JP2016023444A - Vibration control structure for bridge, and setting method for the same - Google Patents
Vibration control structure for bridge, and setting method for the same Download PDFInfo
- Publication number
- JP2016023444A JP2016023444A JP2014146975A JP2014146975A JP2016023444A JP 2016023444 A JP2016023444 A JP 2016023444A JP 2014146975 A JP2014146975 A JP 2014146975A JP 2014146975 A JP2014146975 A JP 2014146975A JP 2016023444 A JP2016023444 A JP 2016023444A
- Authority
- JP
- Japan
- Prior art keywords
- bridge
- damping
- damper
- vibration
- vibration control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Bridges Or Land Bridges (AREA)
Abstract
Description
本発明は、橋梁の制振構造及び橋梁の制振構造の設定方法に関する。 The present invention relates to a bridge damping structure and a bridge damping structure setting method.
近年、橋梁技術の進歩に伴い、振動、騒音の減少、走行性の向上に有効な多径間連続桁橋が数多く設計、施工されている。また、橋梁規模の大型化に伴って、上部構造(桁、床版などの上部工)の地震時慣性力を下部構造(橋脚、橋台などの下部工)に分配する構造が多く採用されている。例えば、下部構造と上部構造の間の支承部にゴム支承を用い、このゴム支承の水平剛性(せん断剛性)を調整することにより、下部構造に作用する地震時慣性力を任意に調整、配分できるようにした構造が多く採用されている。 In recent years, with the advancement of bridge technology, many multi-span continuous girder bridges that are effective in reducing vibration and noise and improving running performance have been designed and constructed. In addition, with the increase in the scale of the bridge, many structures that distribute the inertial force of the superstructure (superstructure such as girders and floor slabs) to the substructure (understructure such as piers and abutments) are often used. . For example, by using a rubber bearing for the bearing between the lower structure and the upper structure, and adjusting the horizontal rigidity (shear rigidity) of this rubber bearing, the inertial force acting on the lower structure can be adjusted and distributed arbitrarily. Many such structures are adopted.
一方、ゴム支承は、従来のピン支承よりはるかに水平剛性が小さく変形能力が大きいが、LRB(鉛プラグ入り積層ゴム)や高減衰ゴム支承のような免震装置と比較すると減衰が数分の1程度しかなく変形能力も小さい。このため、設計時に想定された地震時慣性力を上回る過大な地震力が作用すると、支承部や下部構造に損傷が生じるおそれがある。特に、阪神大震災や東日本大震災を受け、設計用地震動が見直されて入力地震力が増大しており、これに伴い、長周期地震動への対応など既存インフラの耐震性向上技術の開発が急務とされている。 On the other hand, rubber bearings have much lower horizontal rigidity and larger deformation capacity than conventional pin bearings, but the damping is a few minutes compared to seismic isolation devices such as LRB (lead plug laminated rubber) and high damping rubber bearings. There is only about 1 and the deformation capability is small. For this reason, if an excessive seismic force exceeding the inertial force at the time of earthquake assumed at the time of design acts, there is a possibility that a bearing part and a substructure will be damaged. In particular, due to the Great Hanshin Earthquake and the Great East Japan Earthquake, design seismic ground motion has been reviewed and the input seismic force has increased, and as a result, there is an urgent need to develop technology for improving the earthquake resistance of existing infrastructure such as long-period ground motion. ing.
そして、従来建物などに適用されてきた免震技術や制振技術を橋梁の耐震性能を向上させる技術手法として採用することが提案、検討されている(例えば、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5参照)。
Then, it has been proposed and studied to adopt seismic isolation technology and vibration control technology that have been applied to buildings and the like as a technical method for improving the seismic performance of bridges (for example,
まず、免震構造は、固有周期を長周期化することで免震対象の構造物の応答が小さくなる場合に有効である。これに対し、橋梁の免震化においては、橋梁の変形を抑えることが必要であり、建築用と比較してせん断剛性Gが3〜4倍程度の大きな積層ゴム支承を使用することになる。このため、固有周期が2秒程度となり、効果的に長周期化を図ることができず、特に地盤条件が悪い場合や長周期地震動の対応が求められる場合には、十分な免震効果が発揮されにくく、その適用が困難になる。さらに、既存橋梁を免震化する場合には、高コスト、施工時に橋梁を利用できなくなるなどの課題もある。 First, the seismic isolation structure is effective when the response of the structure to be isolated is reduced by increasing the natural period. On the other hand, in the isolation of a bridge, it is necessary to suppress the deformation of the bridge, and a large laminated rubber bearing having a shear rigidity G of about 3 to 4 times that for construction is used. For this reason, the natural period is about 2 seconds, and it is not possible to effectively lengthen the period. Especially when the ground conditions are poor or long-period ground motion is required, a sufficient seismic isolation effect is exhibited. It is hard to be applied and its application becomes difficult. Furthermore, when existing bridges are to be seismically isolated, there are problems such as high costs and the inability to use the bridges during construction.
