JP2016021346A - Thermal battery and rotating flying object - Google Patents

Thermal battery and rotating flying object Download PDF

Info

Publication number
JP2016021346A
JP2016021346A JP2014145158A JP2014145158A JP2016021346A JP 2016021346 A JP2016021346 A JP 2016021346A JP 2014145158 A JP2014145158 A JP 2014145158A JP 2014145158 A JP2014145158 A JP 2014145158A JP 2016021346 A JP2016021346 A JP 2016021346A
Authority
JP
Japan
Prior art keywords
heating element
heat absorbing
liquid leakage
power generation
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014145158A
Other languages
Japanese (ja)
Other versions
JP6246087B2 (en
Inventor
祐樹 木場
Yuki Kiba
祐樹 木場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2014145158A priority Critical patent/JP6246087B2/en
Publication of JP2016021346A publication Critical patent/JP2016021346A/en
Application granted granted Critical
Publication of JP6246087B2 publication Critical patent/JP6246087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal battery and rotating flying object capable of facilitating leakage suppression of electrolyte.SOLUTION: A thermal battery 20 includes a first heating element 101, a second heating element 102, a first power generation cell 111, a first heat absorption member 121 with electrical insulation properties, and a first leakage prevention member 131. The first heat absorption member 121 is disposed outside the first power generation cell 111. The first leakage prevention member 131 is disposed outside the first heat absorption member 121. The heat conductivity of the first heat absorption member 121 is higher than that of the first leakage prevention member 131.SELECTED DRAWING: Figure 3

Description

本発明は、熱電池及び回転飛翔体に関する。   The present invention relates to a thermal battery and a rotating flying object.

従来、砲弾やミサイルなどの電力供給源として、長期間保管可能かつ瞬時に発電可能な熱電池が広く用いられている。熱電池は、交互に積層された発熱体と発電セルを備える。発電セルは、順次積層された正極と電解質と負極を有する。発熱体の燃焼熱によって電解質が溶融すると熱電池は発電を開始する。   2. Description of the Related Art Conventionally, thermal batteries that can be stored for a long period of time and instantly generate power are widely used as power supply sources such as cannonballs and missiles. The thermal battery includes heating elements and power generation cells that are alternately stacked. The power generation cell includes a positive electrode, an electrolyte, and a negative electrode that are sequentially stacked. When the electrolyte is melted by the heat of combustion of the heating element, the thermal battery starts power generation.

ここで、複数の小室によって構成される電解質保持体に電解質を充填する手法が提案されている(特許文献1参照)。この手法によれば、溶融した電解質が遠心力によって漏出することを抑えることで、熱電池の性能低下を抑制することができるとされている。   Here, a method of filling an electrolyte holding body constituted by a plurality of small chambers with an electrolyte has been proposed (see Patent Document 1). According to this method, it is said that the performance deterioration of the thermal battery can be suppressed by suppressing the molten electrolyte from leaking out due to centrifugal force.

特開平8−106912号公報JP-A-8-106912

しかしながら、電解質保持体に微細な小室を形成することや、微細な小室に固体の電解質を充填することは容易ではない。   However, it is not easy to form a fine chamber in the electrolyte holder or to fill the fine chamber with a solid electrolyte.

本発明は、上述の状況に鑑みてなされたものであり、電解質の漏出を簡便に抑制可能な熱電池及び回転飛翔体を提供することを目的とする。   The present invention has been made in view of the above-described situation, and an object thereof is to provide a thermal battery and a rotating flying body that can easily suppress leakage of an electrolyte.

本発明の第1の態様に係る熱電池は、第1発熱体と、第2発熱体と、発電セルと、電気絶縁性の熱吸収部材と、漏液防止部材とを備える。第2発熱体は、第1発熱体と対向する。発電セルは、第1発熱体と第2発熱体の間に配置され、順次積層された正極、電解質及び負極を有する。熱吸収部材は、第1発熱体と第2発熱体の間に配置され、発電セルの外側に配置される。漏液防止部材は、第1発熱体と第2発熱体の間に配置され、熱吸収部材の外側に配置される。熱吸収部材の熱伝導率は、漏液防止部材の熱伝導率よりも高い。   The thermal battery according to the first aspect of the present invention includes a first heating element, a second heating element, a power generation cell, an electrically insulating heat absorbing member, and a liquid leakage preventing member. The second heating element faces the first heating element. The power generation cell is disposed between the first heating element and the second heating element, and includes a positive electrode, an electrolyte, and a negative electrode that are sequentially stacked. The heat absorbing member is disposed between the first heating element and the second heating element, and is disposed outside the power generation cell. The liquid leakage preventing member is disposed between the first heating element and the second heating element, and is disposed outside the heat absorbing member. The thermal conductivity of the heat absorbing member is higher than the thermal conductivity of the liquid leakage preventing member.

本発明の第1の態様に係る熱電池によれば、発電セルの外側に漏液防止部材が配置されているため、溶融した電解質が遠心力によって外部に滲出することを抑制することができる。また、漏液防止部材の内側に熱伝導率の高い熱吸収部材が配置されているため、第1発熱体及び第2発熱体から漏液防止部材に伝達されなかった余剰熱を熱吸収部材によって速やかに吸収できる。従って、余剰熱が発電セルに伝達されることによって電解質の外周部分が局所的に過熱されることを抑制できるため、溶融した電解質の粘度低下を抑えて外部に漏出しにくくすることができる。以上より、電解質の漏出を簡便に抑制することができる。   According to the thermal battery of the first aspect of the present invention, since the liquid leakage preventing member is disposed outside the power generation cell, it is possible to suppress the molten electrolyte from exuding to the outside due to the centrifugal force. Moreover, since the heat absorption member with high thermal conductivity is arranged inside the liquid leakage prevention member, excess heat that has not been transmitted from the first heat generating element and the second heat generating element to the liquid leakage prevention member is caused by the heat absorption member. Can be absorbed quickly. Therefore, it is possible to suppress the outer peripheral portion of the electrolyte from being locally heated by transmitting the excess heat to the power generation cell, and thus it is possible to suppress a decrease in the viscosity of the molten electrolyte and make it difficult to leak to the outside. As described above, leakage of the electrolyte can be easily suppressed.

