JP2016023443A - Vibration control structure for bridge, and setting method for the same - Google Patents

Vibration control structure for bridge, and setting method for the same Download PDF

Info

Publication number
JP2016023443A
JP2016023443A JP2014146974A JP2014146974A JP2016023443A JP 2016023443 A JP2016023443 A JP 2016023443A JP 2014146974 A JP2014146974 A JP 2014146974A JP 2014146974 A JP2014146974 A JP 2014146974A JP 2016023443 A JP2016023443 A JP 2016023443A
Authority
JP
Japan
Prior art keywords
bridge
damping
spring member
vibration
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014146974A
Other languages
Japanese (ja)
Other versions
JP6440243B2 (en
Inventor
賢太郎 蔵治
Kentaro Kuraji
賢太郎 蔵治
孝典 大西
Takanori Onishi
孝典 大西
磯田 和彦
Kazuhiko Isoda
和彦 磯田
敏裕 若原
Toshihiro Wakahara
敏裕 若原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Metropolitan Expressway Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Metropolitan Expressway Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp, Metropolitan Expressway Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP2014146974A priority Critical patent/JP6440243B2/en
Publication of JP2016023443A publication Critical patent/JP2016023443A/en
Application granted granted Critical
Publication of JP6440243B2 publication Critical patent/JP6440243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration control structure for a bridge, which can reliably and effectively improve earthquake performance of the bridge by vibration control, and a setting method for the same.SOLUTION: A vibration control mechanism B, in which an inertia mass damper 4 and a spring member 5 are connected together in series, is installed in the state of being connected to upper and lower structures 2 and 3 in parallel with a bearing 6. The upper and lower structures 2 and 3 are relatively displaced, and a weight of the inertia mass damper 4 is rotated to exert an inertia mass effect. A frequency of the vibration control mechanism B, which is determined by the inertia mass damper 4 and the spring member 5, is synchronized with a predominant frequency of a bridge 1 by the spring member 5.SELECTED DRAWING: Figure 1

Description

本発明は、橋梁の制振構造及び橋梁の制振構造の設定方法に関する。   The present invention relates to a bridge damping structure and a bridge damping structure setting method.

近年、橋梁技術の進歩に伴い、振動、騒音の減少、走行性の向上に有効な多径間連続桁橋が数多く設計、施工されている。また、橋梁規模の大型化に伴って、上部構造(桁、床版などの上部工)の地震時慣性力を下部構造(橋脚、橋台などの下部工)に分配する構造が多く採用されている。例えば、下部構造と上部構造の間の支承部にゴム支承を用い、このゴム支承の水平剛性(せん断剛性)を調整することにより、下部構造に作用する地震時慣性力を任意に調整、配分できるようにした構造が多く採用されている。   In recent years, with the advancement of bridge technology, many multi-span continuous girder bridges that are effective in reducing vibration and noise and improving running performance have been designed and constructed. In addition, with the increase in the scale of the bridge, many structures that distribute the inertial force of the superstructure (superstructure such as girders and floor slabs) to the substructure (understructure such as piers and abutments) are often used. . For example, by using a rubber bearing for the bearing between the lower structure and the upper structure, and adjusting the horizontal rigidity (shear rigidity) of this rubber bearing, the inertial force acting on the lower structure can be adjusted and distributed arbitrarily. Many such structures are adopted.

一方、ゴム支承は、従来のピン支承よりはるかに水平剛性が小さく変形能力が大きいが、LRB(鉛プラグ入り積層ゴム)や高減衰ゴム支承のような免震装置と比較すると減衰が数分の1程度しかなく変形能力も小さい。このため、設計時に想定された地震時慣性力を上回る過大な地震力が作用すると、支承部や下部構造に損傷が生じるおそれがある。特に、阪神大震災や東日本大震災を受け、設計用地震動が見直されて入力地震力が増大しており、これに伴い、長周期地震動への対応など既存インフラの耐震性向上技術の開発が急務とされている。   On the other hand, rubber bearings have much lower horizontal rigidity and larger deformation capacity than conventional pin bearings, but the damping is a few minutes compared to seismic isolation devices such as LRB (lead plug laminated rubber) and high damping rubber bearings. There is only about 1 and the deformation capability is small. For this reason, if an excessive seismic force exceeding the inertial force at the time of earthquake assumed at the time of design acts, there is a possibility that a bearing part and a substructure will be damaged. In particular, due to the Great Hanshin Earthquake and the Great East Japan Earthquake, design seismic ground motion has been reviewed and the input seismic force has increased, and as a result, there is an urgent need to develop technology for improving the earthquake resistance of existing infrastructure such as long-period ground motion. ing.

そして、従来建物などに適用されてきた免震技術や制振技術を橋梁の耐震性能を向上させる技術手法として採用することが提案、検討されている(例えば、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5参照)。   Then, it has been proposed and studied to adopt seismic isolation technology and vibration control technology that have been applied to buildings and the like as a technical method for improving the seismic performance of bridges (for example, Patent Document 1, Patent Document 2, Patent) (Refer to Literature 3, Patent Literature 4, and Patent Literature 5).

特開2009−228296号公報JP 2009-228296 A 特開2006−9503号公報JP 2006-9503 A 特開平7−317822号公報JP-A-7-317822 特許第3046192号公報Japanese Patent No. 3046192 特開2004−332478号公報JP 2004-332478 A

まず、免震構造は、固有周期を長周期化することで免震対象の構造物の応答が小さくなる場合に有効である。これに対し、橋梁の免震化においては、橋梁の変形を抑えることが必要であり、建築用と比較してせん断剛性Gが3〜4倍程度の大きな積層ゴム支承を使用することになる。このため、固有周期が2秒程度となり、効果的に長周期化を図ることができず、特に地盤条件が悪い場合や長周期地震動の対応が求められる場合には、十分な免震効果が発揮されにくく、その適用が困難になる。さらに、既存橋梁を免震化する場合には、高コスト、施工時に橋梁を利用できなくなるなどの課題もある。   First, the seismic isolation structure is effective when the response of the structure to be isolated is reduced by increasing the natural period. On the other hand, in the isolation of a bridge, it is necessary to suppress the deformation of the bridge, and a large laminated rubber bearing having a shear rigidity G of about 3 to 4 times that for construction is used. For this reason, the natural period is about 2 seconds, and it is not possible to effectively lengthen the period. Especially when the ground conditions are poor or long-period ground motion is required, a sufficient seismic isolation effect is exhibited. It is hard to be applied and its application becomes difficult. Furthermore, when existing bridges are to be seismically isolated, there are problems such as high costs and the inability to use the bridges during construction.

一方、制振構造は、橋梁の下部構造と上部構造の間に制振ダンパーを追加設置し、減衰性能を付与することにより、比較的容易に且つ低コストで応答を低減することができる。橋梁の耐震性能を向上させることができる。
しかしながら、地震時に下部構造が変形することによって制振ダンパーの効きが悪くなる問題があり、逆に、ダンパー性能を増大して支承部の変形を抑制すると下部構造のせん断力や上部構造の加速度が大幅に増加してしまうという不都合が生じる。
On the other hand, the damping structure can reduce the response relatively easily and at low cost by additionally installing a damping damper between the lower structure and the upper structure of the bridge to provide damping performance. The seismic performance of the bridge can be improved.
However, there is a problem that the effect of the damping damper becomes worse due to the deformation of the lower structure during an earthquake. Conversely, if the damper performance is increased to suppress the deformation of the bearing part, the shearing force of the lower structure and the acceleration of the upper structure are reduced. There is a disadvantage that it increases significantly.

本発明は、上記事情に鑑み、制振によって確実且つ効果的に橋梁の耐震性能を向上させることを可能にする橋梁の制振構造及び橋梁の制振構造の設定方法を提供することを目的とする。   In view of the above circumstances, the present invention has an object to provide a bridge damping structure and a method for setting the bridge damping structure that can reliably and effectively improve the earthquake resistance performance of the bridge by damping. To do.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の橋梁の制振構造は、慣性質量ダンパーとばね部材を直列に連結してなる制振機構を、支承と並列に上部構造と下部構造に連結して設置し、前記上部構造と前記下部構造が相対的に変位するとともに前記慣性質量ダンパーの錘が回転して慣性質量効果が発揮され、前記ばね部材によって、前記慣性質量ダンパーと前記ばね部材により定まる前記制振機構の振動数を橋梁の卓越する振動数に同調させるように構成されていることを特徴とする。   The bridge damping structure according to the present invention includes a damping mechanism formed by connecting an inertial mass damper and a spring member in series, and connected to the upper structure and the lower structure in parallel with the support. As the structure is relatively displaced, the weight of the inertial mass damper rotates to exert an inertial mass effect, and the spring member reduces the vibration frequency of the damping mechanism determined by the inertial mass damper and the spring member. It is configured to be tuned to a superior frequency.

また、本発明の橋梁の制振構造においては、支承と並列に上部構造と下部構造に連結して他の制振ダンパーが設置され、前記制振ダンパーの減衰係数c’が下記の式(1)を満足するように構成されていてもよい。   In the bridge damping structure of the present invention, another damping damper is installed in parallel with the support in the upper structure and the lower structure, and the damping coefficient c ′ of the damping damper is expressed by the following formula (1) ) May be satisfied.