一方、制振構造は、橋梁の下部構造と上部構造の間に制振ダンパーを追加設置し、減衰性能を付与することにより、比較的容易に且つ低コストで応答を低減することができる。橋梁の耐震性能を向上させることができる。
しかしながら、地震時に下部構造が変形することによって制振ダンパーの効きが悪くなる問題があり、逆に、ダンパー性能を増大して支承部の変形を抑制すると下部構造のせん断力や上部構造の加速度が大幅に増加してしまうという不都合が生じる。
On the other hand, the damping structure can reduce the response relatively easily and at low cost by additionally installing a damping damper between the lower structure and the upper structure of the bridge to provide damping performance. The seismic performance of the bridge can be improved.
However, there is a problem that the effect of the damping damper becomes worse due to the deformation of the lower structure during an earthquake. Conversely, if the damper performance is increased to suppress the deformation of the bearing part, the shearing force of the lower structure and the acceleration of the upper structure are reduced. There is a disadvantage that it increases significantly.
本発明は、上記事情に鑑み、制振によって確実且つ効果的に橋梁の耐震性能を向上させることを可能にする橋梁の制振構造及び橋梁の制振構造の設定方法を提供することを目的とする。 In view of the above circumstances, the present invention has an object to provide a bridge damping structure and a method for setting the bridge damping structure that can reliably and effectively improve the earthquake resistance performance of the bridge by damping. To do.
上記の目的を達するために、この発明は以下の手段を提供している。 In order to achieve the above object, the present invention provides the following means.
本発明の橋梁の制振構造は、一端側を上部構造に接続し、他端側を下部構造に接続して、支承と並列配置されるように制振ダンパーを設置して構成されるとともに、前記制振ダンパーとして粘性減衰系ダンパーと慣性質量ダンパーが併用されていることを特徴とする。 The bridge damping structure of the present invention is configured by connecting one end side to the upper structure and connecting the other end side to the lower structure and installing a damping damper so as to be arranged in parallel with the bearing. A viscous damping damper and an inertial mass damper are used in combination as the damping damper.
本発明の橋梁の制振構造の設定方法は、上記の橋梁の制振構造の最適な諸元を設定する方法であって、前記慣性質量ダンパーの慣性質量Ψdと減衰係数cdを下記の式(1)と式(2)で設定し、且つ、予め橋脚頂部の質量(橋脚が複数の場合はその総合計)をm1 /橋桁質量(多径間の場合は一体化された橋桁の総重量)m2をパラメータとしてΨd/m2と橋脚部の総水平剛性k1/支承の総水平剛性k2の関係、hdとk1/k2の関係を求めておき、橋梁のm1 /m2およびk1/k2から最適なΨdとhdを設定し最適なcdを得ることを特徴とする。
なお、最適諸元とは周波数伝達関数でm2(桁部)の加速度応答倍率のピーク値を最小化するようなΨd、cdの値であり、橋梁の構造諸元(m1, m2, k1, k2)から一義的に定められる。具体的には、橋梁の構造諸元からm1/m2とk1/k2を計算し、(1)式や図を用いて最適諸元となるΨdやΨd/m2とhdを求め、(2)式からcdを求める。
Setting of the damping of the bridge of the present invention is a method for setting an optimum specifications of the damping of the bridge, the inertial mass [psi d and the damping coefficient c d of the inertial mass damper below Set by Equation (1) and Equation (2), and the mass of the bridge pier top (the total sum of the piers when there are multiple piers) is m 1 / mass of the bridge girder (in the case of multiple spans) total weight) m 2 and Ψ d / m 2 and the relationship of the total horizontal stiffness k 2 of the total horizontal stiffness k 1 / support piers section as a parameter, to previously obtain a relation h d and k 1 / k 2, the bridges characterized in that m 1 / m 2 and k 1 / k to set the optimum [psi d and h d 2 optimal c d.
Note that the optimum specification is the value of such [psi d, c d to minimize the peak value of the acceleration response magnification m 2 (girder) in the frequency transfer function, bridges structural specifications (m 1, m 2 , k 1 , k 2 ). Specifically, m 1 / m 2 and k 1 / k 2 are calculated from the structural specifications of the bridge, and Ψ d and Ψ d / m 2 and h that are the optimum specifications are calculated using the formula (1) and the figure. seek d, seek c d from equation (2).
本発明の橋梁の制振構造においては、支承部と並列に制振装置を設置するだけで支承部の水平変位を抑制できるとともに、下部工(橋脚部)に作用する力(せん断力、モーメント)をも低減でき、基礎に作用する地震力も低減できる。 In the bridge vibration control structure of the present invention, the horizontal displacement of the support portion can be suppressed only by installing a vibration control device in parallel with the support portion, and the force (shearing force, moment) acting on the substructure (bridge pier) The seismic force acting on the foundation can also be reduced.
これにより、既存橋脚部や杭の耐力が小さく、制振しない場合に大きな損傷を生じていた部位における応答が制振により大幅に低減され、損傷を防止または軽減することができる。特に、杭のように改修工事でも補強することが困難な部材の耐力を増大させることなく耐震性能を向上させることができる。すなわち、耐震余裕度を向上することができる。 Thereby, the response in the site | part which had produced the big damage when the existing bridge pier part and the pile are low in proof and is not damped is greatly reduced by damping, and damage can be prevented or reduced. In particular, the seismic performance can be improved without increasing the proof stress of a member that is difficult to reinforce even in renovation work such as a pile. That is, the seismic margin can be improved.
以下、図1から図14を参照し、本発明の一実施形態に係る橋梁の制振構造及び橋梁の制振構造の設定方法について説明する。 A bridge damping structure and a bridge damping structure setting method according to an embodiment of the present invention will be described below with reference to FIGS.
