JP2016024149A - Method of estimating state of secondary battery - Google Patents

Method of estimating state of secondary battery Download PDF

Info

Publication number
JP2016024149A
JP2016024149A JP2014150462A JP2014150462A JP2016024149A JP 2016024149 A JP2016024149 A JP 2016024149A JP 2014150462 A JP2014150462 A JP 2014150462A JP 2014150462 A JP2014150462 A JP 2014150462A JP 2016024149 A JP2016024149 A JP 2016024149A
Authority
JP
Japan
Prior art keywords
secondary battery
battery
full charge
charge capacity
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014150462A
Other languages
Japanese (ja)
Inventor
伸烈 芳賀
Nobuyasu Haga
伸烈 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014150462A priority Critical patent/JP2016024149A/en
Publication of JP2016024149A publication Critical patent/JP2016024149A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique which makes it possible to accurately estimate the full charge capacity of a secondary battery for a running electric vehicle.SOLUTION: According to a difference (ΔT) between an estimation value Ts of an internal temperature of a secondary battery calculated in a process to estimate an SOC (state of charge) of the secondary battery using a battery reaction model and a measured value T of an external temperature, a full charge capacity of the battery reaction model is corrected.SELECTED DRAWING: Figure 4

Description

本発明は、二次電池の状態推定方法に関する。より詳しくは、本発明は、完全緩和状態にない場合においても二次電池の満充電容量をより正確に推定して当該二次電池の充電率SOCを正確に推定することができる、二次電池の状態推定方法に関する。   The present invention relates to a state estimation method for a secondary battery. More specifically, the present invention provides a secondary battery capable of accurately estimating the full charge capacity of a secondary battery and accurately estimating the charge rate SOC of the secondary battery even when not in a completely relaxed state. It relates to the state estimation method.

昨今の地球環境保護意識の高まりを受け、例えばリチウムイオン電池等を始めとする二次電池から供給される電力によって駆動力を生ずる電動機を動力源として備える電動車両(例えば、電気自動車(EV)、プラグインハイブリッド自動車(PHV)、及びハイブリッド自動車(HV)等)が近年急激に普及している。   In response to the recent increase in global environmental protection awareness, for example, an electric vehicle (for example, an electric vehicle (EV), which includes an electric motor that generates a driving force by electric power supplied from a secondary battery such as a lithium ion battery) In recent years, plug-in hybrid vehicles (PHV), hybrid vehicles (HV), and the like) have spread rapidly.

ところで、二次電池は、過放電及び/又は過充電により電池性能が劣化し、寿命が短くなる虞がある。従って、二次電池の性能及び寿命を維持する観点から、二次電池の充電率(SOC:State of Charge)を正確に推定し、二次電池の充放電を適切に制御して、過剰な充放電を抑制することが必要である。また、電動車両を目的地まで走行させるために必要な電力量が確保されているか否かを正しく判断するためにも、二次電池のSOCを正確に推定することが重要である。   By the way, there is a possibility that the battery performance of the secondary battery is deteriorated due to overdischarge and / or overcharge, and the life is shortened. Therefore, from the viewpoint of maintaining the performance and life of the secondary battery, the state of charge (SOC) of the secondary battery is accurately estimated, the charge / discharge of the secondary battery is appropriately controlled, and excessive charge / discharge is performed. It is necessary to suppress discharge. It is also important to accurately estimate the SOC of the secondary battery in order to correctly determine whether or not the amount of electric power necessary to drive the electric vehicle to the destination is secured.

そこで、当該技術分野においては、二次電池の状態推定を正確に行うための様々な方法が提案されている。例えば、電気化学反応式に基づく電池反応モデルを用いてリチウムイオン電池の熱的挙動及び電気化学的挙動を予測しようとする試みもなされており(例えば、非特許文献1を参照。尚、非特許文献1における開示内容は引用により本明細書に取り込まれる)、このような電池反応モデルを用いて二次電池のSOCを推定する技術も開発されている。   Therefore, in the technical field, various methods for accurately estimating the state of the secondary battery have been proposed. For example, an attempt has been made to predict the thermal behavior and electrochemical behavior of a lithium ion battery using a battery reaction model based on an electrochemical reaction equation (see, for example, Non-Patent Document 1). The disclosure in Document 1 is incorporated herein by reference), and a technique for estimating the SOC of a secondary battery using such a battery reaction model has also been developed.

具体的には、例えば、電池反応モデルを用いて二次電池の内部状態を推定してSOC及び電池電流を推定し、SOCに対する電池電流の推定値の積算値と実測値の積算値との誤差を求め、当該誤差に基づいて容量劣化パラメータを推定する技術が提案されている(例えば、特許文献1を参照。尚、特許文献1における開示内容は引用により本明細書に取り込まれる)。   Specifically, for example, the SOC and battery current are estimated by estimating the internal state of the secondary battery using a battery reaction model, and the error between the integrated value of the estimated value of the battery current with respect to the SOC and the integrated value of the actually measured value. And a technology for estimating the capacity deterioration parameter based on the error has been proposed (see, for example, Patent Literature 1. The disclosure in Patent Literature 1 is incorporated herein by reference).

また、例えば、蓄電素子の外部における温度と、熱の移動を表す式とを用いて、蓄電素子の内部抵抗に対応した温度を推定する技術も提案されている(例えば、特許文献2を参照。尚、特許文献2における開示内容は引用により本明細書に取り込まれる)。   In addition, for example, a technique for estimating a temperature corresponding to the internal resistance of a power storage element using a temperature outside the power storage element and an expression representing heat transfer has been proposed (see, for example, Patent Document 2). Note that the disclosure of Patent Document 2 is incorporated herein by reference).

特開2010−060384号公報JP 2010-060384 A 特開2013−118056号公報JP 2013-118056 A

W. B. Gu and C.Y. Wang, ”Thermal and Electrochemical Coupled Modeling of a Lithium−Ion Cell, in Lithium Batteries”, ECS Proceedings , Vol.99−25 (1), pp.748−762, 2000W. B. Gu and C.M. Y. Wang, “Thermal and Electrochemical Coupled Modeling of a Lithium-Ion Cell, in Lithium Batteries”, ECS Proceedings, Vol. 99-25 (1), pp. 748-762, 2000

前述したように、当該技術分野においては、電池反応モデルを用いて二次電池の内部状態を推定してSOC及び電池温度を推定する種々の技術が提案されている。ところで、特定の時点における二次電池のSOCは、その時点における二次電池の充電容量(残存電力量)の満充電容量に対する割合を示す。従って、二次電池のSOCを正確に推定するためには当該二次電池の正確な満充電容量を取得する必要がある。また、満充電容量の値は時間の経過及び負荷による劣化によって変化する(通常は減少する)ため、満充電容量を継続的に取得することが必要である。更に、二次電池の満充電容量を正確に推定するためには二次電池の正確な開放電圧(OCV:Open Circuit Voltage)を取得する必要がある。   As described above, in this technical field, various techniques for estimating the SOC and the battery temperature by estimating the internal state of the secondary battery using the battery reaction model have been proposed. By the way, the SOC of the secondary battery at a specific time indicates the ratio of the charge capacity (remaining electric energy) of the secondary battery at that time to the full charge capacity. Therefore, in order to accurately estimate the SOC of the secondary battery, it is necessary to acquire an accurate full charge capacity of the secondary battery. Further, since the value of the full charge capacity changes (usually decreases) due to the passage of time and deterioration due to the load, it is necessary to continuously acquire the full charge capacity. Furthermore, in order to accurately estimate the full charge capacity of the secondary battery, it is necessary to obtain an accurate open circuit voltage (OCV) of the secondary battery.

二次電池の正確なOCVを取得するためには、完全緩和状態にある二次電池の端子間電圧を取得する必要がある。しかしながら、例えば走行中の電動車両において二次電池が完全緩和状態にあることは希であるため、二次電池の正確なOCVを取得することは困難であり、結果として二次電池の満充電容量を正確に推定することもまた困難である。二次電池の正確な満充電容量を取得することができない場合、当該二次電池のSOCの推定値と真の値との間の乖離が大きくなり、前述したように二次電池の過剰な充放電を抑制したり、二次電池の正確な残存電力量を推定して電動車両を目的地まで走行させるために必要な電力量が確保されているか否かを正しく判断したりすることが困難となる虞がある。   In order to acquire the accurate OCV of the secondary battery, it is necessary to acquire the voltage between the terminals of the secondary battery in the completely relaxed state. However, for example, since it is rare that a secondary battery is in a completely relaxed state in a traveling electric vehicle, it is difficult to obtain an accurate OCV of the secondary battery, and as a result, the full charge capacity of the secondary battery It is also difficult to estimate accurately. If an accurate full charge capacity of a secondary battery cannot be obtained, the difference between the estimated value and the true value of the secondary battery becomes large, and as described above, excessive charge of the secondary battery is excessive. It is difficult to suppress discharge or to accurately determine whether the amount of power necessary to drive the electric vehicle to the destination is secured by estimating the accurate remaining power amount of the secondary battery There is a risk of becoming.

即ち、当該技術分野においては、走行中の電動車両において二次電池の満充電容量を正確に推定することを可能とする技術に対する要求が存在する。即ち、本発明の1つの目的は、走行中の電動車両において二次電池の満充電容量を正確に推定することを可能とする技術を提供することである。   That is, in the technical field, there is a need for a technique that makes it possible to accurately estimate the full charge capacity of a secondary battery in a traveling electric vehicle. In other words, one object of the present invention is to provide a technique that makes it possible to accurately estimate the full charge capacity of a secondary battery in a traveling electric vehicle.

そこで、本発明者は、鋭意研究の結果、電池反応モデルを用いて二次電池のSOCを推定する過程において算出される電池の内部温度の推定値Tsと電池の外部に配設された検出手段(例えば、温度センサー)から得られる電池の外部温度の実測値Tとの差(ΔT)に応じて当該電池反応モデルの満充電容量を補正することにより、当該二次電池の満充電容量を正確に推定することができることを見出した(詳しくは後述する)。   Therefore, as a result of earnest research, the present inventor has found that the estimated value Ts of the internal temperature of the battery calculated in the process of estimating the SOC of the secondary battery using the battery reaction model and the detection means disposed outside the battery. By correcting the full charge capacity of the battery reaction model according to the difference (ΔT) from the measured value T of the external temperature of the battery obtained from (for example, a temperature sensor), the full charge capacity of the secondary battery can be accurately determined. (It will be described later in detail).

従って、本発明の上記1つの目的は、
電池反応モデルを用いて二次電池の満充電容量及び内部温度を推定する二次電池の状態推定方法であって、
前記二次電池の内部温度の推定値Ts及び外部温度の実測値Tから下式(1)に従って前記二次電池の温度差ΔTを算出し、
Therefore, the above one object of the present invention is to
A state estimation method for a secondary battery that estimates a full charge capacity and an internal temperature of the secondary battery using a battery reaction model,
Calculate the temperature difference ΔT of the secondary battery from the estimated value Ts of the internal temperature of the secondary battery and the measured value T of the external temperature according to the following formula (1):

Figure 2016024149
Figure 2016024149

前記温度差ΔTが予め定められた上限値Tuよりも大きい場合は前記電池反応モデルの満充電容量をより小さい値に補正する、
二次電池の状態推定方法によって達成される。
When the temperature difference ΔT is larger than a predetermined upper limit Tu, the full charge capacity of the battery reaction model is corrected to a smaller value.
This is achieved by a state estimation method for a secondary battery.

本発明によれば、上記のように電池反応モデルを用いて推定される二次電池の内部温度に基づいて当該電池反応モデルの満充電容量を補正することにより、走行中の電動車両においても、当該二次電池の満充電容量を正確に推定することができる。   According to the present invention, by correcting the full charge capacity of the battery reaction model based on the internal temperature of the secondary battery estimated using the battery reaction model as described above, even in an electric vehicle that is running, The full charge capacity of the secondary battery can be accurately estimated.

