilane, γ- (2-aminoethyl) aminopropyltriisopropoxysilane, γ- (2- (2-aminoethyl) aminoethyl) aminopropyltrimethoxysilane , Γ- (6-aminohexyl) Minopropyltrimethoxysilane, 3- (N-ethylamino) -2-methylpropyltrimethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane N-benzyl-γ-aminopropyltrimethoxysilane, N-vinylbenzyl-γ-aminopropyltriethoxysilane, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, N-phenylaminomethyl Amino group-containing silanes such as trimethoxysilane, (2-aminoethyl) aminomethyltrimethoxysilane, N, N′-bis [3- (trimethoxysilyl) propyl] ethylenediamine; N- (1,3-dimethylbutyrate) Reden)- - it can be exemplified (triethoxysilyl) -1-propane ketimines type silanes such as amines.

アミノ基を有するシランカップリング剤(D1)は、1種のみを用いてもよく、複数種を組み合わせて用いても良い。これらのうち、良好な接着性を確保するためには、γ−アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジエトキシシラン、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミンが好ましい。   As the silane coupling agent (D1) having an amino group, only one type may be used, or a plurality of types may be used in combination. Among these, in order to ensure good adhesion, γ-aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane , Γ- (2-aminoethyl) aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropylmethyldiethoxysilane, N- (1,3-dimethylbutylidene) -3- (triethoxysilyl)- 1-propanamine is preferred.

シランカップリング剤の配合量は、硬化性成分の全量100重量部に対して、0.01〜20重量部の範囲が好ましく、0.05〜15重量部であることが好ましく、0.1〜10重量部であることがさらに好ましい。20重量部を超える配合量の場合、接着剤の保存安定性が悪化し、また0.1重量部未満の場合は耐水接着性の効果が十分発揮されないためである。なお、接着剤層のガラス転移温度Tgを計算する際には、シランカップリング剤を計算には入れないこととする。   The blending amount of the silane coupling agent is preferably in the range of 0.01 to 20 parts by weight, preferably 0.05 to 15 parts by weight, with respect to 100 parts by weight of the total amount of the curable component. More preferably, it is 10 parts by weight. This is because when the blending amount exceeds 20 parts by weight, the storage stability of the adhesive deteriorates, and when the blending amount is less than 0.1 part by weight, the water-resistant adhesive effect is not sufficiently exhibited. When calculating the glass transition temperature Tg of the adhesive layer, the silane coupling agent is not included in the calculation.

上記以外の活性エネルギー線硬化性ではないシランカップリング剤の具体例としては、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン、イミダゾールシランなどが挙げられる。   Specific examples of silane coupling agents that are not active energy ray-curable other than the above include 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropyltrimethoxy. Examples include silane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane, imidazolesilane, and the like.

<上記以外の添加剤>
また、本発明で使用する活性エネルギー線硬化型接着剤組成物には、本発明の目的、効果を損なわない範囲において、その他の任意成分として各種の添加剤を配合することができる。かかる添加剤としては、エポキシ樹脂、ポリアミド、ポリアミドイミド、ポリウレタン、ポリブタジエン、ポリクロロプレン、ポリエーテル、ポリエステル、スチレン−ブタジエンブロック共重合体、石油樹脂、キシレン樹脂、ケトン樹脂、セルロース樹脂、フッ素系オリゴマー、シリコーン系オリゴマー、ポリスルフィド系オリゴマーなどのポリマーあるいはオリゴマー;フェノチアジン、2,6−ジ−t−ブチル−4−メチルフェノールなどの重合禁止剤;重合開始助剤;レベリング剤;濡れ性改良剤;界面活性剤;可塑剤;紫外線吸収剤;無機充填剤;顔料;染料などを挙げることができる。
<Additives other than the above>
Moreover, various additives can be mix | blended with the active energy ray hardening-type adhesive composition used by this invention as another arbitrary component in the range which does not impair the objective and effect of this invention. Such additives include epoxy resin, polyamide, polyamideimide, polyurethane, polybutadiene, polychloroprene, polyether, polyester, styrene-butadiene block copolymer, petroleum resin, xylene resin, ketone resin, cellulose resin, fluorine-based oligomer, Polymers or oligomers such as silicone oligomers and polysulfide oligomers; polymerization inhibitors such as phenothiazine and 2,6-di-t-butyl-4-methylphenol; polymerization initiation aids; leveling agents; wettability improvers; Plasticizers; UV absorbers; inorganic fillers; pigments; dyes and the like.

上記の添加剤は、硬化性成分の全量100重量部に対して、通常0〜10重量部、好ましくは0〜5重量部、最も好ましくは0〜3重量部である。   Said additive is 0-10 weight part normally with respect to 100 weight part of whole quantity of a sclerosing | hardenable component, Preferably it is 0-5 weight part, Most preferably, it is 0-3 weight part.

<接着剤の粘度>
本発明で使用する活性エネルギー線硬化型接着剤組成物は、前記硬化性成分を含有するが、当該接着剤組成物の粘度は、塗工性の観点から、25℃において100cp以下であるのが好ましい。一方、本発明の偏光フィルム用硬化型接着剤が25℃において100cpを超える場合には、塗工時に接着剤の温度をコントロールして、100cp以下に調整して用いることもできる。粘度のより好ましい範囲は1〜80cp、最も好ましくは10〜50cpである。粘度は東機産業社製のE型粘度計TVE22LTを使用して測定することができる。
<Viscosity of adhesive>
The active energy ray-curable adhesive composition used in the present invention contains the curable component, but the viscosity of the adhesive composition is 100 cp or less at 25 ° C. from the viewpoint of coatability. preferable. On the other hand, when the curable adhesive for polarizing film of the present invention exceeds 100 cp at 25 ° C., the temperature of the adhesive can be controlled at the time of coating and adjusted to 100 cp or less. A more preferable range of the viscosity is 1 to 80 cp, and most preferably 10 to 50 cp. The viscosity can be measured using an E-type viscometer TVE22LT manufactured by Toki Sangyo Co., Ltd.

また本発明で使用する活性エネルギー線硬化型接着剤組成物は、安全性の観点から、前記硬化性成分として皮膚刺激の低い材料を使用することが好ましい。皮膚刺激性は、P.I.Iという指標で判断することができる。P.I.Iは皮膚障害の度合いを示すものとして広く用いられ、ドレーズ法により測定される。測定値は0〜8の範囲で表示され、値が小さいほど刺激性は低いと判断されるが、測定値の誤差が大きいため参考値として捉えるのが良い。P.I.Iは、好ましくは4以下、より好ましくは3以下、最も好ましくは2以下である。   The active energy ray-curable adhesive composition used in the present invention preferably uses a material having low skin irritation as the curable component from the viewpoint of safety. Skin irritation is P.I. I. Judgment can be made with the index I. P. I. I is widely used to indicate the degree of skin injury and is measured by the Draise method. The measured value is displayed in the range of 0 to 8, and it is determined that the irritation is lower as the value is smaller. P. I. I is preferably 4 or less, more preferably 3 or less, and most preferably 2 or less.

本発明に係る製造方法により製造される積層光学フィルムは、活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された接着剤層を介して、少なくとも第1光学フィルムおよび第2光学フィルムが積層されたものである。   The laminated optical film manufactured by the manufacturing method according to the present invention includes at least the first optical film and the second optical film via an adhesive layer formed by curing the active energy ray-curable adhesive composition. It is a laminated one.

<接着剤層>
活性エネルギー線硬化型接着剤組成物により形成された接着剤層の厚みは、0.1〜3μmになるように制御することが好ましい。接着剤層の厚みは0.3〜2μmであるのがより好ましく、さらには0.5〜1.5μmが好ましい。接着剤層の厚さを0.1μm以上とすることは、接着剤層の凝集力により接着不良の発生や、ラミネート時に外観不良(気泡)が生じることを抑えるうえで好ましい。一方、接着剤層が3μmより厚くなると、偏光フィルムが耐久性を満足できないおそれがある。
<Adhesive layer>
The thickness of the adhesive layer formed with the active energy ray-curable adhesive composition is preferably controlled to be 0.1 to 3 μm. The thickness of the adhesive layer is more preferably 0.3-2 μm, and further preferably 0.5-1.5 μm. Setting the thickness of the adhesive layer to 0.1 μm or more is preferable in order to suppress the occurrence of poor adhesion due to the cohesive force of the adhesive layer and the occurrence of poor appearance (bubbles) during lamination. On the other hand, if the adhesive layer is thicker than 3 μm, the polarizing film may not be able to satisfy the durability.

また、活性エネルギー線硬化型接着剤組成物は、これにより形成される接着剤層のTgが60℃以上になるように選択されることが好ましく、さらには70℃以上であることが好ましく、さらには75℃以上、さらには100℃以上、さらには120℃以上であることが好ましい。一方、接着剤層のTgが高くなりすぎると偏光フィルムの屈曲性が低下することから、接着剤層のTgは300℃以下、さらには240℃以下、さらには180℃以下にすることが好ましい。Tg(ガラス転移温度)は、TAインスツルメンツ製動的粘弾性測定装置RSAIIIを用い以下の測定条件で測定される。   The active energy ray-curable adhesive composition is preferably selected so that the Tg of the adhesive layer formed thereby is 60 ° C. or higher, more preferably 70 ° C. or higher. Is preferably 75 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 120 ° C. or higher. On the other hand, if the Tg of the adhesive layer becomes too high, the flexibility of the polarizing film is lowered. Therefore, the Tg of the adhesive layer is preferably 300 ° C. or lower, more preferably 240 ° C. or lower, and further preferably 180 ° C. or lower. Tg (glass transition temperature) is measured under the following measurement conditions using a TA Instruments dynamic viscoelasticity measuring device RSAIII.

サンプルサイズ:幅10mm、長さ30mm、
クランプ距離20mm、
測定モード:引っ張り、周波数:1Hz、昇温速度:5℃/分
動的粘弾性の測定を行い、tanδのピークトップの温度Tgとして採用した。
Sample size: width 10mm, length 30mm,
Clamp distance 20mm,
Measurement mode: Tensile, Frequency: 1 Hz, Temperature rising rate: 5 ° C./min Dynamic viscoelasticity was measured and adopted as the temperature Tg of tan δ peak top.

また、活性エネルギー線硬化型接着剤組成物は、これにより形成される接着剤層の貯蔵弾性率が70℃以下の領域で1.0×10Pa以上となるように設計されることが好ましい。さらには1.0×10Pa以上であることがより好ましい。接着剤層の貯蔵弾性率は、偏光フィルムにヒートサイクル(−40℃から80℃など)をかけた際の偏光子クラックに影響し、貯蔵弾性率が低い場合、偏光子クラックの不具合が発生しやすい。高い貯蔵弾性率を有する温度領域は、80℃以下がより好ましく、90℃以下が最も好ましい。貯蔵弾性率はTg(ガラス転移温度)と同時に、TAインスツルメンツ製動的粘弾性測定装置RSAIIIを用い同様の測定条件で測定される。動的粘弾性の測定を行い、貯蔵弾性率(E’)の値を採用した。 Further, the active energy ray-curable adhesive composition is preferably designed so that the storage elastic modulus of the adhesive layer formed thereby is 1.0 × 10 6 Pa or higher in the region of 70 ° C. or lower. . Further, it is more preferably 1.0 × 10 7 Pa or more. The storage elastic modulus of the adhesive layer affects the polarizer cracks when the polarizing film is subjected to a heat cycle (from −40 ° C. to 80 ° C., etc.). If the storage elastic modulus is low, defects of the polarizer cracks occur. Cheap. The temperature region having a high storage elastic modulus is more preferably 80 ° C. or less, and most preferably 90 ° C. or less. The storage elastic modulus is measured under the same measurement conditions using a dynamic viscoelasticity measuring device RSAIII manufactured by TA Instruments simultaneously with Tg (glass transition temperature). The dynamic viscoelasticity was measured and the storage elastic modulus (E ′) value was adopted.

本発明に係る積層光学フィルムの製造方法は、活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された接着剤層を介して、少なくとも第1光学フィルムおよび第2光学フィルムが積層された積層光学フィルムの製造方法であって、前記活性エネルギー線硬化型接着剤組成物は、第1活性エネルギー線硬化型接着剤組成物および第2活性エネルギー線硬化型接着剤組成物を含む、少なくとも2種類以上の異なる活性エネルギー線硬化型接着剤組成物を含有するものであり、前記第1光学フィルムの貼合面に前記第1活性エネルギー線硬化型接着剤組成物を塗工し、さらに前記第2光学フィルムの貼合面に前記第2活性エネルギー線硬化型接着剤組成物を塗工する塗工工程と、前記第1光学フィルムおよび前記第2光学フィルムを貼り合わせる貼合工程と、前記第1光学フィルム面側または前記第2光学フィルム面側から活性エネルギー線を照射して、前記活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された前記接着剤層を介して、前記第1光学フィルムおよび前記第2光学フィルムを接着させる接着工程とを含むことを特徴とする。   In the method for producing a laminated optical film according to the present invention, at least a first optical film and a second optical film are laminated via an adhesive layer formed by curing an active energy ray-curable adhesive composition. A method for producing a laminated optical film, wherein the active energy ray-curable adhesive composition includes a first active energy ray-curable adhesive composition and a second active energy ray-curable adhesive composition. It contains different active energy ray-curable adhesive compositions of different types, and the first active energy ray-curable adhesive composition is applied to the bonding surface of the first optical film, and the first A coating step of coating the second active energy ray-curable adhesive composition on the bonding surface of the two optical films, the first optical film, and the second optical film; The bonding step, and the active energy ray-curable adhesive composition formed by irradiating active energy rays from the first optical film surface side or the second optical film surface side and curing the active energy ray-curable adhesive composition. A bonding step of bonding the first optical film and the second optical film through an adhesive layer.