本実施形態の橋梁の制振構造Aは、図1に示すように、例えば多径間連続桁形式の高架橋などの橋梁の制振構造であり、橋梁1の下部構造3と上部構造2の間に制振ダンパー(制振機構)B1、B2を設置して構成されている。
As shown in FIG. 1, the bridge damping structure A of the present embodiment is a bridge damping structure such as a multi-girder continuous girder type viaduct, between the
さらに、この橋梁の制振構造Aは、制振ダンパーB1、B2を支承4に並列に配して構成されている。また、本実施形態では、橋桁(上部構造2)の連続部下の橋脚部(下部構造3)を対象とするため、橋脚部を挟んで橋軸O1方向の一方の側の制振ダンパーとしてオイルダンパー等の粘性減衰系ダンパーB1が設けられ、他方の側の制振ダンパーとして慣性質量ダンパーB2が適用されている。
なお、本実施形態のような場合に橋脚部を挟んで一方の側と他方の側の両制振ダンパーB1、B2をオイルダンパー等の粘性減衰系ダンパーとしてもよい。
Further, the bridge damping structure A is configured by arranging
In the case of the present embodiment, both damping dampers B1 and B2 on one side and the other side across the bridge pier may be viscous damping dampers such as oil dampers.
ここで、本実施形態の他方の側に設けられる制振ダンパーである慣性質量ダンパーB2の一例を図2に示す。 Here, FIG. 2 shows an example of an inertia mass damper B2 that is a vibration damper provided on the other side of the present embodiment.
この慣性質量ダンパーB2は、中心軸線O2を慣性質量ダンパーB2の軸線O2と同軸上に配して設けられたボールねじ10と、ボールねじ10に螺着して配設されたボールナット11と、ボールナット11に取り付けられ、ボールナット11の回転に従動して回転する回転錘12とを備えて構成されている。
The inertia mass damper B2 includes a
ボールねじ10は、その一端10aに、橋梁1の上部構造2又は下部構造3に接続するためのボールジョイントやクレビスなどの連結部材13が取り付けられている。
A
また、ボールねじ10に螺着したボールナット11は、軸受け14に支持されている。軸受け14は、軸線O2周りに回転不能に且つ軸線O2方向に移動不能に固設される円環状の外輪14aと、外輪14aの内孔内に配されて軸線O2周りに回転可能に支持された円環状の内輪14bとを備えて形成されている。そして、ボールねじ10が軸受け14の内輪14bの中心孔に挿通して配設されるとともに、ボールナット11が軸受け14の内輪14bに固設されている。これにより、ボールナット11は、軸線O2周りに回転可能に、且つ軸線O2方向に移動不能に配設されている。
A
さらに、ボールナット11に回転錘12が一体に固定して設けられている。回転錘12は例えば略円筒状に形成され、ボールねじ10を内部に挿通し、ボールねじ10と互いの軸線O2を同軸上に配した状態でボールナット11に固着して配設されている。
Further, a rotating
また、慣性質量ダンパーB2の他端側、すなわちボールねじ10の他端10b側には、円筒状に形成された筒体15が設けられている。
この筒体15は、所定長さの高軸剛性かつ高曲げ剛性の中空円筒体であって、その他端(図中左側の端部)15aに内部を閉塞させるように円板状の接続板17が固着され、この接続板17に、慣性質量ダンパーB2の他端を、橋梁1の下部構造3又は上部構造2に接続するためのボールジョイントやクレビスなどの連結部材18が取り付けられている。また、筒体15は、その一端側(図中右側の端部)15bが軸受け14に固着され、ボールねじ10の他端10b側が内部に挿入されている。
A
This
そして、上記構成からなる慣性質量ダンパーB2においては、地震などが発生し、橋梁1に振動エネルギーが作用して下部構造3と上部構造2に相対的な変位が生じると(入力されると)、この変位差に応じてボールねじ10が軸線O2方向に進退し、軸受け14の内輪14bに支持されたボールナット11が回転するとともに回転錘12が回転する。なお、このとき、ボールねじ10は、軸線O2方向に進退するとともに筒体15の内孔に挿入・出する。
これにより、回転錘12の実際の質量の数千倍もの慣性質量効果が得られ、オイルダンパーなどの従来の制振装置を設置した場合と比較し、応答変位が大幅に低減することになる。
In the inertial mass damper B2 having the above configuration, when an earthquake or the like occurs and vibration energy acts on the
As a result, an inertial mass effect several thousand times as large as the actual mass of the
なお、慣性質量ダンパーB2は、両端に作用する相対変位で錘12を回転させ、錘質量の数千倍もの大きな慣性質量効果を得るものであるため、作用する相対加速度に比例した反力が得られる。このため、橋梁1の上部構造2の温度による伸縮(低速)にはほとんど反力を生じさせずに追従することになる。
The inertial mass damper B2 rotates the
そして、本実施形態の制振構造Aは、このような慣性質量ダンパーB2とオイルダンパーB1が、図1(a)及び図3に示すように橋脚部を挟んで一方の側と他方の側にそれぞれ設けられ、橋梁1の下部構造(橋脚頂部など)3と上部構造(橋桁など)2とに接続し、支承4に対して並列配置した形で設置される。この橋梁の制振構造Aは、慣性質量ダンパーB2の慣性質量Ψd、オイルダンパーB1の粘性減衰や慣性質量ダンパーB2の内部減衰を合計して減衰係数cdとし、図1(b)のようにモデル化することができる。また、本実施形態の制振構造Aでは、各諸元を橋梁1の1次固有振動数近傍における周波数伝達関数の応答倍率のピーク値が最小となるように設定する。
In the vibration damping structure A of the present embodiment, the inertia mass damper B2 and the oil damper B1 are arranged on one side and the other side of the bridge pier as shown in FIGS. They are respectively provided, connected to a lower structure (bridge pier top portion, etc.) 3 and an upper structure (bridge girder, etc.) 3 of the