Figure 2016023443
ここで、mは橋桁質量(多径間の場合は一体化された橋桁の総重量)、kは橋脚部の総水平剛性、kは支承の総水平剛性である。
Figure 2016023443
Here, m 2 is the mass of the bridge girder (in the case of multiple spans, the total weight of the integrated bridge girder), k 1 is the total horizontal rigidity of the bridge pier, and k 2 is the total horizontal rigidity of the bearing.

本発明の橋梁の制振構造の設定方法は、上記の橋梁の制振構造の最適な諸元を設定する方法であって、前記慣性質量ダンパーの慣性質量Ψと減衰係数c、前記ばね部材の剛性kを下記の式(2)と式(3)で設定し、且つ、予め橋脚部の総水平剛性k/支承の総水平剛性kをパラメータとしてk/kとΨ/mの関係、h(=c/2√Ψ)とΨ/mの関係を求めておき、Ψ/mを設定するとともにk/kとΨ/mの関係、hとΨ/mの関係から最適なkとhを求め、前記最適なkとhと式(2)と式(3)から最適なΨとcを求めることを特徴とする。 Setting of the damping of the bridge of the present invention is a method for setting an optimum specifications of the damping of the bridge, the inertial mass of the inertial mass damper [psi d and the damping coefficient c d, the spring The stiffness k d of the member is set by the following formulas (2) and (3), and k d / k 2 and Ψ are set using the total horizontal stiffness k 1 of the bridge pier / the total horizontal stiffness k 2 of the bearing as parameters in advance. The relationship between d / m 2 , h d (= c d / 2√Ψ d k d ) and Ψ d / m 2 is determined, and Ψ d / m 2 is set and k d / k 2 and Ψ relationship d / m 2, h seek optimal k d and h d from the relationship between d and [psi d / m 2, the optimum [psi the optimal k d and h d and equation (2) from equation (3) and obtains the d and c d.

Figure 2016023443
Figure 2016023443

Figure 2016023443
Figure 2016023443

本発明の橋梁の制振構造においては、慣性質量ダンパーとばね部材を直列に連結してなる制振機構を支承部に並列に設置することにより、地震などによって上部構造と下部構造が相対的に変位するとともに慣性質量ダンパーによる慣性質量効果を発揮させることができる。また、ばね部材によって制振機構の振動数を橋梁の卓越する振動数(例えば橋梁の1次固有振動数)に同調させることで、橋梁の卓越する振動数近傍の振動に対して効果的に慣性質量効果を発揮させることができる。   In the bridge vibration control structure of the present invention, the upper structure and the lower structure are relatively moved by an earthquake or the like by installing a vibration control mechanism formed by connecting an inertial mass damper and a spring member in series to the support portion in parallel. While displacing, the inertial mass effect by the inertial mass damper can be exhibited. In addition, by adjusting the vibration frequency of the damping mechanism to the dominant frequency of the bridge (for example, the primary natural frequency of the bridge) by the spring member, it is possible to effectively inertia the vibration near the dominant frequency of the bridge. A mass effect can be exhibited.

そして、制振機構が同調型であり、橋梁の卓越する振動数近傍の共振振動数近傍のみで慣性質量効果が発揮されるため、支承部の変位と上部構造(桁部)の加速度を同時に低減できる。また、支承部の水平変位を効果的に抑制できる。  And since the damping mechanism is tuned and the inertial mass effect is exhibited only near the resonance frequency near the dominant frequency of the bridge, the displacement of the bearing and the acceleration of the superstructure (girder) are simultaneously reduced. it can. Moreover, the horizontal displacement of a support part can be suppressed effectively.

さらに、地震時などにおいて下部構造に作用するせん断力は概ね上部構造の質量と加速度を乗じたものになるため、橋脚部の曲げモーメントや基礎に作用する力、すなわち下部構造に作用する力も低減することが可能になる。  Furthermore, since the shearing force acting on the substructure in the event of an earthquake is generally multiplied by the mass and acceleration of the superstructure, the bending moment of the pier and the force acting on the foundation, that is, the force acting on the substructure are also reduced. It becomes possible.

また、共振振動数近傍のみで効くため、従来のオイルダンパーなどの制振装置のように高振動数域で負担力が増大するおそれがない。また、ばね部材によって制振機構の効きを調整できるため、ダンパー反力によって躯体(上部構造、下部構造)が損傷することも防止できる。   Further, since it works only in the vicinity of the resonance frequency, there is no possibility that the burden force increases in a high frequency range unlike a conventional vibration damping device such as an oil damper. In addition, since the effectiveness of the damping mechanism can be adjusted by the spring member, it is possible to prevent the casing (upper structure, lower structure) from being damaged by the damper reaction force.

これにより、本発明の橋梁の制振構造を備えることで、既存橋梁の橋脚部や杭の耐力が小さく、制振しない場合に大きな損傷を生じていた部位の応答を大幅に低減することができ、地震などによる損傷を防止(軽減)することが可能にある。また、特に、杭のように改修工事によっても補強が困難な杭などの部材の耐力を増大させることなく耐震性能を向上させることができ、耐震の余裕度を向上させることが可能になる。   As a result, by providing the bridge damping structure of the present invention, the strength of the bridge piers and piles of the existing bridge is small, and the response of the part that has caused great damage when not damped can be greatly reduced. It is possible to prevent (reduce) damage caused by earthquakes. In particular, the seismic performance can be improved without increasing the proof stress of a member such as a pile that is difficult to reinforce even by repair work such as a pile, and the seismic margin can be improved.

また、本発明の橋梁の制振構造の設定方法においては、上記の橋梁の制振構造の作用効果に加え、「Ψ/mの範囲」、「k/kとΨ/mの関係」、「hとΨ/mの関係」から、Ψ/mを設定すれば他の最適な諸元を簡便に求めることができ、同調型制振機構を実現するための実用的な方法を提供することができる。また、Ψ/mを大きくすれば応答低減効果は増大するが、制振機構の反力も増加することから、桁梁や橋脚の耐力を考慮しながら適切な値に設定することができる。 In addition, in the method for setting a vibration damping structure of a bridge according to the present invention, in addition to the effects of the above-described bridge vibration damping structure, “range of Ψ d / m 2 ”, “k d / k 2 and Ψ d / m”. 2 relationship "," h from d relationship between [psi d / m 2 ", it is possible to obtain the other optimal specifications conveniently by setting the [psi d / m 2, to achieve a tunable damping mechanism Can provide a practical method for. Further, if Ψ d / m 2 is increased, the response reduction effect is increased, but the reaction force of the vibration control mechanism is also increased, so that it can be set to an appropriate value in consideration of the strength of the beam and the pier.

本発明の一実施形態に係る橋梁の制振構造(a)及びこの振動解析モデル(b)を示す図である。It is a figure which shows the vibration damping structure (a) of a bridge and this vibration analysis model (b) concerning one embodiment of the present invention. 本発明の一実施形態に係る橋梁の制振構造の慣性質量ダンパーの一例を示す断面図である。It is sectional drawing which shows an example of the inertia mass damper of the vibration suppression structure of the bridge concerning one Embodiment of this invention. 本発明の一実施形態に係る橋梁の制振構造を設けた橋梁の耐震性能を確認するシミュレーションを行う際に用いた振動解析モデルを示す橋梁の側面図(a)、床伏図(b)、(b)のX1−X1線矢視図(c)である。Side view of bridge (a), floor plan (b) showing a vibration analysis model used when performing a simulation to confirm the seismic performance of the bridge provided with the bridge damping structure according to one embodiment of the present invention, It is a X1-X1 arrow directional view (c) of (b). 本発明の一実施形態に係る橋梁の制振構造の設定方法で用いるk/kとΨ/mの関係の一例を示す図である。It is a diagram illustrating an example of a relationship of k d / k 2 and Ψ d / m 2 for use in a method of setting the bridge damping structure according to an embodiment of the present invention. 本発明の一実施形態に係る橋梁の制振構造の設定方法で用いるhとΨ/mの関係の一例を示す図である。Is a diagram illustrating an example of a relationship of h d and Ψ d / m 2 for use in a method of setting the bridge damping structure according to an embodiment of the present invention. 本発明の一実施形態に係る橋梁の制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、加振振動数比と加速度応答倍率の関係を示す図である。It is the result of the simulation performed in order to confirm the seismic performance of the bridge provided with the vibration damping structure of the bridge concerning one embodiment of the present invention, and is a figure showing the relation between the vibration frequency ratio and the acceleration response magnification. 本発明の一実施形態に係る橋梁の制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、加振振動数比と反力応答倍率の関係を示す図である。It is the result of the simulation performed in order to confirm the seismic performance of the bridge provided with the bridge damping structure according to one embodiment of the present invention, and is a diagram showing the relationship between the excitation frequency ratio and the reaction force response magnification. . 本発明の一実施形態に係る橋梁の制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、加振振動数比と変位応答倍率の関係を示す図である。It is the result of the simulation performed in order to confirm the seismic performance of the bridge provided with the vibration damping structure of the bridge concerning one embodiment of the present invention, and is a figure showing the relation between the vibration frequency ratio and the displacement response magnification. 本発明の一実施形態に係る橋梁の制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、加振振動数比と変位応答倍率(制振構造を備えたケースのみ)の関係を示す図である。It is the result of the simulation performed in order to confirm the seismic performance of the bridge provided with the bridge damping structure according to one embodiment of the present invention, the vibration frequency ratio and the displacement response magnification (case with the damping structure) Only). 本発明の一実施形態に係る橋梁の制振構造を設けた橋梁の耐震性能を確認するシミュレーションで用いた入力地震動の波形を示す図である。It is a figure which shows the waveform of the input ground motion used in the simulation which confirms the seismic performance of the bridge provided with the damping structure of the bridge concerning one Embodiment of this invention. 本発明の一実施形態に係る橋梁の制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、橋桁部の時刻歴加速度応答波形を示す図である。It is a result of the simulation performed in order to confirm the seismic performance of the bridge provided with the vibration damping structure of the bridge concerning one embodiment of the present invention, and is a figure showing the time history acceleration response waveform of the bridge girder part. 本発明の一実施形態に係る橋梁の制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、支承部の時刻歴変位応答波形を示す図である。It is a result of the simulation performed in order to confirm the seismic performance of the bridge provided with the vibration damping structure of the bridge concerning one embodiment of the present invention, and is a figure showing a time history displacement response waveform of a support part. 本発明の一実施形態に係る橋梁の制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、橋脚部の時刻歴せん断力応答波形を示す図である。It is a result of the simulation performed in order to confirm the earthquake resistance performance of the bridge provided with the vibration damping structure of the bridge concerning one embodiment of the present invention, and is a figure showing the time history shear force response waveform of a bridge pier. 本発明の一実施形態に係る橋梁の制振構造を設けた橋梁の耐震性能を確認するために行ったシミュレーションの結果であり、橋脚頂部の時刻歴加速度応答波形を示す図である。It is a result of the simulation performed in order to confirm the seismic performance of the bridge provided with the vibration damping structure of the bridge concerning one embodiment of the present invention, and is a figure showing the time history acceleration response waveform of the bridge pier top part.