別の本発明に係る積層光学フィルムの製造方法は、活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された接着剤層を介して、少なくとも第1光学フィルムおよび第2光学フィルムが積層された積層光学フィルムの製造方法であって、前記活性エネルギー線硬化型接着剤組成物は、第1活性エネルギー線硬化型接着剤組成物および第2活性エネルギー線硬化型接着剤組成物を含む、少なくとも2種類以上の異なる活性エネルギー線硬化型接着剤組成物を含有するものであり、前記第1光学フィルムの貼合面に前記第1活性エネルギー線硬化型接着剤組成物を塗工し、前記第1活性エネルギー線硬化型接着剤組成物を塗工した塗工面に、さらに前記第2活性エネルギー線硬化型接着剤組成物を上塗り塗工する塗工工程と、第1光学フィルム上に塗工された第2活性エネルギー線硬化型接着剤組成物の塗工面側から前記第2光学フィルムを貼り合わせる貼合工程と、前記第1光学フィルムおよび前記第2光学フィルムを貼り合わせる貼合工程と、前記第1光学フィルム面側または前記第2光学フィルム面側から活性エネルギー線を照射して、前記活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された前記接着剤層を介して、前記第1光学フィルムおよび前記第2光学フィルムを接着させる接着工程とを含むことを特徴とする。 In another method for producing a laminated optical film according to the present invention, at least a first optical film and a second optical film are laminated via an adhesive layer formed by curing an active energy ray-curable adhesive composition. A method for producing a laminated optical film, wherein the active energy ray-curable adhesive composition includes a first active energy ray-curable adhesive composition and a second active energy ray-curable adhesive composition, Containing at least two different active energy ray-curable adhesive compositions, applying the first active energy ray-curable adhesive composition to the bonding surface of the first optical film, A coating step of further overcoating the second active energy ray-curable adhesive composition on the coating surface coated with the first active energy ray-curable adhesive composition; A laminating step of laminating the second optical film from the coated surface side of the second active energy ray-curable adhesive composition coated on the film, and laminating the first optical film and the second optical film The bonding process formed by irradiating active energy rays from the first optical film surface side or the second optical film surface side and curing the active energy ray-curable adhesive composition An adhesion step of adhering the first optical film and the second optical film through an agent layer.

本発明に係る積層光学フィルムの製造方法において、該積層光学フィルムが偏光フィルムである場合、偏光子、透明保護フィルムは、上記活性エネルギー線硬化型接着剤組成物を塗工する前に、表面改質処理を行ってもよい。具体的な処理としては、コロナ処理、プラズマ処理、ケン化処理による処理などが挙げられる。   In the method for producing a laminated optical film according to the present invention, when the laminated optical film is a polarizing film, the polarizer and the transparent protective film are subjected to surface modification before the application of the active energy ray-curable adhesive composition. Quality processing may be performed. Specific examples of the treatment include corona treatment, plasma treatment, and saponification treatment.

活性エネルギー線硬化型接着剤組成物の塗工方式は、組成物の粘度や目的とする厚みによって適宜に選択される。塗工方式の例として、例えば、リバースコーター、グラビアコーター(ダイレクト,リバースやオフセット)、バーリバースコーター、ロールコーター、ダイコーター、バーコーター、ロッドコーターなどが挙げられる。その他、塗工には、デイッピング方式などの方式を適宜に使用することができる。   The coating method of the active energy ray-curable adhesive composition is appropriately selected depending on the viscosity of the composition and the target thickness. Examples of coating methods include reverse coaters, gravure coaters (direct, reverse and offset), bar reverse coaters, roll coaters, die coaters, bar coaters, rod coaters and the like. In addition, for coating, a method such as a dapping method can be appropriately used.

上記のように塗工した活性エネルギー線硬化型接着剤組成物を介して、2種類の異なる光学フィルム、例えば偏光子と透明保護フィルムとを貼り合わせる。偏光子と透明保護フィルムの貼り合わせは、ロールラミネーターなどにより行う事ができる。   Two different optical films, for example, a polarizer and a transparent protective film are bonded together through the active energy ray-curable adhesive composition applied as described above. Bonding of the polarizer and the transparent protective film can be performed with a roll laminator or the like.

<接着剤の硬化>
本発明で使用する活性エネルギー線硬化型接着剤組成物は、電子線硬化型、紫外線硬化型、可視光線硬化型の態様で用いることができる。活性エネルギー線硬化型接着剤組成物としては、可視光線硬化型接着剤組成物が生産性の観点から好ましい。
<Curing the adhesive>
The active energy ray curable adhesive composition used in the present invention can be used in an electron beam curable type, an ultraviolet curable type, or a visible light curable type. As the active energy ray curable adhesive composition, a visible light curable adhesive composition is preferable from the viewpoint of productivity.

活性エネルギー線硬化型接着剤組成物では、例えば偏光子と透明保護フィルムとを貼り合わせた後に、活性エネルギー線(電子線、紫外線、可視光線など)を照射し、活性エネルギー線硬化型接着剤組成物を硬化して接着剤層を形成する。活性エネルギー線(電子線、紫外線、可視光線など)の照射方向は、任意の適切な方向から照射することができる。好ましくは、透明保護フィルム側から照射する。偏光子側から照射すると、偏光子が活性エネルギー線(電子線、紫外線、可視光線など)によって劣化するおそれがある。   In the active energy ray curable adhesive composition, for example, after bonding a polarizer and a transparent protective film, the active energy ray (electron beam, ultraviolet ray, visible light, etc.) is irradiated to obtain an active energy ray curable adhesive composition. The object is cured to form an adhesive layer. The irradiation direction of active energy rays (electron beam, ultraviolet ray, visible light, etc.) can be irradiated from any appropriate direction. Preferably, it irradiates from the transparent protective film side. When irradiated from the polarizer side, the polarizer may be deteriorated by active energy rays (electron beam, ultraviolet ray, visible light, etc.).

電子線硬化型において、電子線の照射条件は、上記活性エネルギー線硬化型接着剤組成物を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV〜300kVであり、さらに好ましくは10kV〜250kVである。加速電圧が5kV未満の場合、電子線が接着剤まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて、透明保護フィルムや偏光子にダメージを与えるおそれがある。照射線量としては、5〜100kGy、さらに好ましくは10〜75kGyである。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、透明保護フィルムや偏光子にダメージを与え、機械的強度の低下や黄変を生じ、所定の光学特性を得ることができない。   In the electron beam curable type, any appropriate condition can be adopted as the electron beam irradiation condition as long as the active energy ray curable adhesive composition can be cured. For example, in the electron beam irradiation, the acceleration voltage is preferably 5 kV to 300 kV, and more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive and may be insufficiently cured. If the acceleration voltage exceeds 300 kV, the penetration force through the sample is too strong and damages the transparent protective film and the polarizer. There is a risk of giving. The irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy. When the irradiation dose is less than 5 kGy, the adhesive becomes insufficiently cured, and when it exceeds 100 kGy, the transparent protective film and the polarizer are damaged, resulting in a decrease in mechanical strength and yellowing, thereby obtaining predetermined optical characteristics. I can't.

電子線照射は、通常、不活性ガス中で照射を行うが、必要であれば大気中や酸素を少し導入した条件で行ってもよい。透明保護フィルムの材料によるが、酸素を適宜導入することによって、最初に電子線があたる透明保護フィルム面にあえて酸素阻害を生じさせ、透明保護フィルムへのダメージを防ぐことができ、接着剤にのみ効率的に電子線を照射させることができる。   Electron beam irradiation is usually performed in an inert gas, but if necessary, it may be performed in the atmosphere or under a condition in which a small amount of oxygen is introduced. Depending on the material of the transparent protective film, by appropriately introducing oxygen, the transparent protective film surface where the electron beam first hits can be obstructed to prevent oxygen damage and prevent damage to the transparent protective film. An electron beam can be irradiated efficiently.

本発明に係る積層光学フィルムの製造方法、特には偏光フィルムの製造方法では、活性エネルギー線として、波長範囲380nm〜450nmの可視光線を含むもの、特には波長範囲380nm〜450nmの可視光線の照射量が最も多い活性エネルギー線を使用することが好ましい。紫外線硬化型、可視光線硬化型において、紫外線吸収能を付与した透明保護フィルム(紫外線不透過型透明保護フィルム)を使用する場合、およそ380nmより短波長の光を吸収するため、380nmより短波長の光は活性エネルギー線硬化型接着剤に到達せず、その重合反応に寄与しない。さらに、透明保護フィルムによって吸収された380nmより短波長の光は熱に変換され、透明保護フィルム自体が発熱し、偏光フィルムのカール・シワなど不良の原因となる。そのため、本発明において紫外線硬化型、可視光線硬化型を採用する場合、活性エネルギー線発生装置として380nmより短波長の光を発光しない装置を使用することが好ましく、より具体的には、波長範囲380〜440nmの積算照度と波長範囲250〜370nmの積算照度との比が100:0〜100:50であることが好ましく、100:0〜100:40であることがより好ましい。本発明に係る活性エネルギー線としては、ガリウム封入メタルハライドランプ、波長範囲380〜440nmを発光するLED光源が好ましい。あるいは、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、白熱電球、キセノンランプ、ハロゲンランプ、カーボンアーク灯、メタルハライドランプ、蛍光灯、タングステンランプ、ガリウムランプ、エキシマレーザーまたは太陽光などの紫外線と可視光線を含む光源を使用することができ、バンドパスフィルターを用いて380nmより短波長の紫外線を遮断して用いることもできる。偏光子と透明保護フィルムとの間の接着剤層の接着性能を高めつつ、偏光フィルムのカールを防止するためには、ガリウム封入メタルハライドランプを使用し、かつ380nmより短波長の光を遮断可能なバンドパスフィルターを介して得られた活性エネルギー線、またはLED光源を使用して得られる波長405nmの活性エネルギー線を使用することが好ましい。   In the method for producing a laminated optical film according to the present invention, in particular, the method for producing a polarizing film, the active energy ray contains visible light having a wavelength range of 380 nm to 450 nm, particularly the irradiation amount of visible light having a wavelength range of 380 nm to 450 nm. It is preferable to use the active energy ray having the largest number. In the case of using a transparent protective film (ultraviolet non-transparent transparent protective film) imparted with ultraviolet absorbing ability in the ultraviolet curable type and visible light curable type, light having a wavelength shorter than about 380 nm is absorbed. Light does not reach the active energy ray-curable adhesive and does not contribute to the polymerization reaction. Furthermore, light having a wavelength shorter than 380 nm absorbed by the transparent protective film is converted into heat, and the transparent protective film itself generates heat, which causes defects such as curling and wrinkling of the polarizing film. Therefore, when the ultraviolet curable type or the visible light curable type is adopted in the present invention, it is preferable to use a device that does not emit light having a wavelength shorter than 380 nm as the active energy ray generating device, and more specifically, the wavelength range 380. The ratio of the integrated illuminance of ˜440 nm to the integrated illuminance of the wavelength range 250 to 370 nm is preferably 100: 0 to 100: 50, and more preferably 100: 0 to 100: 40. As the active energy ray according to the present invention, a gallium-encapsulated metal halide lamp and an LED light source that emits light in the wavelength range of 380 to 440 nm are preferable. Or low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, incandescent lamp, xenon lamp, halogen lamp, carbon arc lamp, metal halide lamp, fluorescent lamp, tungsten lamp, gallium lamp, excimer laser or sunlight A light source including visible light can be used, and ultraviolet light having a wavelength shorter than 380 nm can be blocked using a band pass filter. In order to prevent the polarization film from curling while improving the adhesive performance of the adhesive layer between the polarizer and the transparent protective film, a gallium-encapsulated metal halide lamp can be used and light with a wavelength shorter than 380 nm can be blocked. It is preferable to use an active energy ray obtained through a band pass filter or an active energy ray having a wavelength of 405 nm obtained using an LED light source.

紫外線硬化型または可視光線硬化型において、紫外線または可視光線を照射後に活性エネルギー線硬化型接着剤を加温すること(照射後加温)も好ましく、その場合40℃以上に加温することが好ましく、50℃以上に加温することがより好ましい。   In the ultraviolet curing type or visible light curing type, it is also preferable to warm the active energy ray-curable adhesive after irradiation with ultraviolet rays or visible light (heating after irradiation), and in this case, it is preferable to warm to 40 ° C. or higher. It is more preferable to heat to 50 ° C. or higher.

本発明において使用する活性エネルギー線硬化型接着剤は、特に偏光子と波長365nmの光線透過率が5%未満である透明保護フィルムとを接着する接着剤層を形成する場合に好適に使用可能である。ここで、本発明に係る活性エネルギー線硬化型接着剤は、上述した一般式(1)の光重合開始剤を含有することによって、UV吸収能を有する透明保護フィルム越しに紫外線を照射して、接着剤層を硬化形成することができる。よって、偏光子の両面にUV吸収能を有する透明保護フィルムを積層した偏光フィルムにおいても、接着剤層を硬化させることができる。ただし、当然ながら、UV吸収能を有さない透明保護フィルムを積層した偏光フィルムにおいても、接着剤層を硬化させることができる。なお、UV吸収能を有する透明保護フィルムとは、380nmの光に対する透過率が10%未満である透明保護フィルムを意味する。   The active energy ray-curable adhesive used in the present invention can be suitably used particularly for forming an adhesive layer for bonding a polarizer and a transparent protective film having a light transmittance of a wavelength of 365 nm of less than 5%. is there. Here, the active energy ray-curable adhesive according to the present invention irradiates ultraviolet rays through the transparent protective film having UV absorption ability by containing the photopolymerization initiator of the general formula (1) described above, The adhesive layer can be hardened. Therefore, an adhesive bond layer can be hardened also in a polarizing film which laminated a transparent protective film which has UV absorption ability on both sides of a polarizer. However, as a matter of course, the adhesive layer can also be cured in a polarizing film in which a transparent protective film having no UV absorbing ability is laminated. In addition, the transparent protective film which has UV absorption ability means the transparent protective film whose transmittance | permeability with respect to light of 380 nm is less than 10%.

透明保護フィルムへのUV吸収能の付与方法としては、透明保護フィルム中に紫外線吸収剤を含有させる方法や、透明保護フィルム表面に紫外線吸収剤を含有する表面処理層を積層させる方法が挙げられる。   Examples of the method for imparting UV absorbing ability to the transparent protective film include a method of containing an ultraviolet absorber in the transparent protective film and a method of laminating a surface treatment layer containing an ultraviolet absorber on the surface of the transparent protective film.