ここで、本実施形態の橋梁の制振構造Aの設定方法においては、橋桁質量(多径間の場合は一体化された橋桁の総重量)をm2、橋脚頂部の質量(橋脚が複数の場合はその総合計)をm1 、支承4の総水平剛性をk2、橋脚部の総水平剛性をk1とし、慣性質量ダンパーB2の慣性質量Ψdと減衰係数cdを次の式(3)、式(4)で設定する。
なお、下部構造3となる橋脚部の構造減衰を1次固有振動数に対して5%とし、支承部4の減衰については無視する。
Here, in the setting method of the bridge damping structure A of the present embodiment, the bridge girder mass (total weight of the integrated bridge girder in the case of multiple spans) is m 2 , and the mass of the bridge pier top portion (a plurality of piers are plural). m 1 the total sum) in the case, the total horizontal stiffness of the support 4 k 2, the total horizontal stiffness of the bridge leg portions and k 1, the inertial mass [psi d and the damping coefficient c d the following equation of the inertial mass damper B2 ( 3) Set by equation (4).
In addition, the structural damping of the pier part which becomes the
また、本実施形態橋梁の制振構造Aの設定方法では、予め、図4、図5に示すように、m1 /m2をパラメータとしてΨd/m2とk1/k2の関係、hdとk1/k2の関係を求めておき、この図4、図5を用いて諸元を設定する。
すなわち、橋梁の構造諸元としてm1/m2、k1/k2を設定し、式(3)または図4からΨd、図5からhdを求め、式(4)からcdを求めることで最適な諸元を得る。
Moreover, in the setting method of the vibration damping structure A of the present embodiment, as shown in FIG. 4 and FIG. 5, the relationship between Ψ d / m 2 and k 1 / k 2 with m 1 / m 2 as a parameter, The relationship between hd and k 1 / k 2 is obtained, and specifications are set using FIG. 4 and FIG.
That is, set the m 1 / m 2, k 1 /
これらオイルダンパー等の粘性減衰系ダンパーB1と慣性質量ダンパーB2は支承4の剛性k2と並列に配置する。また、これらの値は一体化した橋桁部分にとりつく諸元の合計値である。
そして、ダンパー諸元は小さすぎると応答低減効果がなく、大きすぎると支承剛性を高めた(ピン支承にした)のと同様で変形は抑制できるが応答低減効果は得られなくなる。これを考慮し、本実施形態では上記のような最適諸元を設定している。
Viscous damping damper B1 and inertial mass damper B2 of oil damper or the like is arranged in parallel with the rigidity k 2 of the
If the damper specifications are too small, there is no response reduction effect. If the damper specifications are too large, deformation can be suppressed as in the case where the bearing rigidity is increased (pin support is used), but the response reduction effect cannot be obtained. Considering this, in the present embodiment, the above-mentioned optimum specifications are set.
なお、オイルダンパー等の粘性減衰系ダンパーB1のみで制振機構B1、B2を構成してもよい。この粘性減衰系ダンパーB1、B2としては、オイルダンパーやビンガムダンパー、その他の粘性系ダンパーが挙げられ、慣性質量ダンパーB2を用いない場合でもダンパーなしの場合に比べれば支承部4の変位量を低減し、耐震性を向上させることができる。
Note that the damping mechanisms B1 and B2 may be configured by only the viscous damping system damper B1 such as an oil damper. Examples of the viscous damping dampers B1 and B2 include oil dampers, Bingham dampers, and other viscous dampers. Even when the inertia mass damper B2 is not used, the amount of displacement of the
但し、この場合には、設置する制振ダンパーB1、B2が過大だと支承部4の変位は低減できるが下部構造(橋脚部)3の応答が増大する。このため、付加する制振ダンパーB2の減衰係数c’には次の式(5)で示す制約条件をつけるものとする。
式中の不等号を等号にすると、慣性質量を用いないで粘性減衰のみを用いた場合の最適減衰となる。
However, in this case, if the installed damping dampers B1 and B2 are excessive, the displacement of the
If the inequality sign in the equation is equal, the optimum damping is obtained when only viscous damping is used without using inertial mass.