本発明の第2の態様に係る熱電池は、第1の態様に係り、熱吸収部材の密度は、漏液防止部材の密度よりも大きい。   The thermal battery according to the second aspect of the present invention relates to the first aspect, and the density of the heat absorbing member is larger than the density of the liquid leakage preventing member.

本発明の第2の態様に係る熱電池によれば、第1発熱体及び第2発熱体の余剰熱を熱吸収部材によってより速やかに吸収できる。   According to the thermal battery of the second aspect of the present invention, surplus heat of the first heating element and the second heating element can be absorbed more quickly by the heat absorbing member.

本発明の第3の態様に係る熱電池は、第1又は第2の態様に係り、熱吸収部材は、セラミックス焼結体である。   The thermal battery according to the third aspect of the present invention relates to the first or second aspect, and the heat absorbing member is a ceramic sintered body.

本発明の第3の態様に係る熱電池によれば、熱吸収部材が高熱伝導率、高耐熱性及び電気絶縁性だけでなく高強度を備えることができる。   According to the thermal battery of the third aspect of the present invention, the heat absorbing member can have not only high thermal conductivity, high heat resistance, and electrical insulation, but also high strength.

本発明の第4の態様に係る熱電池は、第1乃至第3のいずれかの態様に係り、漏液防止部材は、セラミックス繊維である。   A thermal battery according to a fourth aspect of the present invention relates to any one of the first to third aspects, and the liquid leakage preventing member is a ceramic fiber.

本発明の第4の態様に係る熱電池によれば、漏液防止部材が高耐熱性及び電気絶縁性だけでなく柔軟性を備えることができる。   According to the thermal battery of the fourth aspect of the present invention, the liquid leakage preventing member can be provided with flexibility as well as high heat resistance and electrical insulation.

本発明の第5の態様に係る回転飛翔体は、回転軸を中心として回転しながら飛翔可能な回転飛翔体である。回転飛翔体は、本体と、本体の内部に配置される請求項1乃至4のいずれかに記載の熱電池とを備える。   The rotating flying object according to the fifth aspect of the present invention is a rotating flying object capable of flying while rotating about the rotation axis. The rotary flying body includes a main body and the thermal battery according to any one of claims 1 to 4 disposed inside the main body.

本発明の第5の態様に係る回転飛翔体によれば、溶融した電解質が遠心力によって外部に滲出することを抑制することができるとともに、溶融した電解質の粘度低下を抑えて外部に漏出しにくくすることができる。   According to the rotary flying object according to the fifth aspect of the present invention, the molten electrolyte can be prevented from exuding to the outside by centrifugal force, and the melted electrolyte can be prevented from being leaked to the outside by suppressing the decrease in the viscosity. can do.

本発明の第6の態様に係る回転飛翔体は、第5の態様に係り、第1発熱体及び第2発熱体は、回転軸と垂直に交差している。熱吸収部材は、発電セルの外側全体を取り囲む。漏液防止部材は、熱吸収部材の外側全体を取り囲む。   The rotary flying body according to the sixth aspect of the present invention relates to the fifth aspect, and the first heating element and the second heating element intersect the rotation axis perpendicularly. The heat absorbing member surrounds the entire outside of the power generation cell. The leak preventing member surrounds the entire outside of the heat absorbing member.

本発明の第6の態様に係る回転飛翔体によれば、回転軸周りの全方向に遠心力がかかる場合であっても、電解質の漏出を抑制することができる。   According to the rotary flying object according to the sixth aspect of the present invention, leakage of the electrolyte can be suppressed even when centrifugal force is applied in all directions around the rotation axis.

本発明の第7の態様に係る回転飛翔体は、第5の態様に係り、第1発熱体及び第2発熱体は、回転軸と平行に配置されている。熱吸収部材は、発電セルの両外側において回転軸と平行にそれぞれ延びる第1及び第2熱吸収部を有する。漏液防止部材は、第1及び第2熱吸収部それぞれの両外側において回転軸と平行にそれぞれ延びる第1及び第2漏液防止部を有する。   The rotary flying body according to the seventh aspect of the present invention relates to the fifth aspect, and the first heating element and the second heating element are arranged in parallel to the rotation axis. The heat absorbing member includes first and second heat absorbing portions that extend in parallel with the rotation axis on both outer sides of the power generation cell. The liquid leakage prevention member has first and second liquid leakage prevention portions that extend in parallel with the rotation axis on both outer sides of the first and second heat absorption portions, respectively.

本発明の第7の態様に係る回転飛翔体によれば、電解質の漏出を抑えつつ材料の使用量を少なくすることによって製造コストの低減を図ることができる。   According to the rotary flying body according to the seventh aspect of the present invention, it is possible to reduce the manufacturing cost by reducing the amount of the material used while suppressing the leakage of the electrolyte.

本発明によれば、電解質の漏出を簡便に抑制可能な熱電池及び回転飛翔体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the thermal battery and rotary flying body which can suppress the leakage of an electrolyte simply can be provided.

第1実施形態に係る砲弾の外観を示す斜視図The perspective view which shows the external appearance of the shell which concerns on 1st Embodiment. 第1実施形態に係る熱電池の断面図Sectional drawing of the thermal battery which concerns on 1st Embodiment 図2の部分拡大図Partial enlarged view of FIG. 第2実施形態に係る砲弾の外観を示す斜視図The perspective view which shows the external appearance of the shell which concerns on 2nd Embodiment. 第2実施形態に係る熱電池の斜視図The perspective view of the thermal battery which concerns on 2nd Embodiment.