紫外線吸収剤の具体例としては、例えば、従来公知のオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物、トリアジン系化合物などが挙げられる。   Specific examples of the ultraviolet absorber include conventionally known oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, triazine compounds, and the like. .

2種類の異なる光学フィルム、例えば偏光子と透明保護フィルムを貼り合わせた後に、活性エネルギー線(電子線、紫外線、可視光線など)を照射し、活性エネルギー線硬化型接着剤を硬化して接着剤層を形成する。偏光子と透明保護フィルムを貼り合わせる際の偏光子の水分率は通常1%以上、好ましくは3%以上、より好ましくは5%以上である。また、偏光子水分率が高すぎる場合、貼り合わせ後に偏光子中の水分が接着剤層へ移動し、接着剤組成物中のlogPOWが2〜7であるB成分が層分離することで外観不良を生じるため好ましくない。偏光子水分率は18%以下が好ましく、より好ましくは15%以下、最も好ましくは12%以下である。偏光子水分率は、得られた偏光子から、180mm×500mmのサンプルを切り出し、その初期重量(W(g))を測定した。そのサンプルを120℃の乾燥機内で6時間放置した後、乾燥後重量(D(g))を測定した。これらの測定値より、下記式により水分率を求めた。
水分率(%)={(W−D)/W}×100
活性エネルギー線(電子線、紫外線、可視光線など)の照射方向は、任意の適切な方向から照射することができる。好ましくは、透明保護フィルム側から照射する。偏光子側から照射すると、偏光子が活性エネルギー線(電子線、紫外線、可視光線など)によって劣化するおそれがある。
After bonding two different optical films, for example, a polarizer and a transparent protective film, an active energy ray (electron beam, ultraviolet ray, visible light, etc.) is irradiated to cure the active energy ray-curable adhesive, and the adhesive Form a layer. The moisture content of the polarizer when the polarizer and the transparent protective film are bonded together is usually 1% or more, preferably 3% or more, more preferably 5% or more. In addition, when the moisture content of the polarizer is too high, the moisture in the polarizer moves to the adhesive layer after bonding, and the B component having a log POW of 2 to 7 in the adhesive composition is separated into layers, resulting in poor appearance. This is not preferable. The moisture content of the polarizer is preferably 18% or less, more preferably 15% or less, and most preferably 12% or less. For the polarizer moisture content, a sample of 180 mm × 500 mm was cut out from the obtained polarizer, and its initial weight (W (g)) was measured. The sample was allowed to stand in a dryer at 120 ° C. for 6 hours, and then the weight after drying (D (g)) was measured. From these measured values, the moisture content was determined by the following formula.
Moisture content (%) = {(WD) / W} × 100
The irradiation direction of active energy rays (electron beam, ultraviolet ray, visible light, etc.) can be irradiated from any appropriate direction. Preferably, it irradiates from the transparent protective film side. When irradiated from the polarizer side, the polarizer may be deteriorated by active energy rays (electron beam, ultraviolet ray, visible light, etc.).

本発明に係る積層光学フィルムを連続ラインで製造する場合、ライン速度は、接着剤の硬化時間によるが、好ましくは1〜500m/min、より好ましくは5〜300m/min、さらに好ましくは10〜100m/minである。ライン速度が小さすぎる場合は、生産性が乏しい、または透明保護フィルムへのダメージが大きすぎ、耐久性試験などに耐えうる偏光フィルムが作製できない。ライン速度が大きすぎる場合は、接着剤の硬化が不十分となり、目的とする接着性が得られない場合がある。 When the laminated optical film according to the present invention is produced in a continuous line, the line speed depends on the curing time of the adhesive, but is preferably 1 to 500 m / min, more preferably 5 to 300 m / min, and further preferably 10 to 100 m. / Min. When the line speed is too low, the productivity is poor, or the damage to the transparent protective film is too great, and a polarizing film that can withstand the durability test cannot be produced. When the line speed is too high, the adhesive is not sufficiently cured, and the target adhesiveness may not be obtained.

なお、本発明に係る積層光学フィルムの製造方法において、該積層光学フィルムが偏光フィルムである場合、偏光子と透明保護フィルムが、上記活性エネルギー線硬化型接着剤の硬化物層により形成された接着剤層を介して貼り合されるが、透明保護フィルムと接着剤層の間には、易接着層を設けることができる。易接着層は、例えば、ポリエステル骨格、ポリエーテル骨格、ポリカーボネート骨格、ポリウレタン骨格、シリコーン系、ポリアミド骨格、ポリイミド骨格、ポリビニルアルコール骨格などを有する各種樹脂により形成することができる。これらポリマー樹脂は1種を単独で、または2種以上を組み合わせて用いることができる。また易接着層の形成には他の添加剤を加えてもよい。具体的にはさらには粘着付与剤、紫外線吸収剤、酸化防止剤、耐熱安定剤などの安定剤などを用いてもよい。   In the method for producing a laminated optical film according to the present invention, when the laminated optical film is a polarizing film, the polarizer and the transparent protective film are bonded by a cured product layer of the active energy ray-curable adhesive. Although it bonds through an agent layer, an easily bonding layer can be provided between a transparent protective film and an adhesive bond layer. The easy adhesion layer can be formed of, for example, various resins having a polyester skeleton, a polyether skeleton, a polycarbonate skeleton, a polyurethane skeleton, a silicone-based, a polyamide skeleton, a polyimide skeleton, a polyvinyl alcohol skeleton, and the like. These polymer resins can be used alone or in combination of two or more. Moreover, you may add another additive for formation of an easily bonding layer. Specifically, a stabilizer such as a tackifier, an ultraviolet absorber, an antioxidant, and a heat resistance stabilizer may be used.

易接着層は、通常、透明保護フィルムに予め設けておき、当該透明保護フィルムの易接着層側と偏光子とを接着剤層により貼り合わせる。易接着層の形成は、易接着層の形成材を透明保護フィルム上に、公知の技術により塗工、乾燥することにより行われる。易接着層の形成材は、乾燥後の厚み、塗工の円滑性などを考慮して適当な濃度に希釈した溶液として、通常調整される。易接着層は乾燥後の厚みは、好ましくは0.01〜5μm、さらに好ましくは0.02〜2μm、さらに好ましくは0.05〜1μmである。なお、易接着層は複数層設けることができるが、この場合にも、易接着層の総厚みは上記範囲になるようにするのが好ましい。   The easy adhesion layer is usually provided in advance on a transparent protective film, and the easy adhesion layer side of the transparent protective film and the polarizer are bonded together with an adhesive layer. The easy-adhesion layer is formed by coating and drying the material for forming the easy-adhesion layer on the transparent protective film by a known technique. The material for forming the easy-adhesion layer is usually adjusted as a solution diluted to an appropriate concentration in consideration of the thickness after drying and the smoothness of coating. The thickness of the easy adhesion layer after drying is preferably 0.01 to 5 μm, more preferably 0.02 to 2 μm, and still more preferably 0.05 to 1 μm. Note that a plurality of easy-adhesion layers can be provided, but also in this case, the total thickness of the easy-adhesion layers is preferably in the above range.

<偏光子>
本発明に係る製造方法は、特に偏光フィルムの製造方法として有用である。偏光フィルムを製造する際に使用する偏光子は、特に制限されず、各種のものを使用できる。偏光子としては、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルムなどの親水性高分子フィルムに、ヨウ素や二色性染料などの二色性材料を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物などポリエン系配向フィルムなどが挙げられる。これらのなかでもポリビニルアルコール系フィルムとヨウ素などの二色性物質からなる偏光子が好適である。これら偏光子の厚みは特に制限されないが、一般的に80μm程度以下である。
<Polarizer>
The production method according to the present invention is particularly useful as a production method of a polarizing film. The polarizer used in producing the polarizing film is not particularly limited, and various types can be used. Examples of the polarizer include hydrophilic polymer films such as polyvinyl alcohol film, partially formalized polyvinyl alcohol film, and ethylene / vinyl acetate copolymer partially saponified film, and two colors such as iodine and dichroic dye. And polyene-based oriented films such as those obtained by adsorbing a functional material and uniaxially stretched, polyvinyl alcohol dehydrated products and polyvinyl chloride dehydrochlorinated products. Among these, a polarizer composed of a polyvinyl alcohol film and a dichroic material such as iodine is preferable. The thickness of these polarizers is not particularly limited, but is generally about 80 μm or less.

ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3〜7倍に延伸することで作製することができる。必要に応じてホウ酸やヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸してもよし、また延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。   A polarizer obtained by dyeing a polyvinyl alcohol film with iodine and uniaxially stretching it can be produced, for example, by dyeing polyvinyl alcohol in an aqueous solution of iodine and stretching it 3 to 7 times the original length. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing. In addition to washing the polyvinyl alcohol film surface with dirt and anti-blocking agents by washing the polyvinyl alcohol film with water, it also has the effect of preventing unevenness such as uneven coloring by swelling the polyvinyl alcohol film. is there. Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. The film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.

また本発明で使用する活性エネルギー線硬化型接着剤組成物は、偏光子としては厚みが10μm以下の薄型の偏光子を用いた場合、その効果(高温高湿下の過酷な環境における光学耐久性を満足する)を顕著に発現することができる。上記厚みが10μm以下の偏光子は、厚みが10μmを超える偏光子に比べて相対的に水分の影響が大きく、高温高湿下の環境において光学耐久性が十分でなく、透過率上昇や偏光度低下が起こりやすい。即ち、上記10μm以下の偏光子を本発明のバルク吸水率が10重量%以下の接着剤層で積層した場合、過酷な高温高湿下の環境において偏光子への水の移動が抑制されることによって、偏光フィルムの透過率上昇、偏光度低下などの光学耐久性の悪化を顕著に抑制することができる。偏光子の厚みは薄型化の観点から言えば1〜7μmであるのが好ましい。このような薄型の偏光子は、厚みムラが少なく、視認性が優れており、また寸法変化が少なく、さらには偏光フィルムとしての厚みも薄型化が図れる点が好ましい。   The active energy ray-curable adhesive composition used in the present invention has an effect (optical durability in harsh environments under high temperature and high humidity) when a thin polarizer having a thickness of 10 μm or less is used as the polarizer. Can be remarkably expressed). The polarizer having a thickness of 10 μm or less is relatively more affected by moisture than a polarizer having a thickness exceeding 10 μm, and has insufficient optical durability in a high-temperature and high-humidity environment, resulting in increased transmittance and degree of polarization. Decline is likely to occur. That is, when the polarizer of 10 μm or less is laminated with the adhesive layer having a bulk water absorption of 10% by weight or less according to the present invention, the movement of water to the polarizer is suppressed in a severe high temperature and high humidity environment. Thus, deterioration of optical durability such as an increase in transmittance of the polarizing film and a decrease in the degree of polarization can be remarkably suppressed. The thickness of the polarizer is preferably 1 to 7 μm from the viewpoint of thinning. Such a thin polarizer is preferable in that the thickness unevenness is small, the visibility is excellent, the dimensional change is small, and the thickness of the polarizing film can be reduced.

薄型の偏光子としては、代表的には、特開昭51−069644号公報や特開2000−338329号公報や、WO2010/100917号パンフレット、PCT/JP2010/001460の明細書、または特願2010−269002号明細書や特願2010−263692号明細書に記載されている薄型偏光膜を挙げることができる。これら薄型偏光膜は、ポリビニルアルコール系樹脂(以下、PVA系樹脂ともいう)層と延伸用樹脂基材を積層体の状態で延伸する工程と染色する工程を含む製法による得ることができる。この製法であれば、PVA系樹脂層が薄くても、延伸用樹脂基材に支持されていることにより延伸による破断などの不具合なく延伸することが可能となる。   As the thin polarizer, representatively, JP-A-51-069644, JP-A-2000-338329, WO2010 / 100917 pamphlet, PCT / JP2010 / 001460 specification, or Japanese Patent Application 2010- The thin polarizing film described in 269002 specification and Japanese Patent Application No. 2010-263692 specification can be mentioned. These thin polarizing films can be obtained by a production method including a step of stretching a polyvinyl alcohol-based resin (hereinafter also referred to as PVA-based resin) layer and a stretching resin base material in a laminated state and a step of dyeing. With this manufacturing method, even if the PVA-based resin layer is thin, it can be stretched without problems such as breakage due to stretching by being supported by the stretching resin substrate.

前記薄型偏光膜としては、積層体の状態で延伸する工程と染色する工程を含む製法の中でも、高倍率に延伸できて偏光性能を向上させることのできる点で、WO2010/100917号パンフレット、PCT/JP2010/001460の明細書、または特願2010−269002号明細書や特願2010−263692号明細書に記載のあるようなホウ酸水溶液中で延伸する工程を含む製法で得られるものが好ましく、特に特願2010−269002号明細書や特願2010−263692号明細書に記載のあるホウ酸水溶液中で延伸する前に補助的に空中延伸する工程を含む製法により得られるものが好ましい。   As the thin polarizing film, among the production methods including the step of stretching in the state of a laminate and the step of dyeing, WO2010 / 100917 pamphlet, PCT / PCT / PCT / JP 2010/001460 specification, or Japanese Patent Application No. 2010-269002 and Japanese Patent Application No. 2010-263692 as described in the manufacturing method including a step of stretching in a boric acid aqueous solution is preferable. What is obtained by the manufacturing method including the process of extending | stretching in the air auxiliary | assistant before extending | stretching in the boric acid aqueous solution as described in Japanese Patent Application No. 2010-269002 and Japanese Patent Application No. 2010-263692 is preferable.

上記のPCT/JP2010/001460の明細書に記載の薄型高機能偏光膜は、樹脂基材に一体に製膜される、二色性物質を配向させたPVA系樹脂からなる厚みが7μm以下の薄型高機能偏光膜であって、単体透過率が42.0%以上および偏光度が99.95%以上の光学特性を有する。   The thin high-performance polarizing film described in the specification of PCT / JP2010 / 001460 is a thin film having a thickness of 7 μm or less made of a PVA-based resin oriented with a dichroic material, which is integrally formed on a resin base material. It is a high-functional polarizing film, and has optical properties such as a single transmittance of 42.0% or more and a polarization degree of 99.95% or more.