以下、図1から図14を参照し、本発明の一実施形態に係る橋梁の制振構造及び橋梁の制振構造の設定方法について説明する。   A bridge damping structure and a bridge damping structure setting method according to an embodiment of the present invention will be described below with reference to FIGS.

本実施形態の橋梁の制振構造Aは、図1に示すように、例えば多径間連続桁形式の高架橋などの橋梁の制振構造であり、橋梁1の下部構造3と上部構造2の間に制振機構Bを設置して構成されている。   As shown in FIG. 1, the bridge damping structure A of the present embodiment is a bridge damping structure such as a multi-girder continuous girder type viaduct, between the lower structure 3 and the upper structure 2 of the bridge 1. The vibration damping mechanism B is installed in the main body.

また、本実施形態の制振機構Bは、慣性質量ダンパー4とばね部材5を直列に連結して構成されており、支承部(支承6)と並列配置されるように、例えば一端を上部構造2の橋桁に、他端を下部構造3の橋脚頂部(又は橋台頂部)に連結して配設されている。   Further, the vibration damping mechanism B of the present embodiment is configured by connecting the inertial mass damper 4 and the spring member 5 in series. For example, one end of the vibration damping mechanism B is superstructured so as to be arranged in parallel with the support portion (support 6). The other end of the bridge girder is connected to the bridge pier top (or the abutment top) of the lower structure 3.

さらに、上部構造2と下部構造3が相対的に変位するとともに慣性質量ダンパー4の錘が回転して慣性質量効果が発揮され、ばね部材5によって、慣性質量ダンパー4とばね部材5とにより定まる振動数を橋梁1の卓越する振動数(例えば、1次固有振動数)に同調させて構成されている。   Further, the upper structure 2 and the lower structure 3 are relatively displaced and the weight of the inertial mass damper 4 is rotated to exert an inertial mass effect, and the vibration determined by the inertial mass damper 4 and the spring member 5 by the spring member 5. The number is tuned to the dominant frequency (for example, the primary natural frequency) of the bridge 1.

すなわち、本実施形態の橋梁の制振構造Aにおいては、制振機構Bとして主系の慣性質量ダンパー(慣性質量機構)4と付加振動系のばね部材(直列ばね)5を設け、慣性質量ダンパー4とばね部材5から定まる固有の振動数に同調するように、バネ値(慣性質量とばね部材の値)が設定されている。   That is, in the bridge damping structure A of the present embodiment, the inertial mass damper (inertial mass mechanism) 4 and the additional vibration system spring member (series spring) 5 are provided as the damping mechanism B, and the inertial mass damper is provided. The spring value (the inertia mass and the value of the spring member) is set so as to synchronize with the natural frequency determined from 4 and the spring member 5.

ここで、本実施形態の制振機構Bの一例を図2に示す。
この制振機構Bは、回転慣性質量機構(慣性質量ダンパー4)B1と付加ばね機構(ばね部材5)B2を備えるとともに、回転慣性質量機構B1と付加ばね機構B2を直列に連結配置して構成されている。
Here, an example of the vibration damping mechanism B of the present embodiment is shown in FIG.
The vibration damping mechanism B includes a rotary inertia mass mechanism (inertial mass damper 4) B1 and an additional spring mechanism (spring member 5) B2, and is configured by connecting the rotary inertia mass mechanism B1 and the additional spring mechanism B2 in series. Has been.

回転慣性質量機構B1は、中心軸線O1を制振機構Bの軸線O1と同軸上に配して設けられたボールねじ10と、ボールねじ10に螺着して配設されたボールナット11と、ボールナット11に取り付けられ、ボールナット11の回転に従動して回転する回転錘12とを備えて構成されている。   The rotary inertia mass mechanism B1 includes a ball screw 10 provided with a central axis O1 coaxially arranged with the axis O1 of the vibration damping mechanism B, a ball nut 11 screwed to the ball screw 10, and The rotary nut 12 is attached to the ball nut 11 and rotates in accordance with the rotation of the ball nut 11.

ボールねじ10は、その一端10aに、橋梁1の上部構造2又は下部構造3に接続するためのボールジョイントやクレビスなどの連結部材13が取り付けられている。   A connection member 13 such as a ball joint or a clevis for connecting to the upper structure 2 or the lower structure 3 of the bridge 1 is attached to one end 10 a of the ball screw 10.

また、ボールねじ10に螺着したボールナット11は、軸受け14に支持されている。軸受け14は、軸線O1周りに回転不能に且つ軸線O1方向に移動不能に固設される円環状の外輪14aと、外輪14aの内孔内に配されて軸線O1周りに回転可能に支持された円環状の内輪14bとを備えて形成されている。そして、ボールねじ10が軸受け14の内輪14bの中心孔に挿通して配設されるとともに、ボールナット11が軸受け14の内輪14bに固設されている。これにより、ボールナット11は、軸線O1周りに回転可能に、且つ軸線O1方向に移動不能に配設されている。   A ball nut 11 screwed to the ball screw 10 is supported by a bearing 14. The bearing 14 is disposed in an inner hole of the outer ring 14a and is rotatably supported around the axis O1. The annular outer ring 14a is fixed so as not to rotate around the axis O1 and cannot move in the direction of the axis O1. And an annular inner ring 14b. The ball screw 10 is disposed through the center hole of the inner ring 14 b of the bearing 14, and the ball nut 11 is fixed to the inner ring 14 b of the bearing 14. Thereby, the ball nut 11 is disposed so as to be rotatable around the axis O1 and immovable in the direction of the axis O1.

さらに、ボールナット11に回転錘12が一体に固定して設けられている。回転錘12は例えば略円筒状に形成され、ボールねじ10を内部に挿通し、ボールねじ10と互いの軸線O1を同軸上に配した状態でボールナット11に固着して配設されている。   Further, a rotating weight 12 is integrally fixed to the ball nut 11. The rotary weight 12 is formed, for example, in a substantially cylindrical shape, and is fixedly attached to the ball nut 11 with the ball screw 10 inserted therein and the ball screw 10 and the axis O1 of each other being coaxially arranged.

一方、付加ばね機構B2は、円筒状に形成された外筒15と、外筒15よりも外径が小の円筒状に形成され、外筒15の内部に互いの軸線O1を同軸上に配して設けられた内筒16と、外筒15と内筒16の間に配設された付加ばね(ばね部材)5とを備えて構成されている。   On the other hand, the additional spring mechanism B <b> 2 is formed in a cylindrical shape with an outer cylinder 15 having a smaller outer diameter than the outer cylinder 15, and the axis O <b> 1 is coaxially arranged inside the outer cylinder 15. And an additional spring (spring member) 5 disposed between the outer cylinder 15 and the inner cylinder 16.

外筒15は、所定長さの高軸剛性かつ高曲げ剛性の中空円筒体であって、その他端(図中左側の端部)15aに内部を閉塞させるように円板状の接続板17が固着され、この接続板17に、制振機構Bの他端を、橋梁1の下部構造3又は上部構造2に接続するためのボールジョイントやクレビスなどの連結部材18が取り付けられている。また、外筒15の一端側(図中右側の端部)15bには、内筒16を挿通させる挿通孔を中心に貫通形成した円環状の支持板19が内部を閉塞させるように固着されている。   The outer cylinder 15 is a hollow cylindrical body having a predetermined length of high-axis rigidity and high bending rigidity, and a disk-shaped connecting plate 17 is provided so that the other end (the left end in the figure) 15a is closed. A connecting member 18 such as a ball joint or a clevis for connecting the other end of the damping mechanism B to the lower structure 3 or the upper structure 2 of the bridge 1 is attached to the connection plate 17. Further, an annular support plate 19 penetratingly formed around an insertion hole through which the inner cylinder 16 is inserted is fixed to one end side (right end portion in the figure) 15b of the outer cylinder 15 so as to close the inside. Yes.