次に、図面を用いて、本発明の実施形態について説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なっている場合がある。従って、具体的な寸法等は以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Accordingly, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

なお、以下の実施形態では、回転飛翔体の一例として砲弾の構成について説明する。以下の説明において、「前」及び「後」とは、飛翔中の砲弾1の進行方向を基準とする用語である。   In the following embodiments, a configuration of a shell will be described as an example of a rotating flying object. In the following description, “front” and “rear” are terms based on the traveling direction of the bullet 1 in flight.

〈第1実施形態〉
(砲弾1の全体構成)
砲弾1の全体構成について、図面を参照しながら説明する。図1は、飛翔中の砲弾1の外観を示す斜視図である。砲弾1は、回転軸Pを中心として回転しながら飛翔する。砲弾1は、本体10と、熱電池20とを備える。
<First Embodiment>
(Overall configuration of cannonball 1)
The overall configuration of the cannonball 1 will be described with reference to the drawings. FIG. 1 is a perspective view showing an appearance of a shell 1 in flight. The cannonball 1 flies while rotating about the rotation axis P. The cannonball 1 includes a main body 10 and a thermal battery 20.

本体10は、砲弾1の外形を形成する。本体10は、後部弾体11と、前部弾体12とを有する。後部弾体11は、回転軸Pを中心とする柱状に形成される。後部弾体11は、前部弾体12の後端に連結される。後部弾体11には、図示しない炸薬が収容されていてもよい。前部弾体12は、後部弾体11の前端に連結される。前部弾体12は、熱電池20のほか図示しない電装部品(例えば、信管、制御CPUやGPS受信機など)を収容する。   The main body 10 forms the outer shape of the shell 1. The main body 10 includes a rear bullet body 11 and a front bullet body 12. The rear bullet 11 is formed in a columnar shape with the rotation axis P as the center. The rear bullet 11 is connected to the rear end of the front bullet 12. The rear bullet 11 may contain a glaze (not shown). The front bullet 12 is connected to the front end of the rear bullet 11. In addition to the thermal battery 20, the front bullet 12 houses electrical components (not shown) such as a fuze, a control CPU, and a GPS receiver.

熱電池20は、着火されると瞬時に発電を開始して各電装部品に電力を供給する。熱電池20は、本体10のうち前部弾体12の内部に配置される。本実施形態に係る熱電池20は、円柱状の外形を有する。砲弾1の回転軸Pは、熱電池20の略中央を通る。すなわち、熱電池20は、進行方向を基準として縦置きされている。   When the thermal battery 20 is ignited, it immediately starts power generation and supplies power to each electrical component. The thermal battery 20 is disposed inside the front bullet 12 of the main body 10. The thermal battery 20 according to the present embodiment has a cylindrical outer shape. The rotation axis P of the cannonball 1 passes through the approximate center of the thermal battery 20. That is, the thermal battery 20 is placed vertically with respect to the traveling direction.

(熱電池20の構成)
次に、図面を参照しながら、熱電池20の構成について説明する。図2は、熱電池20の断面図である。図3は、図2の部分拡大図である。
(Configuration of thermal battery 20)
Next, the configuration of the thermal battery 20 will be described with reference to the drawings. FIG. 2 is a cross-sectional view of the thermal battery 20. FIG. 3 is a partially enlarged view of FIG.

熱電池20は、筐体21と、断熱部材22と、一対の出力端子23と、点火具24と、導火材25と、発電部26とを有する。   The thermal battery 20 includes a housing 21, a heat insulating member 22, a pair of output terminals 23, an igniter 24, a igniting material 25, and a power generation unit 26.

筐体21は、断熱部材22や発電部26を収容する容器である。断熱部材22は、発電部26を取り囲む。断熱部材22は、発電部26を保温する。断熱部材22の材料としては、低熱伝導率(1W/m・K以下)、高耐熱性(500℃以上)、液体吸収性及び電気絶縁性(1×10Ωcm以上)を有する材料を用いることができ、例えばセラミックファイバー(アルミナとシリカを主成分とする無機繊維)が好適である。 The housing 21 is a container that houses the heat insulating member 22 and the power generation unit 26. The heat insulating member 22 surrounds the power generation unit 26. The heat insulating member 22 keeps the power generation unit 26 warm. As a material of the heat insulating member 22, use a material having low thermal conductivity (1 W / m · K or less), high heat resistance (500 ° C. or more), liquid absorbency and electrical insulation (1 × 10 9 Ωcm or more). For example, ceramic fibers (inorganic fibers mainly composed of alumina and silica) are suitable.

一対の出力端子23は、一対の接続部材23aを介して発電部26から電流を外部に取り出すための端子である。点火具24は、電流が供給されると火花を飛ばして導火材25に着火する。導火材25は、回転軸Pに沿って配置される。導火材25は、点火具24によって着火されると燃え広がって、後述する第1乃至第4発熱体101〜104に略同時に着火する。   The pair of output terminals 23 are terminals for taking out current from the power generation unit 26 to the outside via the pair of connection members 23a. When the current is supplied, the igniter 24 ignites sparks and ignites the conductive material 25. The heat conducting material 25 is disposed along the rotation axis P. When the igniter 24 is ignited by the igniter 24, the igniting material 25 spreads and ignites substantially simultaneously on first to fourth heating elements 101 to 104 described later.

発電部26は、第1乃至第4発熱体101〜104と、第1乃至第3発電セル111〜113と、第1乃至第3熱吸収部材121〜123と、第1乃至第3漏液防止部材131〜133とを含む。   The power generation unit 26 includes first to fourth heating elements 101 to 104, first to third power generation cells 111 to 113, first to third heat absorption members 121 to 123, and first to third liquid leakage preventions. Members 131-133.