上記薄型高機能偏光膜は、少なくとも20μmの厚みを有する樹脂基材に、PVA系樹脂の塗布および乾燥によってPVA系樹脂層を生成し、生成されたPVA系樹脂層を二色性物質の染色液に浸漬して、PVA系樹脂層に二色性物質を吸着させ、二色性物質を吸着させたPVA系樹脂層を、ホウ酸水溶液中において、樹脂基材と一体に総延伸倍率を元長の5倍以上となるように延伸することによって、製造することができる。   The thin high-performance polarizing film generates a PVA-based resin layer by applying and drying a PVA-based resin on a resin substrate having a thickness of at least 20 μm, and the generated PVA-based resin layer is used as a dichroic dyeing solution. So that the dichroic substance is adsorbed on the PVA resin layer, and the PVA resin layer on which the dichroic substance is adsorbed is integrated with the resin base material in the boric acid aqueous solution so that the total draw ratio is the original length. It can manufacture by extending | stretching so that it may become 5 times or more.

また、二色性物質を配向させた薄型高機能偏光膜を含む積層体フィルムを製造する方法であって、少なくとも20μmの厚みを有する樹脂基材と、樹脂基材の片面にPVA系樹脂を含む水溶液を塗布および乾燥することによって形成されたPVA系樹脂層とを含む積層体フィルムを生成する工程と、樹脂基材と樹脂基材の片面に形成されたPVA系樹脂層とを含む前記積層体フィルムを、二色性物質を含む染色液中に浸漬することによって、積層体フィルムに含まれるPVA系樹脂層に二色性物質を吸着させる工程と、二色性物質を吸着させたPVA系樹脂層を含む前記積層体フィルムを、ホウ酸水溶液中において、総延伸倍率が元長の5倍以上となるように延伸する工程と、二色性物質を吸着させたPVA系樹脂層が樹脂基材と一体に延伸されたことにより、樹脂基材の片面に、二色性物質を配向させたPVA系樹脂層からなる、厚みが7μm以下、単体透過率が42.0%以上かつ偏光度が99.95%以上の光学特性を有する薄型高機能偏光膜を製膜させた積層体フィルムを製造する工程を含むことで、上記薄型高機能偏光膜を製造することができる。   Moreover, it is a method for producing a laminate film including a thin high-performance polarizing film in which a dichroic substance is oriented, and includes a resin base material having a thickness of at least 20 μm and a PVA resin on one side of the resin base material. The said laminated body containing the process of producing | generating the laminated body film containing the PVA-type resin layer formed by apply | coating and drying aqueous solution, and the PVA-type resin layer formed in the single side | surface of the resin base material A step of adsorbing the dichroic substance to the PVA resin layer contained in the laminate film by immersing the film in a dye solution containing the dichroic substance, and a PVA resin adsorbing the dichroic substance A step of stretching the laminate film including a layer in a boric acid aqueous solution so that the total stretching ratio is 5 times or more of the original length, and a PVA resin layer on which a dichroic substance is adsorbed Stretched together with As a result, a thickness of 7 μm or less, a single transmittance of 42.0% or more, and a degree of polarization of 99.95% or more are formed of a PVA resin layer in which a dichroic material is oriented on one side of a resin base material. The thin high-performance polarizing film can be manufactured by including a step of manufacturing a laminate film on which a thin high-performance polarizing film having the above optical characteristics is formed.

上記の特願2010−269002号明細書や特願2010−263692号明細書の薄型偏光膜は、二色性物質を配向させたPVA系樹脂からなる連続ウェブの偏光膜であって、非晶性エステル系熱可塑性樹脂基材に製膜されたPVA系樹脂層を含む積層体が空中補助延伸とホウ酸水中延伸とからなる2段延伸工程で延伸されることにより、10μm以下の厚みにされたものである。かかる薄型偏光膜は、単体透過率をT、偏光度をPとしたとき、P>−(100.929T−42.4−1)×100(ただし、T<42.3)、およびP≧99.9(ただし、T≧42.3)の条件を満足する光学特性を有するようにされたものであることが好ましい。 The thin polarizing film in the above-mentioned Japanese Patent Application Nos. 2010-269002 and 2010-263692 is a continuous web polarizing film made of a PVA resin in which a dichroic material is oriented, and is amorphous. The laminate including the PVA-based resin layer formed on the ester-based thermoplastic resin base material was stretched in a two-stage stretching process consisting of air-assisted stretching and boric acid-water stretching, so that the thickness was 10 μm or less. Is. Such a thin polarizing film has P> − (10 0.929T-42.4-1 ) × 100 (where T <42.3) and P ≧ when the single transmittance is T and the polarization degree is P. It is preferable that the optical properties satisfy 99.9 (where T ≧ 42.3).

具体的には、前記薄型偏光膜は、連続ウェブの非晶性エステル系熱可塑性樹脂基材に製膜されたPVA系樹脂層に対する空中高温延伸によって、配向されたPVA系樹脂層からなる延伸中間生成物を生成する工程と、延伸中間生成物に対する二色性物質の吸着によって、二色性物質(ヨウ素またはヨウ素と有機染料の混合物が好ましい)を配向させたPVA系樹脂層からなる着色中間生成物を生成する工程と、着色中間生成物に対するホウ酸水中延伸によって、二色性物質を配向させたPVA系樹脂層からなる厚みが10μm以下の偏光膜を生成する工程とを含む薄型偏光膜の製造方法により製造することができる。   Specifically, the thin polarizing film is a stretch intermediate formed of an oriented PVA resin layer by high-temperature stretching in the air with respect to the PVA resin layer formed on the amorphous ester thermoplastic resin substrate of the continuous web. A colored intermediate product comprising a PVA-based resin layer in which a dichroic material (preferably iodine or a mixture of iodine and an organic dye) is oriented by adsorption of the dichroic material to the stretched intermediate product and a step of generating the product. A thin polarizing film comprising a step of forming a product, and a step of generating a polarizing film having a thickness of 10 μm or less comprising a PVA-based resin layer in which a dichroic material is oriented by stretching in a boric acid solution with respect to a colored intermediate product It can be manufactured by a manufacturing method.

この製造方法において、空中高温延伸とホウ酸水中延伸とによる非晶性エステル系熱可塑性樹脂基材に製膜されたPVA系樹脂層の総延伸倍率が、5倍以上になるようにするのが望ましい。ホウ酸水中延伸のためのホウ酸水溶液の液温は、60℃以上とすることができる。ホウ酸水溶液中で着色中間生成物を延伸する前に、着色中間生成物に対して不溶化処理を施すのが望ましく、その場合、液温が40℃を超えないホウ酸水溶液に前記着色中間生成物を浸漬することにより行うのが望ましい。上記非晶性エステル系熱可塑性樹脂基材は、イソフタル酸を共重合させた共重合ポリエチレンテレフタレート、シクロヘキサンジメタノールを共重合させた共重合ポリエチレンテレフタレートまたは他の共重合ポリエチレンテレフタレートを含む非晶性ポリエチレンテレフタレートとすることができ、透明樹脂からなるものであることが好ましく、その厚みは、製膜されるPVA系樹脂層の厚みの7倍以上とすることができる。また、空中高温延伸の延伸倍率は3.5倍以下が好ましく、空中高温延伸の延伸温度はPVA系樹脂のガラス転移温度以上、具体的には95℃〜150℃の範囲であるのが好ましい。空中高温延伸を自由端一軸延伸で行う場合、非晶性エステル系熱可塑性樹脂基材に製膜されたPVA系樹脂層の総延伸倍率が、5倍以上7.5倍以下であるのが好ましい。また、空中高温延伸を固定端一軸延伸で行う場合、非晶性エステル系熱可塑性樹脂基材に製膜されたPVA系樹脂層の総延伸倍率が、5倍以上8.5倍以下であるのが好ましい。   In this production method, the total draw ratio of the PVA resin layer formed on the amorphous ester thermoplastic resin base material by high-temperature drawing in air and drawing in boric acid solution should be 5 times or more. desirable. The liquid temperature of the boric acid aqueous solution for boric-acid water extending | stretching can be 60 degreeC or more. Before stretching the colored intermediate product in the aqueous boric acid solution, it is desirable to insolubilize the colored intermediate product. It is desirable to do so by dipping. The amorphous ester-based thermoplastic resin base material is amorphous polyethylene containing copolymerized polyethylene terephthalate copolymerized with isophthalic acid, copolymerized polyethylene terephthalate copolymerized with cyclohexanedimethanol, or other copolymerized polyethylene terephthalate. It can be terephthalate and is preferably made of a transparent resin, and the thickness thereof can be 7 times or more the thickness of the PVA resin layer to be formed. Moreover, the draw ratio of the high temperature stretching in the air is preferably 3.5 times or less, and the stretching temperature of the high temperature stretching in the air is preferably not less than the glass transition temperature of the PVA resin, specifically in the range of 95 ° C to 150 ° C. When performing high temperature stretching in the air by free end uniaxial stretching, the total stretching ratio of the PVA resin layer formed on the amorphous ester thermoplastic resin base material is preferably 5 to 7.5 times . In addition, when performing high-temperature stretching in the air by uniaxial stretching at the fixed end, the total stretching ratio of the PVA-based resin layer formed on the amorphous ester-based thermoplastic resin base material is 5 times or more and 8.5 times or less. Is preferred.

更に具体的には、次のような方法により、薄型偏光膜を製造することができる。   More specifically, a thin polarizing film can be produced by the following method.

イソフタル酸を6mol%共重合させたイソフタル酸共重合ポリエチレンテレフタレート(非晶性PET)の連続ウェブの基材を作製する。非晶性PETのガラス転移温度は75℃である。連続ウェブの非晶性PET基材とポリビニルアルコール(PVA)層からなる積層体を、以下のように作製する。ちなみにPVAのガラス転移温度は80℃である。   A base material of a continuous web of isophthalic acid copolymerized polyethylene terephthalate (amorphous PET) in which 6 mol% of isophthalic acid is copolymerized is prepared. The glass transition temperature of amorphous PET is 75 ° C. A laminate comprising a continuous web of amorphous PET substrate and a polyvinyl alcohol (PVA) layer is prepared as follows. Incidentally, the glass transition temperature of PVA is 80 ° C.

200μm厚の非晶性PET基材と、重合度1000以上、ケン化度99%以上のPVA粉末を水に溶解した4〜5%濃度のPVA水溶液とを準備する。次に、200μm厚の非晶性PET基材にPVA水溶液を塗布し、50〜60℃の温度で乾燥し、非晶性PET基材に7μm厚のPVA層が製膜された積層体を得る。   A 200 μm-thick amorphous PET base material and a 4-5% concentration PVA aqueous solution in which PVA powder having a polymerization degree of 1000 or more and a saponification degree of 99% or more are dissolved in water are prepared. Next, a PVA aqueous solution is applied to a 200 μm thick amorphous PET substrate and dried at a temperature of 50 to 60 ° C. to obtain a laminate in which a 7 μm thick PVA layer is formed on the amorphous PET substrate. .

7μm厚のPVA層を含む積層体を、空中補助延伸およびホウ酸水中延伸の2段延伸工程を含む以下の工程を経て、3μm厚の薄型高機能偏光膜を製造する。第1段の空中補助延伸工程によって、7μm厚のPVA層を含む積層体を非晶性PET基材と一体に延伸し、5μm厚のPVA層を含む延伸積層体を生成する。具体的には、この延伸積層体は、7μm厚のPVA層を含む積層体を130℃の延伸温度環境に設定されたオーブンに配備された延伸装置にかけ、延伸倍率が1.8倍になるように自由端一軸に延伸したものである。この延伸処理によって、延伸積層体に含まれるPVA層を、PVA分子が配向された5μm厚のPVA層へと変化させる。   A laminated body including a PVA layer having a thickness of 7 μm is subjected to the following steps including a two-step stretching process of air-assisted stretching and boric acid water stretching to produce a thin high-functional polarizing film having a thickness of 3 μm. In the first-stage aerial auxiliary stretching step, the laminate including the 7 μm-thick PVA layer is integrally stretched with the amorphous PET substrate to produce a stretched laminate including the 5 μm-thick PVA layer. Specifically, in this stretched laminate, a laminate including a 7 μm-thick PVA layer is subjected to a stretching apparatus disposed in an oven set to a stretching temperature environment of 130 ° C. so that the stretching ratio is 1.8 times. Are stretched uniaxially at the free end. By this stretching treatment, the PVA layer contained in the stretched laminate is changed to a 5 μm thick PVA layer in which PVA molecules are oriented.

次に、染色工程によって、PVA分子が配向された5μm厚のPVA層にヨウ素を吸着させた着色積層体を生成する。具体的には、この着色積層体は、延伸積層体を液温30℃のヨウ素およびヨウ化カリウムを含む染色液に、最終的に生成される高機能偏光膜を構成するPVA層の単体透過率が40〜44%になるように任意の時間、浸漬することによって、延伸積層体に含まれるPVA層にヨウ素を吸着させたものである。本工程において、染色液は、水を溶媒として、ヨウ素濃度を0.12〜0.30重量%の範囲内とし、ヨウ化カリウム濃度を0.7〜2.1重量%の範囲内とする。ヨウ素とヨウ化カリウムの濃度の比は1対7である。ちなみに、ヨウ素を水に溶解するにはヨウ化カリウムを必要とする。より詳細には、ヨウ素濃度0.30重量%、ヨウ化カリウム濃度2.1重量%の染色液に延伸積層体を60秒間浸漬することによって、PVA分子が配向された5μm厚のPVA層にヨウ素を吸着させた着色積層体を生成する。   Next, a colored laminate in which iodine is adsorbed on a PVA layer having a thickness of 5 μm in which PVA molecules are oriented is generated by a dyeing process. Specifically, this colored laminate has a single layer transmittance of the PVA layer constituting the high-functional polarizing film that is finally produced by using the stretched laminate in a staining solution containing iodine and potassium iodide at a liquid temperature of 30 ° C. Iodine is adsorbed to the PVA layer contained in the stretched laminate by dipping for an arbitrary period of time so as to be 40 to 44%. In this step, the staining solution uses water as a solvent and an iodine concentration in the range of 0.12 to 0.30% by weight and a potassium iodide concentration in the range of 0.7 to 2.1% by weight. The concentration ratio of iodine and potassium iodide is 1 to 7. Incidentally, potassium iodide is required to dissolve iodine in water. More specifically, by immersing the stretched laminate in a dyeing solution having an iodine concentration of 0.30% by weight and a potassium iodide concentration of 2.1% by weight for 60 seconds, iodine is applied to a 5 μm-thick PVA layer in which PVA molecules are oriented. A colored laminate is adsorbed on the substrate.