次に、本実施形態の橋梁の制振構造Aを設けた場合の橋梁1の耐震性能をシミュレーションした結果(試設計)について説明する。
Next, the result (trial design) of simulating the earthquake resistance performance of the
本シミュレーションでは、制振機構を設けない非制振のCase1と、慣性質量ダンパーとオイルダンパーを並列配置して制振機構を設けた本実施形態のCase2(本実施形態の橋梁の制振構造A)の2ケースについてシミュレーションを行い、互いのシミュレーション結果を比較した。
In this simulation,
また、制振対象として3径間の橋梁1をモデル化した。この橋梁1の諸元は、橋桁部質量m2=1578ton、橋梁部質量m1=319ton、支承部剛性k2=73.5kN/mm、下部工剛性(下部構造の剛性)k1=477kN/mmとした。これにより、m1/m2=0.2、k1/k2=6.5となる。
また、慣性質量ダンパーB2の慣性質量は式(3)からΨd=816tonとなる。
In addition, a
Further, the inertial mass of the inertial mass damper B2 is Ψ d = 816 ton from the equation (3).
そして、上記のように各諸元、ひいてはΨd/m2=0.517、k1/k2=6.5を決めると、図4と図5からhd=0.9を得ることができる。これにより、式(4)からcd=19.4kN・sec/mm=194kN/kineを得ることができる。 Then, by determining each item, and thus Ψ d / m 2 = 0.517 and k 1 / k 2 = 6.5 as described above, it is possible to obtain h d = 0.9 from FIGS. it can. Thus, it is possible from equations (4) obtain c d = 19.4kN · sec / mm = 194kN / kine.
次に、周波数伝達関数を用い、制振ダンパーB1、B2の有無(Case1、Case2)による振動特性の違いを周波数領域で検討した結果について説明する。 Next, a description will be given of the results of examining the difference in vibration characteristics in the frequency domain depending on the presence / absence of vibration damping dampers B1 and B2 (Case1 and Case2) using a frequency transfer function.
図6は、地表面加速度x0(上に「・・」)に対する加振角振動数(x2(上に「・・」),x1(上に「・・」))の比率を応答倍率して示した結果である。
なお、加振振動数比ζはω0=√(k2/m2)に対する加振角振動数ω=2πf(fは加振振動数)の比率である。
Fig. 6 shows the response of the ratio of the excitation angular frequency (x 2 (up to "..."), x 1 (up to "...")) to the ground surface acceleration x 0 (up to "...") It is the result shown by multiplying.
The vibration frequency ratio ζ is a ratio of the vibration angular frequency ω = 2πf (f is the vibration frequency) with respect to ω 0 = √ (k 2 / m 2 ).
この図6、図7から、制振(Case2)を行うことにより共振時の応答倍率が大幅に低減することが確認された。また、m2>>m1であることから、下部構造3の反力が概ね橋桁部の加速度に比例することになり、且つ下部構造3の反力も同様に低減することが確認された。
From FIG. 6 and FIG. 7, it was confirmed that the response magnification at the time of resonance is significantly reduced by performing vibration suppression (Case 2). In addition, since m 2 >> m 1 , it was confirmed that the reaction force of the
本実施形態の制振構造Aの場合(Case2)について、当該部より上部にある全質量に加速度を乗じた値に対する当該部の反力の比率を応答倍率とする。制振機構の反力応答倍率は(制振機構の反力)/m2x0 (上に「・・」)、下部構造の反力応答倍率は(下部工の反力)/(m1+m2)x0 (上に「・・」)で表される。 In the case of the vibration damping structure A of the present embodiment (Case 2), the ratio of the reaction force of the part to the value obtained by multiplying the total mass above the part by acceleration is defined as the response magnification. The reaction force response magnification of the vibration control mechanism is (reaction force of the vibration control mechanism) / m 2 x 0 (above “··”), and the reaction force response magnification of the substructure is (reaction force of the substructure) / (m 1 + M 2 ) x 0 (above “••”).
そして、図7に示すように、「支承4+制振機構B1、B2」及び下部構造3の応答倍率は、概ね加速度応答倍率と同様になることが確認された。また、制振機構B1、B2の応答倍率からこの制振機構B1、B2はもはや共振しない振動特性をもつ。
Then, as shown in FIG. 7, it was confirmed that the response magnifications of “
図8は、地表面変位x0に対する各部変位(相対変位x2−x1,x1−x0)の比率を応答倍率として示した結果である。また、図9は、本実施形態の制振構造Aを備えた場合についてのみ縦軸を拡大して示している。 FIG. 8 shows the result of the ratio of each part displacement (relative displacement x 2 −x 1 , x 1 −x 0 ) to the ground surface displacement x 0 as a response magnification. FIG. 9 shows the vertical axis in an enlarged manner only when the vibration damping structure A of the present embodiment is provided.
これら図8、図9から、本実施形態の制振機構B1、B2により共振域での応答倍率が大幅に低下し、支承部4の変位が抑制されることが確認された。
一方で、応答を大幅に抑制してできるのは1次のみであり、高次については大きくなる場合もあるので、高次モードが卓越するような構造に適用する際には留意する必要があることも確認された。
From these FIG. 8 and FIG. 9, it has been confirmed that the response magnification in the resonance region is significantly reduced by the vibration damping mechanisms B1 and B2 of the present embodiment, and the displacement of the
On the other hand, the response can be greatly suppressed only in the first order, and the higher order may be larger, so care must be taken when applying to a structure where the higher order mode is superior. It was also confirmed.
次に、時刻歴解析を用い、制振機構B1、B2の有無(Case1、Case2)による応答の違いを検討した結果について説明する。 Next, the result of examining the difference in response depending on the presence / absence of the vibration control mechanisms B1 and B2 (Case1 and Case2) using time history analysis will be described.