第1乃至第4発熱体101〜104は、円板状に形成される。第1乃至第4発熱体101〜104は、回転軸Pと垂直に交差するように配置される。第1乃至第4発熱体101〜104は、互いに対向するように配置される。第1乃至第4発熱体101〜104は、進行方向において所定間隔ずつ離れている。第1乃至第4発熱体101〜104それぞれの間には、第1乃至第3発電セル111〜113それぞれが配置される。第1乃至第4発熱体101〜104は、導火材25によって着火されると燃え広がって第1乃至第3発電セル111〜113を加熱する。第1乃至第4発熱体101〜104は、例えば金属粉末と酸化剤との混合物によって構成される。   The first to fourth heating elements 101 to 104 are formed in a disc shape. The first to fourth heating elements 101 to 104 are arranged so as to intersect the rotation axis P perpendicularly. The first to fourth heating elements 101 to 104 are arranged to face each other. The first to fourth heating elements 101 to 104 are separated by a predetermined interval in the traveling direction. The first to third power generation cells 111 to 113 are disposed between the first to fourth heating elements 101 to 104, respectively. When the first to fourth heating elements 101 to 104 are ignited by the igniting material 25, the first to fourth heating elements 101 to 104 spread and heat the first to third power generation cells 111 to 113. The 1st thru | or 4th heat generating elements 101-104 are comprised by the mixture of metal powder and an oxidizing agent, for example.

第1乃至第3発電セル111〜113それぞれは、第1乃至第4発熱体101〜104それぞれの間に配置される。第1乃至第3発電セル111〜113それぞれは、進行方向において順次積層された正極100aと電解質100bと負極100cを含む。第1発電セル111の正極100aは第1発熱体101と接触し、第1発電セル111の負極100cは第2発熱体102と接触する。電解質100bは、正極100aと負極100cによって挟まれている。   Each of the first to third power generation cells 111 to 113 is disposed between each of the first to fourth heating elements 101 to 104. Each of the first to third power generation cells 111 to 113 includes a positive electrode 100a, an electrolyte 100b, and a negative electrode 100c that are sequentially stacked in the traveling direction. The positive electrode 100 a of the first power generation cell 111 is in contact with the first heating element 101, and the negative electrode 100 c of the first power generation cell 111 is in contact with the second heating element 102. The electrolyte 100b is sandwiched between the positive electrode 100a and the negative electrode 100c.

正極100aは、例えば二硫化鉄によって構成することができる。電解質100bは、例えば塩化リチウムと塩化カリウムの共融混合物によって構成することができる。負極100cは、例えばリチウムシリコンによって構成することができる。   The positive electrode 100a can be made of, for example, iron disulfide. The electrolyte 100b can be composed of, for example, a eutectic mixture of lithium chloride and potassium chloride. The negative electrode 100c can be made of, for example, lithium silicon.

第1乃至第4発熱体101〜104が燃え広がって高温となり、電解質100bが溶融すると、熱電池20の発電が瞬時に始まる。この際、電解質100bの外周部分が局所的に過熱されると、溶融した電解質100bの粘度が低下する。電解質100bには回転軸P周りの全方向に遠心力がかかっているため、溶融した電解質100bは外部に漏出しやすくなる。そのため、電解質100bは全体的に均一な温度に加熱されることが好ましい。   When the first to fourth heating elements 101 to 104 burn and spread to a high temperature and the electrolyte 100b melts, power generation of the thermal battery 20 starts instantaneously. At this time, if the outer peripheral portion of the electrolyte 100b is locally heated, the viscosity of the molten electrolyte 100b decreases. Since the centrifugal force is applied to the electrolyte 100b in all directions around the rotation axis P, the molten electrolyte 100b easily leaks to the outside. Therefore, the electrolyte 100b is preferably heated to a uniform temperature as a whole.

第1乃至第3熱吸収部材121〜123それぞれは、第1乃至第4発熱体101〜104それぞれの間に配置される。第1乃至第3熱吸収部材121〜123それぞれは、第1乃至第3発電セル111〜113それぞれの外側に配置される。   Each of the first to third heat absorbing members 121 to 123 is disposed between each of the first to fourth heating elements 101 to 104. The first to third heat absorbing members 121 to 123 are disposed outside the first to third power generation cells 111 to 113, respectively.

本実施形態において、第1乃至第3熱吸収部材121〜123それぞれは、回転軸Pを中心とする環状に形成されている。第1乃至第3熱吸収部材121〜123それぞれは、第1乃至第3発電セル111〜113それぞれの外側全体を取り囲んでいる。すなわち、第1熱吸収部材121は第1発電セル111の外周面を覆い、第2熱吸収部材122は第2発電セル112の外周面を覆い、第3熱吸収部材123は第3発電セル113の外周面を覆っている。第1乃至第3熱吸収部材121〜123それぞれは、第1乃至第3発電セル111〜113それぞれの外周面と接触していてもよいが僅かに離れていてもよい。   In the present embodiment, each of the first to third heat absorbing members 121 to 123 is formed in an annular shape with the rotation axis P as the center. Each of the first to third heat absorption members 121 to 123 surrounds the entire outside of each of the first to third power generation cells 111 to 113. That is, the first heat absorbing member 121 covers the outer peripheral surface of the first power generation cell 111, the second heat absorbing member 122 covers the outer peripheral surface of the second power generating cell 112, and the third heat absorbing member 123 is the third power generating cell 113. The outer peripheral surface of is covered. The first to third heat absorbing members 121 to 123 may be in contact with the outer peripheral surfaces of the first to third power generation cells 111 to 113, respectively, but may be slightly separated from each other.

第1乃至第3熱吸収部材121〜123それぞれの熱伝導率は、第1乃至第3漏液防止部材131〜133それぞれの熱伝導率よりも高い。第1乃至第3熱吸収部材121〜123それぞれの熱伝導率は、第1乃至第3発電セル111〜113それぞれの熱伝導率と同等又はそれ以上とすることができる。第1乃至第3熱吸収部材121〜123それぞれの密度(単位体積当たりの質量)は、第1乃至第3漏液防止部材131〜133それぞれの密度よりも大きい。第1乃至第3熱吸収部材121〜123それぞれの密度は、第1乃至第3発電セル111〜113それぞれの密度と同等又はそれ以上とすることができる。   The thermal conductivity of each of the first to third heat absorbing members 121 to 123 is higher than the thermal conductivity of each of the first to third leakage preventing members 131 to 133. The thermal conductivity of each of the first to third heat absorbing members 121 to 123 can be equal to or higher than the thermal conductivity of each of the first to third power generation cells 111 to 113. The density (mass per unit volume) of each of the first to third heat absorbing members 121 to 123 is larger than the density of each of the first to third liquid leakage preventing members 131 to 133. The density of each of the first to third heat absorbing members 121 to 123 can be equal to or higher than the density of each of the first to third power generation cells 111 to 113.