さらに、第2段のホウ酸水中延伸工程によって、着色積層体を非晶性PET基材と一体にさらに延伸し、3μm厚の高機能偏光膜を構成するPVA層を含む光学フィルム積層体を生成する。具体的には、この光学フィルム積層体は、着色積層体をホウ酸とヨウ化カリウムを含む液温範囲60〜85℃のホウ酸水溶液に設定された処理装置に配備された延伸装置にかけ、延伸倍率が3.3倍になるように自由端一軸に延伸したものである。より詳細には、ホウ酸水溶液の液温は65℃である。それはまた、ホウ酸含有量を水100重量部に対して4重量部とし、ヨウ化カリウム含有量を水100重量部に対して5重量部とする。本工程においては、ヨウ素吸着量を調整した着色積層体をまず5〜10秒間ホウ酸水溶液に浸漬する。しかる後に、その着色積層体をそのまま処理装置に配備された延伸装置である周速の異なる複数の組のロール間に通し、30〜90秒かけて延伸倍率が3.3倍になるように自由端一軸に延伸する。この延伸処理によって、着色積層体に含まれるPVA層を、吸着されたヨウ素がポリヨウ素イオン錯体として一方向に高次に配向した3μm厚のPVA層へと変化させる。このPVA層が光学フィルム積層体の高機能偏光膜を構成する。   Further, the colored laminated body is further stretched integrally with the amorphous PET base material by the second stage boric acid underwater stretching step to produce an optical film laminate including a PVA layer constituting a highly functional polarizing film having a thickness of 3 μm. To do. Specifically, this optical film laminate is stretched by applying a colored laminate to a stretching apparatus provided in a treatment apparatus set to a boric acid aqueous solution having a liquid temperature range of 60 to 85 ° C. containing boric acid and potassium iodide. It is stretched uniaxially at the free end so that the magnification is 3.3 times. More specifically, the liquid temperature of the boric acid aqueous solution is 65 ° C. It also has a boric acid content of 4 parts by weight with respect to 100 parts by weight of water and a potassium iodide content of 5 parts by weight with respect to 100 parts by weight of water. In this step, the colored laminate with adjusted iodine adsorption amount is first immersed in a boric acid aqueous solution for 5 to 10 seconds. After that, the colored laminate is passed as it is between a plurality of sets of rolls having different peripheral speeds, which is a stretching apparatus provided in the processing apparatus, and the stretching ratio is freely increased to 3.3 times over 30 to 90 seconds. Stretch uniaxially. By this stretching treatment, the PVA layer contained in the colored laminate is changed into a PVA layer having a thickness of 3 μm in which the adsorbed iodine is oriented higher in one direction as a polyiodine ion complex. This PVA layer constitutes a highly functional polarizing film of the optical film laminate.

光学フィルム積層体の製造に必須の工程ではないが、洗浄工程によって、光学フィルム積層体をホウ酸水溶液から取り出し、非晶性PET基材に製膜された3μm厚のPVA層の表面に付着したホウ酸をヨウ化カリウム水溶液で洗浄するのが好ましい。しかる後に、洗浄された光学フィルム積層体を60℃の温風による乾燥工程によって乾燥する。なお洗浄工程は、ホウ酸析出などの外観不良を解消するための工程である。   Although not an indispensable step for the production of an optical film laminate, the optical film laminate was removed from the boric acid aqueous solution and adhered to the surface of the 3 μm-thick PVA layer formed on the amorphous PET substrate by the washing step. It is preferable to wash boric acid with an aqueous potassium iodide solution. Thereafter, the washed optical film laminate is dried by a drying process using hot air at 60 ° C. The cleaning process is a process for eliminating appearance defects such as boric acid precipitation.

同じく光学フィルム積層体の製造に必須の工程というわけではないが、貼合せおよび/または転写工程によって、非晶性PET基材に製膜された3μm厚のPVA層の表面に接着剤を塗布しながら、80μm厚のトリアセチルセルロースフィルムを貼合せたのち、非晶性PET基材を剥離し、3μm厚のPVA層を80μm厚のトリアセチルセルロースフィルムに転写することもできる。
[その他の工程]
上記の薄型偏光膜の製造方法は、上記工程以外に、その他の工程を含み得る。その他の工程としては、例えば、不溶化工程、架橋工程、乾燥(水分率の調節)工程等が挙げられる。その他の工程は、任意の適切なタイミングで行い得る。
Similarly, it is not an indispensable process for producing an optical film laminate, but an adhesive is applied to the surface of a 3 μm-thick PVA layer formed on an amorphous PET substrate by a bonding and / or transfer process. However, after bonding the 80 μm thick triacetyl cellulose film, the amorphous PET substrate can be peeled off, and the 3 μm thick PVA layer can be transferred to the 80 μm thick triacetyl cellulose film.
[Other processes]
The manufacturing method of said thin-shaped polarizing film may include another process other than the said process. Examples of other steps include an insolubilization step, a crosslinking step, and a drying (adjustment of moisture content) step. The other steps can be performed at any appropriate timing.

上記不溶化工程は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。不溶化処理を施すことにより、PVA系樹脂層に耐水性を付与することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部〜4重量部である。不溶化浴(ホウ酸水溶液)の液温は、好ましくは20℃〜50℃である。好ましくは、不溶化工程は、積層体作製後、染色工程や水中延伸工程の前に行う。   The insolubilization step is typically performed by immersing the PVA resin layer in a boric acid aqueous solution. By performing the insolubilization treatment, water resistance can be imparted to the PVA resin layer. The concentration of the boric acid aqueous solution is preferably 1 to 4 parts by weight with respect to 100 parts by weight of water. The liquid temperature of the insolubilizing bath (boric acid aqueous solution) is preferably 20 ° C to 50 ° C. Preferably, the insolubilization step is performed after the laminate is manufactured and before the dyeing step and the underwater stretching step.

上記架橋工程は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。架橋処理を施すことにより、PVA系樹脂層に耐水性を付与することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部〜4重量部である。また、上記染色工程後に架橋工程を行う場合、さらに、ヨウ化物を配合することが好ましい。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の配合量は、水100重量部に対して、好ましくは1重量部〜5重量部である。ヨウ化物の具体例は、上述のとおりである。架橋浴(ホウ酸水溶液)の液温は、好ましくは20℃〜50℃である。好ましくは、架橋工程は上記第2のホウ酸水中延伸工程の前に行う。好ましい実施形態においては、染色工程、架橋工程および第2のホウ酸水中延伸工程をこの順で行う。   The crosslinking step is typically performed by immersing the PVA resin layer in an aqueous boric acid solution. By performing the crosslinking treatment, water resistance can be imparted to the PVA resin layer. The concentration of the boric acid aqueous solution is preferably 1 to 4 parts by weight with respect to 100 parts by weight of water. Moreover, when performing a bridge | crosslinking process after the said dyeing | staining process, it is preferable to mix | blend iodide further. By blending iodide, elution of iodine adsorbed on the PVA resin layer can be suppressed. The blending amount of iodide is preferably 1 part by weight to 5 parts by weight with respect to 100 parts by weight of water. Specific examples of the iodide are as described above. The liquid temperature of the crosslinking bath (boric acid aqueous solution) is preferably 20 ° C to 50 ° C. Preferably, the crosslinking step is performed before the second boric acid aqueous drawing step. In a preferred embodiment, the dyeing step, the crosslinking step, and the second boric acid aqueous drawing step are performed in this order.

<透明保護フィルム>
上記偏光子の片面または両面に設けられる透明保護フィルムを形成する材料としては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロースなどのセルロース系ポリマー、ポリメチルメタクリレートなどのアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)などのスチレン系ポリマー、ポリカーボネート系ポリマーなどが挙げられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミドなどのアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または上記ポリマーのブレンド物なども上記透明保護フィルムを形成するポリマーの例として挙げられる。透明保護フィルム中には任意の適切な添加剤が1種類以上含まれていてもよい。添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、着色剤などが挙げられる。透明保護フィルム中の上記熱可塑性樹脂の含有量は、好ましくは50〜100重量%、より好ましくは50〜99重量%、さらに好ましくは60〜98重量%、特に好ましくは70〜97重量%である。透明保護フィルム中の上記熱可塑性樹脂の含有量が50重量%以下の場合、熱可塑性樹脂が本来有する高透明性などが十分に発現できないおそれがある。
<Transparent protective film>
As a material for forming the transparent protective film provided on one side or both sides of the polarizer, a material excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like is preferable. For example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, acrylic polymers such as polymethyl methacrylate, styrene such as polystyrene and acrylonitrile / styrene copolymer (AS resin) And polymers based on polycarbonate and polycarbonate. In addition, polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers , Polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the above Examples of the polymer that forms the transparent protective film include polymer blends. One or more kinds of arbitrary appropriate additives may be contained in the transparent protective film. Examples of the additive include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a mold release agent, an anti-coloring agent, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a coloring agent. The content of the thermoplastic resin in the transparent protective film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, still more preferably 60 to 98% by weight, and particularly preferably 70 to 97% by weight. . When content of the said thermoplastic resin in a transparent protective film is 50 weight% or less, there exists a possibility that the high transparency etc. which a thermoplastic resin originally has cannot fully be expressed.

また、透明保護フィルムとしては、特開2001−343529号公報(WO01/37007)に記載のポリマーフィルム、例えば、(A)側鎖に置換および/または非置換イミド基を有する熱可塑性樹脂と、側鎖に置換および/または非置換フェニルならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が挙げられる。具体例としてはイソブチレンとN−メチルマレイミドからなる交互共重合体とアクリロニトリル・スチレン共重合体とを含有する樹脂組成物のフィルムが挙げられる。フィルムは樹脂組成物の混合押出品などからなるフィルムを用いることができる。これらのフィルムは位相差が小さく、光弾性係数が小さいため偏光フィルムの歪みによるムラなどの不具合を解消することができ、また透湿度が小さいため、加湿耐久性に優れる。   Further, as the transparent protective film, a polymer film described in JP-A-2001-343529 (WO01 / 37007), for example, (A) a thermoplastic resin having a substituted and / or unsubstituted imide group in the side chain, and a side Examples thereof include a resin composition containing a thermoplastic resin having a substituted and / or unsubstituted phenyl and a nitrile group in the chain. Specific examples include a film of a resin composition containing an alternating copolymer composed of isobutylene and N-methylmaleimide and an acrylonitrile / styrene copolymer. As the film, a film made of a mixed extruded product of the resin composition or the like can be used. Since these films have a small phase difference and a small photoelastic coefficient, problems such as unevenness due to the distortion of the polarizing film can be eliminated, and since the moisture permeability is small, the humidification durability is excellent.

上記偏光フィルムにおいて、前記透明保護フィルムの透湿度が150g/m/24h以下であることが好ましい。かかる構成によれば、偏光フィルム中に空気中の水分が入り難く、偏光フィルム自体の水分率変化を抑制することができる。その結果、保存環境により生じる偏光フィルムのカールや寸法変化を抑えることができる。 In the polarizing film, it is preferable moisture permeability of the transparent protective film is not more than 150g / m 2 / 24h. According to such a configuration, it is difficult for moisture in the air to enter the polarizing film, and a change in the moisture content of the polarizing film itself can be suppressed. As a result, the curling and dimensional change of the polarizing film caused by the storage environment can be suppressed.

上記偏光子の片面または両面に設けられる透明保護フィルムを形成する材料としては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましく、特に透湿度が150g/m/24h以下であるものがより好ましく、140g/m/24h以下のものが特に好ましく、120g/m/24h以下のものさらに好ましい。透湿度は、実施例に記載の方法により求められる。 As a material for forming a transparent protective film provided on one or both sides of the polarizer, a material excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy, and the like is preferable. / m, more preferably not more 2 / 24h or less, particularly preferably those following 140 g / m 2 / 24h, more preferably the following 120 g / m 2 / 24h. The moisture permeability is determined by the method described in the examples.

前記低透湿度を満足する透明保護フィルムの形成材料としては、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル樹脂;ポリカーボネート樹脂;アリレート系樹脂;ナイロンや芳香族ポリアミド等のアミド系樹脂;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、シクロ系ないしはノルボルネン構造を有する環状オレフィン系樹脂、(メタ)アクリル系樹脂、またはこれらの混合体を用いることができる。前記樹脂のなかでも、ポリカーボネート系樹脂、環状ポリオレフィン系樹脂、(メタ)アクリル系樹脂が好ましく、特に、環状ポリオレフィン系樹脂、(メタ)アクリル系樹脂が好ましい。   Examples of the material for forming the transparent protective film satisfying the low moisture permeability include polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polycarbonate resins; arylate resins; amide resins such as nylon and aromatic polyamide; polyethylene, polypropylene Polyolefin polymers such as ethylene / propylene copolymers, cyclic olefin resins having a cyclo or norbornene structure, (meth) acrylic resins, or a mixture thereof can be used. Among the resins, polycarbonate resins, cyclic polyolefin resins, and (meth) acrylic resins are preferable, and cyclic polyolefin resins and (meth) acrylic resins are particularly preferable.

透明保護フィルムの厚みは、適宜に決定しうるが、一般には強度や取扱性などの作業性、薄層性などの点より1〜100μm程度である。特に1〜80μmが好ましく、3〜60μmがより好ましい。   Although the thickness of a transparent protective film can be determined suitably, generally it is about 1-100 micrometers from points, such as workability | operativity, such as intensity | strength and handleability, and thin-layer property. 1-80 micrometers is especially preferable, and 3-60 micrometers is more preferable.