また、外筒15には、一端15b側に、支持板19に固着して設けられ、外筒15を内筒16に対して軸線O1方向に案内して相対的に進退させるためのリニアガイド20が設けられている。さらに、外筒15には、他端15a側に、内面から径方向内側に突出し、他端15aから軸線O1方向一端15b側に向けて延びる凸部21が設けられている。また、この凸部21は、制振機構Bのストローク量に応じた軸線O1方向の長さ寸法で形成されている。   Further, the outer cylinder 15 is provided on one end 15b side and fixed to the support plate 19, and guides the outer cylinder 15 in the direction of the axis O1 with respect to the inner cylinder 16 to relatively advance and retreat. Is provided. Further, the outer cylinder 15 is provided with a convex portion 21 protruding radially inward from the inner surface and extending from the other end 15a toward the one end 15b in the axis O1 direction on the other end 15a side. Further, the convex portion 21 is formed with a length dimension in the direction of the axis O1 according to the stroke amount of the vibration damping mechanism B.

内筒16は、所定長さの高軸剛性かつ高曲げ剛性の中空円筒体であって、支持板19の挿通孔に他端16a側から挿通して外筒15内に配設され、一端16b側を外筒15から外側に配して設けられている。また、このとき、内筒16は、その一端16bを、ボールねじ10を回転可能に軸支する軸受け14の外輪14aに固着し、内輪14bの内孔と互いの軸線O1が同軸上に配されるようにして設けられている。さらに、内筒16は、他端16aと外筒15の他端15aに固着された接続板17との軸線O1方向の間に所定の間隔(制振機構のストローク量を規定する間隔)を設けて外筒15内に配設されている。   The inner cylinder 16 is a hollow cylinder having a predetermined length of high-axis rigidity and high bending rigidity, and is inserted into the insertion hole of the support plate 19 from the other end 16a side and disposed in the outer cylinder 15, and one end 16b. The side is provided outside the outer cylinder 15. At this time, one end 16b of the inner cylinder 16 is fixed to the outer ring 14a of the bearing 14 that rotatably supports the ball screw 10, and the inner hole of the inner ring 14b and the mutual axis O1 are coaxially arranged. It is provided as such. Further, the inner cylinder 16 has a predetermined interval (an interval defining the stroke amount of the vibration control mechanism) between the other end 16a and the connecting plate 17 fixed to the other end 15a of the outer cylinder 15 in the direction of the axis O1. Are disposed in the outer cylinder 15.

また、内筒16には、外筒15の支持板19から外側に延設された一端16b側に、径方向外側に突出し、軸線O1方向に延び、リニアガイド20が係合して外筒15を内筒16に対して軸線O1方向に案内し相対回転せずに進退させるためのリニアガイドレール22が設けられている。さらに、内筒16には、その他端16aに、内筒16の外径よりも大きく、外筒15の内径よりも小さい直径を有する円板状の係止板23が固着されている。   In addition, the inner cylinder 16 protrudes radially outward on one end 16b extending outward from the support plate 19 of the outer cylinder 15 and extends in the direction of the axis O1, and the linear guide 20 engages with the outer cylinder 15 to engage with the outer cylinder 15. Is provided in the direction of the axis O1 with respect to the inner cylinder 16, and a linear guide rail 22 for advancing and retreating without relative rotation is provided. Further, a disc-shaped locking plate 23 having a diameter larger than the outer diameter of the inner cylinder 16 and smaller than the inner diameter of the outer cylinder 15 is fixed to the other end 16 a of the inner cylinder 16.

内筒16の他端16a側には、内筒16の外径と略等しい内径を備え、外筒15の内径よりも僅かに小さい外径を備えて略円環状に形成されたストローク規定板24が、その中心孔に内筒16の他端16a側を挿通して取り付けられている。このストローク規定板24は、外筒15の内面に当接する外周ローラー24aと、内筒16の外面に当接する内周ローラー24bを備えている。そして、ストローク規定板24は、これらローラー24a、24bによって外筒15と内筒16のそれぞれに対し、相対的に軸線O1方向に進退自在に設けられている。また、このとき、ストローク規定板24は、外筒15の凸部21の軸線O1方向一端に当接することで、外筒15に対し、さらなる軸線O1方向他端15a側への移動が規制され、内筒16の係止板23に当接することで、内筒16に対し、さらなる軸線O1方向他端16a側への相対移動が規制されている。   On the other end 16 a side of the inner cylinder 16, a stroke defining plate 24 having an inner diameter substantially equal to the outer diameter of the inner cylinder 16 and an outer diameter slightly smaller than the inner diameter of the outer cylinder 15 is formed in a substantially annular shape. However, the other end 16a side of the inner cylinder 16 is inserted into the center hole and attached. The stroke defining plate 24 includes an outer peripheral roller 24 a that contacts the inner surface of the outer cylinder 15 and an inner peripheral roller 24 b that contacts the outer surface of the inner cylinder 16. The stroke defining plate 24 is provided so as to be movable back and forth in the direction of the axis O1 relative to the outer cylinder 15 and the inner cylinder 16 by the rollers 24a and 24b. At this time, the stroke defining plate 24 is brought into contact with one end in the axis O1 direction of the convex portion 21 of the outer cylinder 15, thereby restricting movement of the outer cylinder 15 toward the other end 15a in the axis O1 direction. By making contact with the locking plate 23 of the inner cylinder 16, the relative movement of the inner cylinder 16 toward the other end 16 a in the direction of the axis O <b> 1 is restricted.

付加ばね機構B2のばね部材(付加ばね)5は、内筒16の外面と外筒15の内面の間、且つストローク規定板24と支持板19の軸線O1方向の間に設けられている。本実施形態において、ばね部材5は、複数枚の皿バネが直列に重ねられた1組の皿バネ群を複数組軸線O1方向に並設して構成されている。なお、図2では軸線O1方向中間部分のばね部材5を省略して図示している。   The spring member (addition spring) 5 of the additional spring mechanism B2 is provided between the outer surface of the inner cylinder 16 and the inner surface of the outer cylinder 15 and between the stroke defining plate 24 and the support plate 19 in the direction of the axis O1. In this embodiment, the spring member 5 is configured by arranging a set of disc spring groups in which a plurality of disc springs are stacked in series in the direction of the plurality of assembly axis O1. In FIG. 2, the spring member 5 at the intermediate portion in the axis O1 direction is omitted.

これにより、ばね部材5による付勢力でストローク規定板24に軸線O1方向他端側に押圧する力が作用し、通常時には、この付勢力を受けたストローク規定板24が凸部21に当接してそれ以上軸線O1方向他端側に移動しないように設けられている。また、この状態で、ストローク規定板24に内筒16に設けられた係止板23が当接する。   As a result, a force that presses the stroke defining plate 24 toward the other end in the direction of the axis O1 is applied to the stroke defining plate 24 by the urging force of the spring member 5. It is provided so as not to move further to the other end side in the axis O1 direction. In this state, the locking plate 23 provided on the inner cylinder 16 contacts the stroke defining plate 24.

そして、内筒16に対して外筒15が軸線O1方向一端側に相対変位する際には、すなわち、制振機構Bに圧縮側の力が作用した際には、凸部21にストローク規定板24が押圧され、これとともに内筒16に対してストローク規定板24が軸線O1方向一端側に相対変位し、ばね部材5が縮む。また、内筒16に対して外筒15が軸線O1方向他端側に相対変位する際には、すなわち、制振機構Bに引張側の力が作用した際には、係止板23にストローク規定板24が押圧され、これとともに外筒15に対してストローク規定板24が軸線O1方向一端側に相対変位し、ばね部材5が縮む。   When the outer cylinder 15 is relatively displaced toward the one end side in the axis O1 direction with respect to the inner cylinder 16, that is, when a compression-side force is applied to the vibration damping mechanism B, the stroke defining plate is applied to the convex portion 21. 24 is pressed, and at the same time, the stroke defining plate 24 is relatively displaced toward the one end side in the axis O1 direction with respect to the inner cylinder 16, and the spring member 5 is contracted. Further, when the outer cylinder 15 is displaced relative to the inner cylinder 16 relative to the other end in the axis O1 direction, that is, when a tensile force is applied to the vibration damping mechanism B, a stroke is applied to the locking plate 23. The regulating plate 24 is pressed, and at the same time, the stroke defining plate 24 is relatively displaced toward the one end side in the axis O1 direction with respect to the outer cylinder 15, and the spring member 5 is contracted.

なお、ストローク規定板24や支持板19のばね部材5と当接する面や、外筒15の内面、内筒16の外面に硬質ゴム等の緩衝材を取り付け、付加ばね機構B2の動作時に騒音(機械音)が発生したり、摩耗が生じることを防止することが好ましい。   A cushioning material such as hard rubber is attached to the surface of the stroke defining plate 24 and the support plate 19 that contacts the spring member 5, the inner surface of the outer cylinder 15, and the outer surface of the inner cylinder 16, and noise ( It is preferable to prevent occurrence of mechanical noise) and wear.