電池反応モデルを用いて推定される二次電池のSOCの時間的推移の当該電池反応モデルの満充電容量による違いを表す模式的なグラフである。It is a typical graph showing the difference by the full charge capacity of the said battery reaction model of the time transition of SOC of a secondary battery estimated using a battery reaction model. 二次電池の状態推定方法において用いられる電池反応モデルの開放電圧OCVと満充電容量Qfとの対応関係を表す模式的なグラフである。It is a typical graph showing the correspondence of the open circuit voltage OCV and full charge capacity Qf of the battery reaction model used in the state estimation method of a secondary battery. 二次電池の状態推定方法において用いられる電池反応モデルの開放電圧OCVが正確に推定された場合(a)及び過大に推定された場合(b)における、開放電圧OCV及び電池電圧Vの時間的推移を表す模式的なグラフである。Changes over time of the open-circuit voltage OCV and the battery voltage V when the open-circuit voltage OCV of the battery reaction model used in the secondary battery state estimation method is accurately estimated (a) and overestimated (b) It is a typical graph showing. 本発明の1つの実施態様に係る二次電池の状態推定方法において用いられる電池反応モデルの満充電容量の補正手順を説明する模式的なグラフである。It is a typical graph explaining the correction | amendment procedure of the full charge capacity of the battery reaction model used in the state estimation method of the secondary battery which concerns on one embodiment of this invention. 電池温度Tの検出手段の測定誤差の累積による満充電容量の補正への影響を説明する模式的なグラフである。It is a typical graph explaining the influence on correction | amendment of a full charge capacity by accumulation | storage of the measurement error of the detection means of the battery temperature. 二次電池を構成する複数の単電池のうちの何れかの単電池のヒューズが断線して満充電容量が急激に低下する場合(a)、及び例えば高負荷及び衝撃等により電池の電極を構成する活物質が欠落して満充電容量が急激に低下する場合(b)を説明する模式図である。When the fuse of any one of the plurality of unit cells constituting the secondary battery is disconnected and the full charge capacity is rapidly reduced (a), and the electrode of the battery is configured by, for example, a high load or impact It is a schematic diagram explaining the case (b) where the active material to be lost is lost and the full charge capacity rapidly decreases. 二次電池の満充電容量の急激な低下に伴う温度差ΔTの変化及び満充電容量を補正するための係数の変更を説明する模式的なグラフである。It is a typical graph explaining the change of the coefficient for correct | amending the change of the temperature difference (DELTA) T accompanying the rapid fall of the full charge capacity of a secondary battery, and a full charge capacity. 本発明のもう1つの実施態様に係る二次電池の状態推定方法による電池反応モデルの満充電容量の補正様式を説明する模式的なグラフである。It is a typical graph explaining the correction | amendment style of the full charge capacity of the battery reaction model by the state estimation method of the secondary battery which concerns on another embodiment of this invention. 本発明の更にもう1つの実施態様に係る二次電池の状態推定方法による電池反応モデルの満充電容量の補正様式を説明する模式的なグラフである。6 is a schematic graph illustrating a correction mode of a full charge capacity of a battery reaction model by a state estimation method for a secondary battery according to still another embodiment of the present invention.

前述したように、二次電池の正確な満充電容量を取得することができない場合、当該二次電池のSOCの推定値と真の値との間の乖離が大きくなり、前述したように二次電池の過剰な充放電を抑制したり、二次電池の正確な残存電力量を推定したりすることが困難となる虞がある。   As described above, when the accurate full charge capacity of the secondary battery cannot be obtained, the difference between the estimated value and the true value of the secondary battery becomes large, and the secondary battery as described above. There is a possibility that it is difficult to suppress excessive charging / discharging of the battery or to estimate an accurate remaining power amount of the secondary battery.

二次電池のSOCは、ある特定の時点におけるSOC(SOC0)に対して、所定期間Δtにおける電流値の積分値(ΣIΔt)の満充電容量Qfに対する比を反映させることによって算出することができる。即ち、二次電池のSOCは、下式(2)によって表すことができる。この場合、二次電池のSOCが低下する放電時における電流の流れる方向を正方向(即ち、電流の符号を正)としている。   The SOC of the secondary battery can be calculated by reflecting the ratio of the integrated value (ΣIΔt) of the current value in the predetermined period Δt to the full charge capacity Qf with respect to the SOC (SOC0) at a specific time point. That is, the SOC of the secondary battery can be expressed by the following formula (2). In this case, the direction in which the current flows during discharging in which the SOC of the secondary battery decreases is the positive direction (that is, the sign of the current is positive).

Figure 2016024149
Figure 2016024149

例えば、二次電池から供給される電力によって駆動力を生ずる電動機を動力源として備える電動車両をCD(Charge Depleting)モードにて走行させる場合を想定する。この場合、二次電池の放電により、図1(a)に示されている実線によって表されているように、二次電池のSOCが時間の経過と共に低下する。電池反応モデルの満充電容量が正しく推定されている場合は、電池反応モデルの満充電容量は当該二次電池の真の満充電容量と一致し、当該電池反応モデルを用いて推定されるSOCもまた、図1(a)に示されている実線によって表されている真のSOCと同様に推移する。   For example, a case is assumed where an electric vehicle including an electric motor that generates a driving force by electric power supplied from a secondary battery as a power source is driven in a CD (Charge Depleting) mode. In this case, the SOC of the secondary battery decreases with the passage of time as shown by the solid line shown in FIG. When the full charge capacity of the battery reaction model is correctly estimated, the full charge capacity of the battery reaction model matches the true full charge capacity of the secondary battery, and the SOC estimated using the battery reaction model is also Moreover, it changes similarly to the true SOC represented by the solid line shown in FIG.

しかしながら、電池反応モデルの満充電容量が当該二次電池の真の満充電容量よりも過大に推定されている場合は、上記式(2)におけるQfが真の値よりも大きい。その結果、上記式(2)の右辺の第二項による寄与(SOCの減少(ΔSOC))が小さくなり、図1(a)に示されている破線によって表されているようにSOCが過大に推定される。この場合、真のSOCは推定値よりも小さいため、推定されたSOCに基づけば電動車両は未だ走行可能であると判断されるにも拘わらず、走行を継続することが困難となる虞がある。   However, when the full charge capacity of the battery reaction model is estimated to be larger than the true full charge capacity of the secondary battery, Qf in the above formula (2) is larger than the true value. As a result, the contribution (decrease in SOC (ΔSOC)) by the second term on the right side of the above equation (2) is reduced, and the SOC is excessively large as represented by the broken line shown in FIG. Presumed. In this case, since the true SOC is smaller than the estimated value, it may be difficult to continue traveling even though it is determined that the electric vehicle can still travel based on the estimated SOC. .

逆に、電池反応モデルの満充電容量が当該二次電池の真の満充電容量よりも過小に推定されている場合は、上記式(2)におけるQfが真の値よりも小さい。その結果、上記式(2)の右辺の第二項による寄与(SOCの減少(ΔSOC))が大きくなり、図1(a)に示されている点線によって表されているようにSOCも過小に推定される。この場合、真のSOCは推定値よりも大きく、実際には電動車両は未だ走行可能であるにも拘わらず、走行を続けることが困難であると誤った判断がなされる虞がある。   On the contrary, when the full charge capacity of the battery reaction model is estimated to be less than the true full charge capacity of the secondary battery, Qf in the above formula (2) is smaller than the true value. As a result, the contribution (decrease in SOC (ΔSOC)) by the second term on the right side of the above equation (2) becomes large, and the SOC is too small as shown by the dotted line shown in FIG. Presumed. In this case, the true SOC is larger than the estimated value, and it may be erroneously determined that it is difficult to continue traveling although the electric vehicle is actually still capable of traveling.

ところで、二次電池から供給される電力によって駆動力を生ずる電動機を動力源として備える電動車両の走行モードとしては、上記CDモードの他に、CS(Charge Sustaining)モードが知られている。このCSモードは、「充電維持モード」とも呼称され、例えばHV及びHVモードにて走行するPHV等において採用される。CSモードにおいては、電力によって作動する電動機と燃料の燃焼によって作動する内燃機関とを併用して車両を走行させる。これにより、充電及び放電により二次電池のSOCが所定の範囲(例えば、50〜60%)内に維持され、二次電池の過剰な充放電に起因する劣化を抑制しつつ、車両の走行状態に応じた放電要求及び/又は充電要求に対応可能な状態を常に維持することができる。即ち、CSモードにおいては、ある期間において二次電池のSOCが充電により増大する。   By the way, CS (Charge Sustaining) mode is known as a running mode of an electric vehicle provided with an electric motor that generates a driving force by electric power supplied from a secondary battery as a power source. This CS mode is also referred to as a “charge maintenance mode”, and is adopted in, for example, a PHV that travels in the HV and HV modes. In the CS mode, the vehicle is driven using both an electric motor that operates by electric power and an internal combustion engine that operates by combustion of fuel. As a result, the SOC of the secondary battery is maintained within a predetermined range (for example, 50 to 60%) by charging and discharging, and the running state of the vehicle is suppressed while suppressing deterioration due to excessive charging and discharging of the secondary battery. The state which can respond to the discharge request | requirement and / or charge request | requirement according to can always be maintained. That is, in the CS mode, the SOC of the secondary battery increases due to charging in a certain period.

この場合、二次電池の充電により、図1(b)に示されている実線によって表されているように、二次電池のSOCが時間の経過と共に上昇する。即ち、この場合は、上述した図1(a)によって表されるCDモードにおける二次電池の放電時とは逆の方向に電流が流れる(電池電流の符号が逆である)。この場合も、電池反応モデルの満充電容量が正しく推定されている場合は、電池反応モデルの満充電容量は当該二次電池の真の満充電容量と一致し、当該電池反応モデルを用いて推定されるSOCもまた、図1(b)に示されている実線によって表されている真のSOCと同様に推移する。   In this case, as the secondary battery is charged, the SOC of the secondary battery increases as time passes, as indicated by the solid line shown in FIG. That is, in this case, a current flows in a direction opposite to that during discharging of the secondary battery in the CD mode represented by FIG. 1A described above (the sign of the battery current is reversed). Also in this case, when the full charge capacity of the battery reaction model is correctly estimated, the full charge capacity of the battery reaction model matches the true full charge capacity of the secondary battery, and is estimated using the battery reaction model. The SOC is also changed in the same manner as the true SOC represented by the solid line shown in FIG.

しかしながら、電池反応モデルの満充電容量が当該二次電池の真の満充電容量よりも過大に推定されている場合は、上記式(2)におけるQfが真の値よりも大きい。その結果、上記式(2)の右辺の第二項による寄与(SOCの増大(ΔSOC))が小さくなり、図1(b)に示されている破線によって表されているようにSOCが過小に推定される。この場合、真のSOCは推定値よりも大きいため、実際には二次電池のSOCが所定の範囲の上限に達しているにも拘わらず二次電池の充電が継続されて過充電となり、二次電池の劣化を招く虞がある。   However, when the full charge capacity of the battery reaction model is estimated to be larger than the true full charge capacity of the secondary battery, Qf in the above formula (2) is larger than the true value. As a result, the contribution (SOC increase (ΔSOC)) due to the second term on the right side of the above equation (2) becomes small, and the SOC becomes too small as shown by the broken line shown in FIG. Presumed. In this case, since the true SOC is larger than the estimated value, the secondary battery is actually charged even though the SOC of the secondary battery has reached the upper limit of the predetermined range, resulting in overcharge. There is a possibility of causing deterioration of the secondary battery.

逆に、電池反応モデルの満充電容量が当該二次電池の真の満充電容量よりも過小に推定されている場合は、上記式(2)におけるQfが真の値よりも小さい。その結果、上記式(2)の右辺の第二項による寄与(SOCの増大(ΔSOC))が大きくなり、図1(b)に示されている点線によって表されているようにSOCが過大に推定される。この場合、真のSOCは推定値よりも小さく、実際には二次電池のSOCが所定の範囲の上限に未だ達していないにも拘わらず二次電池の充電が停止され、必要とされる電力量を確保することが困難となる虞がある。   On the contrary, when the full charge capacity of the battery reaction model is estimated to be less than the true full charge capacity of the secondary battery, Qf in the above formula (2) is smaller than the true value. As a result, the contribution (increased SOC (ΔSOC)) by the second term on the right side of the above equation (2) becomes large, and the SOC is excessively large as represented by the dotted line shown in FIG. Presumed. In this case, the true SOC is smaller than the estimated value, and actually the secondary battery is stopped charging even though the SOC of the secondary battery has not yet reached the upper limit of the predetermined range. There is a risk that it may be difficult to ensure the amount.

上記のように、ある特定の時点におけるSOC(SOC0)からのSOCの変化(ΔSOC)の大きさ(絶対値)は、満充電容量が過大に推定されている場合は過小に、満充電容量が過小に推定されている場合は過大に、それぞれ推定されてしまう。その結果、CDモードでの走行時等、二次電池の放電によりSOCが減少する状態におけるSOCは、満充電容量が過大に推定されている場合は過大に、満充電容量が過小に推定されている場合は過小に、それぞれ推定されてしまう。一方、二次電池の充電によりSOCが増大する状態におけるSOCは、満充電容量が過大に推定されている場合は過小に、満充電容量が過小に推定されている場合は過大に、それぞれ推定されてしまう。   As described above, the magnitude (absolute value) of the SOC change (ΔSOC) from the SOC (SOC0) at a specific time point is too small when the full charge capacity is estimated to be excessive, and the full charge capacity is If it is underestimated, it will be overestimated. As a result, the SOC in a state in which the SOC decreases due to the discharge of the secondary battery, such as when traveling in the CD mode, is excessive when the full charge capacity is estimated to be excessive, and the full charge capacity is estimated to be too small. If so, each will be underestimated. On the other hand, the SOC in a state where the SOC increases due to the charging of the secondary battery is estimated to be too small when the full charge capacity is estimated to be excessive, and to be excessive when the full charge capacity is estimated to be too small. End up.

従って、二次電池のSOCを正確に推定するためには当該二次電池の正確な満充電容量を取得する必要がある。そこで、前述したように、本発明は、走行中の電動車両において二次電池の満充電容量を正確に推定することを可能とする技術を提供することを1つの目的とする。   Therefore, in order to accurately estimate the SOC of the secondary battery, it is necessary to acquire an accurate full charge capacity of the secondary battery. Therefore, as described above, an object of the present invention is to provide a technique that makes it possible to accurately estimate the full charge capacity of a secondary battery in a traveling electric vehicle.