なお、偏光子の両面に透明保護フィルムを設ける場合、その表裏で同じポリマー材料からなる透明保護フィルムを用いてもよく、異なるポリマー材料などからなる透明保護フィルムを用いてもよい。透明保護フィルムの組み合わせとしては、ポリエチレンテレフタレートフィルムと環状ポリオレフィン系樹脂フィルム、(メタ)アクリル系樹脂フィルムと環状ポリオレフィン系樹脂フィルム、(メタ)アクリル系樹脂フィルムと(メタ)アクリル系樹脂フィルムの組み合わせが透湿度の観点から好ましい。偏光子の両面に透湿度が小さい透明保護フィルムを設けることで偏光フィルム中に水分が入り難く、特に耐水性に優れた偏光フィルムが得られる。   In addition, when providing a transparent protective film on both surfaces of a polarizer, the transparent protective film which consists of the same polymer material may be used by the front and back, and the transparent protective film which consists of a different polymer material etc. may be used. The combination of the transparent protective film includes a combination of a polyethylene terephthalate film and a cyclic polyolefin resin film, a (meth) acrylic resin film and a cyclic polyolefin resin film, a (meth) acrylic resin film and a (meth) acrylic resin film. It is preferable from the viewpoint of moisture permeability. By providing a transparent protective film with low moisture permeability on both surfaces of the polarizer, it is difficult for moisture to enter the polarizing film, and a polarizing film having particularly excellent water resistance can be obtained.

上記透明保護フィルムの偏光子を接着させない面には、ハードコート層、反射防止層、スティッキング防止層、拡散層ないしアンチグレア層などの機能層を設けることができる。なお、上記ハードコート層、反射防止層、スティッキング防止層、拡散層やアンチグレア層などの機能層は、透明保護フィルムそのものに設けることができるほか、別途、透明保護フィルムとは別体のものとして設けることもできる。   A functional layer such as a hard coat layer, an antireflection layer, an antisticking layer, a diffusion layer or an antiglare layer can be provided on the surface of the transparent protective film to which the polarizer is not adhered. The functional layers such as the hard coat layer, antireflection layer, antisticking layer, diffusion layer and antiglare layer can be provided on the transparent protective film itself, and separately provided separately from the transparent protective film. You can also.

<光学フィルム>
偏光フィルムは、実用に際して他の光学層と積層した光学フィルムとして用いることができる。その光学層については特に限定はないが、例えば反射板や半透過板、位相差板(1/2や1/4などの波長板を含む)、視角補償フィルムなどの液晶表示装置などの形成に用いられることのある光学層を1層または2層以上用いることができる。特に、本発明の偏光フィルムに更に反射板または半透過反射板が積層されてなる反射型偏光フィルムまたは半透過型偏光フィルム、偏光フィルムに更に位相差板が積層されてなる楕円偏光フィルムまたは円偏光フィルム、偏光フィルムに更に視角補償フィルムが積層されてなる広視野角偏光フィルム、あるいは偏光フィルムに更に輝度向上フィルムが積層されてなる偏光フィルムが好ましい。
<Optical film>
The polarizing film can be used as an optical film laminated with another optical layer in practical use. The optical layer is not particularly limited. For example, for forming a liquid crystal display device such as a reflection plate, a semi-transmission plate, a retardation plate (including wavelength plates such as 1/2 and 1/4), and a viewing angle compensation film. One or more optical layers that may be used can be used. In particular, a reflective polarizing film or semi-transmissive polarizing film in which a polarizing plate or a semi-transmissive reflecting plate is further laminated on the polarizing film of the present invention, an elliptical polarizing film or circularly polarizing film in which a retardation film is further laminated on a polarizing film. A wide viewing angle polarizing film obtained by further laminating a viewing angle compensation film on a film or a polarizing film, or a polarizing film obtained by further laminating a brightness enhancement film on the polarizing film is preferred.

偏光フィルムに上記光学層を積層した光学フィルムは、液晶表示装置などの製造過程で順次別個に積層する方式にても形成することができるが、予め積層して光学フィルムとしたものは、品質の安定性や組立作業などに優れていて液晶表示装置などの製造工程を向上させうる利点がある。積層には粘着層などの適宜な接着手段を用いうる。上記の偏光フィルムやその他の光学フィルムの接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。   An optical film obtained by laminating the above optical layer on a polarizing film can be formed by a method of sequentially laminating separately in the manufacturing process of a liquid crystal display device or the like. It is excellent in stability and assembly work, and has the advantage of improving the manufacturing process of a liquid crystal display device and the like. Appropriate bonding means such as an adhesive layer can be used for lamination. When adhering the above polarizing film and other optical films, their optical axes can be set at an appropriate arrangement angle in accordance with the target retardation characteristics.

前述した偏光フィルムや、偏光フィルムを少なくとも1層積層されている光学フィルムには、液晶セルなどの他部材と接着するための粘着層を設けることもできる。粘着層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、アクリル系粘着剤の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いうる。   An adhesive layer for adhering to other members such as a liquid crystal cell can be provided on the polarizing film described above or an optical film in which at least one polarizing film is laminated. The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited. For example, an acrylic polymer, silicone-based polymer, polyester, polyurethane, polyamide, polyether, fluorine-based or rubber-based polymer is appropriately selected. Can be used. In particular, those having excellent optical transparency such as an acrylic pressure-sensitive adhesive, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, and being excellent in weather resistance, heat resistance and the like can be preferably used.

粘着層は、異なる組成または種類などのものの重畳層として偏光フィルムや光学フィルムの片面または両面に設けることもできる。また両面に設ける場合に、偏光フィルムや光学フィルムの表裏において異なる組成や種類や厚みなどの粘着層とすることもできる。粘着層の厚みは、使用目的や接着力などに応じて適宜に決定でき、一般には1〜500μmであり、1〜200μmが好ましく、特に1〜100μmが好ましい。   The pressure-sensitive adhesive layer can be provided on one side or both sides of a polarizing film or an optical film as an overlapping layer of different compositions or types. Moreover, when providing in both surfaces, it can also be set as adhesive layers, such as a different composition, a kind, and thickness, in the front and back of a polarizing film or an optical film. The thickness of the pressure-sensitive adhesive layer can be appropriately determined according to the purpose of use and adhesive force, and is generally 1 to 500 μm, preferably 1 to 200 μm, and particularly preferably 1 to 100 μm.

粘着層の露出面に対しては、実用に供するまでの間、その汚染防止などを目的にセパレータが仮着されてカバーされる。これにより、通例の取扱状態で粘着層に接触することを防止できる。セパレータとしては、上記厚み条件を除き、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体などの適宜な薄葉体を、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデンなどの適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なものを用いうる。   The exposed surface of the adhesive layer is temporarily covered with a separator for the purpose of preventing contamination until it is put into practical use. Thereby, it can prevent contacting an adhesion layer in the usual handling state. As the separator, except for the above thickness conditions, for example, an appropriate thin leaf body such as a plastic film, rubber sheet, paper, cloth, non-woven fabric, net, foamed sheet, metal foil, or a laminate thereof, or a silicone-based or long sheet as necessary. Appropriate ones according to the prior art, such as those coated with an appropriate release agent such as a chain alkyl type, fluorine type or molybdenum sulfide, can be used.

<画像表示装置>
本発明の偏光フィルムまたは光学フィルムは液晶表示装置などの各種装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと偏光フィルムまたは光学フィルム、および必要に応じての照明システムなどの構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明においては本発明による偏光フィルムまたは光学フィルムを用いる点を除いて特に限定はなく、従来に準じうる。液晶セルについても、例えばTN型やSTN型、π型などの任意なタイプのものを用いうる。
<Image display device>
The polarizing film or the optical film of the present invention can be preferably used for forming various devices such as a liquid crystal display device. The liquid crystal display device can be formed according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a polarizing film or an optical film, and an illumination system as necessary, and incorporating a drive circuit. There is no limitation in particular except the point which uses the polarizing film or optical film by invention, and it can apply according to the former. As the liquid crystal cell, any type such as a TN type, an STN type, or a π type can be used.

液晶セルの片側または両側に偏光フィルムまたは光学フィルムを配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。その場合、本発明による偏光フィルムまたは光学フィルムは液晶セルの片側または両側に設置することができる。両側に偏光フィルムまたは光学フィルムを設ける場合、それらは同じものであってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に1層または2層以上配置することができる。   An appropriate liquid crystal display device such as a liquid crystal display device in which a polarizing film or an optical film is disposed on one side or both sides of a liquid crystal cell, or a backlight or a reflecting plate that is used in an illumination system can be formed. In that case, the polarizing film or optical film by this invention can be installed in the one side or both sides of a liquid crystal cell. When providing a polarizing film or an optical film on both sides, they may be the same or different. Further, when forming the liquid crystal display device, for example, a single layer or a suitable layer such as a diffusing plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusing plate, a backlight, etc. Two or more layers can be arranged.

以下に、本発明の実施例を記載するが、本発明の実施形態はこれらに限定されない。   Examples of the present invention will be described below, but the embodiments of the present invention are not limited thereto.

製造例1
<ポリビニルアルコール系薄型偏光子(第1光学フィルムに該当)の作製>
薄型偏光子を作製するため、まず、非晶性PET基材に24μm厚のPVA層が製膜された積層体を延伸温度130℃の空中補助延伸によって延伸積層体を生成し、次に、延伸積層体を染色によって着色積層体を生成し、さらに着色積層体を延伸温度65度のホウ酸水中延伸によって総延伸倍率が5.94倍になるように非晶性PET基材と一体に延伸された10μm厚のPVA層を含む光学フィルム積層体を生成した。このような2段延伸によって非晶性PET基材に製膜されたPVA層のPVA分子が高次に配向され、染色によって吸着されたヨウ素がポリヨウ素イオン錯体として一方向に高次に配向されたポリビニルアルコール系薄型偏光子を構成する、厚さ10μmのPVA層を含む光学フィルム積層体を生成することができた。
Production Example 1
<Preparation of polyvinyl alcohol thin polarizer (corresponding to the first optical film)>
In order to produce a thin polarizer, first, a laminate in which a PVA layer having a thickness of 24 μm is formed on an amorphous PET base material is produced by air-assisted stretching at a stretching temperature of 130 ° C., and then stretched. A colored laminate is produced by dyeing the laminate, and the colored laminate is further stretched integrally with an amorphous PET substrate so that the total draw ratio is 5.94 times by stretching in boric acid water at a stretching temperature of 65 degrees. An optical film laminate including a 10 μm thick PVA layer was produced. The PVA molecules in the PVA layer formed on the amorphous PET substrate by such two-stage stretching are oriented in the higher order, and the iodine adsorbed by the dyeing is oriented in the one direction as the polyiodine ion complex. It was possible to produce an optical film laminate including a PVA layer having a thickness of 10 μm constituting a thin polyvinyl alcohol-based thin polarizer.

製造例2
<透明保護フィルム(第2光学フィルムに該当)の作製>
特開2010−284840号公報の製造例1に記載のイミド化MS樹脂100重量部およびトリアジン系紫外線吸収剤(アデカ社製、商品名:T−712)0.62重量部を、2軸混練機にて220℃にて混合し、樹脂ペレットを作製した。得られた樹脂ペレットを、100.5kPa、100℃で12時間乾燥させ、単軸の押出機にてダイス温度270℃でTダイから押出してフィルム状に成形した(厚み160μm)。さらに当該フィルムを、その搬送方向に150℃の雰囲気下に延伸し(厚み80μm)、次いで水性ウレタン樹脂を含む易接着剤を塗布した後フィルム搬送方向と直交する方向に150℃の雰囲気下に延伸して、厚み40μm(透湿度58g/m/24h)のアクリルフィルム(透明保護フィルム)を得た。
Production Example 2
<Preparation of transparent protective film (corresponding to the second optical film)>
A biaxial kneader containing 100 parts by weight of imidized MS resin and 0.62 part by weight of a triazine-based ultraviolet absorber (trade name: T-712, manufactured by Adeka Co.) described in Production Example 1 of JP 2010-284840 A Was mixed at 220 ° C. to prepare resin pellets. The obtained resin pellets were dried at 100.5 kPa and 100 ° C. for 12 hours, extruded from a T-die at a die temperature of 270 ° C. with a single screw extruder, and formed into a film (thickness: 160 μm). Further, the film is stretched in the conveyance direction in a 150 ° C. atmosphere (thickness 80 μm), and after applying an easy-adhesive containing an aqueous urethane resin, the film is stretched in a direction perpendicular to the film conveyance direction in a 150 ° C. atmosphere. and to obtain an acrylic film having a thickness of 40 [mu] m (moisture permeability 58g / m 2 / 24h) (transparent protective film).

<透明保護フィルムの透湿度>
透湿度の測定は、JIS Z0208の透湿度試験(カップ法)に準じて測定した。直
径60mmに切断したサンプルを約15gの塩化カルシウムを入れた透湿カップにセットし、温度40℃、湿度90%R.H.の恒温機に入れ、24時間放置した前後の塩化カルシウムの重量増加を測定することで透湿度(g/m/24h)を求めた。
<Water vapor permeability of transparent protective film>
The moisture permeability was measured according to a moisture permeability test (cup method) of JIS Z0208. A sample cut to a diameter of 60 mm was set in a moisture permeable cup containing about 15 g of calcium chloride, and the temperature was 40 ° C. and the humidity was 90% R.D. H. The placed in a constant temperature machine, to determine the moisture permeability by measuring the weight increase of calcium chloride before and after allowing to stand for 24 hours (g / m 2 / 24h) .

<活性エネルギー線>
活性エネルギー線として、可視光線(ガリウム封入メタルハライドランプ) 照射装置:Fusion UV Systems,Inc社製Light HAMMER10 バルブ:Vバルブ ピーク照度:1600mW/cm、積算照射量1000/mJ/cm(波長380〜440nm)を使用した。なお、可視光線の照度は、Solatell社製Sola−Checkシステムを使用して測定した。
<Active energy rays>
Visible light (gallium filled metal halide lamp) as an active energy ray Irradiation device: Fusion UV Systems, Inc. Light HAMMER10 bulb: V bulb Peak illuminance: 1600 mW / cm 2 , integrated irradiation amount 1000 / mJ / cm 2 (wavelength 380 to 380) 440 nm) was used. The illuminance of visible light was measured using a Sola-Check system manufactured by Solatell.