そして、地震などが発生し、橋梁1に振動エネルギーが作用して下部構造3と上部構造2に相対的な変位が生じると(入力されると)、この変位差に応じて回転慣性質量機構(慣性質量ダンパー4)B1のボールねじ10が軸線O1方向に進退し、軸受け14の内輪14bに支持されたボールナット11が回転するとともに回転錘12が回転する。これにより、回転錘12の実際の質量の数千倍もの慣性質量効果が得られ、オイルダンパーなどの従来の制振装置を設置した場合と比較し、応答変位が大幅に低減することになる。   And when an earthquake etc. generate | occur | produces and vibration energy acts on the bridge 1 and relative displacement arises in the lower structure 3 and the upper structure 2 (when input), according to this displacement difference, a rotation inertia mass mechanism ( Inertial mass damper 4) The ball screw 10 of B1 advances and retreats in the direction of the axis O1, the ball nut 11 supported by the inner ring 14b of the bearing 14 rotates, and the rotating weight 12 rotates. As a result, an inertial mass effect several thousand times as large as the actual mass of the rotary weight 12 can be obtained, and the response displacement is greatly reduced as compared with the case where a conventional vibration damping device such as an oil damper is installed.

また、制振機構Bに圧縮側の力が作用し、付加ばね機構B2の内筒16に対して外筒15が軸線O1方向一端側に相対変位する際には、凸部21にストローク規定板24が押圧され、これとともに内筒16に対してストローク規定板24が軸線O1方向一端側に相対変位し、ばね部材5が縮む。また、制振機構Bに引張側の力が作用し、内筒16に対して外筒15が軸線O1方向他端側に相対変位する際には、係止板23にストローク規定板24が押圧され、これとともに外筒15に対してストローク規定板24が軸線O1方向一端側に相対変位し、ばね部材5が縮む。   Further, when a compression-side force acts on the vibration damping mechanism B and the outer cylinder 15 is displaced relative to the inner cylinder 16 of the additional spring mechanism B2 toward one end side in the axis O1 direction, a stroke defining plate is formed on the convex portion 21. 24 is pressed, and at the same time, the stroke defining plate 24 is relatively displaced toward the one end side in the axis O1 direction with respect to the inner cylinder 16, and the spring member 5 is contracted. Further, when a tension-side force acts on the vibration damping mechanism B and the outer cylinder 15 is displaced relative to the inner cylinder 16 toward the other end side in the axis O1 direction, the stroke defining plate 24 is pressed against the locking plate 23. At the same time, the stroke defining plate 24 is relatively displaced toward the one end side in the axis O1 direction with respect to the outer cylinder 15, and the spring member 5 is contracted.

そして、このばね部材5の伸縮によって、回転慣性質量機構(慣性質量ダンパー4)B1と付加ばね機構(ばね部材5)B2とにより定まる振動数を橋梁1の卓越する振動数(例えば1次固有振動数)に同調させるようにする。   Then, due to the expansion and contraction of the spring member 5, the frequency determined by the rotary inertia mass mechanism (inertial mass damper 4) B1 and the additional spring mechanism (spring member 5) B2 is set to the frequency that is superior to the bridge 1 (for example, the primary natural vibration). Number).

また、回転慣性質量機構B1はボールねじ機構等によって両端に作用する相対変位で錘12を回転させることにより錘質量の数千倍もの大きな慣性質量効果が得られるもので、作用する相対加速度に比例した反力が得られる。このため、橋梁1の上部構造2の温度による伸縮(低速)にはほとんど反力を生じさせずに追従することになる。   In addition, the rotary inertia mass mechanism B1 can obtain a large inertial mass effect several thousand times the mass of the weight by rotating the weight 12 with a relative displacement acting on both ends by a ball screw mechanism or the like, and is proportional to the acting relative acceleration. Reaction force. For this reason, the expansion and contraction (low speed) due to the temperature of the superstructure 2 of the bridge 1 follows with almost no reaction force.

次に、図1(a)、図3(a)、図3(b)、図3(c)に示すように、本実施形態の制振機構Bは、前述した通り、橋梁1の下部構造(橋脚頂部など)3と上部構造(橋桁など)2との間に、慣性質量ダンパー4とばね部材5を直列に連結した形で設置される。   Next, as shown in FIG. 1 (a), FIG. 3 (a), FIG. 3 (b), and FIG. 3 (c), the vibration damping mechanism B of the present embodiment has a lower structure of the bridge 1 as described above. An inertia mass damper 4 and a spring member 5 are connected in series between a bridge pier top and the like 3 and an upper structure 2 such as a bridge girder.

この振動モデルは図1(b)のようになり、慣性質量Ψと減衰係数cを並列にし、ばね部材5をこれと直列するばね部材5の剛性kとしてモデル化される。そして、慣性質量Ψと直列ばねkとにより定まる振動数を橋梁1の1次固有振動数に同調するように設定して同調型制振機構とする。 The vibration model is as in FIG. 1 (b), the inertial mass [psi d and the damping coefficient c d in parallel, is modeled as a rigid k d of the spring member 5 and the spring member 5 in series therewith. Then, the frequency determined by the inertial mass Ψ d and the series spring k d is set so as to be synchronized with the primary natural frequency of the bridge 1 to obtain a tuned vibration damping mechanism.

ここで、本実施形態の橋梁の制振構造Aの設定方法においては、橋桁質量(多径間の場合は一体化された橋桁の総重量)をm、橋脚頂部の質量(橋脚が複数の場合はその総合計)をm 、支承の総水平剛性をk、橋脚部の総水平剛性をkとし、慣性質量ダンパー4の慣性質量Ψと減衰係数c、ばね部材5の剛性kを次の式(4)、式(5)で設定する。
また、予め、k/kとΨ/mの関係、hとΨ/mの関係を図4、図5のように求めておく。
Here, in the setting method of the bridge damping structure A of the present embodiment, the bridge girder mass (total weight of the integrated bridge girder in the case of multiple spans) is m 2 , and the mass of the bridge pier top portion (a plurality of piers are plural). In this case, the total sum) is m 1 , the total horizontal stiffness of the bearing is k 2 , the total horizontal stiffness of the pier is k 1 , the inertia mass Ψ d and the damping coefficient c d of the inertia mass damper 4, and the stiffness of the spring member 5 k d is set by the following equations (4) and (5).
Further, in advance, the relationship of k d / k 2 and Ψ d / m 2, the relationship of h d and Ψ d / m 2 4, previously obtained as shown in Figure 5.

Figure 2016023443
Figure 2016023443
、hについては図4、図5によって設定する。
Figure 2016023443
Figure 2016023443
k d, the h d is set by 4, 5.

なお、ここでは、下部構造3となる橋脚部の構造減衰を1次固有振動数に対して5%とし、支承部の減衰については無視する。また、これらの値は一体化した橋桁部分にとりつく諸元の合計値であり、このダンパー諸元は小さすぎると応答低減効果がなく、大きすぎると支承剛性を高めた(ピン支承にした)のと同様で変形を抑制できるが応答低減効果が得られなくなる。これを考慮して、上記範囲のように諸元が設定される。   Here, the structural damping of the pier part which becomes the lower structure 3 is 5% with respect to the primary natural frequency, and the damping of the support part is ignored. Also, these values are the total values of the specifications for the integrated bridge girder. If the damper specifications are too small, there is no response reduction effect, and if they are too large, the bearing rigidity is increased (pin bearings are used). In the same manner as above, deformation can be suppressed, but the response reduction effect cannot be obtained. Considering this, the specifications are set as in the above range.

次に、上記の振動モデルを用いて本実施形態の橋梁の制振構造Aを設けた場合の橋梁1の耐震性能をシミュレーションした結果(試設計)について説明する。   Next, the result (trial design) of simulating the earthquake resistance performance of the bridge 1 when the bridge damping structure A of the present embodiment is provided using the above vibration model will be described.

本シミュレーションでは、制振機構Bを設けない非制振のCase1と、慣性質量ダンパー4とばね部材5を直列に連結してなる制振機構Bを設けたCase2(本実施形態の橋梁の制振構造A)の2ケースについてシミュレーションを行い、互いのシミュレーション結果を比較した。   In this simulation, non-damping Case 1 without the vibration damping mechanism B and Case 2 with the vibration damping mechanism B formed by connecting the inertia mass damper 4 and the spring member 5 in series (the vibration damping of the bridge of the present embodiment). Two cases of structure A) were simulated and their simulation results were compared.

また、制振対象として3径間の橋梁1をモデル化した。この橋梁1の諸元は、路面を含む橋桁部質量m=1578ton、橋脚部質量m=319ton、支承部剛性k=73.5kN/mm、下部工剛性(下部構造の剛性)k=477kN/mmとした。これにより、m/m=0.2、k/k=6.5となる。
また、制振機構Bの慣性質量はΨ=442tonとした。
In addition, a bridge 1 with 3 spans was modeled as a vibration control target. The specifications of this bridge 1 are: bridge girder mass m 2 = 1578 ton including road surface, pier mass m 1 = 319 ton, bearing stiffness k 2 = 73.5 kN / mm, substructure stiffness (understructure stiffness) k 1 = 477 kN / mm. As a result, m 1 / m 2 = 0.2 and k 1 / k 2 = 6.5.
Further, the inertial mass of the vibration control mechanism B was set to ψ d = 442 ton.

そして、上記のように各諸元、ひいてはΨ/m=0.28、k/k=6.5を決めると、図4と図5からk/k=0.45、h=0.29を得ることができる。これにより、k=0.45k=33.1kN/mm、c=2.22kN・sec/mm=22.2kN/kineとなる。 Then, as described above, by determining each item, and thus Ψ d / m 2 = 0.28 and k 1 / k 2 = 6.5, k d / k 2 = 0.45 from FIG. 4 and FIG. h d = 0.29 can be obtained. As a result, k d = 0.45 k 2 = 33.1 kN / mm and c d = 2.22 kN · sec / mm = 22.2 kN / kine.

次に、周波数伝達関数を用い、本実施形態の制振機構Bの有無(Case1、Case2)による振動特性の違いを周波数領域で検討した結果について説明する。   Next, the result of examining the difference in vibration characteristics in the frequency domain depending on the presence / absence of the vibration damping mechanism B of the present embodiment (Case 1 and Case 2) using a frequency transfer function will be described.

ここで、橋脚部の有効質量m、橋桁部の質量m、各質点の全体変位x、各層の剛性k、2層目に設ける慣性質量Ψ、付加減衰c、直列ばね(ばね部材)k、入力加速度(地表面加速度)x(上に・・)とし、下記の式(6)のように設定すれば、加速度応答倍率は、下記の式(7)で求めることができる。なお、iは虚数(i=√(−1))、ωは加振角振動数(ω=2πf(fは加振振動数))であり、ω01は第1層目の質量mと剛性kにより定まる角振動数、ω02は第2層目の質量mと剛性kにより定まる角振動数である。 Here, the effective mass m 1 of the bridge pier, the mass m 2 of the bridge girder, the total displacement x i of each mass point, the stiffness k i of each layer, the inertia mass Ψ d provided in the second layer, the additional damping c d , the series spring ( Spring member) k d , input acceleration (surface acceleration) x 0 (above ・ ・), and setting as shown in the following formula (6), the acceleration response magnification can be obtained by the following formula (7) Can do. Note that i is an imaginary number (i = √ (−1)), ω is an excitation angular frequency (ω = 2πf (f is an excitation frequency)), and ω 01 is the mass m 1 of the first layer. An angular frequency determined by the stiffness k 1 and ω 02 is an angular frequency determined by the mass m 2 of the second layer and the stiffness k 2 .

Figure 2016023443
Figure 2016023443
Figure 2016023443
Figure 2016023443

図6は、地表面加速度x(上に「・・」)に対する加振角振動数(x(上に「・・」),x(上に「・・」))の比率を応答倍率して示した結果である。なお、この図6における加振振動数比ζはω02=√(k/m)に対する加振角振動数ω=2πf(fは加振振動数)の比率である。 Fig. 6 shows the response of the ratio of the excitation angular frequency (x 2 (up to "..."), x 1 (up to "...")) to the ground surface acceleration x 0 (up to "...") It is the result shown by multiplying. The excitation frequency ratio ζ in FIG. 6 is a ratio of the excitation angular frequency ω = 2πf (f is the excitation frequency) with respect to ω 02 = √ (k 2 / m 2 ).

この図6、図7から、本実施形態の同調型の制振機構B(Case2)を設けることにより共振時の応答倍率が大幅に低減することが確認された。また、m>>mであることから、下部構造3の反力が概ね橋桁部の加速度に比例することになり、且つ下部構造3の反力も同様に低減することが確認された。 From FIG. 6 and FIG. 7, it was confirmed that the response magnification at the time of resonance is significantly reduced by providing the tuning type vibration damping mechanism B (Case 2) of the present embodiment. In addition, since m 2 >> m 1 , it was confirmed that the reaction force of the lower structure 3 is approximately proportional to the acceleration of the bridge girder and that the reaction force of the lower structure 3 is similarly reduced.

本実施形態の制振構造Aの場合(Case2)について、当該部より上部にある全質量に加速度を乗じた値に対する当該部の反力の比率を応答倍率とする。制振機構Bの反力応答倍率は(制振機構の反力)/m (上に「・・」)、下部構造3の反力応答倍率は(下部工の反力)/(m+m)x (上に「・・」)で表される。 In the case of the vibration damping structure A of the present embodiment (Case 2), the ratio of the reaction force of the part to the value obtained by multiplying the total mass above the part by acceleration is defined as the response magnification. The reaction force response magnification of the damping mechanism B is (reaction force of the damping mechanism) / m 2 x 0 (above “··”), and the reaction force response magnification of the lower structure 3 is (reaction force of the substructure) / ( m 1 + m 2 ) x 0 (above “••”).

そして、図7に示すように、「支承6+制振機構B」及び下部構造3の応答倍率は、概ね加速度応答倍率と同様になることが確認された。また、制振機構Bの応答倍率は共振振動数近傍だけで大きくなることが確認された。
これにより、本実施形態の制振機構Bは共振域だけ効いて高振動数域では効かない特徴を有し、この特徴によって従来のオイルダンパー等の制振装置を設置した場合と比較し、負担力が小さくなる。
Then, as shown in FIG. 7, it was confirmed that the response magnifications of “support 6 + vibration control mechanism B” and lower structure 3 are substantially the same as the acceleration response magnification. Further, it was confirmed that the response magnification of the damping mechanism B increases only in the vicinity of the resonance frequency.
As a result, the vibration damping mechanism B of the present embodiment has a feature that works only in the resonance region and does not work in the high frequency region, and compared with the case where a vibration damping device such as a conventional oil damper is installed due to this feature, The power is reduced.

図8は、地表面変位xに対する各部変位(相対変位x−x,x−x)の比率を応答倍率として示した結果である。また、図9は、本実施形態の制振構造Aを備えた場合についてのみ縦軸を拡大して示している。 FIG. 8 shows the result of the ratio of each part displacement (relative displacement x 2 −x 1 , x 1 −x 0 ) to the ground surface displacement x 0 as a response magnification. FIG. 9 shows the vertical axis in an enlarged manner only when the vibration damping structure A of the present embodiment is provided.

これら図8、図9から、本実施形態の制振機構Bにより共振域での応答倍率が大幅に低下し、支承部の変位が抑制されることが確認された。   From these FIG. 8 and FIG. 9, it was confirmed that the response magnification in the resonance region is significantly reduced by the vibration damping mechanism B of the present embodiment, and the displacement of the support portion is suppressed.

次に、時刻歴解析を用い、制振機構Bの有無(Case1、Case2)による応答の違いを検討した結果について説明する。   Next, the result of examining the difference in response depending on the presence / absence of the vibration suppression mechanism B (Case 1 and Case 2) using time history analysis will be described.

ここでは、公益社団法人日本道路協会:道路橋示方書に示されたレベル2地震動で2種地盤に対応するII−II−3地震波(最大加速度736gal)を入力し、時刻歴波形で応答結果を比較した。
なお、この入力地震動の波形は図10に示す通りである。
Here, we input the II-II-3 seismic wave (maximum acceleration 736 gal) corresponding to the two types of ground in the level 2 earthquake motion shown in the Japan Road Association: Road Bridge Specification, and display the response result in the time history waveform Compared.
The waveform of this input ground motion is as shown in FIG.

図11は橋桁部の加速度、図12は支承部の変位、図13は橋脚部のせん断力、図14は橋脚頂部の加速度を示している。   11 shows the acceleration of the bridge girder, FIG. 12 shows the displacement of the bearing, FIG. 13 shows the shearing force of the pier, and FIG. 14 shows the acceleration of the pier top.

図11から、本実施形態の制振機構Bにより最大応答加速度が半減するとともに、揺れの継続時間も大幅に低減することが確認された。   From FIG. 11, it was confirmed that the vibration damping mechanism B of the present embodiment halves the maximum response acceleration and greatly reduces the duration of shaking.

図12から、支承部の変位も制振機構Bにより半減し、概ね200mm程度に収まることが確認された。さらに、変位が200mm超える回数も制振機構Bにより正負各々7回から1回に減少した。また、制振時のダンパー最大反力は5690kN(1台あたり474kN)となり、直列なので慣性質量ダンパー4もばね部材5も同じとなる。最大変位(228mm)は慣性質量ダンパー4が210mm、ばね部材5が141mmとなり、単純和は支承変位より大きくなることが確認された。制振機構Bを備えた時のダンパー最大反力は直列なので慣性質量ダンパー4もばね部材5も同じとなる。   From FIG. 12, it was confirmed that the displacement of the support portion was also halved by the vibration damping mechanism B, and was approximately within 200 mm. Furthermore, the number of times that the displacement exceeded 200 mm was also decreased from 7 to 1 each by the vibration damping mechanism B. In addition, the damper maximum reaction force during vibration suppression is 5690 kN (474 kN per vehicle), and since it is in series, the inertia mass damper 4 and the spring member 5 are the same. The maximum displacement (228 mm) was 210 mm for the inertia mass damper 4 and 141 mm for the spring member 5, and it was confirmed that the simple sum was larger than the bearing displacement. Since the damper maximum reaction force when the damping mechanism B is provided is in series, the inertia mass damper 4 and the spring member 5 are the same.

図13から、下部工(橋脚部)に作用するせん断力も制振機構Bにより半減し、応力振幅も速やかに減衰することが確認された。これにより、大きな応力を生じる回数が減るので、疲労破壊も生じにくくなることが実証された。   From FIG. 13, it was confirmed that the shearing force acting on the substructure (pier pier) was also halved by the damping mechanism B, and the stress amplitude was also quickly attenuated. This proves that fatigue failure is less likely to occur because the number of occurrences of large stress is reduced.

図14から、橋脚頂部(支承部下部)の加速度は制振機構Bによりやや低減されるもののその低減効果は顕著ではないことが確認された。これにより、本実施形態の橋脚の制振構造Aは、橋脚頂部の加速度の応答低減を図ることはできないことが確認された。   From FIG. 14, it was confirmed that although the acceleration at the pier top portion (lower support portion) is slightly reduced by the vibration control mechanism B, the reduction effect is not significant. Thereby, it was confirmed that the vibration control structure A of the bridge pier of this embodiment cannot aim at the response reduction of the acceleration of a bridge pier top part.

したがって、本実施形態の橋梁の制振構造Aにおいては、直列に連結した回転慣性質量ダンパー4とばね部材5を支承部6に並列設置するだけで、支承部6の水平変位を抑制できるとともに、下部構造(橋脚部)3に作用する力(せん断力、モーメント)をも低減でき、基礎に作用する地震力も低減することができる。   Therefore, in the bridge damping structure A of the present embodiment, the horizontal displacement of the bearing 6 can be suppressed only by installing the rotary inertia mass damper 4 and the spring member 5 connected in series to the bearing 6 in parallel. The force (shearing force, moment) acting on the lower structure (pier pier) 3 can also be reduced, and the seismic force acting on the foundation can also be reduced.

これにより、既存橋脚部や杭の耐力が小さく、制振しない場合に大きな損傷を生じていた部位における応答が制振により大幅に低減され、損傷を防止または軽減することができる。特に、杭のように改修工事でも補強することが困難な部材の耐力を増大させることなく、耐震性能を向上させることができる。すなわち、耐震余裕度を向上することができる。   Thereby, the response in the site | part which had produced the big damage when the existing bridge pier part and the pile are low in proof and is not damped is greatly reduced by damping, and damage can be prevented or reduced. In particular, the seismic performance can be improved without increasing the proof stress of a member that is difficult to reinforce even during repair work such as a pile. That is, the seismic margin can be improved.

また、支承部6を交換する必要がなく、単に制振機構Bを付加するだけなので、橋梁1を工事中も継続使用できる。   In addition, since it is not necessary to replace the support 6 and the vibration control mechanism B is simply added, the bridge 1 can be used continuously during construction.

さらに、慣性質量ダンパー4と直列ばね部材5とによる同調型制振機構を用いることで、共振振動数近傍のみ効果的に応答低減することができ、オイルダンパー等の粘性減衰(従来の制振装置)のように高振動数域で加速度応答が増大することがない。   Further, by using a tuned vibration damping mechanism including the inertial mass damper 4 and the series spring member 5, it is possible to effectively reduce the response only in the vicinity of the resonance frequency. ) Does not increase the acceleration response in the high frequency range.

また、高振動数成分が含まれなくなることで、制振機構Bの反力(負担力)が従来の制振装置よりも小さくなったにも関わらず、大きな応答低減効果を発揮できる。特に、築年数の古い橋梁においては桁梁の断面性能が小さく、制振装置の反力に対し桁の耐力が不足する場合もあり、反力が小さくても制振効果の高い本実施形態の橋梁の制振構造Aを採用することで好適に耐震性能を向上させることが可能になる。   Further, since the high frequency component is not included, a large response reduction effect can be exhibited even though the reaction force (burden force) of the vibration damping mechanism B is smaller than that of the conventional vibration damping device. In particular, the cross-sectional performance of the girder beam is small in an old bridge, and the strength of the girder may be insufficient with respect to the reaction force of the vibration control device. Even if the reaction force is small, this embodiment has a high vibration damping effect. By adopting the bridge damping structure A, it is possible to suitably improve the seismic performance.

さらに、制振機構Bを支承部6に並列配置するだけの比較的簡単な作業なので、施工に当たり特別な技能は必要とされず、新築だけでなく既存橋梁1の制震改修にも適用できる。   Furthermore, since the vibration control mechanism B is a relatively simple operation that is simply arranged in parallel with the support portion 6, no special skills are required for the construction, and the vibration control mechanism B can be applied not only to a new construction but also to a vibration control repair of the existing bridge 1.

また、本実施形態の橋梁の制振構造の設定方法においては、上記の橋梁の制振構造Aの作用効果に加え、「Ψ/mの範囲」、「k/kとΨ/mの関係」、「hとΨ/mの関係」から、Ψ/mを設定すれば他の最適な諸元を簡便に求めることができ、同調型制振機構を実現するための実用的な方法を提供することができる。さらに、Ψ/mを大きくすれば応答低減効果は増大するが、制振機構Bの反力も増加することから、桁や橋脚の耐力を考慮しながら適切な値に設定することができる。 In addition, in the method for setting the bridge damping structure of the present embodiment, in addition to the above-described effects of the bridge damping structure A, “range of Ψ d / m 2 ”, “k d / k 2 and Ψ d / M 2 ”and“ relationship between h d and Ψ d / m 2 ”, if Ψ d / m 2 is set, other optimum specifications can be easily obtained. A practical way to achieve this can be provided. Furthermore, if Ψ d / m 2 is increased, the response reduction effect is increased, but the reaction force of the vibration control mechanism B is also increased, so that it can be set to an appropriate value in consideration of the strength of the girders and piers.

以上、本発明に係る橋梁の制振構造及び橋梁の制振構造の設定方法の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although one embodiment of the bridge damping structure and the method for setting the bridge damping structure according to the present invention has been described, the present invention is not limited to the above embodiment and does not depart from the gist thereof. The range can be changed as appropriate.

例えば、本実施形態では、慣性質量ダンパー4とばね部材5を直列に連結してなる制振機構Bのみを備えて制振構造Aが構成されているものとしたが、慣性質量ダンパー4とばね部材5を直列に連結してなる制振機構Bだけでなく、橋梁1の上部構造2と下部構造3の間に他の制振装置(他の制振ダンパー)を付加して橋梁の制振構造Aが構成されていてもよい。他の制振装置としては例えばオイルダンパーやビンガムダンパー、その他の粘性系ダンパーなどが挙げられ、このような制振装置を付加することにより支承部6の変位量を低減し、さらに耐震性を向上させることができる。   For example, in the present embodiment, the damping structure A is configured to include only the damping mechanism B formed by connecting the inertial mass damper 4 and the spring member 5 in series, but the inertial mass damper 4 and the spring are configured. In addition to the damping mechanism B formed by connecting the members 5 in series, another damping device (another damping damper) is added between the upper structure 2 and the lower structure 3 of the bridge 1 to suppress the vibration of the bridge. Structure A may be configured. Examples of other vibration damping devices include oil dampers, Bingham dampers, and other viscous dampers. By adding such vibration damping devices, the displacement of the support portion 6 is reduced, and the earthquake resistance is further improved. Can be made.

但し、付加する制振装置(制振ダンパー)が過大だと支承部の変位は低減できるが下部構造(橋脚部)の応答が増大するため、付加する制振装置の減衰係数c’に次の式(8)で示される制約条件をつけることが望ましい。   However, if the added damping device (damping damper) is excessive, the displacement of the bearing portion can be reduced, but the response of the lower structure (bridge pier) increases, so the damping coefficient c ′ of the added damping device is It is desirable to attach a constraint condition represented by Expression (8).

Figure 2016023443
Figure 2016023443

また、想定外の入力地震動に対するフェールセーフ機構として、慣性質量ダンパー4は例えば回転錘12とボールねじ機構を摩擦材を介して接合するなどし、伝達トルクを頭打ちする過負荷防止機構を備えて構成することが好ましい。さらに、オイルダンパーはピストンにリリーフ弁を設け、シリンダー内の過大な圧力上昇を抑制する過負荷防止機構を備えることが好ましい。   In addition, as a fail-safe mechanism against unexpected input ground motion, the inertial mass damper 4 is configured to include an overload prevention mechanism that stops the transmission torque, for example, by joining the rotary weight 12 and the ball screw mechanism via a friction material. It is preferable to do. Furthermore, it is preferable that the oil damper is provided with a relief valve on the piston, and an overload prevention mechanism that suppresses an excessive pressure increase in the cylinder.

1 橋梁
2 上部構造
3 下部構造
4 慣性質量ダンパー
5 ばね部材
6 支承(支承部)
10 ボールねじ
11 ボールナット
12 回転錘(錘)
13 連結部材
14 軸受け
15 外筒
16 内筒
17 接続板
18 連結部材
19 支持板
20 リニアガイド
21 凸部
22 リニアガイドレール
23 係止板
24 ストローク規定板
A 橋梁の制振構造
B 制振機構
B1 回転慣性質量機構
B2 付加ばね機構
O1 制振機構の軸線
DESCRIPTION OF SYMBOLS 1 Bridge 2 Superstructure 3 Substructure 4 Inertial mass damper 5 Spring member 6 Support (support part)
10 Ball screw 11 Ball nut 12 Rotating weight (weight)
13 connecting member 14 bearing 15 outer cylinder 16 inner cylinder 17 connecting plate 18 connecting member 19 support plate 20 linear guide 21 convex portion 22 linear guide rail 23 locking plate 24 stroke defining plate A bridge damping structure B damping mechanism B1 rotation Inertial mass mechanism B2 Additional spring mechanism O1 Damping mechanism axis

Claims (3)

慣性質量ダンパーとばね部材を直列に連結してなる制振機構を、支承と並列に上部構造と下部構造に連結して設置し、
前記上部構造と前記下部構造が相対的に変位するとともに前記慣性質量ダンパーの錘が回転して慣性質量効果が発揮され、
前記ばね部材によって、前記慣性質量ダンパーと前記ばね部材により定まる前記制振機構の振動数を橋梁の卓越する振動数に同調させるように構成されていることを特徴とする橋梁の制振構造。
A vibration damping mechanism consisting of an inertial mass damper and a spring member connected in series is connected to the upper structure and the lower structure in parallel with the bearing.
The upper structure and the lower structure are relatively displaced and the weight of the inertial mass damper is rotated to exert an inertial mass effect,
A bridge damping structure configured to synchronize a vibration frequency of the damping mechanism determined by the inertia mass damper and the spring member with an excellent vibration frequency of the bridge by the spring member.
請求項1記載の橋梁の制振構造において、
支承と並列に上部構造と下部構造に連結して他の制振ダンパーが設置され、
前記制振ダンパーの減衰係数c’が下記の式(1)を満足するように構成されていることを特徴とする橋梁の制振構造。
Figure 2016023443
ここで、mは橋桁質量(多径間の場合は一体化された橋桁の総重量)、kは橋脚部の総水平剛性、kは支承の総水平剛性である。
In the vibration damping structure of a bridge according to claim 1,
In parallel with the bearing, other damping dampers are installed connected to the upper and lower structures,
A damping structure for a bridge, wherein the damping coefficient c ′ of the damping damper satisfies the following expression (1).
Figure 2016023443
Here, m 2 is the mass of the bridge girder (in the case of multiple spans, the total weight of the integrated bridge girder), k 1 is the total horizontal rigidity of the bridge pier, and k 2 is the total horizontal rigidity of the bearing.
請求項1又は請求項2に記載の橋梁の制振構造の最適な諸元を設定する方法であって、
前記慣性質量ダンパーの慣性質量Ψと減衰係数c、前記ばね部材の剛性kを下記の式(2)と式(3)で設定し、
且つ、予め橋脚部の総水平剛性k/支承の総水平剛性kをパラメータとしてk/kとΨ/mの関係、h(=c/2√Ψ)とΨ/mの関係を求めておき、
Ψ/mを設定するとともにk/kとΨ/mの関係、hとΨ/mの関係から最適なkとhを求め、前記最適なkとhと式(2)と式(3)から最適なΨとcを求めることを特徴とする橋梁の制振構造の設定方法。
Figure 2016023443
Figure 2016023443
A method for setting the optimum specifications of the bridge damping structure according to claim 1 or 2,
The inertia mass Ψ d and the damping coefficient c d of the inertia mass damper and the stiffness k d of the spring member are set by the following equations (2) and (3),
In addition, the relationship between k d / k 2 and Ψ d / m 2 with the total horizontal rigidity k 1 of the bridge pier / total horizontal rigidity k 2 of the bearing as a parameter, h d (= c d / 2√Ψ d k d ) And the relationship between Ψ d / m 2 and
Relationship k d / k 2 and Ψ d / m 2 and sets the Ψ d / m 2, determined an optimal k d and h d from the relationship h d and Ψ d / m 2, and the optimal k d h d and equation (2) and configure the damping structure of bridges and obtains the equation (3) from the optimum [psi d and c d.
Figure 2016023443
Figure 2016023443
JP2014146974A 2014-07-17 2014-07-17 Setting method of bridge damping structure Active JP6440243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014146974A JP6440243B2 (en) 2014-07-17 2014-07-17 Setting method of bridge damping structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014146974A JP6440243B2 (en) 2014-07-17 2014-07-17 Setting method of bridge damping structure

Publications (2)

Publication Number Publication Date
JP2016023443A true JP2016023443A (en) 2016-02-08
JP6440243B2 JP6440243B2 (en) 2018-12-19

Family

ID=55270476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014146974A Active JP6440243B2 (en) 2014-07-17 2014-07-17 Setting method of bridge damping structure

Country Status (1)

Country Link
JP (1) JP6440243B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045947A (en) * 2018-09-18 2020-03-26 学校法人五島育英会 Hard seismic isolation structure
CN111549647A (en) * 2020-04-09 2020-08-18 中山大学 Shock absorption method and shock absorption device based on tension-torsion coupling effect
CN111912953A (en) * 2020-07-31 2020-11-10 青岛理工大学 Deep-well mining slope stability determination method based on excavation amount monitoring
JP2020186578A (en) * 2019-05-15 2020-11-19 清水建設株式会社 Vibration control mechanism
JP2021169840A (en) * 2020-04-15 2021-10-28 東海旅客鉄道株式会社 Vibration suppression device of structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6233884B1 (en) * 1997-10-20 2001-05-22 Steven B. Tipping Method and apparatus to control seismic forces, accelerations, and displacements of structures
JP2004332478A (en) * 2003-05-12 2004-11-25 Chuo Fukken Consultants Co Ltd Earthquake resistant structure for bridge
JP2008101769A (en) * 2006-09-21 2008-05-01 Shimizu Corp Vibration reducing mechanism and its specification setting method
JP2008133947A (en) * 2006-10-23 2008-06-12 Shimizu Corp Vibration reducing mechanism and its specification setting method
JP2014020141A (en) * 2012-07-19 2014-02-03 Shimizu Corp Optimal design method of low-layer centralized vibration control system employing inertia mass damper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6233884B1 (en) * 1997-10-20 2001-05-22 Steven B. Tipping Method and apparatus to control seismic forces, accelerations, and displacements of structures
JP2004332478A (en) * 2003-05-12 2004-11-25 Chuo Fukken Consultants Co Ltd Earthquake resistant structure for bridge
JP2008101769A (en) * 2006-09-21 2008-05-01 Shimizu Corp Vibration reducing mechanism and its specification setting method
JP2008133947A (en) * 2006-10-23 2008-06-12 Shimizu Corp Vibration reducing mechanism and its specification setting method
JP2014020141A (en) * 2012-07-19 2014-02-03 Shimizu Corp Optimal design method of low-layer centralized vibration control system employing inertia mass damper

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
磯田和彦 他: "慣性質量ダンパーを組み込んだ低層集中制震に関する基礎的研究", 日本建築学会構造系論文集, vol. 78, no. 686, JPN6018014544, April 2013 (2013-04-01), pages 713 - 722, ISSN: 0003783243 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045947A (en) * 2018-09-18 2020-03-26 学校法人五島育英会 Hard seismic isolation structure
JP2020186578A (en) * 2019-05-15 2020-11-19 清水建設株式会社 Vibration control mechanism
JP7272858B2 (en) 2019-05-15 2023-05-12 清水建設株式会社 Damping mechanism
CN111549647A (en) * 2020-04-09 2020-08-18 中山大学 Shock absorption method and shock absorption device based on tension-torsion coupling effect
JP2021169840A (en) * 2020-04-15 2021-10-28 東海旅客鉄道株式会社 Vibration suppression device of structure
JP7408471B2 (en) 2020-04-15 2024-01-05 東海旅客鉄道株式会社 Vibration damping device for structures
CN111912953A (en) * 2020-07-31 2020-11-10 青岛理工大学 Deep-well mining slope stability determination method based on excavation amount monitoring
CN111912953B (en) * 2020-07-31 2022-08-19 青岛理工大学 Deep-well mining slope stability determination method based on excavation amount monitoring

Also Published As

Publication number Publication date
JP6440243B2 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6440243B2 (en) Setting method of bridge damping structure
Sharabash et al. Application of shape memory alloy dampers in the seismic control of cable-stayed bridges
JP2020507725A (en) Sliding pendulum bearing and how to dimension such a bearing
Zhu et al. Seismic design of a long-span cable-stayed bridge with fluid viscous dampers
Jafarabad et al. Hybrid damping systems in offshore jacket platforms with float-over deck
Komachi et al. Retrofit of Ressalat jacket platform (Persian Gulf) using friction damper device
Javanmardi et al. Seismic isolation retrofitting solution for an existing steel cable-stayed bridge
JP2013047433A (en) Structure vibration control and base isolation method
Cheng et al. Seismic behavior of rocking base-isolated structures
JP6440244B2 (en) Setting method of bridge damping structure
Ikeda et al. Recent research and development of structural control in Japan
JP6508819B2 (en) Vibration control structure for bridge and setting method of vibration control structure for bridge
JP6752166B2 (en) Seismic isolation device
JP6476054B2 (en) Seismic structure for bridges
Ghorbanzadeh et al. Seismic performance assessment of semi active tuned mass damper in an MRF steel building including nonlinear soil–pile–structure interaction
JP6835492B2 (en) Seismic isolation structure
Lin et al. Control of seismically isolated bridges by magnetorheological dampers and a rolling pendulum system
Mahjoubi et al. Pipe dampers as passive devices for seismic control of isolated bridges
JP6955511B2 (en) Passive variable negative stiffness device and how to use it
JP5024623B2 (en) Seismic isolation mechanism
Pasala Seismic response control of structures using novel adaptive passive and semi-active variable stiffness and negative stiffness devices
Ganji et al. Comparing seismic performance of steel structures equipped with viscous dampers and lead rubber bearing base isolation under near-field earthquake
Mazza Nonlinear analysis of rc framed buildings retrofitted with elastomeric and friction bearings under near-fault earthquakes
Tian et al. Seismic performance of curved viaducts with shock absorber devices of different stiffness in great earthquakes
Wankhade Performance analysis of RC moment resisting frames using different rubber bearing base isolation techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181116

R150 Certificate of patent or registration of utility model

Ref document number: 6440243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250