本発明者は、上記目的を達成すべく鋭意研究の結果、例えば特許文献2において開示されているように電池反応モデルを用いて二次電池のSOCを推定する過程において、当該電池反応モデルの満充電容量が当該二次電池の真の満充電容量から乖離するほど、当該過程において算出される二次電池の内部温度の推定値が(例えば、温度センサ等による測定値に基づく)当該二次電池の外部温度の実測値から想定される程度を超えて乖離することを見出した。即ち、本発明者は、電池反応モデルを用いて二次電池のSOCを推定する過程において算出される二次電池の内部温度の推定値Tsと外部温度の実測値Tとの差に基づいて当該電池反応モデルの満充電容量を補正することにより、当該二次電池の満充電容量を正確に推定することができることを見出し、本発明を想到するに至ったのである。   As a result of diligent research to achieve the above object, the present inventor has satisfied the battery reaction model in the process of estimating the SOC of the secondary battery using the battery reaction model as disclosed in Patent Document 2, for example. As the charge capacity deviates from the true full charge capacity of the secondary battery, the estimated value of the internal temperature of the secondary battery calculated in the process becomes (for example, based on a measured value by a temperature sensor or the like) the secondary battery. It has been found that the measured temperature of the external temperature deviates beyond the expected level. In other words, the present inventor is based on the difference between the estimated value Ts of the internal temperature of the secondary battery calculated in the process of estimating the SOC of the secondary battery using the battery reaction model and the measured value T of the external temperature. It has been found that the full charge capacity of the secondary battery can be accurately estimated by correcting the full charge capacity of the battery reaction model, and the present invention has been conceived.

即ち、本発明の第1の実施態様は、
電池反応モデルを用いて二次電池の満充電容量及び内部温度を推定する二次電池の状態推定方法であって、
前記二次電池の内部温度の推定値Ts及び外部温度の実測値Tから下式(1)に従って前記二次電池の温度差ΔTを算出し、
That is, the first embodiment of the present invention is:
A state estimation method for a secondary battery that estimates a full charge capacity and an internal temperature of the secondary battery using a battery reaction model,
Calculate the temperature difference ΔT of the secondary battery from the estimated value Ts of the internal temperature of the secondary battery and the measured value T of the external temperature according to the following formula (1):

Figure 2016024149
Figure 2016024149

前記温度差ΔTが予め定められた上限値Tuよりも大きい場合は前記電池反応モデルの満充電容量をより小さい値に補正する、
二次電池の状態推定方法である。
When the temperature difference ΔT is larger than a predetermined upper limit Tu, the full charge capacity of the battery reaction model is corrected to a smaller value.
It is a state estimation method of a secondary battery.

上記のように、本実施態様に係る二次電池の状態推定方法は、電池反応モデルを用いて二次電池の満充電容量及び内部温度を推定する二次電池の状態推定方法である。このような二次電池の状態推定方法において用いられる電池反応モデル及び当該電池反応モデルを用いる二次電池の状態推定方法については、前述したように、例えば、非特許文献1、特許文献1、及び特許文献2等を始めとする従来技術において、様々なタイプのものが提案されている。   As described above, the secondary battery state estimation method according to the present embodiment is a secondary battery state estimation method that estimates the full charge capacity and internal temperature of the secondary battery using the battery reaction model. Regarding the battery reaction model used in such a state estimation method of the secondary battery and the state estimation method of the secondary battery using the battery reaction model, as described above, for example, Non-Patent Document 1, Patent Document 1, and Various types have been proposed in the prior art including Patent Document 2 and the like.

例えば、本実施態様に係る二次電池の状態推定方法を実施する二次電池の状態推定装置は、例えば、二次電池と、検出手段と、電池状態推定手段と、パラメータ推定手段とを備える。二次電池は、例えば、電気化学反応に寄与する反応関与物質を内部に含む活物質を含んでなる正極及び負極、並びにイオン化した前記反応関与物質を前記正極と前記負極との間で伝導するイオン伝導体を備える二次電池である。このような二次電池の具体例としては、例えば、リチウムイオン電池等を挙げることができる。尚、リチウムイオン電池等の二次電池の構成については、当業者に周知であるので、本明細書における詳細な説明は割愛する。   For example, a secondary battery state estimation device that performs the secondary battery state estimation method according to the present embodiment includes, for example, a secondary battery, a detection unit, a battery state estimation unit, and a parameter estimation unit. The secondary battery includes, for example, a positive electrode and a negative electrode that include an active material that includes a reaction-participating substance that contributes to an electrochemical reaction, and ions that conduct the ionized reaction-related substance between the positive electrode and the negative electrode. It is a secondary battery provided with a conductor. Specific examples of such secondary batteries include lithium ion batteries. In addition, since the structure of secondary batteries, such as a lithium ion battery, is well-known to those skilled in the art, detailed description in this specification is omitted.

検出手段は、例えば、二次電池の電池電圧、電池電流、及び外部温度等を検出する。検出手段は、二次電池の電池電圧、電池電流、及び外部温度を測定することができる限り、如何なる構成を有していてもよい。例えば、検出手段は、電圧センサ、電流センサ、及び温度センサを備えていてもよい。   The detection means detects, for example, the battery voltage, battery current, external temperature, and the like of the secondary battery. The detection means may have any configuration as long as the battery voltage, battery current, and external temperature of the secondary battery can be measured. For example, the detection means may include a voltage sensor, a current sensor, and a temperature sensor.

電池状態推定手段は、例えば、電池温度及び電池電圧の検出値に基づいて、電池モデル式に従って、二次電池の満充電容量、充電率SOC、開放電圧OCV、電池電流I、及び内部温度を逐次推定する。パラメータ推定手段は、例えば、電池電流の検出値及び推定値に基づいて、電池電流Iの検出値と推定値との間の差異を表す推定誤差を算出すると共に、SOC及びOCVの何れか一方と推定誤差とに基づいて、電池モデル式に用いられるパラメータ群のうち、二次電池の状態変化に応じて変化する所定のパラメータを推定する。更に、電池状態推定手段は、例えば、パラメータ推定手段による所定のパラメータの推定結果を電池モデル式に反映させることによって正極開放電位及び負極開放電位を補正すると共に、補正された正極開放電位及び負極開放電位に基づいてOCVを推定する。   The battery state estimation means sequentially calculates the full charge capacity, the charge rate SOC, the open circuit voltage OCV, the battery current I, and the internal temperature of the secondary battery according to the battery model formula based on the detected values of the battery temperature and the battery voltage, for example. presume. The parameter estimation means calculates, for example, an estimation error representing a difference between the detected value and the estimated value of the battery current I based on the detected value and the estimated value of the battery current, and either one of the SOC and the OCV. Based on the estimation error, a predetermined parameter that changes in response to a change in the state of the secondary battery is estimated from the parameter group used in the battery model equation. Further, the battery state estimation means corrects the positive electrode open potential and the negative electrode open potential by reflecting the estimation result of the predetermined parameter by the parameter estimation means in the battery model formula, for example, and corrects the corrected positive electrode open potential and negative electrode open. The OCV is estimated based on the potential.

電池状態推定手段は、上記推定処理及び後に詳述する満充電容量の補正処理等に対応する所定のシーケンス及び所定の演算処理を実行するための中央処理装置(CPU:Central Processing Unit)(例えば、マイクロコンピュータ等)、例えば上記所定のシーケンス及び所定の演算処理に対応するプログラム、検出手段からの検出信号に基づく検出値及び上記演算処理の結果等を格納するためのデータ記憶装置(例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)等)、並びに例えば検出手段からの検出信号を受け取ったり上記演算処理の結果を送出したりするためのデータ入出力ポート等を含む構成を挙げることができる。   The battery state estimation means is a central processing unit (CPU: Central Processing Unit) (e.g., CPU) for executing a predetermined sequence and a predetermined calculation process corresponding to the above estimation process and a full charge capacity correction process described in detail later. A microcomputer or the like, for example, a program corresponding to the predetermined sequence and predetermined arithmetic processing, a detection value based on a detection signal from the detecting means, a result of the arithmetic processing, and the like (for example, RAM ( Random Access Memory (ROM), Read Only Memory (ROM), HDD (Hard Disk Drive), etc.) and data input / output ports for receiving detection signals from the detection means and sending out the results of the above arithmetic processing, etc. List the composition including You can.

パラメータ推定手段は、パラメータ推定手段のために個別に設けられた上述したような演算手段から構成されていてもよく、或いは、上記電池状態推定手段、又は本実施態様に係る二次電池の状態推定方法が適用される二次電池を電力源として含む装置及び/又は機構が備える電子制御ユニット(ECU:Electronic Control Unit)等が当該パラメータ推定手段として機能してもよい。更に、電池状態推定手段及びパラメータ推定手段は複数の演算手段及び/又はECUに分散して実装されていてもよい。   The parameter estimation means may be composed of the above-described calculation means provided individually for the parameter estimation means, or the battery state estimation means or the state estimation of the secondary battery according to this embodiment. An electronic control unit (ECU) or the like included in an apparatus and / or mechanism including a secondary battery as a power source to which the method is applied may function as the parameter estimation unit. Furthermore, the battery state estimation unit and the parameter estimation unit may be distributed and implemented in a plurality of calculation units and / or ECUs.

尚、上述した構成は本実施態様に係る二次電池の状態推定方法を実施する二次電池の状態推定装置の構成の一例であって、二次電池の状態推定装置の構成は上述した構成に限定されない。即ち、本実施態様に係る二次電池の状態推定方法を実施する二次電池の状態推定装置は、電池反応モデルを用いて二次電池の内部状態を推定してSOCを推定する二次電池の状態推定装置である限り、特定の構成に限定されない。   The above-described configuration is an example of the configuration of a secondary battery state estimation device that performs the secondary battery state estimation method according to the present embodiment, and the configuration of the secondary battery state estimation device is the above-described configuration. It is not limited. That is, the secondary battery state estimation device that performs the secondary battery state estimation method according to the present embodiment uses the battery reaction model to estimate the internal state of the secondary battery and estimate the SOC. As long as it is a state estimation apparatus, it is not limited to a specific structure.

ところで、前述したように、特定の時点における二次電池のSOCを正確に推定するためには当該二次電池の正確な満充電容量を取得する必要があり、二次電池の満充電容量を正確に推定するためには二次電池の正確な開放電圧(OCV)を取得する必要がある。二次電池の正確なOCVを取得するためには、完全緩和状態にある二次電池の端子間電圧を取得する必要があるが、例えば走行中の電動車両等、二次電池が完全緩和状態にない場合、二次電池の正確なOCVを取得することは困難である。   By the way, as described above, in order to accurately estimate the SOC of a secondary battery at a specific point in time, it is necessary to obtain an accurate full charge capacity of the secondary battery. Therefore, it is necessary to obtain an accurate open-circuit voltage (OCV) of the secondary battery. In order to obtain the accurate OCV of the secondary battery, it is necessary to obtain the voltage between the terminals of the secondary battery in the fully relaxed state. For example, the secondary battery is in the fully relaxed state such as an electric vehicle that is running. If not, it is difficult to obtain an accurate OCV of the secondary battery.

上記のように二次電池の正確なOCVを取得することが困難である場合、電池反応モデルを用いて推定される開放電圧OCVeを用いることが考えられる。しかしながら、電池反応モデルを用いて推定されるOCVeが二次電池の真のOCVから乖離する場合がある。例えば、図2に示されているように、破線の曲線によって表されている正しい開放電圧OCVに基づけば正しい満充電容量Qfが推定されるのに対し、実線の曲線によって表されているように過大に推定された開放電圧OCVeに基づけば過大な満充電容量Qfeが推定される。   When it is difficult to obtain an accurate OCV of the secondary battery as described above, it is conceivable to use an open circuit voltage OCVe estimated using a battery reaction model. However, the OCVe estimated using the battery reaction model may deviate from the true OCV of the secondary battery. For example, as shown in FIG. 2, the correct full charge capacity Qf is estimated based on the correct open-circuit voltage OCV represented by the dashed curve, whereas the solid curve indicates Based on the excessively estimated open circuit voltage OCVe, an excessive full charge capacity Qfe is estimated.

図1を参照しながら前述したように、ある特定の時点におけるSOC(SOC0)からのSOCの変化(ΔSOC)の大きさ(絶対値)は、満充電容量が過大に推定されている場合は過小に、満充電容量が過小に推定されている場合は過大に、それぞれ推定されてしまう。その結果、二次電池の放電によりSOCが減少する状態におけるSOCは、満充電容量が過大に推定されている場合は過大に、満充電容量が過小に推定されている場合は過小に、それぞれ推定されてしまう。一方、二次電池の充電によりSOCが増大する状態におけるSOCは、満充電容量が過大に推定されている場合は過小に、満充電容量が過小に推定されている場合は過大に、それぞれ推定されてしまう。   As described above with reference to FIG. 1, the magnitude (absolute value) of the change in SOC (ΔSOC) from the SOC (SOC0) at a specific time point is too small when the full charge capacity is estimated to be excessive. In addition, when the full charge capacity is estimated to be too small, it is estimated too much. As a result, the SOC in a state where the SOC decreases due to the discharge of the secondary battery is estimated to be excessive when the full charge capacity is estimated to be excessive, and to be excessive when the full charge capacity is estimated to be excessive. Will be. On the other hand, the SOC in a state where the SOC increases due to the charging of the secondary battery is estimated to be too small when the full charge capacity is estimated to be excessive, and to be excessive when the full charge capacity is estimated to be too small. End up.

ところで、例えば特許文献2に記載されているように検出手段によって測定される電池電圧V及び電池電流Iから電池の内部温度を推定する場合、その過程において算出される電池の発熱量は下式(3)に従って算出される。   By the way, when estimating the internal temperature of the battery from the battery voltage V and the battery current I measured by the detecting means as described in Patent Document 2, for example, the calorific value of the battery calculated in the process is expressed by the following formula ( Calculated according to 3).