実施例1
以下の化合物を含有する活性エネルギー線硬化型接着剤組成物を調整した。
第1活性エネルギー線硬化型接着剤組成物(液粘度350mPa・s/25℃);HEAA 94重量%、IRGACURE907 3重量%、KAYACURE DETX−S 3重量%
第2活性エネルギー線硬化型接着剤組成物(液粘度10mPa・s/25℃);ライトアクリレート1,9ND−A 94重量%、IRGACURE907 3重量%、KAYACURE DETX−S 3重量%
Example 1
An active energy ray-curable adhesive composition containing the following compounds was prepared.
1st active energy ray hardening-type adhesive composition (liquid viscosity 350mPa * s / 25 degreeC); HEAA 94 weight%, IRGACURE907 3 weight%, KAYACURE DETX-S 3 weight%
Second active energy ray-curable adhesive composition (liquid viscosity: 10 mPa · s / 25 ° C.); light acrylate 1,9ND-A 94% by weight, IRGACURE907 3% by weight, KAYACURE DETX-S 3% by weight

使用した化合物は、
HEAA:ヒドロキシエチルアクリルアミド、logPow=−0.56、興人社製、
ライトアクリレート1,9ND−A:1,9−ノナンジオールジアクリレート、logPow=3.68、共栄社化学社製、
IRGACURE907;2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オン、BASF社製、
KAYACURE DETX−S;ジエチルチオキサントン、日本化薬社製、
The compound used was
HEAA: hydroxyethylacrylamide, logPow = −0.56, manufactured by Kojin Co., Ltd.
Light acrylate 1,9ND-A: 1,9-nonanediol diacrylate, logPow = 3.68, manufactured by Kyoeisha Chemical Co., Ltd.
IRGACURE907; 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, manufactured by BASF Corporation
KAYACURE DETX-S; diethylthioxanthone, manufactured by Nippon Kayaku Co., Ltd.

(偏光フィルムの作製)
第1光学フィルムに該当する薄型偏光子の、PVA層面に、40℃に加温して液粘度を80cpに調整した第1活性エネルギー線硬化型接着剤組成物を塗工した(接着剤層厚み0.3μm)。また、第2光学フィルムに該当する透明保護フィルムの貼合面に、第2活性エネルギー線硬化型接着剤組成物を塗工し(接着剤層厚み0.7μm)、そしてこれらをロール機で貼り合わせた。第1活性エネルギー線硬化型接着剤組成物と第2活性エネルギー線硬化型接着剤組成物との割合は30:70である。その後、上記可視光線を両面に照射して第1および第2活性エネルギー線硬化型接着剤組成物を硬化させた後、70℃で3分間熱風乾燥して、偏光子の両側に透明保護フィルムを有する偏光フィルム(積層光学フィルム)を得た。貼り合わせのライン速度は25m/minで行った。
(Preparation of polarizing film)
The thin active polarizer corresponding to the first optical film was coated on the PVA layer surface with the first active energy ray-curable adhesive composition heated to 40 ° C. and adjusted to a liquid viscosity of 80 cp (adhesive layer thickness). 0.3 μm). Moreover, the 2nd active energy ray hardening-type adhesive composition is applied to the bonding surface of the transparent protective film applicable to a 2nd optical film (adhesive layer thickness 0.7 micrometer), and these are stuck with a roll machine. Combined. The ratio of the first active energy ray-curable adhesive composition to the second active energy ray-curable adhesive composition is 30:70. Thereafter, the first and second active energy ray-curable adhesive compositions are cured by irradiating both sides with the visible light, and then dried with hot air at 70 ° C. for 3 minutes to form transparent protective films on both sides of the polarizer. A polarizing film (laminated optical film) was obtained. The line speed of bonding was 25 m / min.

上記実施例1で得られた、偏光フィルムについて、薄型偏光子および透明保護フィルムに対する接着力の評価を行った。また、薄型偏光子に対する第1活性エネルギー線硬化型接着剤組成物の接触角、および透明保護フィルムに対する第2活性エネルギー線硬化型接着剤組成物の接触角の評価を行った。なお、接触角の評価については、JIS−K 6768に基づいて行った。評価結果を表2に示す。   About the polarizing film obtained in the said Example 1, the adhesive force with respect to a thin polarizer and a transparent protective film was evaluated. Moreover, the contact angle of the 1st active energy ray hardening-type adhesive composition with respect to a thin polarizer and the contact angle of the 2nd active energy ray hardening-type adhesive composition with respect to a transparent protective film were evaluated. The contact angle was evaluated based on JIS-K 6768. The evaluation results are shown in Table 2.

実施例2
第2光学フィルムに該当する透明保護フィルムの貼合面に第2活性エネルギー線硬化型接着剤組成物を塗工する塗工工程に代えて、第1光学フィルムに該当する薄型偏光子の貼合面に第1活性エネルギー線硬化型接着剤組成物を塗工した塗工面に、さらに第2活性エネルギー線硬化型接着剤組成物を上塗り塗工する塗工工程を実施した以外は、実施例1と同様の方法により偏光子の両側に透明保護フィルムを有する偏光フィルム(積層光学フィルム)を得た。
Example 2
Instead of the coating step of applying the second active energy ray-curable adhesive composition to the bonding surface of the transparent protective film corresponding to the second optical film, bonding of the thin polarizer corresponding to the first optical film Example 1 except that a coating process in which a second active energy ray-curable adhesive composition was further overcoated on the surface coated with the first active energy ray-curable adhesive composition on the surface was carried out. A polarizing film (laminated optical film) having a transparent protective film on both sides of the polarizer was obtained by the same method.

比較例1
第1光学フィルムに該当する薄型偏光子の貼合面に、HEAA 47重量%、ライトアクリレート1,9ND−A 47重量%、IRGACURE907 3重量%、KAYACURE DETX−S 3重量%を含有する第1活性エネルギー線硬化型接着剤組成物(液粘度21mPa・s/25℃)を塗工し、これに第2光学フィルムに該当する透明保護フィルムを貼り合わせたこと以外は、実施例1と同様の方法により偏光子の両側に透明保護フィルムを有する偏光フィルム(積層光学フィルム)を得た。
Comparative Example 1
The first activity containing 47% by weight of HEAA, 47% by weight of light acrylate 1,9ND-A, 3% by weight of IRGACURE907, 3% by weight of KAYACURE DETX-S on the bonding surface of the thin polarizer corresponding to the first optical film The same method as in Example 1 except that an energy ray curable adhesive composition (liquid viscosity: 21 mPa · s / 25 ° C.) was applied and a transparent protective film corresponding to the second optical film was bonded thereto. Thus, a polarizing film (laminated optical film) having a transparent protective film on both sides of the polarizer was obtained.

上記実施例および比較例で得られた、偏光フィルムについて以下の評価を行った。評価結果を表2に示す。   The following evaluation was performed about the polarizing film obtained by the said Example and comparative example. The evaluation results are shown in Table 2.

<接着力>
各例で得られた偏光フィルムを偏光子の延伸方向と平行に200mm、直行方向に20mmの大きさに切り出し、透明保護フィルムと偏光子との間にカッターナイフで切り込みを入れ、偏光フィルムをガラス板に貼り合わせた。テンシロンにより、90度方向に透明保護フィルムと偏光子とを剥離速度500mm/minで剥離し、その剥離強度を測定した。また、剥離後の剥離面の赤外吸収スペクトルをATR法によって測定し、剥離界面を下記の基準に基づき評価した。
A:透明保護フィルムの凝集破壊
B:透明保護フィルム/接着剤層間の界面剥離
C:接着剤層/偏光子間の界面剥離
D:偏光子の凝集破壊
上記基準において、AおよびDは、接着力がフィルムの凝集力以上であるため、接着力が非常に優れることを意味する。一方、BおよびCは、透明保護フィルム/接着剤層(接着剤層/偏光子)界面の接着力が不足している(接着力が劣る)ことを意味する。これらを勘案して、AまたはDである場合の接着力を○、A・B(「透明保護フィルムの凝集破壊」と「透明保護フィルム/接着剤層間の界面剥離」とが同時に発生)あるいはA・C(「透明保護フィルムの凝集破壊」と「接着剤層/偏光子間の界面剥離」とが同時に発生)である場合の接着力を△、BまたはCである場合の接着力を×とする。
<Adhesive strength>
The polarizing film obtained in each example was cut out to a size of 200 mm parallel to the stretching direction of the polarizer and 20 mm in the perpendicular direction, and a slit was cut between the transparent protective film and the polarizer with a cutter knife. Laminated to the board. Using Tensilon, the transparent protective film and the polarizer were peeled in the 90-degree direction at a peeling speed of 500 mm / min, and the peel strength was measured. Moreover, the infrared absorption spectrum of the peeling surface after peeling was measured by ATR method, and the peeling interface was evaluated based on the following reference | standard.
A: Cohesive failure of transparent protective film B: Interfacial peeling between transparent protective film / adhesive layer C: Interfacial peeling between adhesive layer / polarizer D: Cohesive failure of polarizer In the above criteria, A and D are adhesive strengths Is greater than the cohesive strength of the film, which means that the adhesive strength is very excellent. On the other hand, B and C mean that the adhesive force at the transparent protective film / adhesive layer (adhesive layer / polarizer) interface is insufficient (adhesive strength is poor). Taking these into consideration, the adhesive strength in the case of A or D is ○, A · B ("cohesive failure of transparent protective film" and "interfacial peeling between transparent protective film / adhesive layer" occur simultaneously) or A -Adhesive strength in the case of C ("cohesive failure of transparent protective film" and "interfacial peeling between adhesive layer / polarizer" occur simultaneously) Δ, adhesive strength in the case of B or C as x To do.

Claims (9)