このような第1乃至第3熱吸収部材121〜123の材料としては、高熱伝導率(1W/m・K以上)、高耐熱性(500℃以上)及び電気絶縁性(1×10ΩcmMΩ以上)を有する材料を用いることができ、例えばアルミナなどのセラミックス焼結体が好適である。第1乃至第3熱吸収部材121〜123の熱伝導率は、20W/m・K以上が好ましく、30W/m・K以上が特に好ましい。第1乃至第3熱吸収部材121〜123の密度は、2g/cm以上が好ましく、2.5g/cm以上が特に好ましい。 Examples of the material of the first to third heat absorbing members 121 to 123 include high thermal conductivity (1 W / m · K or higher), high heat resistance (500 ° C. or higher), and electrical insulation (1 × 10 9 Ωcm MΩ or higher). For example, a ceramic sintered body such as alumina is suitable. The thermal conductivity of the first to third heat absorbing members 121 to 123 is preferably 20 W / m · K or more, and particularly preferably 30 W / m · K or more. Density of the first through third heat-absorbing member 121 to 123, preferably from 2 g / cm 3 or more, 2.5 g / cm 3 or more is particularly preferable.

第1乃至第3漏液防止部材131〜133それぞれは、第1乃至第4発熱体101〜104それぞれの間に配置される。第1乃至第3漏液防止部材131〜133それぞれは、第1乃至第3熱吸収部材121〜123それぞれの外側に配置される。   The first to third liquid leakage preventing members 131 to 133 are disposed between the first to fourth heating elements 101 to 104, respectively. The first to third liquid leakage prevention members 131 to 133 are disposed outside the first to third heat absorption members 121 to 123, respectively.

本実施形態において、第1乃至第3漏液防止部材131〜133それぞれは、回転軸Pを中心とする環状に形成されている。第1乃至第3漏液防止部材131〜133それぞれは、第1乃至第3熱吸収部材121〜123それぞれの外側全体を取り囲んでいる。すなわち、第1漏液防止部材131は第1熱吸収部材121の外周面を覆い、第2漏液防止部材132は第2熱吸収部材122の外周面を覆い、第3漏液防止部材133は第3熱吸収部材123の外周面を覆っている。第1乃至第3漏液防止部材131〜133それぞれは、第1乃至第3熱吸収部材121〜123それぞれの外周面と接触していてもよい。   In the present embodiment, each of the first to third liquid leakage preventing members 131 to 133 is formed in an annular shape centering on the rotation axis P. Each of the first to third liquid leakage prevention members 131 to 133 surrounds the entire outside of each of the first to third heat absorption members 121 to 123. That is, the first liquid leakage prevention member 131 covers the outer peripheral surface of the first heat absorption member 121, the second liquid leakage prevention member 132 covers the outer peripheral surface of the second heat absorption member 122, and the third liquid leakage prevention member 133 is The outer peripheral surface of the third heat absorbing member 123 is covered. Each of the first to third liquid leakage preventing members 131 to 133 may be in contact with the outer peripheral surface of each of the first to third heat absorbing members 121 to 123.

第1乃至第3漏液防止部材131〜133それぞれの熱伝導率は、第1乃至第3熱吸収部材121〜123それぞれの熱伝導率よりも低い。第1乃至第3漏液防止部材131〜133それぞれの熱伝導率は、断熱部材22の熱伝導率と同等とすることができる。第1乃至第3漏液防止部材131〜133それぞれの密度は、第1乃至第3熱吸収部材121〜123それぞれの密度よりも小さい。第1乃至第3漏液防止部材131〜133それぞれの密度は、断熱部材22の密度と同等とすることができる。   The thermal conductivity of each of the first to third liquid leakage preventing members 131 to 133 is lower than the thermal conductivity of each of the first to third heat absorbing members 121 to 123. The thermal conductivity of each of the first to third liquid leakage preventing members 131 to 133 can be made equal to the thermal conductivity of the heat insulating member 22. The density of each of the first to third liquid leakage prevention members 131 to 133 is smaller than the density of each of the first to third heat absorption members 121 to 123. The density of each of the first to third liquid leakage preventing members 131 to 133 can be made equal to the density of the heat insulating member 22.

このような第1乃至第3漏液防止部材131〜133の材料としては、高耐熱性(500℃以上)、柔軟性(発電部26の組み立て時に縮む程度)及び電気絶縁性(1×10Ωcm以上)を有する材料を用いることができ、例えば綿状のセラミックファイバー(アルミナとシリカを主成分とする無機繊維)が好適である。第1乃至第3漏液防止部材131〜133の密度は、2g/cm以下が好ましく、1g/cm以下が特に好ましい。第1乃至第3漏液防止部材131〜133の熱伝導率は、第1乃至第3熱吸収部材121〜123の熱伝導率よりも低ければよく、その数値は特に限定されない。 Examples of the materials of the first to third liquid leakage preventing members 131 to 133 include high heat resistance (500 ° C. or higher), flexibility (a degree of contraction when the power generation unit 26 is assembled), and electrical insulation (1 × 10 9). For example, cotton-like ceramic fibers (inorganic fibers mainly composed of alumina and silica) are preferable. Density of the first to third liquid leakage preventing member 131 to 133, preferably from 2 g / cm 3 or less, 1 g / cm 3 or less is particularly preferred. The thermal conductivity of the first to third liquid leakage preventing members 131 to 133 only needs to be lower than the thermal conductivity of the first to third heat absorbing members 121 to 123, and the numerical value is not particularly limited.