ここでは、公益社団法人日本道路協会:道路橋示方書に示されたレベル2地震動で2種地盤に対応するII−II−3地震波(最大加速度736gal)を入力し、時刻歴波形で応答結果を比較した。
なお、この入力地震動の波形は図10に示す通りである。
Here, we input the II-II-3 seismic wave (maximum acceleration 736 gal) corresponding to the two types of ground in the
The waveform of this input ground motion is as shown in FIG.
図11は橋桁部の加速度、図12は支承部の変位、図13は橋脚部のせん断力、図14は橋脚頂部の加速度を示している。 11 shows the acceleration of the bridge girder, FIG. 12 shows the displacement of the bearing, FIG. 13 shows the shearing force of the pier, and FIG. 14 shows the acceleration of the pier top.
図11から、本実施形態の制振機構Bにより最大応答加速度が半減するとともに、揺れの継続時間も大幅に低減することが確認された。 From FIG. 11, it was confirmed that the vibration damping mechanism B of the present embodiment halves the maximum response acceleration and greatly reduces the duration of shaking.
図12から、支承部4の変位は制振により2割に低減し、一般的な支承4の可動代200mmに収まることが確認された。これにより、支承部4の変位が過大になりストッパーに衝突する危険性を大幅に低減できる。
From FIG. 12, it was confirmed that the displacement of the
また、制振時のダンパー最大反力(各12台の合計)は、慣性質量ダンパーB2が5000kN、オイルダンパーB1が9960kNで、両者の合力は位相差があるため10520kNとなり、単純和よりかなり低減することが確認された。 In addition, the maximum reaction force of the damper during damping (total of 12 units) is 5000kN for the inertial mass damper B2 and 9960kN for the oil damper B1, and the resultant force is 10520kN due to the phase difference, which is considerably lower than the simple sum. Confirmed to do.
図13から、下部構造(下部工:橋脚部)3に作用するせん断力も制振により半減し、応力振幅も速やかに減衰することが確認された。これにより、大きな応力を生じる回数が減るので、疲労破壊も生じにくくなることが実証された。 From FIG. 13, it was confirmed that the shear force acting on the lower structure (understructure: bridge pier) 3 was also halved by vibration suppression, and the stress amplitude was also quickly attenuated. This proves that fatigue failure is less likely to occur because the number of occurrences of large stress is reduced.
図14から、橋脚頂部(支承部下部)の加速度は制振によりやや低減されるもののその低減効果は顕著ではないことが確認された。これにより、本実施形態の橋脚の制振構造Aは、橋脚頂部の加速度の応答低減を図るものではないことが確認された。
言い換えれば、橋脚頂部側の加速度が大きいほど、制振構造A、特に慣性質量ダンパーB2が効きやすくなるため、効果的に制振構造Aの性能が発揮されると言える。
From FIG. 14, it was confirmed that although the acceleration at the pier top (lower part of the support) is slightly reduced by vibration suppression, the reduction effect is not significant. Thereby, it was confirmed that the pier damping structure A of this embodiment does not aim at the response reduction of the acceleration of a bridge pier top part.
In other words, it can be said that the greater the acceleration on the pier top side, the more effective the damping structure A, particularly the inertial mass damper B2, is effective.
したがって、本実施形態の橋梁の制振構造A及び橋梁の制振構造の設定方法においては、支承部4と並列に制振ダンパーB1、B2を設置するだけで支承部4の水平変位を抑制できるとともに、下部構造(橋脚部)3に作用する力(せん断力、モーメント)をも低減でき、基礎に作用する地震力も低減できる。
Therefore, in the bridge damping structure A and the method for setting the bridge damping structure according to the present embodiment, the horizontal displacement of the
これにより、既存橋脚部や杭の耐力が小さく、制振しない場合に大きな損傷を生じていた部位における応答が制振により大幅に低減され、損傷を防止または軽減することができる。特に、杭のように改修工事でも補強することが困難な部材の耐力を増大させることなく、耐震性能を向上させることができる。すなわち、耐震余裕度を向上することができる。 Thereby, the response in the site | part which had produced the big damage when the existing bridge pier part and the pile are low in proof and is not damped is greatly reduced by damping, and damage can be prevented or reduced. In particular, the seismic performance can be improved without increasing the proof stress of a member that is difficult to reinforce even during repair work such as a pile. That is, the seismic margin can be improved.