Figure 2016024149
Figure 2016024149

従って、図3(a)に示されているように、電池反応モデルを用いて推定される開放電圧OCVe(太い実線)が二次電池の真の開放電圧OCVと一致する場合、ΔVe(=OCVe−V)=ΔV(=OCV−V)となる。その結果、開放電圧の推定値OCVeに基づいて算出される発熱量Weと開放電圧の真の値OCVに基づいて算出される発熱量Wとが一致する筈である。換言すれば、電池反応モデルの満充電容量Qfeが二次電池の真の満充電容量Qfと一致する場合、ΔVe=ΔVとなり、二次電池の発熱量の推定値We(=ΔVe×I)と真の値W(=ΔV×I)とが一致し、結果として二次電池の内部温度の推定値Tsと外部温度の実測値Tとの差が想定される範囲(即ち、予め想定される温度分布の最大値以下)に収まる筈である。   Therefore, as shown in FIG. 3A, when the open-circuit voltage OCVe (thick solid line) estimated using the battery reaction model matches the true open-circuit voltage OCV of the secondary battery, ΔVe (= OCVe −V) = ΔV (= OCV−V). As a result, the heat generation amount We calculated based on the open circuit voltage estimated value OCVe and the heat generation amount W calculated based on the open circuit voltage true value OCV should match. In other words, when the full charge capacity Qfe of the battery reaction model matches the true full charge capacity Qf of the secondary battery, ΔVe = ΔV, and the heat generation amount We (= ΔVe × I) of the secondary battery is The true value W (= ΔV × I) matches, and as a result, a range in which a difference between the estimated value Ts of the internal temperature of the secondary battery and the measured value T of the external temperature is assumed (that is, a temperature assumed in advance). It should be within the maximum distribution).

しかしながら、上述したように、電池反応モデルを用いて推定されるOCVeが二次電池の真のOCVから乖離し、電池反応モデルの満充電容量Qfeが二次電池の真の満充電容量Qfから乖離する場合がある。この場合、ΔVe≠ΔVとなり、We≠Wとなるため、二次電池の内部温度の推定値Tsと外部温度の実測値Tとが想定される程度(即ち、実際の温度分布)を超えて乖離する。   However, as described above, the OCVe estimated using the battery reaction model deviates from the true OCV of the secondary battery, and the full charge capacity Qfe of the battery reaction model deviates from the true full charge capacity Qf of the secondary battery. There is a case. In this case, since ΔVe ≠ ΔV and We ≠ W, the estimated value Ts of the internal temperature of the secondary battery and the actually measured value T of the external temperature deviate beyond an assumed level (that is, actual temperature distribution). To do.

例えば、図3(b)に示されているように、推定された開放電圧OCVe(太い実線)が真の開放電圧OCV(点線)よりも過大に推定されている場合、上述したように、満充電容量の推定値Qfeが真の値Qfよりも過大に推定される。この場合は、ΔVe>ΔVとなり、We>Wとなるため、二次電池の内部温度の推定値Tsと外部温度の実測値Tとの差が想定される範囲(即ち、予め想定される温度分布の最大値以下)よりも大きくなる。   For example, as shown in FIG. 3B, when the estimated open circuit voltage OCVe (thick solid line) is estimated to be larger than the true open circuit voltage OCV (dotted line), as described above, The estimated value Qfe of the charge capacity is estimated to be larger than the true value Qf. In this case, since ΔVe> ΔV and We> W, the range in which the difference between the estimated value Ts of the internal temperature of the secondary battery and the measured value T of the external temperature is assumed (that is, the temperature distribution assumed in advance). Less than the maximum value).

上記のように二次電池の内部温度の推定値Tsと外部温度の実測値Tとが想定される程度(即ち、実際の温度分布)を超えて乖離している状態は、満充電容量の推定値Qfeが真の値Qfから乖離していることを意味する。従って、このままの状態で電池反応モデルを用いる二次電池の状態推定を行っても、当該二次電池のSOCを正確に推定することは困難である。その結果、前述したように二次電池の過剰な充放電を抑制して電池性能の劣化を防止したり、二次電池の正確な残存電力量を推定したりすることが困難となる虞がある。   As described above, the state where the estimated value Ts of the internal temperature of the secondary battery and the actually measured value T of the external temperature deviate beyond an assumed level (that is, the actual temperature distribution) is an estimation of the full charge capacity. It means that the value Qfe is deviated from the true value Qf. Therefore, even if the state estimation of the secondary battery using the battery reaction model is performed as it is, it is difficult to accurately estimate the SOC of the secondary battery. As a result, as described above, it is difficult to suppress excessive charge / discharge of the secondary battery to prevent the battery performance from deteriorating or to estimate the accurate remaining power amount of the secondary battery. .

そこで、本実施態様に係る二次電池の状態推定方法においては、二次電池の内部温度の推定値Tsと外部温度の実測値Tとの差に応じて当該電池反応モデルの満充電容量を補正することにより、当該二次電池の満充電容量を正確に推定する。   Therefore, in the state estimation method of the secondary battery according to this embodiment, the full charge capacity of the battery reaction model is corrected according to the difference between the estimated value Ts of the internal temperature of the secondary battery and the measured value T of the external temperature. By doing so, the full charge capacity of the secondary battery is accurately estimated.

具体的には、本実施態様に係る二次電池の状態推定方法においては、上述したように、
前記二次電池の内部温度の推定値Ts及び外部温度の実測値Tから下式(1)に従って前記二次電池の温度差ΔTを算出する。
Specifically, in the secondary battery state estimation method according to the present embodiment, as described above,
A temperature difference ΔT of the secondary battery is calculated from the estimated value Ts of the internal temperature of the secondary battery and the measured value T of the external temperature according to the following equation (1).

Figure 2016024149
Figure 2016024149

ところで、電池反応モデルを用いて推定される二次電池の内部温度の推定値Tsは、例えば、熱拡散方程式を利用して算出することができる。具体的には、時刻t+Δtにおける二次電池の内部温度の推定値Ts(t+Δt)は、時刻tにおける二次電池の内部温度の推定値Ts(t)、外部温度の実測値T(t)、及び発熱量W(t)から、下式(4)に従って算出される。下式中、α及びβは係数である。   By the way, the estimated value Ts of the internal temperature of the secondary battery estimated using the battery reaction model can be calculated using, for example, a thermal diffusion equation. Specifically, the estimated value Ts (t + Δt) of the internal temperature of the secondary battery at the time t + Δt is the estimated value Ts (t) of the internal temperature of the secondary battery at the time t, the measured value T (t) of the external temperature, And the calorific value W (t), it is calculated according to the following equation (4) In the following formula, α and β are coefficients.

Figure 2016024149
Figure 2016024149

上記のようにして算出される二次電池の内部温度の推定値Tsと例えば温度センサ等の検出手段によって測定される外部温度の実測値Tとの差である温度差ΔTは、上記式(1)に従って算出することができる。この温度差ΔTが想定される範囲(即ち、予め想定される温度分布の最大値以下)よりも大きい場合、当該二次電池の満充電容量が過大に推定されていることを意味する。   The temperature difference ΔT, which is the difference between the estimated value Ts of the internal temperature of the secondary battery calculated as described above and the actual measured value T of the external temperature measured by a detecting means such as a temperature sensor, is given by the above formula (1 ). If this temperature difference ΔT is larger than the assumed range (that is, not more than the maximum value of the assumed temperature distribution), it means that the full charge capacity of the secondary battery is excessively estimated.

次に、本実施態様に係る二次電池の状態推定方法においては、上述したように、
前記温度差ΔTが予め定められた上限値Tuよりも大きい場合は前記電池反応モデルの満充電容量をより小さい値に補正する。この上限値Tuは、当該二次電池の内部温度と外部温度との間に「予め想定される温度分布の最大値」に基づいて定められる。
Next, in the secondary battery state estimation method according to the present embodiment, as described above,
When the temperature difference ΔT is larger than a predetermined upper limit value Tu, the full charge capacity of the battery reaction model is corrected to a smaller value. This upper limit value Tu is determined based on the “maximum value of temperature distribution assumed in advance” between the internal temperature and the external temperature of the secondary battery.

具体的には、上述したように、二次電池の外部温度の実測値Tは、例えば温度センサ等の検出手段によって測定される。このように二次電池の表面に配設されている検出手段によって測定される二次電池の外部温度と充放電に伴って発熱する二次電池の内部温度との間には自ずと差(温度分布)が生ずる。このような温度分布は、例えば二次電池の表面及び内部のそれぞれに検出手段が配設された試験用電池を使用する実験、又はシミュレーション等によって求めることができる。このようにして求められた温度分布の最大値に基づいて、上記温度差ΔTの上限値Tuを適宜定めることができる。   Specifically, as described above, the actual measurement value T of the external temperature of the secondary battery is measured by detection means such as a temperature sensor, for example. Thus, there is a difference (temperature distribution) between the external temperature of the secondary battery measured by the detecting means arranged on the surface of the secondary battery and the internal temperature of the secondary battery that generates heat during charging and discharging. ) Occurs. Such a temperature distribution can be obtained, for example, by an experiment using a test battery in which detection means are provided on the surface and inside of the secondary battery, or by simulation. Based on the maximum value of the temperature distribution thus obtained, the upper limit Tu of the temperature difference ΔT can be determined as appropriate.

加えて、上記上限値Tuは、例えば、当該二次電池の用途において要求されるSOCの推定精度、当該二次電池の内部温度の推定値Tsの変動幅、及び当該二次電池の外部温度の検出値Tの変動幅等に応じた許容範囲を加算する等、微調整を適宜行うことができる。   In addition, the upper limit value Tu is, for example, the estimated accuracy of SOC required in the use of the secondary battery, the fluctuation range of the estimated value Ts of the internal temperature of the secondary battery, and the external temperature of the secondary battery. Fine adjustment can be performed as appropriate, for example, by adding an allowable range according to the fluctuation range of the detection value T.

電池反応モデルの満充電容量を補正するための具体的な手法は特に限定されないが、例えば、電池反応モデルの満充電容量に乗算される係数の大きさを増減したり、電池反応モデルの容量維持率に乗算される係数の大きさを増減したりすることにより、電池反応モデルの満充電容量を補正することができる。   The specific method for correcting the full charge capacity of the battery reaction model is not particularly limited. For example, the coefficient multiplied by the full charge capacity of the battery reaction model is increased or decreased, or the capacity of the battery reaction model is maintained. The full charge capacity of the battery reaction model can be corrected by increasing or decreasing the magnitude of the coefficient multiplied by the rate.

尚、本実施態様に係る二次電池の状態推定方法に対応する所定のシーケンス及び所定の演算処理を実行する時間間隔は、本実施態様に係る二次電池の状態推定方法による状態推定に求められる推定精度に応じて適宜調整することができる。例えば、当該時間間隔が短くなるほど温度差ΔTが小さくなり、推定精度が低下する。一方、当該時間間隔が長くなるほど温度差ΔTの算出頻度が低下し、満充電容量の補正頻度が低下する。従って、当該時間間隔の具体的な長さは、例えば、求められる推定精度と満充電容量の補正頻度とのバランスを考慮して定めることが望ましい。   The predetermined sequence corresponding to the secondary battery state estimation method according to the present embodiment and the time interval for executing the predetermined calculation process are obtained by the state estimation by the secondary battery state estimation method according to the present embodiment. It can be appropriately adjusted according to the estimation accuracy. For example, as the time interval becomes shorter, the temperature difference ΔT becomes smaller and the estimation accuracy decreases. On the other hand, as the time interval becomes longer, the calculation frequency of the temperature difference ΔT decreases, and the correction frequency of the full charge capacity decreases. Therefore, it is desirable to determine the specific length of the time interval in consideration of, for example, the balance between the required estimation accuracy and the full charge capacity correction frequency.

ここで、本実施態様に係る二次電池の状態推定方法において用いられる電池反応モデルの満充電容量の補正手順につき、添付図面を参照しながら以下に詳細に説明する。図4は、前述したように、本発明の1つの実施態様に係る二次電池の状態推定方法において用いられる電池反応モデルの満充電容量の補正手順を説明する模式的なグラフである。尚、この例においては、電池反応モデルの容量維持率に乗算される係数の大きさを増減することにより、電池反応モデルの満充電容量を補正する。また、上記係数の初期値を1としている。   Here, the correction procedure of the full charge capacity of the battery reaction model used in the method for estimating the state of the secondary battery according to the present embodiment will be described in detail below with reference to the accompanying drawings. FIG. 4 is a schematic graph illustrating the procedure for correcting the full charge capacity of the battery reaction model used in the secondary battery state estimation method according to one embodiment of the present invention, as described above. In this example, the full charge capacity of the battery reaction model is corrected by increasing or decreasing the coefficient multiplied by the capacity maintenance rate of the battery reaction model. The initial value of the coefficient is 1.

具体的には、図4に示されている例においては、時刻ta以降において、二次電池の内部温度の推定値Tsと外部温度の実測値Tとの差である温度差ΔTが予め定められた上限値Tuよりも大きくなっている。これは、電池反応モデルの満充電容量が、二次電池の真の満充電容量に対して過大に推定されていることを示している。そこで、この場合は、電池反応モデルの容量維持率に乗算される係数の大きさがより小さい値に変更され、電池反応モデルの満充電容量がより小さい値に補正されている。即ち、電池反応モデルの満充電容量が真の値に近付けられる。   Specifically, in the example shown in FIG. 4, a temperature difference ΔT that is a difference between the estimated value Ts of the internal temperature of the secondary battery and the measured value T of the external temperature is predetermined after time ta. It is larger than the upper limit Tu. This indicates that the full charge capacity of the battery reaction model is overestimated with respect to the true full charge capacity of the secondary battery. Therefore, in this case, the coefficient multiplied by the capacity retention rate of the battery reaction model is changed to a smaller value, and the full charge capacity of the battery reaction model is corrected to a smaller value. That is, the full charge capacity of the battery reaction model is brought close to a true value.

上記のようにして電池反応モデルの満充電容量が真の値に近付くと、温度差ΔTが上記閾値(即ち、上限値Tu)以下になる。その結果、電池反応モデルの満充電容量の補正が行われなくなる。尚、電池反応モデルの満充電容量の補正量が過剰とならないように上記係数の設定値を調節することが望ましい。   As described above, when the full charge capacity of the battery reaction model approaches a true value, the temperature difference ΔT becomes equal to or less than the threshold value (that is, the upper limit value Tu). As a result, the full charge capacity of the battery reaction model is not corrected. Note that it is desirable to adjust the set value of the coefficient so that the correction amount of the full charge capacity of the battery reaction model does not become excessive.

上記のように、本実施態様に係る二次電池の状態推定方法によれば、正確なOCVを取得することが困難な状況においても、二次電池の内部温度の推定値Tsと外部温度の実測値Tとの差である温度差ΔTに基づいて電池反応モデルの満充電容量が補正され、二次電池の真の満充電容量に近付けられる。その結果、例えば、二次電池のSOCを正確に推定することができるので、二次電池の過剰な充放電の抑制による電池性能の劣化防止及び/又は二次電池の正確な残存電力量の推定をより確実に行うことができる。   As described above, according to the state estimation method of the secondary battery according to the present embodiment, the estimated value Ts of the internal temperature of the secondary battery and the actual measurement of the external temperature even in a situation where it is difficult to obtain an accurate OCV. The full charge capacity of the battery reaction model is corrected based on the temperature difference ΔT, which is the difference from the value T, and approaches the true full charge capacity of the secondary battery. As a result, for example, since the SOC of the secondary battery can be accurately estimated, the deterioration of the battery performance by suppressing the excessive charge / discharge of the secondary battery and / or the accurate estimation of the remaining electric energy of the secondary battery are possible. Can be performed more reliably.

ところで、温度差ΔTの算出には、上述した式(1)に示されているように、検出手段によって測定される二次電池の外部温度Tが用いられる。また、発熱量の推定値Weの算出には、上述した式(3)に示されているように、検出手段(電圧センサ及び電流センサ)によって測定される二次電池の電池電圧V及び電池電流Iが用いられる。これらの検出手段によって測定される二次電池の外部温度T、電池電圧V、及び電池電流Iの測定値に測定誤差が含まれる場合、これらの測定誤差の累積により温度差ΔTが正確に算出されない虞がある。   By the way, the calculation of the temperature difference ΔT uses the external temperature T of the secondary battery measured by the detection means, as shown in the above-described equation (1). In addition, in calculating the calorific value We, the battery voltage V and battery current of the secondary battery measured by the detection means (voltage sensor and current sensor) as shown in the above-described equation (3). I is used. When measurement errors are included in the measured values of the external temperature T, battery voltage V, and battery current I of the secondary battery measured by these detection means, the temperature difference ΔT cannot be accurately calculated due to the accumulation of these measurement errors. There is a fear.

ここで、二次電池の外部温度T、電池電圧V、及び電池電流Iの各検出手段の測定誤差の累積による満充電容量の補正への影響につき、添付図面を参照しながら、以下に説明する。図5は、前述したように、二次電池の外部温度の実測値T、電池電圧V、及び電池電流Iの検出手段の測定誤差の累積による満充電容量の補正への影響を説明する模式的なグラフである。より具体的には、図5は、温度差ΔTが時間の経過と共に増大する場合を表している。   Here, the influence on the correction of the full charge capacity due to the accumulation of measurement errors of the respective detection means of the external temperature T, the battery voltage V, and the battery current I of the secondary battery will be described with reference to the accompanying drawings. . FIG. 5 is a schematic diagram for explaining the influence on the correction of the full charge capacity due to the accumulation of measurement errors of the measurement values of the means for detecting the external temperature T, the battery voltage V, and the battery current I of the secondary battery as described above. It is a simple graph. More specifically, FIG. 5 shows a case where the temperature difference ΔT increases with time.

図5に示されている点線の曲線は、二次電池の外部温度の実測値T、電池電圧V、及び電池電流Iに測定誤差が影響しない場合における温度差ΔTの時間的な推移を表す。この場合、上述した図4に示されている例と同様に、時刻taにおいて、温度差ΔTが予め定められた上限値Tuよりも大きくなっている。実線の曲線は、二次電池の外部温度の実測値T、電池電圧V、及び電池電流Iに測定誤差が減算的に影響した場合における温度差ΔTの時間的な推移を表す。この場合、上述した式(1)の右辺の第2項の値が小さくなるので、温度差ΔTが過大に算出される。その結果、時刻taよりも早い時刻ta´において、温度差ΔTが予め定められた上限値Tuよりも大きくなっている。逆に、破線の曲線は、二次電池の外部温度の実測値T、電池電圧V、及び電池電流Iに測定誤差が加算的に影響した場合における温度差ΔTの時間的な推移を表す。この場合、上述した式(1)の右辺の第2項の値が大きくなるので、温度差ΔTが過小に算出される。その結果、時刻taを過ぎても、温度差ΔTは予め定められた上限値Tuよりも大きくなっていない。   The dotted curve shown in FIG. 5 represents the temporal transition of the temperature difference ΔT when the measurement error does not affect the measured value T, the battery voltage V, and the battery current I of the external temperature of the secondary battery. In this case, similarly to the example shown in FIG. 4 described above, the temperature difference ΔT is larger than the predetermined upper limit value Tu at time ta. A solid curve represents a temporal transition of the temperature difference ΔT when a measurement error affects the measured value T, the battery voltage V, and the battery current I of the external temperature of the secondary battery in a subtractive manner. In this case, since the value of the second term on the right side of the above-described equation (1) becomes small, the temperature difference ΔT is calculated excessively. As a result, at time ta ′ earlier than time ta, temperature difference ΔT is larger than a predetermined upper limit value Tu. Conversely, the dashed curve represents the temporal transition of the temperature difference ΔT when the measurement error additionally affects the measured value T, the battery voltage V, and the battery current I of the external temperature of the secondary battery. In this case, since the value of the second term on the right side of Equation (1) is increased, the temperature difference ΔT is calculated too small. As a result, even after the time ta, the temperature difference ΔT is not larger than the predetermined upper limit value Tu.

上記のように、二次電池の外部温度の実測値T、電池電圧V、及び電池電流Iの測定誤差の影響により温度差ΔTが正確に算出されなくなると、電池反応モデルの満充電容量が補正されるタイミングが本来のタイミングからずれたり、電池反応モデルの満充電容量が補正されなかったりする虞がある。従って、本発明に係る二次電池の状態推定方法において、不正確な温度差ΔTに基づいて電池反応モデルの満充電容量が誤って補正されることを防止して二次電池の満充電容量を正確に推定するためには、二次電池の外部温度の実測値T、電池電圧V、及び電池電流Iの測定誤差の累積による影響を考慮することが望ましい。   As described above, when the temperature difference ΔT is not accurately calculated due to the measurement error of the measured value T, the battery voltage V, and the battery current I of the external temperature of the secondary battery, the full charge capacity of the battery reaction model is corrected. There is a possibility that the timing to be deviated from the original timing or the full charge capacity of the battery reaction model is not corrected. Therefore, in the method for estimating the state of the secondary battery according to the present invention, the full charge capacity of the secondary battery can be reduced by preventing the full charge capacity of the battery reaction model from being erroneously corrected based on the inaccurate temperature difference ΔT. In order to estimate accurately, it is desirable to consider the influence of accumulation of measurement errors of the measured value T of the external temperature of the secondary battery, the battery voltage V, and the battery current I.

そこで、本発明者は、上記測定誤差による影響の大きさに対応する尺度として、二次電池の外部温度の実測値T、電池電圧V、及び電池電流Iの測定誤差の累積に起因する温度差ΔTの誤差範囲Etを採用した。この誤差範囲Etは、二次電池の外部温度の実測値Tの測定誤差が減算的に作用し且つ電池電圧V及び電池電流Iの測定誤差により発熱量の推定値Weが小さくなった場合における温度差ΔT(図5における実線)と、二次電池の外部温度の実測値Tの測定誤差が加算的に作用し且つ電池電圧V及び電池電流Iの測定誤差により発熱量の推定値Weが大きくなった場合における温度差ΔT(図5における破線)と、の差として定義される。図5において、誤差範囲Etは縦の両矢印によって表されている。この誤差範囲Etが予め定められた閾値を超える場合は、上記のように温度差ΔTが正確に算出されない虞が高い。そこで、この場合は、満充電容量の補正を禁止することにより、不正確な温度差ΔTに基づいて電池反応モデルの満充電容量が誤って補正されることを防止することができる。   Therefore, the present inventor, as a measure corresponding to the magnitude of the influence of the measurement error, the temperature difference caused by the accumulation of the measurement value T of the external temperature of the secondary battery, the battery voltage V, and the measurement error of the battery current I. An error range Et of ΔT was adopted. This error range Et is a temperature when the measurement error of the actual measurement value T of the external temperature of the secondary battery acts in a subtractive manner and the estimated value We of the heat generation amount becomes small due to the measurement error of the battery voltage V and the battery current I. The difference ΔT (solid line in FIG. 5) and the measurement error of the actual measurement value T of the external temperature of the secondary battery act in addition, and the estimated value We of the heat generation amount increases due to the measurement error of the battery voltage V and the battery current I. And a temperature difference ΔT (broken line in FIG. 5). In FIG. 5, the error range Et is represented by a vertical double arrow. When the error range Et exceeds a predetermined threshold value, there is a high possibility that the temperature difference ΔT is not accurately calculated as described above. Therefore, in this case, by prohibiting the correction of the full charge capacity, it is possible to prevent the full charge capacity of the battery reaction model from being erroneously corrected based on the inaccurate temperature difference ΔT.

即ち、本発明の第2の実施態様は、
本発明の前記第1の実施態様に係る二次電池の状態推定方法であって、
前記二次電池の外部温度の実測値T、電池電圧V、及び電池電流Iを測定するそれぞれの検出手段の測定誤差ΔMt、ΔMv、及びΔMiに起因する前記温度差ΔTの誤差範囲Etを下式(5)に従って算出し、
That is, the second embodiment of the present invention is:
A method for estimating a state of a secondary battery according to the first embodiment of the present invention, comprising:
The error range Et of the temperature difference ΔT caused by the measurement errors ΔMt, ΔMv, and ΔMi of the respective detection means for measuring the actual measured value T, the battery voltage V, and the battery current I of the external temperature of the secondary battery is expressed by the following equation: Calculate according to (5),

Figure 2016024149
Figure 2016024149

上式中、Ts′及びTs″はそれぞれ前記測定誤差ΔMtが加算的及び減算的に作用した場合における前記二次電池の内部温度の推定値Tsを表し、W及びWはそれぞれ前記二次電池の発熱量の推定値Weが大きく及び小さくなるように前記ΔMv及びΔMiが作用した場合の前記推定値Weを表し、
前記誤差範囲Etが予め定められた上限値Teよりも大きい場合は満充電容量の補正を禁止する、
二次電池の状態推定方法である。
In the above equation, Ts ′ and Ts ″ represent estimated values Ts of the internal temperature of the secondary battery when the measurement error ΔMt acts additively and subtractively, respectively, and W + and W represent the secondary The estimated value We when the ΔMv and ΔMi act so that the estimated value We of the heat generation amount of the battery is large and small,
When the error range Et is larger than a predetermined upper limit Te, the correction of the full charge capacity is prohibited.
It is a state estimation method of a secondary battery.

上記のように、式(5)の右辺の第1項は、二次電池の外部温度の実測値Tの測定誤差が減算的に作用し且つ電池電圧V及び電池電流Iの測定誤差により発熱量の推定値Weが小さくなった場合に算出される過大な温度差ΔTに対応する(図5における実線)。一方、式(5)の右辺の第2項は、二次電池の外部温度の実測値Tの測定誤差が加算的に作用し且つ電池電圧V及び電池電流Iの測定誤差により発熱量の推定値Weが大きくなった場合に算出される過小な温度差ΔTに対応する(図5における破線)。従って、上記式(5)に従って算出される誤差範囲Etは、二次電池の外部温度の実測値T、電池電圧V、及び電池電流Iを測定するそれぞれの検出手段の測定誤差ΔMt、ΔMv、及びΔMiに起因する温度差ΔTの変動幅に対応すると言うことができる(図5における両矢印)。   As described above, the first term on the right side of the equation (5) indicates that the measurement error of the actual measurement value T of the external temperature of the secondary battery acts as a subtraction, and the amount of heat generated by the measurement error of the battery voltage V and battery current I. This corresponds to an excessive temperature difference ΔT calculated when the estimated value We is small (solid line in FIG. 5). On the other hand, the second term on the right side of Equation (5) is an estimated value of the amount of heat generated by the measurement error of the actual measurement value T of the external temperature of the secondary battery and the measurement error of the battery voltage V and the battery current I. This corresponds to an excessive temperature difference ΔT calculated when We increases (broken line in FIG. 5). Therefore, the error range Et calculated according to the above equation (5) is the measurement error ΔMt, ΔMv of each detection means for measuring the actual measured value T, the battery voltage V, and the battery current I of the external temperature of the secondary battery, and It can be said that it corresponds to the fluctuation range of the temperature difference ΔT caused by ΔMi (double arrow in FIG. 5).