活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された接着剤層を介して、少なくとも第1光学フィルムおよび第2光学フィルムが積層された積層光学フィルムの製造方法であって、
前記活性エネルギー線硬化型接着剤組成物は、第1活性エネルギー線硬化型接着剤組成物および第2活性エネルギー線硬化型接着剤組成物を含む、少なくとも2種類以上の異なる活性エネルギー線硬化型接着剤組成物を含有するものであり、
前記第1光学フィルムの貼合面に前記第1活性エネルギー線硬化型接着剤組成物を塗工し、さらに前記第2光学フィルムの貼合面に前記第2活性エネルギー線硬化型接着剤組成物を塗工する塗工工程と、
前記第1光学フィルムおよび前記第2光学フィルムを貼り合わせる貼合工程と、
前記第1光学フィルム面側または前記第2光学フィルム面側から活性エネルギー線を照射して、前記活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された前記接着剤層を介して、前記第1光学フィルムおよび前記第2光学フィルムを接着させる接着工程とを含むことを特徴とする積層光学フィルムの製造方法。
A method for producing a laminated optical film in which at least a first optical film and a second optical film are laminated via an adhesive layer formed by curing an active energy ray-curable adhesive composition,
The active energy ray curable adhesive composition includes at least two different active energy ray curable adhesives, including a first active energy ray curable adhesive composition and a second active energy ray curable adhesive composition. Containing an agent composition,
The first active energy ray-curable adhesive composition is applied to the bonding surface of the first optical film, and the second active energy ray-curable adhesive composition is further applied to the bonding surface of the second optical film. Coating process for coating,
A bonding step of bonding the first optical film and the second optical film;
Through the adhesive layer formed by irradiating active energy rays from the first optical film surface side or the second optical film surface side and curing the active energy ray-curable adhesive composition, The manufacturing method of the laminated optical film characterized by including the adhesion process to adhere | attach the said 1st optical film and the said 2nd optical film.
活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された接着剤層を介して、少なくとも第1光学フィルムおよび第2光学フィルムが積層された積層光学フィルムの製造方法であって、
前記活性エネルギー線硬化型接着剤組成物は、第1活性エネルギー線硬化型接着剤組成物および第2活性エネルギー線硬化型接着剤組成物を含む、少なくとも2種類以上の異なる活性エネルギー線硬化型接着剤組成物を含有するものであり、
前記第1光学フィルムの貼合面に前記第1活性エネルギー線硬化型接着剤組成物を塗工し、前記第1活性エネルギー線硬化型接着剤組成物を塗工した塗工面に、さらに前記第2活性エネルギー線硬化型接着剤組成物を上塗り塗工する塗工工程と、
第1光学フィルム上に塗工された第2活性エネルギー線硬化型接着剤組成物の塗工面側から前記第2光学フィルムを貼り合わせる貼合工程と、
前記第1光学フィルム面側または前記第2光学フィルム面側から活性エネルギー線を照射して、前記活性エネルギー線硬化型接着剤組成物を硬化させることにより形成された前記接着剤層を介して、前記第1光学フィルムおよび前記第2光学フィルムを接着させる接着工程とを含むことを特徴とする積層光学フィルムの製造方法。
A method for producing a laminated optical film in which at least a first optical film and a second optical film are laminated via an adhesive layer formed by curing an active energy ray-curable adhesive composition,
The active energy ray curable adhesive composition includes at least two different active energy ray curable adhesives, including a first active energy ray curable adhesive composition and a second active energy ray curable adhesive composition. Containing an agent composition,
The first active energy ray-curable adhesive composition is applied to the bonding surface of the first optical film, and the first active energy ray-curable adhesive composition is further applied to the coated surface. A coating step of overcoating the two active energy ray-curable adhesive composition;
A bonding step of bonding the second optical film from the coated surface side of the second active energy ray-curable adhesive composition coated on the first optical film;
Through the adhesive layer formed by irradiating active energy rays from the first optical film surface side or the second optical film surface side and curing the active energy ray-curable adhesive composition, The manufacturing method of the laminated optical film characterized by including the adhesion process to adhere | attach the said 1st optical film and the said 2nd optical film.
前記第1活性エネルギー線硬化型接着剤組成物の液粘度が、前記第2活性エネルギー線硬化型接着剤組成物の液粘度よりも高い請求項2に記載の積層光学フィルムの製造方法。   The method for producing a laminated optical film according to claim 2, wherein the liquid viscosity of the first active energy ray-curable adhesive composition is higher than the liquid viscosity of the second active energy ray-curable adhesive composition. 前記第1光学フィルムおよび前記第2光学フィルムに対する、前記活性エネルギー線硬化型接着剤組成物の接触角が5〜50度である請求項1〜3のいずれかに記載の積層光学フィルムの製造方法。   The method for producing a laminated optical film according to any one of claims 1 to 3, wherein a contact angle of the active energy ray-curable adhesive composition with respect to the first optical film and the second optical film is 5 to 50 degrees. . 前記第1光学フィルムおよび前記第2光学フィルムが、ポリビニルアルコール系偏光子、アクリル樹脂フィルム、シクロオレフィン樹脂フィルム、ポリエステル樹脂フィルムおよびポリオレフィン樹脂フィルムからなる群より選択される少なくとも1種の光学フィルムである請求項1〜4のいずれかに記載の積層光学フィルムの製造方法。   The first optical film and the second optical film are at least one optical film selected from the group consisting of a polyvinyl alcohol polarizer, an acrylic resin film, a cycloolefin resin film, a polyester resin film, and a polyolefin resin film. The manufacturing method of the laminated optical film in any one of Claims 1-4. 前記第1光学フィルムおよび前記第2光学フィルムが、前記アクリル樹脂フィルム、前記シクロオレフィン樹脂フィルム、前記ポリエステル樹脂フィルムおよび前記ポリオレフィン樹脂フィルムからなる群より選択される少なくとも1種の光学フィルムである請求項5に記載の積層光学フィルムの製造方法。   The first optical film and the second optical film are at least one optical film selected from the group consisting of the acrylic resin film, the cycloolefin resin film, the polyester resin film, and the polyolefin resin film. 6. A method for producing a laminated optical film according to 5. 前記アクリル樹脂フィルム、前記シクロオレフィン樹脂フィルム、前記ポリエステル樹脂フィルムおよび前記ポリオレフィン樹脂フィルムが、その貼合面に、アクリル樹脂、ポリウレタン樹脂、ポリビニルアルコール樹脂、メラミン樹脂およびオキサゾリン基含有樹脂からなる群より選択される少なくとも1種の樹脂を含有する易接着層が形成されたものである請求項5または6に記載の積層光学フィルムの製造方法。   The acrylic resin film, the cycloolefin resin film, the polyester resin film, and the polyolefin resin film are selected from the group consisting of acrylic resin, polyurethane resin, polyvinyl alcohol resin, melamine resin, and oxazoline group-containing resin on the bonding surface. The method for producing a laminated optical film according to claim 5, wherein an easy adhesion layer containing at least one kind of resin is formed. 前記活性エネルギー線硬化型接着剤組成物は、SP値が18〜21(MJ/m1/2であるラジカル重合性化合物を25〜98重量%含有する請求項6または7に記載の積層光学フィルムの製造方法。 The active energy ray-curable adhesive composition, laminate according to claim 6 or 7 SP value contains 25-98% by weight of the radical polymerizable compound is 18~21 (MJ / m 3) 1/2 Manufacturing method of optical film. 前記第1光学フィルムおよび前記第2光学フィルムの一方が前記ポリビニルアルコール系偏光子であり、前記ポリビニルアルコール系偏光子の貼合面に塗工される前記活性エネルギー線硬化型接着剤組成物が、ヒドロキシル基含有ラジカル重合性化合物を含有する請求項1〜8のいずれかに記載の積層光学フィルムの製造方法。   One of the first optical film and the second optical film is the polyvinyl alcohol polarizer, and the active energy ray-curable adhesive composition applied to the bonding surface of the polyvinyl alcohol polarizer is The manufacturing method of the laminated | multilayer optical film in any one of Claims 1-8 containing a hydroxyl group containing radically polymerizable compound.
JP2014146066A 2014-07-16 2014-07-16 Method for producing laminated optical film Active JP6376872B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014146066A JP6376872B2 (en) 2014-07-16 2014-07-16 Method for producing laminated optical film
KR1020177000625A KR102376576B1 (en) 2014-07-16 2015-07-14 Laminate optical film production method
CN201580037490.5A CN106661386B (en) 2014-07-16 2015-07-14 Method for manufacturing laminated optical film
PCT/JP2015/070138 WO2016010030A1 (en) 2014-07-16 2015-07-14 Laminate optical film production method
TW108121759A TWI708682B (en) 2014-07-16 2015-07-15 Manufacturing method of laminated optical film
TW104122902A TWI713460B (en) 2014-07-16 2015-07-15 Manufacturing method of laminated optical film
JP2018138687A JP6931629B2 (en) 2014-07-16 2018-07-24 Manufacturing method of laminated optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014146066A JP6376872B2 (en) 2014-07-16 2014-07-16 Method for producing laminated optical film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018138687A Division JP6931629B2 (en) 2014-07-16 2018-07-24 Manufacturing method of laminated optical film

Publications (2)

Publication Number Publication Date
JP2016024228A true JP2016024228A (en) 2016-02-08
JP6376872B2 JP6376872B2 (en) 2018-08-22

Family

ID=55078520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014146066A Active JP6376872B2 (en) 2014-07-16 2014-07-16 Method for producing laminated optical film

Country Status (5)

Country Link
JP (1) JP6376872B2 (en)
KR (1) KR102376576B1 (en)
CN (1) CN106661386B (en)
TW (2) TWI713460B (en)
WO (1) WO2016010030A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181672A (en) * 2016-03-29 2017-10-05 日東電工株式会社 Polarizing film and picture display unit
JP2018165840A (en) * 2014-07-16 2018-10-25 日東電工株式会社 Method of manufacturing laminated optical film
CN108885367A (en) * 2016-05-02 2018-11-23 株式会社Lg化学 Polarizer and liquid crystal display including it
WO2019058778A1 (en) * 2017-09-21 2019-03-28 日東電工株式会社 Laminated optical film and method for manufacturing same, and image display device
JP2019056932A (en) * 2018-12-20 2019-04-11 日東電工株式会社 Laminated optical film, manufacturing method for the same and image display device
JP2021018301A (en) * 2019-07-18 2021-02-15 日東電工株式会社 Method for manufacturing polarization film and apparatus for manufacturing polarization film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200447A (en) * 2017-05-30 2018-12-20 日東電工株式会社 Manufacturing method of optical film
JP7137900B2 (en) * 2018-02-26 2022-09-15 日東電工株式会社 Active energy ray-curable adhesive composition, polarizing film and method for producing same, optical film, and image display device
JP6434186B1 (en) * 2018-05-08 2018-12-05 住友化学株式会社 Laminated body and method for producing the same
JP7085414B2 (en) * 2018-06-14 2022-06-16 住友化学株式会社 Liquid crystal film manufacturing method and optical laminate manufacturing method
JP2021039274A (en) * 2019-09-04 2021-03-11 日東電工株式会社 Laminated optical film and image display device
JP7297608B2 (en) * 2019-09-04 2023-06-26 日東電工株式会社 Method for manufacturing polarizing film
WO2022113842A1 (en) * 2020-11-30 2022-06-02 日東電工株式会社 Polarizing plate and image display device using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143433A (en) * 1995-11-20 1997-06-03 Toyo Ink Mfg Co Ltd Bonding
WO2012043664A1 (en) * 2010-09-28 2012-04-05 電気化学工業株式会社 Curable resin composition
JP2013228726A (en) * 2012-03-30 2013-11-07 Nitto Denko Corp Polarizing film, optical film and image display device
JP2015093470A (en) * 2013-11-14 2015-05-18 日東電工株式会社 Production method of optical film, optical film and image display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296427A (en) 2000-04-17 2001-10-26 Nitto Denko Corp Method for manufacturing polarizing plate and liquid crystal display device
JP2006220732A (en) 2005-02-08 2006-08-24 Nitto Denko Corp Polarizer protective film and manufacturing method thereof, polarizing plate and manufacturing method thereof, and image display device
JP5426505B2 (en) 2010-08-31 2014-02-26 日東電工株式会社 Active energy ray-curable resin composition, adhesive layer, polarizing plate, optical film, and image display device
JP2012068593A (en) 2010-09-27 2012-04-05 Nitto Denko Corp Polarizer, method for manufacturing polarizer, optical film, and image display device
TWI533036B (en) * 2011-10-14 2016-05-11 Lg化學股份有限公司 Polarizer having protection films in two sides and optical device comprising the same
KR101448912B1 (en) * 2012-03-06 2014-10-13 주식회사 아모그린텍 A lusterless film and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143433A (en) * 1995-11-20 1997-06-03 Toyo Ink Mfg Co Ltd Bonding
WO2012043664A1 (en) * 2010-09-28 2012-04-05 電気化学工業株式会社 Curable resin composition
JP2013228726A (en) * 2012-03-30 2013-11-07 Nitto Denko Corp Polarizing film, optical film and image display device
JP2015093470A (en) * 2013-11-14 2015-05-18 日東電工株式会社 Production method of optical film, optical film and image display device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165840A (en) * 2014-07-16 2018-10-25 日東電工株式会社 Method of manufacturing laminated optical film
KR102159367B1 (en) * 2016-03-29 2020-09-23 닛토덴코 가부시키가이샤 Polarizing film and image display device
WO2017169918A1 (en) * 2016-03-29 2017-10-05 日東電工株式会社 Polarizing film and image display device
KR20180103111A (en) * 2016-03-29 2018-09-18 닛토덴코 가부시키가이샤 Polarizing film and image display device
US11181676B2 (en) 2016-03-29 2021-11-23 Nitto Denko Corporation Polarizing film and image display device
JP2017181672A (en) * 2016-03-29 2017-10-05 日東電工株式会社 Polarizing film and picture display unit
CN108885367B (en) * 2016-05-02 2021-09-07 株式会社Lg化学 Polarizing plate and liquid crystal display including the same
US10739636B2 (en) 2016-05-02 2020-08-11 Lg Chem, Ltd. Polarizing plate, and liquid crystal display comprising same
CN108885367A (en) * 2016-05-02 2018-11-23 株式会社Lg化学 Polarizer and liquid crystal display including it
JP2019512723A (en) * 2016-05-02 2019-05-16 エルジー・ケム・リミテッド Polarizer and liquid crystal display device including the same
US20190094612A1 (en) * 2016-05-02 2019-03-28 Lg Chem, Ltd. Polarizing plate, and liquid crystal display comprising same
CN111149026A (en) * 2017-09-21 2020-05-12 日东电工株式会社 Laminated optical film, method for producing same, and image display device
WO2019058778A1 (en) * 2017-09-21 2019-03-28 日東電工株式会社 Laminated optical film and method for manufacturing same, and image display device
CN111149026B (en) * 2017-09-21 2021-02-26 日东电工株式会社 Laminated optical film, method for producing same, and image display device
JP2019056820A (en) * 2017-09-21 2019-04-11 日東電工株式会社 Laminated optical film, manufacturing method for the same and image display device
JP2022058639A (en) * 2017-09-21 2022-04-12 日東電工株式会社 Laminated optical film, manufacturing method for the same and image display device
TWI785089B (en) * 2017-09-21 2022-12-01 日商日東電工股份有限公司 Multilayer optical film, manufacturing method thereof, and image display device
JP2019056932A (en) * 2018-12-20 2019-04-11 日東電工株式会社 Laminated optical film, manufacturing method for the same and image display device
JP2021018301A (en) * 2019-07-18 2021-02-15 日東電工株式会社 Method for manufacturing polarization film and apparatus for manufacturing polarization film
JP7305473B2 (en) 2019-07-18 2023-07-10 日東電工株式会社 Polarizing film manufacturing method and polarizing film manufacturing apparatus

Also Published As

Publication number Publication date
TWI713460B (en) 2020-12-21
CN106661386A (en) 2017-05-10
TW201609401A (en) 2016-03-16
KR20170032287A (en) 2017-03-22
WO2016010030A1 (en) 2016-01-21
KR102376576B1 (en) 2022-03-18
TWI708682B (en) 2020-11-01
CN106661386B (en) 2020-10-23
JP6376872B2 (en) 2018-08-22
TW201936408A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
JP6376872B2 (en) Method for producing laminated optical film
JP6488125B2 (en) Laminated polarizing film, method for producing the same, laminated optical film, and image display device
KR102278125B1 (en) Curable adhesive for polarizing films, polarizing film, optical film and image display device
JP6205179B2 (en) Active energy ray-curable adhesive composition, polarizing film and method for producing the same, optical film and image display device
JP6560999B2 (en) Curable resin composition, polarizing film and method for producing the same, optical film, and image display device
WO2016010031A1 (en) Polarizing film and method for producing same
JP6633308B2 (en) Polarizing film and method for producing the same
JPWO2017199979A1 (en) LAMINATED RESIN FILM AND METHOD FOR MANUFACTURING THE SAME, LAMINATED OPTICAL FILM, IMAGE DISPLAY DEVICE, AND Easily Adhesive Treatment
JP2016170412A (en) Polarizing film and method for manufacturing the same, optical film and image display device
JP2013228726A (en) Polarizing film, optical film and image display device
JP6275401B2 (en) Polarizing film, method for producing the same, optical film, and image display device
WO2016143435A1 (en) Crosslinking agent, curable resin composition, polarizing film, method for producing polarizing film, optical film and image display device
TWI731946B (en) Polarizing film and manufacturing method thereof, optical film and image display device
WO2016143885A1 (en) Polarizing film and method for manufacturing same, optical film, and image display device
WO2017135121A1 (en) Curable resin composition
WO2017010225A1 (en) Curable adhesive composition for polarizing film, polarizing film, manufacturing method for said polarizing film, optical film, and image display device
WO2017010224A1 (en) Curable adhesive composition for polarizing film, polarizing film, manufacturing method for said polarizing film, optical film, and image display device
JP6712846B2 (en) Curable adhesive composition for polarizing film, polarizing film and method for producing the same, optical film and image display device
JP2018165840A (en) Method of manufacturing laminated optical film
JP6500130B2 (en) Polarizing film, method for producing the same, optical film, and image display device
WO2016152564A1 (en) Curable adhesive composition for polarizing films, polarizing film and method for producing same, optical film, and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180724

R150 Certificate of patent or registration of utility model

Ref document number: 6376872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250