また、支承部4を交換する必要がなく、単に制振機構(制振ダンパー)B1、B2を付加するだけなので、橋梁を工事中も継続使用できる。
Moreover, since it is not necessary to replace the
さらに、支承部4と並列に大きな振動諸元をもつ制振ダンパーB1、B2を追加することにより、支承部4の水平変位を大幅に抑制できる。ここで、一般的な支承4ではストッパーに衝突するまでの可動代が200mm程度であるが、本実施形態の制振構造Aにより、レベル2地震時においても支承変位をこの寸法以下に留めることが可能となり、既存の支承(ストッパーを含む)4をそのまま継続使用しながら大地震でも可動代の範囲内に支承変位を抑制することが可能である。
Furthermore, by adding damping dampers B1 and B2 having large vibration specifications in parallel with the
また、慣性質量ダンパーB2は相対加速度に比例した反力を生じ、オイルダンパー等の粘性減衰系ダンパーB1は相対速度に比例した反力を生じ、支承(ゴム支承)4は相対変位に比例した反力を生じる特徴がある。そして、本実施形態では、これら制振ダンパーB1、B2を支承部4と並列に配置するため、各々の制振ダンパーB1、B2に同一の変位が作用することになり、反力に位相差が生じる。すなわち、支承4の反力に対し、粘性減衰系ダンパーB1は位相が90度ずれ、慣性質量ダンパーB2は位相が180度ずれる(逆位相になる)。これにより、これらの合力が各々の反力の合計値より大きく低減されることになり、この合力が下部構造3に作用する外力になるので、下部構造3のせん断力を抑制することが可能になる。
The inertia mass damper B2 produces a reaction force proportional to the relative acceleration, the viscous damping system damper B1 such as an oil damper produces a reaction force proportional to the relative speed, and the bearing (rubber bearing) 4 reacts in proportion to the relative displacement. There is a feature that generates power. And in this embodiment, since these damping dampers B1 and B2 are arranged in parallel with the
また、制振機構B1、B2を支承4に並列配置するだけの比較的簡単な作業なので、施工に当たり特別な技能は必要とされず、新築だけでなく既存橋梁1の制震改修にも適用できる。
Moreover, since it is a comparatively simple operation that simply arranges the vibration control mechanisms B1 and B2 in parallel with the
また、従来、このような作用効果を得るための制振装置の最適条件が何ら検討されていなかったが、本実施形態のように制振機構(慣性質量ダンパーB2やオイルダンパーB1)の最適諸元を設定することで、確実に上記のような作用効果を得ることができ、応答低減効果を最大に発揮させることが可能になる。 Conventionally, the optimum conditions of the vibration damping device for obtaining such effects have not been studied at all. However, as in the present embodiment, the optimum conditions of the vibration damping mechanism (inertial mass damper B2 and oil damper B1) are not described. By setting the origin, it is possible to surely obtain the above-described operational effects and maximize the response reduction effect.
以上、本発明に係る橋梁の制振構造及び橋梁の制振構造の設定方法の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 As mentioned above, although one embodiment of the bridge damping structure and the method for setting the bridge damping structure according to the present invention has been described, the present invention is not limited to the above embodiment and does not depart from the gist thereof. The range can be changed as appropriate.
1 橋梁
2 上部構造(上部工)
3 下部構造(下部工)
4 支承(支承部)
10 ボールねじ
11 ボールナット
12 回転錘(錘)
13 連結部材
14 軸受け
15 筒体
17 接続板
18 連結部材
A 橋梁の制振構造
B1 制振ダンパー(制振機構、オイルダンパー、粘性減衰系ダンパー)
B2 制振ダンパー(制振機構、慣性質量ダンパー)
O1 橋軸
O2 制振機構の軸線
1
3 Substructure (Substructure)
4 Support (support section)
10
13 connecting
B2 Damping damper (damping mechanism, inertial mass damper)
O1 Bridge axis O2 Vibration control axis
Claims (2)
前記制振ダンパーとして粘性減衰系ダンパーと慣性質量ダンパーが併用されていることを特徴とする橋梁の制振構造。 One end side is connected to the upper structure, the other end side is connected to the lower structure, and a vibration damper is installed to be arranged in parallel with the bearing.
A damping structure for a bridge, wherein a viscous damping damper and an inertial mass damper are used in combination as the damping damper.
前記慣性質量ダンパーの慣性質量Ψdと減衰係数cdを下記の式(1)と式(2)で設定し、
且つ、予め橋脚頂部の質量(橋脚が複数の場合はその総合計)をm1 /橋桁質量(多径間の場合は一体化された橋桁の総重量)m2をパラメータとしてΨd/m2と橋脚部の総水平剛性k1/支承の総水平剛性k2の関係、hdとk1/k2の関係を求めておき、橋梁のm1 /m2およびk1/k2から最適なΨdとhdを設定し最適なcdを得ることを特徴とする橋梁の制振構造の設定方法。
The inertial mass [psi d and the damping coefficient c d inertial mass damper as Equation (1) below is set by formula (2),
In addition, the mass of the bridge pier top portion (the total sum of the piers when there are a plurality of piers) is m 1 / bridge girder mass (the total weight of the integrated bridge girder in the case of multiple spans) m 2 as a parameter Ψ d / m 2 optimum relationship of the total horizontal stiffness k 2 of the total horizontal stiffness k 1 / support piers part, to previously obtain a relation h d and k 1 / k 2, from m 1 / m 2 and k 1 / k 2 of the bridge setting method of damping structure of a bridge, characterized in that to obtain the Do [psi d set and h d best c d.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014146975A JP6440244B2 (en) | 2014-07-17 | 2014-07-17 | Setting method of bridge damping structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014146975A JP6440244B2 (en) | 2014-07-17 | 2014-07-17 | Setting method of bridge damping structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016023444A true JP2016023444A (en) | 2016-02-08 |
JP6440244B2 JP6440244B2 (en) | 2018-12-19 |
Family
ID=55270477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014146975A Active JP6440244B2 (en) | 2014-07-17 | 2014-07-17 | Setting method of bridge damping structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6440244B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111455820A (en) * | 2020-04-10 | 2020-07-28 | 广东省交通规划设计研究院股份有限公司 | Seismic isolation and reduction system and bridge |
JP2020186578A (en) * | 2019-05-15 | 2020-11-19 | 清水建設株式会社 | Vibration control mechanism |