(作用及び効果)
(1)熱電池20は、第1発熱体101と、第2発熱体102と、第1発電セル111と、電気絶縁性の第1熱吸収部材121と、第1漏液防止部材131とを備える。第1熱吸収部材121は、第1発電セル111の外側に配置される。第1漏液防止部材131は、第1熱吸収部材121の外側に配置される。第1熱吸収部材121の熱伝導率は、第1漏液防止部材131の熱伝導率よりも高い。
(Function and effect)
(1) The thermal battery 20 includes a first heating element 101, a second heating element 102, a first power generation cell 111, an electrically insulating first heat absorbing member 121, and a first liquid leakage preventing member 131. Prepare. The first heat absorbing member 121 is disposed outside the first power generation cell 111. The first liquid leakage preventing member 131 is disposed outside the first heat absorbing member 121. The thermal conductivity of the first heat absorbing member 121 is higher than the thermal conductivity of the first liquid leakage preventing member 131.

このように、第1発電セル111の外側に第1漏液防止部材131が配置されているため、溶融した電解質が遠心力によって発電部26の外部に滲出することを抑制できる。また、第1漏液防止部材131の内側に熱伝導率の高い第1熱吸収部材121が配置されているため、第1発熱体101及び第2発熱体102から第1漏液防止部材131に伝達されなかった余剰熱を第1熱吸収部材121によって速やかに吸収できる。従って、余剰熱が第1発電セル111に伝達されることによって電解質100bの外周部分が局所的に過熱されることを抑制できるため、溶融した電解質100bの粘度低下を抑えて外部に漏出しにくくすることができる。以上により、電解質100bの漏出による発電セル間での短絡や電解質100bの減少による各発電セルの内部抵抗の増加に伴って発生する熱電池の性能低下を簡便に抑制することができる。   Thus, since the 1st liquid leakage prevention member 131 is arrange | positioned on the outer side of the 1st electric power generation cell 111, it can suppress that the melted electrolyte exudes outside the electric power generation part 26 with a centrifugal force. In addition, since the first heat absorbing member 121 having high thermal conductivity is disposed inside the first liquid leakage preventing member 131, the first liquid leakage preventing member 131 is changed from the first heat generating element 101 and the second heat generating element 102. Excess heat that has not been transmitted can be quickly absorbed by the first heat absorbing member 121. Accordingly, since the excess heat is transmitted to the first power generation cell 111, it is possible to suppress the outer peripheral portion of the electrolyte 100b from being locally overheated. Therefore, it is possible to suppress a decrease in the viscosity of the molten electrolyte 100b and to prevent leakage to the outside. be able to. As described above, it is possible to easily suppress the performance degradation of the thermal battery that occurs due to the short circuit between the power generation cells due to leakage of the electrolyte 100b or the increase in the internal resistance of each power generation cell due to the decrease in the electrolyte 100b.

(2)第1熱吸収部材121の密度は、第1漏液防止部材131の密度よりも大きい。従って、第1発熱体101及び第2発熱体102の余剰熱を第1熱吸収部材121によってより速やかに吸収できる。   (2) The density of the first heat absorbing member 121 is greater than the density of the first liquid leakage preventing member 131. Accordingly, surplus heat of the first heating element 101 and the second heating element 102 can be absorbed more quickly by the first heat absorbing member 121.

(3)第1熱吸収部材121は、セラミックス焼結体である。従って、第1熱吸収部材121は、高熱伝導率、高耐熱性及び電気絶縁性だけでなく高強度を備えることができる。   (3) The first heat absorbing member 121 is a ceramic sintered body. Accordingly, the first heat absorbing member 121 can have high strength as well as high thermal conductivity, high heat resistance, and electrical insulation.

(4)第1漏液防止部材131は、セラミックス繊維である。従って、第1漏液防止部材131は、高耐熱性及び電気絶縁性だけでなく柔軟性を備えることができる。   (4) The first liquid leakage preventing member 131 is a ceramic fiber. Therefore, the first liquid leakage preventing member 131 can be provided with flexibility as well as high heat resistance and electrical insulation.

(5)第1発熱体101と第2発熱体102は、砲弾1の回転軸Pと垂直に交差している。第1熱吸収部材121は、第1発電セル111の外側全体を取り囲んでいる。第1漏液防止部材131は、第1熱吸収部材121の外側全体を取り囲んでいる。従って、回転軸P周りの全方向に遠心力がかかる場合であっても、電解質100bの漏出を確実に抑制することができる。   (5) The first heating element 101 and the second heating element 102 intersect the rotation axis P of the cannonball 1 perpendicularly. The first heat absorbing member 121 surrounds the entire outside of the first power generation cell 111. The first liquid leakage preventing member 131 surrounds the entire outside of the first heat absorbing member 121. Therefore, even when centrifugal force is applied in all directions around the rotation axis P, leakage of the electrolyte 100b can be reliably suppressed.

〈第2実施形態〉
以下において、第2実施形態に係る砲弾1Aの全体構成について、図面を参照しながら説明する。第1実施形態に係る砲弾1と第2実施形態に係る砲弾1Aの相違点は、熱電池20の配置と、第1乃至第3熱吸収部材121〜123及び第1乃至第3漏液防止部材131〜133の構成であるため、以下、当該相違点について主に説明する。
Second Embodiment
Below, the whole structure of the cannonball 1A which concerns on 2nd Embodiment is demonstrated, referring drawings. The differences between the shell 1 according to the first embodiment and the shell 1A according to the second embodiment are the arrangement of the thermal battery 20, the first to third heat absorbing members 121 to 123, and the first to third liquid leakage preventing members. Since it is the structure of 131-133, the said difference is mainly demonstrated below.