誤差範囲Etが大きいということは、二次電池の外部温度の実測値T、電池電圧V、及び電池電流Iの測定誤差に起因する温度差ΔTの変動幅が大きいことを意味する。つまり、誤差範囲Etが予め定められた閾値よりも大きい場合、正確な温度差ΔTを算出することが困難であり、温度差ΔTに基づいて電池反応モデルの満充電容量を適切に補正することが困難である。従って、本実施態様に係る二次電池の状態推定方法においては、このような場合、満充電容量の補正を禁止する。これにより、不正確な温度差ΔTに基づいて電池反応モデルの満充電容量が誤って補正されることを防止することができる。   The large error range Et means that the fluctuation range of the temperature difference ΔT due to the measurement error of the measured value T, the battery voltage V, and the battery current I of the external temperature of the secondary battery is large. That is, when the error range Et is larger than a predetermined threshold, it is difficult to accurately calculate the temperature difference ΔT, and the full charge capacity of the battery reaction model can be appropriately corrected based on the temperature difference ΔT. Have difficulty. Therefore, in the secondary battery state estimation method according to the present embodiment, in such a case, the correction of the full charge capacity is prohibited. Thereby, it is possible to prevent the full charge capacity of the battery reaction model from being erroneously corrected based on the inaccurate temperature difference ΔT.

尚、測定誤差ΔMt、ΔMv、及びΔMiは、例えば、実験等によって事前に計測された各検出手段(それぞれ、温度センサ、電圧センサ、及び電流センサ)の測定誤差に基づいて適宜定めることができる。測定誤差ΔMt、ΔMv、及びΔMiは、このようにして計測された各検出手段の測定誤差の最大値であってもよく、或いは平均値であってもよい。また、上限値Teについては、上記のようにして定められる測定誤差ΔMt、ΔMv、及びΔMiの大きさに応じて適宜定めることができる。   Note that the measurement errors ΔMt, ΔMv, and ΔMi can be appropriately determined based on the measurement errors of the respective detection means (temperature sensor, voltage sensor, and current sensor, respectively) that are measured in advance by experiments or the like. The measurement errors ΔMt, ΔMv, and ΔMi may be the maximum value of the measurement errors of the respective detection means measured in this way, or may be an average value. Further, the upper limit value Te can be appropriately determined according to the magnitudes of the measurement errors ΔMt, ΔMv, and ΔMi determined as described above.

但し、上限値Teとして過度に大きい値を設定すると、二次電池の外部温度の実測値T、電池電圧V、及び電池電流Iの測定誤差に起因して変動した温度差ΔTに基づいて電池反応モデルの満充電容量が誤って補正される虞が高まる。逆に、上限値Teとして過度に小さい値を設定すると、満充電容量の補正が禁止される頻度が多くなり、本実施態様に係る二次電池の状態推定方法による状態推定の精度向上効果を十分に発揮させることが困難となる虞が高まる。このように、上限値Teは、二次電池の外部温度の実測値T、電池電圧V、及び電池電流Iの測定誤差に起因する状態推定の精度低下と満充電容量の補正の禁止に伴う状態推定の精度低下とを適度にバランスさせることが可能な範囲を例えばモデル実験等によって求めることにより、適宜定めることができる。   However, when an excessively large value is set as the upper limit value Te, the battery reaction is based on the temperature difference ΔT that fluctuates due to the measured value T of the external temperature of the secondary battery, the battery voltage V, and the measurement error of the battery current I. There is an increased risk that the full charge capacity of the model will be erroneously corrected. Conversely, when an excessively small value is set as the upper limit value Te, the correction of the full charge capacity is frequently prohibited, and the effect of improving the accuracy of state estimation by the state estimation method for the secondary battery according to the present embodiment is sufficiently achieved. There is an increased risk that it will be difficult to achieve this. As described above, the upper limit value Te is a state associated with a decrease in accuracy of state estimation caused by measurement errors of the external temperature T of the secondary battery, the battery voltage V, and the battery current I, and the prohibition of the correction of the full charge capacity. For example, a range in which the estimation accuracy can be appropriately balanced can be appropriately determined by obtaining a range in which the estimation accuracy can be balanced appropriately by, for example, a model experiment.

ところで、例えば、並列に接続された複数の単電池によって構成される二次電池においては、図6(a)における点線で囲まれた部分によって示されているように、複数の単電池のうちの何れかの単電池のヒューズが断線して、二次電池全体としての満充電容量が急激に低下する場合がある。また、図6(b)に示されているように、例えば高い負荷又は衝撃等の作用により電池の電極を構成する活物質が欠落して、二次電池の満充電容量が急激に低下する場合もある。   By the way, for example, in a secondary battery constituted by a plurality of single cells connected in parallel, as shown by a portion surrounded by a dotted line in FIG. In some cases, the fuse of any single battery is disconnected, and the full charge capacity of the entire secondary battery is drastically reduced. In addition, as shown in FIG. 6B, when the active material constituting the battery electrode is lost due to, for example, a high load or an impact, the full charge capacity of the secondary battery is drastically reduced. There is also.

上記のように二次電池の満充電容量が急激に低下すると、当該二次電池の充電容量(残存電力量)もまた急激に低下する。従って、上記のような満充電容量の低下に対応して電池反応モデルの満充電容量を補正せずに当該二次電池を使用し続けると、当該二次電池の過剰な充放電による電池性能の劣化を招いたり、二次電池の正確な残存電力量を推定することが困難となったりする虞がある。従って、上記のように二次電池の満充電容量が急激に低下したときには、それに対応して電池反応モデルの容量維持率を急激に低下させることが望ましい。   As described above, when the full charge capacity of the secondary battery rapidly decreases, the charge capacity (remaining power amount) of the secondary battery also decreases rapidly. Therefore, if the secondary battery continues to be used without correcting the full charge capacity of the battery reaction model in response to the decrease in the full charge capacity as described above, the battery performance due to excessive charge / discharge of the secondary battery is reduced. There is a possibility that deterioration may be caused or it may be difficult to estimate an accurate remaining power amount of the secondary battery. Therefore, when the full charge capacity of the secondary battery rapidly decreases as described above, it is desirable to correspondingly decrease the capacity retention rate of the battery reaction model.

尚、二次電池の満充電容量が急激に低下すると、電池電圧の実測値Vもまた急激に低下する。一方、二次電池のOCVの推定値は上記のような二次電池の満充電容量の急激な低下に伴って低下しないので、発熱量が急激に増大し、二次電池の内部温度の推定値Tsと外部温度の実測値Tとの差である温度差ΔTが急激に増大することとなる。このように、二次電池の満充電容量が急激に変化すると、温度差ΔTもまた急激に変化する。従って、温度差ΔTが急激に変化したときに電池反応モデルの容量維持率を急激に変化させることにより、二次電池の過剰な充放電による電池性能の劣化を招いたり、二次電池の正確な残存電力量を推定することが困難となったりする虞を低減することができる。   Note that when the full charge capacity of the secondary battery rapidly decreases, the measured value V of the battery voltage also rapidly decreases. On the other hand, the estimated value of the OCV of the secondary battery does not decrease with the sudden decrease in the full charge capacity of the secondary battery as described above, so the amount of heat generation increases rapidly and the estimated value of the internal temperature of the secondary battery. The temperature difference ΔT, which is the difference between Ts and the actual measured value T of the external temperature, will increase rapidly. Thus, when the full charge capacity of the secondary battery changes abruptly, the temperature difference ΔT also changes abruptly. Therefore, by rapidly changing the capacity retention rate of the battery reaction model when the temperature difference ΔT changes rapidly, the battery performance may be deteriorated due to excessive charging / discharging of the secondary battery, The possibility that it may be difficult to estimate the remaining power amount can be reduced.

即ち、本発明の第3の実施態様は、
本発明の前記第1の実施態様に係る二次電池の状態推定方法であって、
前記温度差ΔTの前回の算出値と今回の算出値との偏差Dtが予め定められた上限値Tkよりも大きい場合は、前記電池反応モデルの容量維持率kを予め定められた1未満の値kfに設定する、
二次電池の状態推定方法である。
That is, the third embodiment of the present invention
A method for estimating a state of a secondary battery according to the first embodiment of the present invention, comprising:
When the deviation Dt between the previous calculated value and the current calculated value of the temperature difference ΔT is larger than a predetermined upper limit value Tk, the capacity retention rate k of the battery reaction model is a value less than a predetermined value of 1 set to kf,
It is a state estimation method of a secondary battery.

上記のように、本実施態様に係る二次電池の状態推定方法において、温度差ΔTの前回の算出値と今回の算出値との偏差Dtが予め定められた上限値Tkよりも大きい場合は、電池反応モデルの容量維持率kを予め定められた1未満の値kfに設定する。例えば、図7の上のグラフに示されているように、温度差ΔTが時刻tcにおいて急激に増大したとき、温度差ΔTの前回の算出値と今回の算出値との偏差Dtが予め定められた上限値Tkよりも大きい場合は、図7の下のグラフに示されているように、電池反応モデルの容量維持率kを予め定められた1未満の値kfに設定する。これにより、二次電池の過剰な充放電による電池性能の劣化を招いたり、二次電池の正確な残存電力量を推定することが困難となったりする虞を低減することができる。   As described above, in the secondary battery state estimation method according to the present embodiment, when the deviation Dt between the previous calculated value of the temperature difference ΔT and the current calculated value is larger than the predetermined upper limit value Tk, The capacity retention rate k of the battery reaction model is set to a predetermined value kf less than 1. For example, as shown in the upper graph of FIG. 7, when the temperature difference ΔT suddenly increases at time tc, a deviation Dt between the previous calculated value and the current calculated value of the temperature difference ΔT is determined in advance. When the value is larger than the upper limit value Tk, the capacity retention rate k of the battery reaction model is set to a value kf less than a predetermined value 1 as shown in the lower graph of FIG. As a result, it is possible to reduce the possibility that battery performance will be deteriorated due to excessive charging / discharging of the secondary battery, and that it is difficult to estimate the accurate remaining power amount of the secondary battery.

尚、二次電池の過剰な充放電による電池性能の劣化を招いたり、二次電池の正確な残存電力量を推定することが困難となったりする虞を低減する観点からは、電池反応モデルの容量維持率kを予め定められた1未満の値kfにできる限り迅速に設定することが望ましい。例えば、容量維持率kの値の値kfへの変更は、徐々に変化させるのではなく、図7の下のグラフに示されているように、不連続に変化させてもよい。   From the viewpoint of reducing the risk of battery performance deterioration due to excessive charging / discharging of the secondary battery or difficulty in estimating the accurate remaining power amount of the secondary battery, the battery reaction model It is desirable to set the capacity maintenance rate k to a predetermined value kf less than 1 as quickly as possible. For example, the change of the value of the capacity maintenance rate k to the value kf may be changed discontinuously as shown in the lower graph of FIG. 7 instead of gradually changing.

上限値Tkは、例えば、二次電池の構成において想定される満充電容量の低下要因及び正常な使用に伴う満充電容量の変動幅等を考慮して、適宜定めることができる。上記低下要因としては、上述したように、例えば、並列に接続された複数の単電池によって構成される二次電池における何れかの単電池のヒューズの断線並びに例えば高い負荷及び衝撃等による電極活物質の欠落等を挙げることができる。また、二次電池の正常な使用に伴う満充電容量の変動幅については、例えば当該二次電池の用途において想定される環境及び使用状況を再現するモデル実験等によって計測又は推定することができる。   The upper limit value Tk can be determined as appropriate in consideration of, for example, a reduction factor of the full charge capacity assumed in the configuration of the secondary battery, a fluctuation range of the full charge capacity accompanying normal use, and the like. As described above, as the reduction factor, as described above, for example, in the secondary battery constituted by a plurality of single cells connected in parallel, the disconnection of the fuse of any single cell and the electrode active material due to, for example, high load and impact Omissions can be mentioned. Further, the fluctuation range of the full charge capacity associated with the normal use of the secondary battery can be measured or estimated by, for example, a model experiment or the like that reproduces the environment and usage situation assumed in the application of the secondary battery.

また、上記偏差が上記上限値Tkよりも大きい場合における容量維持率kの設定値であるkfは、上記のように、予め定められた1未満の値である。このkfの具体的な値は、二次電池の過剰な充放電による電池性能の劣化を招いたり、二次電池の正確な残存電力量を推定することが困難となったりする虞を低減することが可能であるように、十分に小さい値とするべきである。即ち、このkfの具体的な値は、このような意図せぬ望ましくない状況を回避するフェイルセーフ(fail safe)的な設計思想に基づいて定められることが望ましい。   Further, as described above, kf, which is a set value of the capacity maintenance rate k when the deviation is larger than the upper limit value Tk, is a value less than 1 determined in advance. The specific value of kf reduces the possibility that the battery performance will be deteriorated due to excessive charging / discharging of the secondary battery, and that it is difficult to estimate the accurate remaining power amount of the secondary battery. Should be small enough so that is possible. That is, the specific value of kf is preferably determined based on a fail safe design philosophy that avoids such unintended and undesirable situations.

尚、本実施態様に係る二次電池の状態推定方法においては、上記のように、温度差ΔTの前回の算出値と今回の算出値との偏差Dtに基づいて、電池反応モデルの容量維持率kを予め定められた1未満の値kfに設定する。しかしながら、本実施態様は、広義には、二次電池の満充電容量が急激に変化したときに、電池反応モデルの容量維持率kを予め定められた1未満の値kfに設定することにより、二次電池の過剰な充放電による電池性能の劣化を招いたり、二次電池の正確な残存電力量を推定することが困難となったりする虞を低減する。従って、電池反応モデルの容量維持率kを上記のように変更するか否かの判断基準は、上記偏差Dtに限定されない。具体的には、例えば温度差ΔTの時間的な変化率(単位時間当たりの温度差ΔTの変化量)に基づいて、上記のように電池反応モデルの容量維持率kを変更するか否かを判断してもよい。   In the secondary battery state estimation method according to this embodiment, as described above, the capacity retention rate of the battery reaction model is based on the deviation Dt between the previous calculated value and the current calculated value of the temperature difference ΔT. k is set to a predetermined value kf less than 1. However, in a broad sense, this embodiment broadly sets the capacity retention rate k of the battery reaction model to a predetermined value kf less than 1 when the full charge capacity of the secondary battery changes abruptly, This reduces the possibility that battery performance will be deteriorated due to excessive charging / discharging of the secondary battery, and that it is difficult to estimate the accurate remaining power amount of the secondary battery. Therefore, the criterion for determining whether or not to change the capacity retention rate k of the battery reaction model as described above is not limited to the deviation Dt. Specifically, for example, based on the temporal change rate of the temperature difference ΔT (the change amount of the temperature difference ΔT per unit time), whether or not to change the capacity retention rate k of the battery reaction model as described above is determined. You may judge.

ところで、動力源として電動機を備える電動車両に電源として搭載される二次電池には、二次電池の使用期間、電動車両の走行モード等、種々の状況に応じたSOC制御が適用される。例えば、二次電池の過剰な充放電に起因する劣化を抑制することを主目的とする場合は、二次電池のSOCが所定の範囲内に維持されるように制御される。このためには、二次電池の使用に伴うSOCの増減を適切に反映して、その時々のSOCを正確に推定する必要がある。   By the way, the SOC control according to various situations, such as a use period of a secondary battery, the travel mode of an electric vehicle, is applied to the secondary battery mounted as a power supply in the electric vehicle provided with the electric motor as a power source. For example, when the main purpose is to suppress deterioration due to excessive charge / discharge of the secondary battery, the SOC of the secondary battery is controlled to be maintained within a predetermined range. For this purpose, it is necessary to accurately estimate the SOC at that time by appropriately reflecting the increase / decrease in the SOC accompanying the use of the secondary battery.

一方、式(2)を参照しながら前述したように、二次電池のSOCは、ある特定の時点におけるSOC(SOC0)に対して、所定期間Δtにおける電流値の積分値(ΣIΔt)の満充電容量Qfに対する比を反映させることによって算出することができる。従って、ある特定の時点におけるSOC(SOC0)からのSOCの変化(ΔSOC)の大きさ(絶対値)は、満充電容量が過大に推定されている場合は過小に推定されてしまう。この場合、二次電池の使用に伴うSOCの増減が過小に算出され、その時々のSOCを正確に推定することが困難となる。   On the other hand, as described above with reference to Expression (2), the SOC of the secondary battery is a fully charged current value integrated value (ΣIΔt) in a predetermined period Δt with respect to SOC (SOC0) at a specific time point. It can be calculated by reflecting the ratio to the capacity Qf. Therefore, the magnitude (absolute value) of the change in SOC (ΔSOC) from the SOC (SOC0) at a specific time point is estimated to be too small when the full charge capacity is estimated to be excessive. In this case, the increase / decrease in the SOC accompanying the use of the secondary battery is calculated too small, and it is difficult to accurately estimate the SOC at that time.

ところが、本発明に係る二次電池の状態推定方法によれば、二次電池の内部温度の推定値Tsと外部温度の実測値Tとの温度差ΔTに応じて電池反応モデルの満充電容量が補正される。従って、二次電池の使用に伴うSOCの増減が適切に反映され、その時々のSOCが正確に推定される。その結果、二次電池のSOCが所定の範囲内に維持して二次電池の過剰な充放電に起因する劣化を抑制する制御を的確に行うことができる。   However, according to the state estimation method of the secondary battery according to the present invention, the full charge capacity of the battery reaction model depends on the temperature difference ΔT between the estimated value Ts of the internal temperature of the secondary battery and the measured value T of the external temperature. It is corrected. Therefore, the increase / decrease in the SOC accompanying the use of the secondary battery is appropriately reflected, and the SOC at that time is accurately estimated. As a result, the SOC of the secondary battery can be maintained within a predetermined range, and control for suppressing deterioration due to excessive charging / discharging of the secondary battery can be accurately performed.

上記において、二次電池の使用に伴うSOCの増減が過小に算出され、その結果として二次電池の過剰な充放電に起因する劣化の可能性が高まることを防止するためには、満充電容量が過大に推定される可能性をできるだけ低く抑えることが望ましい。即ち、本発明に係る二次電池の状態推定方法により温度差ΔTを所定の上限値Tu以下の範囲に収める制御においても、温度差ΔTをできるだけ小さく維持することが望ましい。   In the above, in order to prevent the increase / decrease in SOC due to the use of the secondary battery from being excessively reduced and as a result, the possibility of deterioration due to excessive charge / discharge of the secondary battery is increased, the full charge capacity It is desirable to keep the possibility of overestimation as low as possible. That is, it is desirable to keep the temperature difference ΔT as small as possible even in the control for keeping the temperature difference ΔT within a predetermined upper limit value Tu or less by the state estimation method of the secondary battery according to the present invention.

具体的には、温度差ΔTが上限値よりも大きい場合において電池反応モデルの満充電容量をより小さい値に補正するときの満充電容量の変化を迅速にする一方で、当該補正後に満充電容量をより大きい値に戻すときの満充電容量の変化は緩慢にすることが望ましい。   Specifically, when the temperature difference ΔT is larger than the upper limit value, the change in the full charge capacity when the full charge capacity of the battery reaction model is corrected to a smaller value is made rapid, while the full charge capacity is corrected after the correction. It is desirable to slow the change in full charge capacity when returning to a larger value.

即ち、本発明の第4の実施態様は、
本発明の前記第1の実施態様に係る二次電池の状態推定方法であって、
前記温度差ΔTが前記上限値Tuよりも大きい場合に、前記電池反応モデルの満充電容量をより小さい値に補正するときの単位時間当たりの満充電容量の変化量の絶対値である容量変化速度Vudを、その後、前記電池反応モデルの満充電容量をより大きい値に戻すときの単位時間当たりの満充電容量の変化量の絶対値である容量変化速度Vuuよりも大きい値に設定する、
二次電池の状態推定方法である。
That is, the fourth embodiment of the present invention is
A method for estimating a state of a secondary battery according to the first embodiment of the present invention, comprising:
When the temperature difference ΔT is larger than the upper limit value Tu, a capacity change rate that is an absolute value of a change amount of the full charge capacity per unit time when the full charge capacity of the battery reaction model is corrected to a smaller value. Vud is then set to a value greater than the capacity change rate Vuu, which is the absolute value of the amount of change in full charge capacity per unit time when the full charge capacity of the battery reaction model is returned to a larger value.
It is a state estimation method of a secondary battery.

ここで、上記につき、添付図面を参照しながら、以下に詳しく説明する。図8は、本実施態様に係る二次電池の状態推定方法が適用される二次電池の劣化を抑制することを主目的とする場合に、温度差ΔTが上限値Tuを超えたときの電池反応モデルの満充電容量の補正様式を表す。   Here, the above will be described in detail below with reference to the accompanying drawings. FIG. 8 shows the battery when the temperature difference ΔT exceeds the upper limit Tu when the main purpose is to suppress the deterioration of the secondary battery to which the secondary battery state estimation method according to this embodiment is applied. Represents the correction mode of the full charge capacity of the reaction model.

図8に示されている例では、時刻taにおいて温度差ΔTが上限値Tuを超える。即ち、電池反応モデルの満充電容量が過大に推定されている。この場合、上述したように、二次電池の使用に伴うSOCの増減が過小に算出され、その時々のSOCを正確に推定することが困難となる。より具体的には、図1を参照しながら前述したように、二次電池のSOCの放電に伴う低下幅及び充電に伴う増加幅が何れも過小に算出される。その結果、モデル上ではSOCが好適な範囲内にあっても、真のSOCは好適な範囲から逸脱して、過剰な充放電に起因する電池の劣化を招く虞がある。そこで、時刻ta以降は、例えば容量維持率をより小さい値へと急激に補正することにより、電池反応モデルの満充電容量をより小さい値へと急激に(速やかに)補正する(容量変化速度Vud)。これにより、上記のように過剰な充放電に起因する電池の劣化を招く可能性を低減することができる。   In the example shown in FIG. 8, the temperature difference ΔT exceeds the upper limit value Tu at time ta. That is, the full charge capacity of the battery reaction model is estimated excessively. In this case, as described above, the increase / decrease in the SOC due to the use of the secondary battery is excessively calculated, and it is difficult to accurately estimate the SOC at that time. More specifically, as described above with reference to FIG. 1, both the decrease width associated with the discharge of the SOC of the secondary battery and the increase width associated with the charge are calculated to be too small. As a result, even if the SOC is within a preferred range on the model, the true SOC may deviate from the preferred range and cause battery deterioration due to excessive charge / discharge. Therefore, after the time ta, for example, the full charge capacity of the battery reaction model is corrected rapidly (rapidly) to a smaller value by rapidly correcting the capacity maintenance rate to a smaller value (capacity change rate Vud). ). Thereby, the possibility of causing deterioration of the battery due to excessive charge / discharge as described above can be reduced.

その後、時刻tbにおいて温度差ΔTの増大が停止する。図8においては、時刻tb以降は、電池反応モデルの満充電容量の更なる低減(補正)は行わず、一定値に維持している。時刻tb以降、温度差ΔTは減少に転じ、時刻tcにおいて温度差ΔTが再び上限値Tuを下回るようになる。即ち、電池反応モデルの満充電容量が適正に推定されるようになる。従って、時刻tc以降は、温度差ΔTが減少し過ぎないように電池反応モデルの満充電容量をより大きい値へと戻す。但し、この段階で電池反応モデルの満充電容量をより大きい値へと戻すことは、再び過大な満充電容量を推定することに繋がる虞がある。そこで、時刻tc以降は、電池反応モデルの満充電容量をより大きい値へと徐々に(緩やかに)補正する(容量変化速度Vuu)。このような電池反応モデルの満充電容量の補正様式(容量変化速度Vud>容量変化速度Vuu)により、上記のような過放電に起因する電池の劣化を招く可能性を低減することができる。   Thereafter, the increase in temperature difference ΔT stops at time tb. In FIG. 8, after time tb, the full charge capacity of the battery reaction model is not further reduced (corrected) and maintained at a constant value. After the time tb, the temperature difference ΔT starts to decrease, and at the time tc, the temperature difference ΔT again falls below the upper limit value Tu. That is, the full charge capacity of the battery reaction model is appropriately estimated. Therefore, after time tc, the full charge capacity of the battery reaction model is returned to a larger value so that the temperature difference ΔT does not decrease excessively. However, returning the full charge capacity of the battery reaction model to a larger value at this stage may lead to estimation of an excessive full charge capacity again. Therefore, after time tc, the full charge capacity of the battery reaction model is gradually (gradually) corrected to a larger value (capacity change speed Vuu). With such a battery charge model correction mode for full charge capacity (capacity change speed Vud> capacity change speed Vuu), the possibility of battery deterioration due to overdischarge as described above can be reduced.

以上、二次電池の過剰な充放電に起因する劣化を抑制することを主目的とするSOC制御について説明してきた。しかしながら、電動車両におけるSOC制御が「できるだけ多くの放電量を確保して、できるだけ長い走行距離を達成すること」を主目的とする場合もあり得る。   As described above, the SOC control whose main purpose is to suppress the deterioration caused by the excessive charge / discharge of the secondary battery has been described. However, there may be a case where the SOC control in the electric vehicle is mainly intended to “ensure as much discharge amount as possible and achieve as long a travel distance as possible”.

この場合も、電池反応モデルの満充電容量を適切に補正してSOCを正確に推定することが望ましいことに変わりはない。しかしながら、できるだけ多くの放電量を確保して、できるだけ長い走行距離を達成する観点からは、放電に伴うSOCの低下幅(ΔSOC)が過大に推定されて、二次電池のSOCが過小に推定される可能性をできるだけ低減することが望ましい。即ち、電池反応モデルの満充電容量を増加する補正は迅速に、電池反応モデルの満充電容量を低減する補正は緩慢に、それぞれ行うことが望ましい。   In this case as well, it is desirable to accurately estimate the SOC by appropriately correcting the full charge capacity of the battery reaction model. However, from the viewpoint of securing as much discharge amount as possible and achieving the longest possible travel distance, the SOC reduction width (ΔSOC) accompanying discharge is excessively estimated and the SOC of the secondary battery is excessively estimated. It is desirable to reduce as much as possible. That is, it is desirable to perform correction for increasing the full charge capacity of the battery reaction model quickly and correction for reducing the full charge capacity of the battery reaction model slowly.

即ち、本発明の第5の実施態様は、
本発明の前記第1の実施態様に係る二次電池の状態推定方法であって、
前記温度差ΔTが前記上限値Tuよりも大きい場合に、前記電池反応モデルの満充電容量をより小さい値に補正するときの単位時間当たりの満充電容量の変化量の絶対値である容量変化速度Vudを、その後、前記電池反応モデルの満充電容量をより大きい値に戻すときの単位時間当たりの満充電容量の変化量の絶対値である容量変化速度Vuuよりも小さい値に設定する、
二次電池の状態推定方法である。
That is, the fifth embodiment of the present invention
A method for estimating a state of a secondary battery according to the first embodiment of the present invention, comprising:
When the temperature difference ΔT is larger than the upper limit value Tu, a capacity change rate that is an absolute value of a change amount of the full charge capacity per unit time when the full charge capacity of the battery reaction model is corrected to a smaller value. Vud is then set to a value smaller than the capacity change rate Vuu, which is the absolute value of the change amount of the full charge capacity per unit time when the full charge capacity of the battery reaction model is returned to a larger value.
It is a state estimation method of a secondary battery.

ここで、上記につき、添付図面を参照しながら、以下に詳しく説明する。図9は、本実施態様に係る二次電池の状態推定方法が適用される二次電池の放電量をできるだけ多く確保して、できるだけ長い走行距離を達成することを主目的とする場合に、温度差ΔTが上限値Tuを超えたときの電池反応モデルの満充電容量の補正様式を表す。尚、容量変化速度Vud及びVuuの定義については、図8と同様である。   Here, the above will be described in detail below with reference to the accompanying drawings. FIG. 9 shows the temperature when the main purpose is to secure as much discharge as possible of the secondary battery to which the state estimation method of the secondary battery according to this embodiment is applied and to achieve the longest possible travel distance. This represents a correction mode of the full charge capacity of the battery reaction model when the difference ΔT exceeds the upper limit Tu. The definition of the capacity change speeds Vud and Vuu is the same as in FIG.

図9に示されている例では、時刻taにおいて温度差ΔTが上限値Tuを超える。即ち、電池反応モデルの満充電容量が過大に推定されている。本実施態様においては、できるだけ多くの放電量を確保して、できるだけ長い走行距離を達成することを主目的とするSOC制御を想定している。従って、二次電池のSOCは放電に伴って低下している状況にある。このとき、上記のように電池反応モデルの満充電容量が過大に推定されていると、前述したようにSOCの低下幅(ΔSOC)が過小に算出され、SOCが過大に推定される。従って、このように過大に推定されたSOCに基づくSOC制御によれば、モデル上ではSOCが好適な範囲内にあっても、真のSOCは好適な範囲の下限を下回り、過放電に起因する電池の劣化を招く虞がある。そのため、電池反応モデルの満充電容量をより小さい値へと補正する必要がある。   In the example shown in FIG. 9, the temperature difference ΔT exceeds the upper limit value Tu at time ta. That is, the full charge capacity of the battery reaction model is estimated excessively. In the present embodiment, the SOC control is mainly intended to secure as much discharge amount as possible and achieve the longest possible travel distance. Therefore, the SOC of the secondary battery is in a state of decreasing with discharge. At this time, if the full charge capacity of the battery reaction model is estimated to be excessive as described above, the SOC decrease width (ΔSOC) is calculated to be excessively small as described above, and the SOC is excessively estimated. Therefore, according to the SOC control based on the excessively estimated SOC as described above, even if the SOC is within a preferable range on the model, the true SOC is below the lower limit of the preferable range and is caused by overdischarge. There is a risk of battery deterioration. Therefore, it is necessary to correct the full charge capacity of the battery reaction model to a smaller value.

しかしながら、この補正を急激に(速やかに)行うと、モデル上のSOCが過小に推定され、二次電池の放電が過度に制限されて、例えば電動車両の走行距離の確保が困難となる虞がある。そこで、時刻ta以降は、例えば容量維持率をより小さい値へと徐々に補正することにより、電池反応モデルの満充電容量をより小さい値へと徐々に(緩やかに)補正する(容量変化速度Vud)。これにより、上記のように二次電池の放電が過度に制限される可能性を低減することができる。   However, if this correction is performed rapidly (promptly), the SOC on the model is presumed to be too small, and the discharge of the secondary battery is excessively limited. For example, it may be difficult to ensure the travel distance of the electric vehicle. is there. Therefore, after time ta, for example, the full charge capacity of the battery reaction model is gradually (gradually) corrected to a smaller value by gradually correcting the capacity maintenance ratio to a smaller value (capacity change speed Vud). ). Thereby, possibility that discharge of a secondary battery will be restrict | limited excessively as mentioned above can be reduced.

その後、時刻tbにおいて温度差ΔTの増大が停止する。図9においては、時刻tb以降は、電池反応モデルの満充電容量の更なる低減(補正)は行わず、一定値に維持している。時刻tb以降、温度差ΔTは減少に転じ、時刻tcにおいて温度差ΔTが再び上限値Tuを下回るようになる。即ち、電池反応モデルの満充電容量が適正に推定されるようになる。従って、時刻tc以降は、温度差ΔTが減少し過ぎないように電池反応モデルの満充電容量をより大きい値へと戻す。この際、できるだけ多くの放電量を確保して、できるだけ長い走行距離を達成する観点からは、満充電容量をより大きい値へと迅速に戻すことが望ましい。そこで、時刻tc以降は、電池反応モデルの満充電容量をより大きい値へと急激に(速やかに)補正する(容量変化速度Vuu)。このような電池反応モデルの満充電容量の補正様式(容量変化速度Vud<容量変化速度Vuu)により、できるだけ多くの放電量を確保して、できるだけ長い走行距離を達成することができる。   Thereafter, the increase in temperature difference ΔT stops at time tb. In FIG. 9, after time tb, the full charge capacity of the battery reaction model is not further reduced (corrected) and maintained at a constant value. After the time tb, the temperature difference ΔT starts to decrease, and at the time tc, the temperature difference ΔT again falls below the upper limit value Tu. That is, the full charge capacity of the battery reaction model is appropriately estimated. Therefore, after time tc, the full charge capacity of the battery reaction model is returned to a larger value so that the temperature difference ΔT does not decrease excessively. At this time, it is desirable to quickly return the full charge capacity to a larger value from the viewpoint of securing as much discharge amount as possible and achieving the longest possible travel distance. Therefore, after time tc, the full charge capacity of the battery reaction model is corrected rapidly (rapidly) to a larger value (capacity change speed Vuu). With such a battery charge model full charge capacity correction mode (capacity change speed Vud <capacity change speed Vuu), it is possible to secure as much discharge as possible and achieve as long a travel distance as possible.

以上、本発明を説明することを目的として、特定の構成を有する幾つかの実施態様について説明してきたが、本発明の範囲は、これらの例示的な実施態様に限定されるものではなく、特許請求の範囲及び明細書に記載された事項の範囲内で、適宜修正を加えることができることは言うまでも無い。   Although several embodiments having specific configurations have been described above for the purpose of illustrating the present invention, the scope of the present invention is not limited to these exemplary embodiments, and patents Needless to say, modifications can be made as appropriate within the scope of the claims and the description of the specification.

Claims (1)

電池反応モデルを用いて二次電池の満充電容量及び内部温度を推定する二次電池の状態推定方法であって、
前記二次電池の内部温度の推定値Ts及び外部温度の実測値Tから下式(1)に従って前記二次電池の温度差ΔTを算出し、
Figure 2016024149
前記温度差ΔTが予め定められた上限値Tuよりも大きい場合は前記電池反応モデルの満充電容量をより小さい値に補正する、
二次電池の状態推定方法。
A state estimation method for a secondary battery that estimates a full charge capacity and an internal temperature of the secondary battery using a battery reaction model,
Calculate the temperature difference ΔT of the secondary battery from the estimated value Ts of the internal temperature of the secondary battery and the measured value T of the external temperature according to the following formula (1):
Figure 2016024149
When the temperature difference ΔT is larger than a predetermined upper limit Tu, the full charge capacity of the battery reaction model is corrected to a smaller value.
Secondary battery state estimation method.
JP2014150462A 2014-07-24 2014-07-24 Method of estimating state of secondary battery Pending JP2016024149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014150462A JP2016024149A (en) 2014-07-24 2014-07-24 Method of estimating state of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014150462A JP2016024149A (en) 2014-07-24 2014-07-24 Method of estimating state of secondary battery

Publications (1)

Publication Number Publication Date
JP2016024149A true JP2016024149A (en) 2016-02-08

Family

ID=55270998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014150462A Pending JP2016024149A (en) 2014-07-24 2014-07-24 Method of estimating state of secondary battery

Country Status (1)

Country Link
JP (1) JP2016024149A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016038658A1 (en) * 2014-09-08 2017-04-27 株式会社東芝 Battery pack, control circuit, and control method
CN110208703A (en) * 2019-04-24 2019-09-06 南京航空航天大学 The method that compound equivalent-circuit model based on temperature adjustmemt estimates state-of-charge
CN112994136A (en) * 2019-12-18 2021-06-18 中移物联网有限公司 Temperature control method and device
EP4119963A4 (en) * 2020-12-28 2023-11-22 LG Energy Solution, Ltd. Secondary battery diagnosis device and method
EP4119962A4 (en) * 2020-12-28 2023-11-29 LG Energy Solution, Ltd. Secondary battery diagnosis apparatus and method
JP7485566B2 (en) 2020-08-12 2024-05-16 日立グローバルライフソリューションズ株式会社 BATTERY STATE ESTIMATION DEVICE, BATTERY STATE ESTIMATION METHOD, AND PROGRAM

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016038658A1 (en) * 2014-09-08 2017-04-27 株式会社東芝 Battery pack, control circuit, and control method
CN110208703A (en) * 2019-04-24 2019-09-06 南京航空航天大学 The method that compound equivalent-circuit model based on temperature adjustmemt estimates state-of-charge
CN112994136A (en) * 2019-12-18 2021-06-18 中移物联网有限公司 Temperature control method and device
CN112994136B (en) * 2019-12-18 2022-06-10 中移物联网有限公司 Temperature control method and device
JP7485566B2 (en) 2020-08-12 2024-05-16 日立グローバルライフソリューションズ株式会社 BATTERY STATE ESTIMATION DEVICE, BATTERY STATE ESTIMATION METHOD, AND PROGRAM
EP4119963A4 (en) * 2020-12-28 2023-11-22 LG Energy Solution, Ltd. Secondary battery diagnosis device and method
EP4119962A4 (en) * 2020-12-28 2023-11-29 LG Energy Solution, Ltd. Secondary battery diagnosis apparatus and method
US12066496B2 (en) 2020-12-28 2024-08-20 Lg Energy Solution, Ltd. Secondary battery diagnosing apparatus and method
US12085623B2 (en) 2020-12-28 2024-09-10 Lg Energy Solution, Ltd. Secondary battery diagnosing apparatus and method

Similar Documents

Publication Publication Date Title
JP2016024149A (en) Method of estimating state of secondary battery
US9187007B2 (en) Online battery capacity estimation
JP6164503B2 (en) Secondary battery internal resistance estimation method and output control method
JP5716828B2 (en) Secondary battery degradation state estimation device and degradation state estimation method
US10254346B2 (en) SOC estimation device for secondary battery
JP5282789B2 (en) Battery capacity detection device for lithium ion secondary battery
US8004243B2 (en) Battery capacity estimating method and apparatus
JP6371415B2 (en) Method for determining the reliability of degradation state parameters
JP5036662B2 (en) Secondary battery monitoring device and secondary battery system
CN111796187B (en) Device and method for obtaining precipitation of metal lithium of secondary battery
US10261136B2 (en) Battery degradation degree estimation device and battery degradation degree estimation method
US20170153292A1 (en) Monitoring And Control Of Electrochemical Cell Degradation Via Strain Based Battery Testing
KR101983392B1 (en) Apparatus and Method for estimating the battery SOC
KR101809838B1 (en) Deterioration degree calculating method, control method, and control device for lithium ion secondary battery
JP5929778B2 (en) CHARGE RATE ESTIMATION DEVICE AND CHARGE RATE ESTIMATION METHOD
US11095130B2 (en) Power storage apparatus for estimating an open-circuit voltage
KR20140082750A (en) System and method for battery monitoring
JP2014153353A (en) Battery management system and driving method thereof
JP2009236919A (en) Method for estimating charge amount of motor vehicle battery
JPWO2013128811A1 (en) Battery pack and battery pack energy calculation method
EP3379277B1 (en) Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
KR20160092719A (en) Apparatus and Method for estimating state of battery
KR20170051008A (en) Method and apparatus for estimating an initial condition of battery
WO2019131740A1 (en) Rechargeable battery temperature estimation device and rechargeable battery temperature estimation method
JP4494454B2 (en) In-vehicle secondary battery internal state detection device