CN113139223A (en) * | 2021-04-09 | 2021-07-20 | 中国铁路设计集团有限公司 | Continuous beam live load bearing reaction force calculation method based on concurrent reaction force set |
CN114239109A (en) * | 2021-12-17 | 2022-03-25 | 重庆大学 | Large-span bridge buffeting response direct prediction method and system based on segment model vibration test and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6233884B1 (en) * | 1997-10-20 | 2001-05-22 | Steven B. Tipping | Method and apparatus to control seismic forces, accelerations, and displacements of structures |
JP2004332478A (en) * | 2003-05-12 | 2004-11-25 | Chuo Fukken Consultants Co Ltd | Earthquake resistant structure for bridge |
JP2014020141A (en) * | 2012-07-19 | 2014-02-03 | Shimizu Corp | Optimal design method of low-layer centralized vibration control system employing inertia mass damper |
-
2014
- 2014-07-17 JP JP2014146975A patent/JP6440244B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6233884B1 (en) * | 1997-10-20 | 2001-05-22 | Steven B. Tipping | Method and apparatus to control seismic forces, accelerations, and displacements of structures |
JP2004332478A (en) * | 2003-05-12 | 2004-11-25 | Chuo Fukken Consultants Co Ltd | Earthquake resistant structure for bridge |
JP2014020141A (en) * | 2012-07-19 | 2014-02-03 | Shimizu Corp | Optimal design method of low-layer centralized vibration control system employing inertia mass damper |
Non-Patent Citations (1)
Title |
---|
磯田和彦 他: "慣性質量ダンパーを組み込んだ低層集中制震に関する基礎的研究", 日本建築学会構造系論文集, vol. 78, no. 686, JPN6018014545, April 2013 (2013-04-01), pages 713 - 722, ISSN: 0003783261 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020186578A (en) * | 2019-05-15 | 2020-11-19 | 清水建設株式会社 | Vibration control mechanism |
JP7272858B2 (en) | 2019-05-15 | 2023-05-12 | 清水建設株式会社 | Damping mechanism |
CN111455820A (en) * | 2020-04-10 | 2020-07-28 | 广东省交通规划设计研究院股份有限公司 | Seismic isolation and reduction system and bridge |
CN113139223A (en) * | 2021-04-09 | 2021-07-20 | 中国铁路设计集团有限公司 | Continuous beam live load bearing reaction force calculation method based on concurrent reaction force set |
CN114239109A (en) * | 2021-12-17 | 2022-03-25 | 重庆大学 | Large-span bridge buffeting response direct prediction method and system based on segment model vibration test and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP6440244B2 (en) | 2018-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Raheem | Pounding mitigation and unseating prevention at expansion joints of isolated multi-span bridges | |
Tongaonkar et al. | Seismic response of isolated bridges with soil–structure interaction | |
JP6440243B2 (en) | Setting method of bridge damping structure | |
Agrawal et al. | Seismic component devices | |
Losanno et al. | Seismic behavior of isolated bridges with additional damping under far-field and near fault ground motion | |
JP6440244B2 (en) | Setting method of bridge damping structure | |
Jafarabad et al. | Hybrid damping systems in offshore jacket platforms with float-over deck | |
Komachi et al. | Retrofit of Ressalat jacket platform (Persian Gulf) using friction damper device | |
Javanmardi et al. | Seismic isolation retrofitting solution for an existing steel cable-stayed bridge | |
Etedali et al. | A proposed approach to mitigate the torsional amplifications of asymmetric base-isolated buildings during earthquakes | |
JP6508819B2 (en) | Vibration control structure for bridge and setting method of vibration control structure for bridge | |
JP6767183B2 (en) | Seismic structures and methods for improving seismic resistance | |
Ghorbanzadeh et al. | Seismic performance assessment of semi active tuned mass damper in an MRF steel building including nonlinear soil–pile–structure interaction | |
Golzan et al. | Implementation of a simplified method in design of hysteretic dampers for isolated highway bridges | |
RU2325475C2 (en) | Anti-seismic bridge | |
Roy et al. | Dynamic behavior of the multi span continuous girder bridge with isolation bearings | |
Tian et al. | Seismic performance of curved viaducts with shock absorber devices of different stiffness in great earthquakes | |
Javanmardi | Seismic Behaviour Investigation of a Cablestayed Bridge with Hybrid Passive Control System | |
Wang et al. | Experimental study on fabricated shear wall structure with energy‐dissipating vertical joint | |
Kiral et al. | The Seismic Response Evaluation of an Existing Multi-span Reinforced Concrete Highway Bridge in the Presence of Linear and Nonlinear Viscous Dampers | |
Mendez-Galindo et al. | Lead Rubber Bearings for Seismic Isolation of Structures in Cold Climates–New Developments | |
Contin et al. | Different Solutions for Dissipation of Seismic Energy on Multi-Span Bridges | |
JP2020041346A (en) | Seismic strengthening method and bridge | |
Mazza | Nonlinear analysis of rc framed buildings retrofitted with elastomeric and friction bearings under near-fault earthquakes | |
JP2020094430A (en) | Construction method of base-isolated building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170606 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6440244 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |