JP2016022509A - Resistance welding method and resistance welding structure - Google Patents

Resistance welding method and resistance welding structure Download PDF

Info

Publication number
JP2016022509A
JP2016022509A JP2014148766A JP2014148766A JP2016022509A JP 2016022509 A JP2016022509 A JP 2016022509A JP 2014148766 A JP2014148766 A JP 2014148766A JP 2014148766 A JP2014148766 A JP 2014148766A JP 2016022509 A JP2016022509 A JP 2016022509A
Authority
JP
Japan
Prior art keywords
welded
plate
resistance welding
plate material
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014148766A
Other languages
Japanese (ja)
Inventor
秀政 長嶺
Hidemasa Nagamine
秀政 長嶺
和田 圭司
Keiji Wada
圭司 和田
隆弘 浅田
Takahiro Asada
隆弘 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAG SYSTEM CO Ltd
Original Assignee
NAG SYSTEM CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAG SYSTEM CO Ltd filed Critical NAG SYSTEM CO Ltd
Priority to JP2014148766A priority Critical patent/JP2016022509A/en
Publication of JP2016022509A publication Critical patent/JP2016022509A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a resistance welding method and a resistance welding structure capable of easily performing firm resistance welding even for a plate material having a high electrical conductivity when members to be welded arranged in a row and plate materials which are brought into contact with the members to be welded are subjected to resistance welding while leaving a gap between two sheets of the plate materials in the row direction.SOLUTION: A plurality of plate materials 2, 3 are provided so as to have a rectangular shape and the respective plate materials are brought into contact with respective members 1 to be welded and are arranged respectively while leaving a predetermined gap S in the row direction Y, and one or more projections 5 which are respectively projected toward welding portions are formed on both end parts in the row direction of the plate material opposite to the welding portions 1a of the members to be welded. Each of a pair of welding electrodes 10, 11 is brought into contact with an outer surface of the side opposite to the member to be welded on the plate material, the pair of welding electrodes are separated and arranged in the row direction of the plate material, electricity is conducted between the welding electrodes and each of two sheets of plate materials is subjected to projection resistance welding onto the welding portion of each of members to be welded.SELECTED DRAWING: Figure 1

Description

本発明は、複数の被溶接部材を板材と抵抗溶接して、各被溶接部材をそれぞれ電気的に接続する抵抗溶接方法および抵抗溶接構造に関するものである。   The present invention relates to a resistance welding method and a resistance welding structure in which a plurality of members to be welded are resistance-welded to a plate material, and each member to be welded is electrically connected.

従来から、複数の被溶接部材を一列に並べて板材と抵抗溶接してそれぞれ電気的に接続するものとして、少なくとも2つのセル(被溶接部材)を並べて、セルを覆うリード板(端子板)と電気的に接続する組電池(電池パック)が知られている。ここで、抵抗溶接とは、一対の電極を金属材料に当てて、加圧しながら大電流を短時間流して、金属の抵抗発熱を利用し、ナゲット(合金層)を生成して溶融接続するものである。   Conventionally, a plurality of members to be welded are arranged in a row, resistance welded to a plate material, and electrically connected to each other, and at least two cells (members to be welded) are arranged, and a lead plate (terminal plate) that covers the cells and an electric An assembled battery (battery pack) is known to be connected. Here, resistance welding is a method in which a pair of electrodes are placed on a metal material, a large current is passed for a short time while applying pressure, a resistance heat generation of the metal is utilized, a nugget (alloy layer) is generated and melt-connected. It is.

その一例として、第1リード板の端部と第2リード板の端部との間に所定の間隔をあけた状態で各リード板が第2セルに抵抗溶接され、第1リード板の端部と第2セルとの間には正負一対の電極のうちの一方の電極による抵抗溶接部が形成されて、第2リード板の端部と第2セルとの間には正負一対の電極のうちの他方の電極による抵抗溶接部が形成されている組電池が挙げられる(例えば、特許文献1)。この組電池では、図5のように第1リード板52と第2リード板53Bとが所定の隙間を有する状態で、溶接電流Aは、正の溶接電極61から第2リード板53を通って電池51の電極51aを経て第1リード板52を通って負の溶接電極60へ向かい、リード板52、53と電極51a間に抵抗発熱によるナゲット8が生成されて抵抗溶接される。この組電池のリード板52、53はニッケルめっきをした鉄からなる。   As an example, each lead plate is resistance-welded to the second cell with a predetermined gap between the end of the first lead plate and the end of the second lead plate, and the end of the first lead plate Between the first and second cells, a resistance welded portion of one of the positive and negative electrodes is formed, and between the end of the second lead plate and the second cell, the positive and negative electrodes An assembled battery in which a resistance welded portion formed by the other electrode is formed (for example, Patent Document 1). In this assembled battery, the welding current A passes from the positive welding electrode 61 through the second lead plate 53 with the first lead plate 52 and the second lead plate 53B having a predetermined gap as shown in FIG. The electrode 51a of the battery 51 is passed through the first lead plate 52 toward the negative welding electrode 60, and a nugget 8 due to resistance heat generation is generated between the lead plates 52 and 53 and the electrode 51a and resistance welding is performed. The lead plates 52 and 53 of this assembled battery are made of nickel-plated iron.

ところで、リチウムイオン電池等の電池パックでは、近年、より高出力が要求されており、端子板(リード板)の材料が、前記鉄製から、ニッケル(Ni)製、さらにより導電率が高く電気抵抗の低い銅(Cu)または銅合金製へ移行される傾向にある。   By the way, in battery packs such as lithium ion batteries, in recent years, higher output has been demanded, and the material of the terminal plate (lead plate) is made of nickel (Ni) from the above-mentioned iron, and further has higher electrical conductivity and electric resistance. There is a tendency to shift to low copper (Cu) or copper alloy.

特許第4965753号公報Japanese Patent No. 4965753

しかし、複数の電池を銅または銅合金製の端子板(板材)と抵抗溶接する場合、図5のように、一対の溶接電極60、61を押し当てて通電したとき、溶接電極60(61)から端子板52(53)を介して電池51の鉄製の電極51aに流れる溶接電流Aが、銅の導電率の高さにより、端子板52(53)の周囲へ拡散する電流A2、A3が大きくなるため、その分減少してしまい小さくなることが想定される。また、銅の熱伝導率の高さにより、溶接箇所での発熱が端子板52(53)の周囲方向へ逃げやすいため低下することも想定される。これは、従来の鉄製のような導電率や熱伝導率の比較的低い端子板を使用した場合にはあまり問題にならなかったもので、この場合、高エネルギ(高電流)をかけないと十分な溶接ができない。   However, when a plurality of batteries are resistance-welded to a copper or copper alloy terminal plate (plate material), as shown in FIG. 5, when a pair of welding electrodes 60, 61 are pressed against each other and energized, the welding electrode 60 (61) The currents A2 and A3 that diffuse from the terminal plate 52 (53) to the iron electrode 51a of the battery 51 through the terminal plate 52 (53) due to the high conductivity of copper are large. Therefore, it is assumed that it decreases and becomes smaller accordingly. In addition, due to the high thermal conductivity of copper, it is assumed that the heat generated at the welded part tends to escape in the peripheral direction of the terminal plate 52 (53) and thus decreases. This is not a problem when using a terminal plate with a relatively low electrical conductivity or thermal conductivity such as conventional iron. In this case, it is sufficient if high energy (high current) is not applied. Can not be welded.

その一方、高エネルギをかけると、電池に対する熱ダメージが大きく、電池のケースの劣化および溶接箇所のオーバーフローにより、当該溶接箇所に孔が開いてしまうおそれもある。   On the other hand, when high energy is applied, thermal damage to the battery is large, and there is a possibility that a hole is opened in the welded part due to deterioration of the battery case and overflow of the welded part.

本発明は、一列に並んだ被溶接部材とこれに接触させた板材とを、2枚の板材間に列方向に隙間をあけた状態で抵抗溶接する場合に、導電率の高い板材であっても、容易に強固な抵抗溶接をすることが可能な抵抗溶接方法および抵抗溶接構造を提供することを目的とする。   The present invention is a plate material having a high conductivity when resistance welding is performed on a member to be welded in a row and a plate material brought into contact therewith with a gap in the row direction between two plate materials. Another object of the present invention is to provide a resistance welding method and a resistance welding structure capable of easily performing strong resistance welding.

上記目的を達成するために、本発明に係る抵抗溶接方法または抵抗溶接構造は、 複数の被溶接部材を一列に並べて板材と抵抗溶接して、各被溶接部材同士をそれぞれ該板材によって電気的に接続するものであって、前記板材は矩形の形状を有して複数設けられており、各板材を各被溶接部材に接触させて、それぞれ列方向に所定の隙間をあけた状態で並べて配置し、前記板材の列方向の両端部に、被溶接部材の溶接箇所に対向して、それぞれ当該溶接箇所に向かって突出させた少なくとも1つのプロジェクションを形成し、一対の溶接電極のそれぞれを前記板材における被溶接部材と反対側の外面に接触させ、かつ一対の溶接電極を前記板材の列方向に離間して配置させて、前記溶接電極間を通電して前記2枚の板材を各被溶接部材の溶接箇所にそれぞれプロジェクション抵抗溶接するものである。   In order to achieve the above object, a resistance welding method or resistance welding structure according to the present invention includes a plurality of members to be welded arranged in a row and resistance welded to a plate material, and each welded member is electrically connected to each other by the plate material. A plurality of the plate members having a rectangular shape are provided, and each plate member is placed in contact with each member to be welded and arranged in a row with a predetermined gap therebetween. And at least one projection formed at both ends of the plate member in the row direction so as to face the welded part of the member to be welded and project toward the welded part, and each of the pair of welding electrodes is formed on the plate material. A pair of welding electrodes are placed in contact with the outer surface opposite to the members to be welded and arranged in a row direction of the plate members, and the two plate members are connected to the members to be welded by energizing the welding electrodes. welding It is intended to projection resistance welded at.

この構成によれば、板材は矩形の形状を有して複数設けられており、各板材を各被溶接部材に接触させて、それぞれ列方向に所定の隙間をあけた状態で並べて配置し、前記板材の列方向の両端部に、被溶接部材の溶接箇所に対向して、それぞれ当該溶接箇所に向かって突出させた少なくとも1つのプロジェクションを形成するので、導電率の高い板材であっても、溶接箇所に強制的に溶接電流および発熱中心を誘導することにより、板材の周囲への電流および熱の拡散が防止されて、十分な溶接電流および発熱を確保して強固な抵抗溶接が可能となる。これにより、板材間の列方向の隙間および板材におけるプロジェクションの形成が相俟って、導電率の高い板材であっても、容易に強固な抵抗溶接をすることができる。   According to this configuration, a plurality of plate members are provided having a rectangular shape, each plate member is brought into contact with each member to be welded, and arranged side by side with a predetermined gap in the column direction, Since at least one projection is formed at both ends in the row direction of the plate material so as to face the welded portion of the member to be welded and protrude toward the welded location, even if the plate material has high conductivity, By forcibly inducing a welding current and a heat generation center at a location, diffusion of current and heat to the periphery of the plate material is prevented, and a sufficient resistance current and heat generation are ensured to enable strong resistance welding. Accordingly, combined with the formation of the gaps in the row direction between the plate materials and the projections on the plate materials, it is possible to easily perform strong resistance welding even with a plate material having high conductivity.

本発明は、各板材のプロジェクションが、それぞれ列方向の先端近傍に形成されて、前記2枚の板材の隙間を挟んで互いに接近した位置に配置されることが好ましい。この場合、より容易に溶接箇所に強制的に溶接電流および発熱中心を誘導することができ、より強固な抵抗溶接が可能となる。   In the present invention, it is preferable that the projections of the respective plate materials are respectively formed in the vicinity of the front end in the row direction and arranged at positions close to each other with a gap between the two plate materials interposed therebetween. In this case, the welding current and the heat generation center can be forcibly guided to the welding location more easily, and a stronger resistance welding can be achieved.

本発明は、前記板材が銅製またはニッケル製であることが好ましい。したがって、被溶接部材に抵抗溶接する板材の導電率がより高くても、強固な抵抗溶接が可能となる。   In the present invention, the plate material is preferably made of copper or nickel. Therefore, even if the conductivity of the plate material that is resistance-welded to the member to be welded is higher, it is possible to perform strong resistance welding.

好ましくは、前記被溶接部材が電池であって、前記板材が各電池同士をそれぞれ電気的に接続する端子板である。この場合、導電率の高い端子板を使用した高出力の電池パックであっても、強固な抵抗溶接が可能となる。   Preferably, the member to be welded is a battery, and the plate member is a terminal plate that electrically connects the batteries to each other. In this case, even a high-power battery pack using a terminal plate with high conductivity can be firmly resistance welded.

好ましくは、前記板材に形成されたプロジェクションの突出部が、側面視で長方形の角型形状である。また、正面視で山型形状を有しかつ頂部の長いロング型形状である幅方向に延びる突出形状である。したがって、突出部の形状により、その先端での発熱が端子板に逃げにくいので、低電力で抵抗溶接が可能となる。   Preferably, the projection of the projection formed on the plate has a rectangular square shape in a side view. Moreover, it is the protrusion shape extended in the width direction which has a mountain shape in front view and is a long type | mold shape with a long top part. Therefore, the shape of the protruding portion makes it difficult for heat generated at the tip to escape to the terminal plate, so that resistance welding can be performed with low power.

また、好ましくは、前記プロジェクションは、突出部の根元に、当該根元を取り囲む環状の溝を予め設けている。この場合、突出部の根元において、溝によって、溶接電流は端子板の周囲へ向かうよりも突出部へ向かうように、より強制的に誘導されて十分な電流密度も保持され、より強固な抵抗溶接が可能となる。   Preferably, in the projection, an annular groove surrounding the base is provided in advance at the base of the protrusion. In this case, at the base of the protrusion, the groove causes the welding current to be guided more forcibly so as to go to the protrusion rather than to the periphery of the terminal plate, so that sufficient current density is maintained, and stronger resistance welding is performed. Is possible.

本発明では、一列に並んだ被溶接部材とこれに接触させた板材とを、2枚の板材間に列方向に隙間をあけた状態で抵抗溶接する場合に、板材間の列方向の隙間と板材におけるプロジェクションの形成により、導電率の高い板材であっても、容易に強固な抵抗溶接をすることができる。   In the present invention, when the members to be welded arranged in a row and the plate material brought into contact therewith are resistance-welded with a gap in the row direction between the two plate materials, the gap in the row direction between the plate materials and By forming a projection on the plate material, it is possible to easily perform strong resistance welding even for a plate material having high conductivity.

本発明の一実施形態にかかる抵抗溶接方法を示す斜視図である。It is a perspective view which shows the resistance welding method concerning one Embodiment of this invention. (A)はプロジェクション抵抗溶接を示す正面模式図、(B)はその側面模式図である。(A) is a schematic front view showing projection resistance welding, and (B) is a schematic side view thereof. (A)は端子板にプロジェクションが形成された状態を示す平面図、(B)、(C)は拡大斜視図である。(A) is a top view which shows the state in which the projection was formed in the terminal board, (B), (C) is an enlarged perspective view. (A)〜(D)はプロジェクションの変形例を示す斜視図である。(A)-(D) are perspective views which show the modification of a projection. 従来の抵抗溶接方法を示す模式図である。It is a schematic diagram which shows the conventional resistance welding method.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。図1は本発明にかかる複数の被溶接部材を板材と抵抗溶接する抵抗溶接方法を示す斜視図、図2(A)はプロジェクション抵抗溶接を示す正面図、(B)はその側面図である。図1のように、本発明の抵抗溶接方法は、複数の被溶接部材である複数の電池1を一列に並べて、板材である端子板2、2と抵抗溶接して、各電池1同士をそれぞれ端子板2、2によって電気的に接続する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a resistance welding method in which a plurality of members to be welded according to the present invention are resistance welded to a plate material, FIG. 2 (A) is a front view showing projection resistance welding, and FIG. As shown in FIG. 1, in the resistance welding method of the present invention, a plurality of batteries 1 that are a plurality of members to be welded are arranged in a line, and resistance welding is performed with terminal plates 2 and 2 that are plate members, and each battery 1 is connected to each other. Electrical connection is made by the terminal plates 2 and 2.

端子板2は、例えば銅または銅合金製である。なお、銅よりも導電率の低いニッケル製を使用してもよい。   The terminal board 2 is made of, for example, copper or a copper alloy. In addition, you may use the product made from nickel whose electrical conductivity is lower than copper.

端子板2は矩形の形状を有して、複数設けられており、各電池1の溶接箇所(電極)1aに接触させて、それぞれ列方向Yに所定の隙間Sをあけた状態で並べて配置している。つまり、各電池1の電極1aは、所定の隙間Sをあけた2枚の端子板2、2で両隣の電池1と電気的に接続される。   The terminal plate 2 has a rectangular shape and is provided in a plurality, and is arranged in contact with the welding location (electrode) 1a of each battery 1 with a predetermined gap S in the column direction Y. ing. That is, the electrode 1a of each battery 1 is electrically connected to the adjacent battery 1 by the two terminal plates 2 and 2 with a predetermined gap S therebetween.

図2(A)のように、端子板2、2は列方向Yに隙間Sをあけて配置されており、この端子板2の列方向Yの両端部に、各電池1の電極1aに対向して、それぞれ電極1aに向かって突出させた少なくとも1つのプロジェクション5が形成されている。端子板2には、電池1と反対側の外面に溶接電極10、11が押し当てられる溶接電極当接面が設定されている。   As shown in FIG. 2A, the terminal plates 2 and 2 are arranged with gaps S in the column direction Y, and are opposed to the electrodes 1a of the batteries 1 at both ends of the terminal plate 2 in the column direction Y. Thus, at least one projection 5 that protrudes toward the electrode 1a is formed. The terminal plate 2 is provided with a welding electrode contact surface against which the welding electrodes 10 and 11 are pressed against the outer surface opposite to the battery 1.

図3(A)のように、プロジェクション5は、列方向Yに延びる端子板2、2の両端部に、電池1の電極1aの位置ごとにそれぞれ形成されている。この例では、図3(B)のように、プロジェクション5は、例えばプレス加工により円錐状の突出部6を形成しており、1つの電極1aごとに隙間Sをあけた2枚の端子板2、2の列方向Yの端部にそれぞれ2個ずつで、合計4個の突出部6が設けられている。ここでは、合計4個の突出部6を例示しているが、この個数は何ら限定されない。   As shown in FIG. 3A, the projections 5 are formed at both ends of the terminal plates 2 and 2 extending in the column direction Y for each position of the electrode 1 a of the battery 1. In this example, as shown in FIG. 3B, the projection 5 has, for example, a conical protrusion 6 formed by pressing, and two terminal plates 2 having a gap S for each electrode 1a. A total of four protrusions 6 are provided, two at each of two end portions in the column direction Y. Here, a total of four protrusions 6 are illustrated, but this number is not limited at all.

また、図3(C)のように、プロジェクション5は、突出部6の根元に、この根元部分を取り囲む環状の溝7を予め設けてもよい。この溝7の幅は、突出部6の根元の幅よりも小さく、その深さは突出部6の高さよりも小さく形成されている。   In addition, as shown in FIG. 3C, the projection 5 may be previously provided with an annular groove 7 surrounding the base portion at the base of the protruding portion 6. The width of the groove 7 is smaller than the width of the base of the protruding portion 6, and the depth thereof is smaller than the height of the protruding portion 6.

図1の一対の溶接電極10、11のそれぞれが端子板2、2における電池1と反対側の外面(図では上面)に接触され、かつ一対の溶接電極10、11が端子板2、2の列方向Yに離間して配置されている。一対の溶接電極10、11間が通電されて、各電池1、1と2枚の端子板2、2とがそれぞれプロジェクション抵抗溶接される。   Each of the pair of welding electrodes 10, 11 in FIG. 1 is in contact with the outer surface (upper surface in the figure) of the terminal plates 2, 2 opposite to the battery 1, and the pair of welding electrodes 10, 11 are of the terminal plates 2, 2. They are spaced apart in the column direction Y. The pair of welding electrodes 10 and 11 are energized, and the batteries 1 and 1 and the two terminal plates 2 and 2 are respectively subjected to projection resistance welding.

上記した抵抗方法の動作を説明する。
図1において、まず矩形の形状を有する端子板2、2が、複数の電池1の電極1aに接触させて、列方向Yに隙間Sをあけて配置されている。
The operation of the above resistance method will be described.
In FIG. 1, first, terminal plates 2 and 2 having a rectangular shape are arranged in contact with the electrodes 1 a of a plurality of batteries 1 with a gap S in the column direction Y.

各端子板2、2の両端に電池1の電極1aに対向してそれぞれ突出させた2つ、合計4個のプロジェクション5が形成されており(図3(B))、図2(A)のように、上下方向にそれぞれ移動自在な一対の溶接電極10、11は、図示しない溶接用電源から電力供給されて、通電制御されるものである。この溶接電極10、11が端子板2、2に当てられて通電されると、溶接電流Aが、正の溶接電極11から端子板2を通って電池1の電極1aを経て端子板2を通って負の溶接電極10へ向かって流れる。これにより、端子板2、3と電池1の電極1a間に抵抗発熱によるナゲット(合金層)8が形成されて、電池1の電極1aが端子板2、3に抵抗溶接される。この例では、電池1の電極1aとして陽極を抵抗溶接しているが、陰極も同様である。   A total of four projections 5 are formed at both ends of each terminal plate 2 and 2 so as to project opposite to the electrode 1a of the battery 1 (FIG. 3B), as shown in FIG. As described above, the pair of welding electrodes 10 and 11 that are respectively movable in the vertical direction are supplied with electric power from a welding power source (not shown) and are energized. When the welding electrodes 10 and 11 are applied to the terminal plates 2 and 2 and energized, the welding current A passes from the positive welding electrode 11 through the terminal plate 2 through the electrode 1a of the battery 1 and through the terminal plate 2. Flow toward the negative welding electrode 10. As a result, a nugget (alloy layer) 8 is formed between the terminal plates 2 and 3 and the electrode 1 a of the battery 1 by resistance heat generation, and the electrode 1 a of the battery 1 is resistance-welded to the terminal plates 2 and 3. In this example, the anode is resistance-welded as the electrode 1a of the battery 1, but the cathode is the same.

溶接電流Aおよび発熱中心が、端子板2、2に形成されたプロジェクション5を通るように強制的に誘導されて電極1aに至る。これにより、従来の図5の端子板2、2の周囲方向へ拡散する電流A2と比べて、図2のように、この電流A2が少なくなり、導電率の高い端子板2、2であっても、十分な溶接電流Aおよび発熱を確保して強固な抵抗溶接が可能となる。   The welding current A and the heat generation center are forcibly guided to pass through the projection 5 formed on the terminal plates 2 and 2 and reach the electrode 1a. As a result, the current A2 is reduced as shown in FIG. 2 compared to the current A2 that diffuses in the peripheral direction of the conventional terminal plates 2 and 2 in FIG. However, it is possible to secure a sufficient welding current A and heat generation and perform strong resistance welding.

また、図3(C)のように、突出部6の根元に環状の溝7を設けた場合、この溝7によって、溶接電流Aは端子板2、2の周囲へ向かうよりも突出部6へ向かうように、より強制的に誘導されて十分な電流密度も保持され、より強固な抵抗溶接が可能となる。   3C, when the annular groove 7 is provided at the base of the protrusion 6, the groove 7 causes the welding current A to go to the protrusion 6 rather than toward the periphery of the terminal plates 2 and 2. As it goes, it is more forcibly induced and a sufficient current density is maintained, and a stronger resistance welding is possible.

このように、本発明は、端子板(板材)2が矩形の形状を有して複数設けられ、各端子板2を各電池(被溶接部材)1に接触させて、それぞれ列方向Yに所定の隙間Sをあけた状態で並べて配置し、前記端子板2の列方向Yの両端部に、電池1の電極1aに対向して、それぞれ当該電極1aに向かって突出させた少なくとも1つのプロジェクション5を形成するので、導電率の高い端子板2であっても、電極1aに強制的に溶接電流および発熱中心を誘導することにより、各端子板2の周囲への電流および熱の拡散が防止されて、十分な溶接電流および発熱を確保して強固な抵抗溶接が可能となる。これにより、端子板2、2間の列方向Yの隙間Sおよび端子板2、2におけるプロジェクション5の形成が相俟って、導電率の高い端子板2、2であっても、容易に強固な抵抗溶接をすることができる。   As described above, according to the present invention, a plurality of terminal plates (plate members) 2 having a rectangular shape are provided, and each terminal plate 2 is brought into contact with each battery (member to be welded) 1 so as to be predetermined in the column direction Y. Are arranged side by side with a gap S therebetween, and at least one projection 5 projecting toward the electrode 1a at each end of the terminal plate 2 in the column direction Y, facing the electrode 1a of the battery 1 respectively. Therefore, even if the terminal plate 2 has a high conductivity, the current and heat are prevented from diffusing around each terminal plate 2 by forcibly inducing a welding current and a heat generation center in the electrode 1a. As a result, sufficient resistance welding and heat generation can be ensured, and strong resistance welding can be achieved. Accordingly, the gaps S in the row direction Y between the terminal plates 2 and 2 and the formation of the projections 5 on the terminal plates 2 and 2 are combined, so that even the terminal plates 2 and 2 having high conductivity can be easily and firmly strengthened. Resistance welding can be performed.

図4(A)〜(C)はプロジェクションの変形例を示す斜視図である。図4(A)では、プロジェクション5の突出部6は、側面視で長方形の角型で、頂面が幅の狭い平面である。この例では、突出部6がバーリング加工により形成されて角孔を有しているが、角孔を有しない鍛造または切削加工により形成されてもよい。この突出部6の形状により、その先端での発熱が端子板2の周囲に逃げにくいので、低電力で抵抗溶接が可能となる。   4A to 4C are perspective views showing modifications of the projection. In FIG. 4A, the projection 6 of the projection 5 is a rectangular square shape in a side view, and the top surface is a narrow plane. In this example, the protruding portion 6 is formed by burring and has a square hole, but may be formed by forging or cutting without a square hole. Due to the shape of the projecting portion 6, heat generated at the tip is unlikely to escape to the periphery of the terminal plate 2, so that resistance welding can be performed with low power.

図4(B)では、プロジェクション5の突出部6は、側面視で山型形状を有し、頂部が長いロング型であり、プレス加工、鍛造または切削加工により形成される。この突出部6の形状により、その先端での発熱が端子板2の周囲に逃げにくいので、低電力で抵抗溶接が可能となる。また、接合面積を拡大でき、確実な溶接が可能となる。   In FIG. 4B, the projection 6 of the projection 5 is a long mold having a mountain shape in a side view and a long top, and is formed by pressing, forging, or cutting. Due to the shape of the projecting portion 6, heat generated at the tip is unlikely to escape to the periphery of the terminal plate 2, so that resistance welding can be performed with low power. Moreover, a joining area can be expanded and a reliable welding is attained.

図4(C)では、プロジェクション5の突出部6は側面視が台形の台形型で、頂面が平面であり、プレス加工、鍛造または切削加工により形成される。この突出部6の形状により、その先端での発熱が端子板2の周囲に逃げにくいので、低電力で抵抗溶接が可能となる。   In FIG. 4C, the projection 6 of the projection 5 is a trapezoidal shape having a trapezoidal side view, and the top surface is a flat surface, and is formed by pressing, forging, or cutting. Due to the shape of the projecting portion 6, heat generated at the tip is unlikely to escape to the periphery of the terminal plate 2, so that resistance welding can be performed with low power.

また、図4(A)〜(C)について、前記したように、突出部6の根元に、その根元を取り囲む周状の溝7を予め設けてもよい。図4(D)は、その一例として、図4(B)の突出部6の根元に周状の溝7を設けている。   4A to 4C, as described above, a circumferential groove 7 surrounding the base of the protrusion 6 may be provided in advance. In FIG. 4D, as an example, a circumferential groove 7 is provided at the base of the protruding portion 6 in FIG.

なお、上記した各プロジェクション5に代えて、図示しないものの、端子板2に孔あけしてもよいし、または窪みを設けてもよい。この場合、孔や窪み部分に溶接電極による加圧がかからないので、電気抵抗が高くなり、孔や窪みのエッジに溶接電流を集中させることができる。   Instead of the projections 5 described above, although not shown, the terminal plate 2 may be perforated or may be provided with a recess. In this case, since the pressure by the welding electrode is not applied to the hole or the hollow portion, the electric resistance is increased, and the welding current can be concentrated on the edge of the hole or the hollow.

なお、上記実施形態では、被溶接部材に電池を使用しているが、何らこれに限定されるものではなく、コンデンサ等に使用してもよい。   In the above embodiment, the battery is used for the member to be welded, but the present invention is not limited to this, and may be used for a capacitor or the like.

1:被溶接部材(電池)
1a:溶接箇所(電極)
2:板材(端子板)
5:プロジェクション
6:突出部
7:溝
10、11:溶接電極
S:隙間
X:幅方向
Y:列方向
1: Welded member (battery)
1a: welding location (electrode)
2: Plate material (terminal plate)
5: Projection 6: Projection 7: Groove 10, 11: Welding electrode S: Gap X: Width direction Y: Row direction

Claims (8)

複数の被溶接部材を一列に並べて板材と抵抗溶接して、各被溶接部材同士をそれぞれ該板材によって電気的に接続する抵抗溶接方法であって、
前記板材は矩形の形状を有して複数設けられており、各板材を各被溶接部材に接触させて、それぞれ列方向に所定の隙間をあけた状態で並べて配置し、
前記板材の列方向の両端部に、被溶接部材の溶接箇所に対向して、それぞれ当該溶接箇所に向かって突出させた少なくとも1つのプロジェクションを形成し、
一対の溶接電極のそれぞれを前記板材における被溶接部材と反対側の外面に接触させ、かつ一対の溶接電極を前記板材の列方向に離間して配置させて、前記溶接電極間を通電して前記2枚の板材を各被溶接部材の溶接箇所にそれぞれプロジェクション抵抗溶接する抵抗溶接方法。
A resistance welding method in which a plurality of members to be welded are arranged in a row and resistance welded to a plate material, and each of the members to be welded is electrically connected to each other by the plate material,
The plate material is provided with a plurality of rectangular shapes, each plate material is brought into contact with each member to be welded, and arranged side by side with a predetermined gap in the row direction,
Forming at least one projection that protrudes toward the welded part, facing the welded part of the member to be welded, at both ends in the row direction of the plate material,
Each of the pair of welding electrodes is brought into contact with the outer surface of the plate member opposite to the member to be welded, and the pair of welding electrodes are arranged spaced apart in the row direction of the plate member, A resistance welding method in which two plate members are each subjected to projection resistance welding to a welding portion of each member to be welded.
請求項1において、
各板材のプロジェクションが、それぞれ列方向の先端近傍に形成されて、前記2枚の板材の隙間を挟んで互いに接近した位置に配置される、抵抗溶接方法。
In claim 1,
A resistance welding method, wherein the projections of the respective plate materials are respectively formed in the vicinity of the front end in the row direction and arranged at positions close to each other with a gap between the two plate materials interposed therebetween.
請求項1において、
前記板材が銅製またはニッケル製である、抵抗溶接方法。
In claim 1,
The resistance welding method, wherein the plate material is made of copper or nickel.
請求項1において、
前記被溶接部材が電池であって、前記板材が各電池同士をそれぞれ電気的に接続する端子板である、抵抗溶接方法。
In claim 1,
The resistance welding method, wherein the member to be welded is a battery, and the plate member is a terminal plate that electrically connects the batteries to each other.
請求項1において、
前記板材に形成されたプロジェクションが、側面視で長方形の角型形状である、抵抗溶接方法。
In claim 1,
The resistance welding method, wherein the projection formed on the plate material has a rectangular square shape in a side view.
請求項1において、
前記板材に形成されたプロジェクションが、正面視で山型形状を有しかつ頂部の長いロング型形状である、抵抗溶接方法。
In claim 1,
The resistance welding method, wherein the projection formed on the plate member has a mountain shape in a front view and a long shape with a long top.
請求項1において、
前記プロジェクションは、突出部の根元に、当該根元を取り囲む環状の溝を予め設けている、抵抗溶接方法。
In claim 1,
The projection is a resistance welding method in which an annular groove surrounding the base is provided in advance at the base of the protrusion.
複数の被溶接部材が一列に並べられて板材と抵抗溶接されて、各被溶接部材がそれぞれ該板材によって電気的に接続される抵抗溶接構造であって、
前記板材は矩形の形状を有して複数設けられており、各板材を各被溶接部材に接触させて、列方向にそれぞれ所定の隙間をあけた状態で並べて配置したものであり、
前記板材の列方向の両端部に、被溶接部材の溶接箇所に対向して、それぞれ当該溶接箇所に向かって突出させた少なくとも1つのプロジェクションが形成され、
一対の溶接電極のそれぞれが前記板材における被溶接部材と反対側の外面に接触され、かつ一対の溶接電極が前記板材の列方向に離間して配置されて、前記溶接電極間を通電して前記2枚の板材が各被溶接部材の溶接箇所にそれぞれプロジェクション抵抗溶接されている抵抗溶接構造。


A plurality of members to be welded are arranged in a row and resistance welded to the plate material, and each welded member is a resistance welding structure electrically connected by the plate material,
The plate material is provided with a plurality of rectangular shapes, each plate material is arranged in contact with each member to be welded, arranged in a row with a predetermined gap in the row direction,
At both ends of the plate material in the row direction, at least one projection is formed so as to face the welded part of the member to be welded and protrude toward the welded part, respectively.
Each of the pair of welding electrodes is brought into contact with the outer surface of the plate member opposite to the member to be welded, and the pair of welding electrodes are arranged apart from each other in the row direction of the plate member, A resistance welding structure in which two plate materials are projection resistance welded to the welded portions of each member to be welded.


JP2014148766A 2014-07-22 2014-07-22 Resistance welding method and resistance welding structure Pending JP2016022509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014148766A JP2016022509A (en) 2014-07-22 2014-07-22 Resistance welding method and resistance welding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148766A JP2016022509A (en) 2014-07-22 2014-07-22 Resistance welding method and resistance welding structure

Publications (1)

Publication Number Publication Date
JP2016022509A true JP2016022509A (en) 2016-02-08

Family

ID=55269769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148766A Pending JP2016022509A (en) 2014-07-22 2014-07-22 Resistance welding method and resistance welding structure

Country Status (1)

Country Link
JP (1) JP2016022509A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181740A (en) * 2017-04-20 2018-11-15 パナソニックIpマネジメント株式会社 Battery pack and connection method of lead plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171898A (en) * 2002-11-19 2004-06-17 Sony Corp Reed terminal for battery, battery, and connection method of reed terminal for battery
US20090302017A1 (en) * 2008-06-06 2009-12-10 Gm Global Technology Operations, Inc. Method for One-Sided, One Step Joining of a Metal Sheet Stack
JP2013020860A (en) * 2011-07-13 2013-01-31 Nippon Avionics Co Ltd Method for connecting battery and tab, and tab

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171898A (en) * 2002-11-19 2004-06-17 Sony Corp Reed terminal for battery, battery, and connection method of reed terminal for battery
US20090302017A1 (en) * 2008-06-06 2009-12-10 Gm Global Technology Operations, Inc. Method for One-Sided, One Step Joining of a Metal Sheet Stack
JP2013020860A (en) * 2011-07-13 2013-01-31 Nippon Avionics Co Ltd Method for connecting battery and tab, and tab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181740A (en) * 2017-04-20 2018-11-15 パナソニックIpマネジメント株式会社 Battery pack and connection method of lead plate

Similar Documents

Publication Publication Date Title
JP5063897B2 (en) Battery connection board
KR101152552B1 (en) Electrode assembly and secondary battery using the same
US20100310927A1 (en) Current collector terminal plate for secondary battery, secondary battery, and method for producing secondary battery
JP5965396B2 (en) Battery negative terminal and battery negative terminal manufacturing method
US20120149258A1 (en) System, method and apparatus for connecting battery cells
JP2008251411A (en) Sealed battery and its manufacturing method
JP5554837B2 (en) Batteries with stacks of bipolar battery individual cells
KR20110035854A (en) Conducting block for resistance welding, manufacturing method of sealed battery using the conducting block and sealed battery
US20120031645A1 (en) System, method and apparatus for connecting battery cells
US11515605B2 (en) Battery module
US20070196731A1 (en) Can for cylindrical lithium rechargeable battery and cylindrical lithium rechargeable battery using the same
KR100599598B1 (en) Secondary battery, electrodes assembly and plate using the same
JP5622676B2 (en) Battery and tab connection method and tab
JP5087218B2 (en) Secondary battery and manufacturing method thereof
JPWO2019244392A1 (en) Battery module
JP5558878B2 (en) Assembled battery, resistance welding method, and assembled battery manufacturing method
JP2016022508A (en) Resistance welding method and resistance welding structure
US20130065107A1 (en) Method for joining multiple parallel tabs
JP5962280B2 (en) Electrode manufacturing method
JP2016022509A (en) Resistance welding method and resistance welding structure
JP2018092743A (en) Friction stir welding method
KR102327940B1 (en) Manufacturing method of laminated metal foil
KR101297398B1 (en) Battery Cell and Welding Method for Welding electrode lead of Battery Cell
JP6414805B2 (en) Spot welding apparatus and spot welding method
JP2015056341A (en) Power storage module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181023