図4は、砲弾1Aの外観を示す斜視図である。図4に示すように、熱電池20Aは、進行方向を基準として横置きされている。本実施形態に係る熱電池20Aは、角柱状の外形を有する。熱電池20Aは、砲弾1の回転軸Pから径方向に離間している。   FIG. 4 is a perspective view showing the external appearance of the cannonball 1A. As shown in FIG. 4, the thermal battery 20 </ b> A is placed horizontally with respect to the traveling direction. The thermal battery 20A according to the present embodiment has a prismatic outer shape. The thermal battery 20 </ b> A is spaced from the rotation axis P of the cannonball 1 in the radial direction.

図5は、熱電池20Aの斜視図である。ただし、図5では、筐体21、断熱部材22、一対の出力端子23、点火具24及び導火材25が省略されている。   FIG. 5 is a perspective view of the thermal battery 20A. However, in FIG. 5, the casing 21, the heat insulating member 22, the pair of output terminals 23, the igniter 24, and the igniting material 25 are omitted.

図5に示すように、発電部26Aは、第1乃至第4発熱体101〜104と、第1乃至第3発電セル111〜113と、第1乃至第3熱吸収部材121A〜123Aと、第1乃至第3漏液防止部材131A〜133Aとを含む。   As shown in FIG. 5, the power generation unit 26A includes first to fourth heating elements 101 to 104, first to third power generation cells 111 to 113, first to third heat absorption members 121A to 123A, 1st thru | or 3rd leak prevention member 131A-133A.

第1乃至第4発熱体101〜104と第1乃至第3発電セル111〜113の構成は、上記第1実施形態において説明した通りである。ただし、本実施形態において、第1乃至第4発熱体101〜104は、回転軸Pと平行に配置されている。   The configurations of the first to fourth heating elements 101 to 104 and the first to third power generation cells 111 to 113 are as described in the first embodiment. However, in the present embodiment, the first to fourth heating elements 101 to 104 are arranged in parallel with the rotation axis P.

第1熱吸収部材121Aは、第1熱吸収部200aと第2熱吸収部200bを含む。第1熱吸収部200aと第2熱吸収部200bのそれぞれは、短冊状に形成されている。第1熱吸収部200aと第2熱吸収部200bは、第1発電セル111の両外側において回転軸Pと平行に配置される。すなわち、第1熱吸収部200aと第2熱吸収部200bは、回転軸Pに垂直な方向における第1発電セル111の両端部を挟むように配置される。第2及び第3熱吸収部材122A,123Aそれぞれは、第1熱吸収部材121Aと同じ構成を有する。   The first heat absorbing member 121A includes a first heat absorbing part 200a and a second heat absorbing part 200b. Each of the 1st heat absorption part 200a and the 2nd heat absorption part 200b is formed in strip shape. The first heat absorption unit 200 a and the second heat absorption unit 200 b are arranged in parallel to the rotation axis P on both outer sides of the first power generation cell 111. That is, the first heat absorption unit 200a and the second heat absorption unit 200b are arranged so as to sandwich both end portions of the first power generation cell 111 in the direction perpendicular to the rotation axis P. Each of the second and third heat absorbing members 122A and 123A has the same configuration as the first heat absorbing member 121A.

第1漏液防止部材131Aは、第1漏液防止部300aと第2漏液防止部300bを含む。第1漏液防止部300aと第2漏液防止部300bのそれぞれは、短冊状に成形されている。第1漏液防止部300aと第2漏液防止部300bは、第1熱吸収部200aと第2熱吸収部200bの両外側において回転軸Pと平行に配置される。すなわち、第1漏液防止部300aは第1熱吸収部200aの外面に沿って配置され、第2漏液防止部300bは第2熱吸収部200bの外面に沿って配置されている。   The first liquid leakage prevention member 131A includes a first liquid leakage prevention part 300a and a second liquid leakage prevention part 300b. Each of the first liquid leakage prevention part 300a and the second liquid leakage prevention part 300b is formed in a strip shape. The first liquid leakage prevention part 300a and the second liquid leakage prevention part 300b are arranged in parallel with the rotation axis P on both outer sides of the first heat absorption part 200a and the second heat absorption part 200b. That is, the first liquid leakage prevention unit 300a is disposed along the outer surface of the first heat absorption unit 200a, and the second liquid leakage prevention unit 300b is disposed along the outer surface of the second heat absorption unit 200b.

(作用及び効果)
(1)第1発電セル111の外側に第1漏液防止部材131が配置されているため、溶融した電解質が遠心力によって発電部26の外部に滲出することを抑制することができる。また、第1漏液防止部材131の内側に熱伝導率の高い第1熱吸収部材121が配置されているため、第1発熱体101及び第2発熱体102から第1漏液防止部材131に伝達されなかった余剰熱を第1熱吸収部材121によって速やかに吸収できる。以上により、電解質100bの漏出による発電セル間での短絡や電解質100bの減少による各発電セルの内部抵抗の増加に伴って発生する熱電池の性能低下を簡便に抑制することができる。
(Function and effect)
(1) Since the first liquid leakage prevention member 131 is disposed outside the first power generation cell 111, it is possible to suppress the molten electrolyte from oozing out of the power generation unit 26 due to centrifugal force. In addition, since the first heat absorbing member 121 having high thermal conductivity is disposed inside the first liquid leakage preventing member 131, the first liquid leakage preventing member 131 is changed from the first heat generating element 101 and the second heat generating element 102. Excess heat that has not been transmitted can be quickly absorbed by the first heat absorbing member 121. As described above, it is possible to easily suppress the performance degradation of the thermal battery that occurs due to the short circuit between the power generation cells due to leakage of the electrolyte 100b or the increase in the internal resistance of each power generation cell due to the decrease in the electrolyte 100b.

(2)第1発熱体101と第2発熱体102は、回転軸Pと平行に配置されている。第1熱吸収部材121Aは、第1発電セル111の両外側において回転軸Pと平行にそれぞれ延びる第1及び第2熱吸収部200a,200bを有する。第1漏液防止部材131Aは、第1及び第2熱吸収部200a,200bそれぞれの両外側において回転軸Pと平行にそれぞれ延びる第1及び第2漏液防止部300a,300bを有する。従って、第1熱吸収部材121が第1発電セル111の全周を取り囲み、かつ、第1漏液防止部材131が第1熱吸収部材121の全周を取り囲んでいる場合に比べて、材料の使用量を少なくすることによって製造コストの低減を図ることができる。なお、本実施形態では、第1発電セル111の上下から電解質100bが漏出する量は少ないため、第1発電セル111の左右だけを第1熱吸収部材121Aと第1漏液防止部材131Aで覆うことで電解質100bの漏出を抑制することができる。   (2) The first heating element 101 and the second heating element 102 are arranged parallel to the rotation axis P. The first heat absorbing member 121 </ b> A includes first and second heat absorbing portions 200 a and 200 b that extend in parallel with the rotation axis P on both outer sides of the first power generation cell 111. The first liquid leakage preventing member 131A includes first and second liquid leakage preventing portions 300a and 300b extending in parallel with the rotation axis P on both outer sides of the first and second heat absorbing portions 200a and 200b, respectively. Therefore, compared to the case where the first heat absorbing member 121 surrounds the entire circumference of the first power generation cell 111 and the first liquid leakage preventing member 131 surrounds the entire circumference of the first heat absorbing member 121, By reducing the amount used, the manufacturing cost can be reduced. In the present embodiment, since the amount of electrolyte 100b leaking from the top and bottom of the first power generation cell 111 is small, only the left and right of the first power generation cell 111 are covered with the first heat absorbing member 121A and the first liquid leakage preventing member 131A. Thus, leakage of the electrolyte 100b can be suppressed.

〈その他の実施形態〉
本発明は上記の実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
<Other embodiments>
Although the present invention has been described according to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

(A)上記第1及び第2実施形態では、回転飛翔体の一例として砲弾について説明したが、これに限られるものではない。回転飛翔体としては、誘導弾やロケット弾、或いはミサイルなどが挙げられる。なお、砲弾よりも時間当たり回転数が低いミサイルにおいても上記効果が得られることは勿論である。   (A) In the first and second embodiments, the shell has been described as an example of the rotating projectile, but the present invention is not limited to this. Examples of the rotating flying object include guided bullets, rocket bullets, and missiles. Of course, the above effect can be obtained even in a missile having a lower number of revolutions per hour than a shell.

(B)上記第1実施形態では熱電池20が円柱状に形成され、上記第2実施形態では熱電池20Aが角柱状に形成されることとしたが、これに限られるものではない。熱電池20の外形は、砲弾1の内部に確保される空間の形状に応じて適宜変形してもよい。   (B) In the first embodiment, the thermal battery 20 is formed in a cylindrical shape, and in the second embodiment, the thermal battery 20A is formed in a prismatic shape. However, the present invention is not limited to this. The outer shape of the thermal battery 20 may be appropriately modified according to the shape of the space secured inside the shell 1.

(C)上記第1実施形態では、回転軸Pが熱電池20の中央を通ることとしたが、これに限られるものではない。熱電池20の中央は回転軸Pから偏心していてもよい。   (C) In the first embodiment, the rotation axis P passes through the center of the thermal battery 20, but the present invention is not limited to this. The center of the thermal battery 20 may be eccentric from the rotation axis P.

(D)上記第1及び第2実施形態では、熱電池20が導火材25を備えることとしたが、点火具24から発生する火炎が空間を飛散することで発熱体に着火可能な場合には導火材25を備えていなくてもよい。   (D) In the first and second embodiments, the thermal battery 20 is provided with the igniter 25. However, when the flame generated from the igniter 24 is scattered in the space, the heating element can be ignited. May not be provided with the heat conducting material 25.

(E)上記第1及び第2実施形態では、発電部26が4つの発熱体と3つの発電セルを備えることとしたが、これらの数は特に限定されない。   (E) In the first and second embodiments, the power generation unit 26 includes four heating elements and three power generation cells. However, the number is not particularly limited.

(F)上記第1及び第2実施形態では、負極100cが発熱体と接触することとしたが、負極100cと発熱体の間には融点の低い負極100cの温度上昇を抑制するための金属板が挿入されていてもよい。   (F) In the first and second embodiments, the negative electrode 100c is in contact with the heating element. However, a metal plate for suppressing a temperature rise of the negative electrode 100c having a low melting point between the negative electrode 100c and the heating element. May be inserted.

(G)上記第1及び第2実施形態では、各発電セルに対して熱吸収部材と漏液防止部材を設けることとしたが、複数の発電セルのうち少なくとも一つの発電セルに対して熱吸収部材と漏液防止部材が設けられていれば所定の効果を得ることができる。   (G) In the first and second embodiments, the heat absorbing member and the leakage preventing member are provided for each power generation cell. However, heat absorption is performed for at least one power generation cell among the plurality of power generation cells. If the member and the liquid leakage preventing member are provided, a predetermined effect can be obtained.

このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

1 砲弾
10 本体
11 後部弾体
12 前部弾体
20 熱電池
21 筐体
22 断熱部材
23 出力端子
24 点火具
25 導火材
26 発電部
100a 正極
100b 電解質
100c 負極
101〜104 第1乃至第4発熱体
111〜113 第1乃至第3発電セル
121〜123 第1乃至第3熱吸収部材
131〜133 第1乃至第3漏液防止部材
200a,200b 第1及び第2熱吸収部
300a,300b 第1及び第2漏液防止部
DESCRIPTION OF SYMBOLS 1 Cannonball 10 Main body 11 Rear bullet 12 Front bullet 20 Thermal battery 21 Case 22 Heat insulation member 23 Output terminal 24 Igniter 25 Fire material 26 Power generation part 100a Positive electrode 100b Electrolyte 100c Negative electrode 101-104 First to fourth heat generation Body 111-113 1st thru | or 3rd power generation cell 121-123 1st thru | or 3rd heat absorption member 131-133 1st thru | or 3rd leak prevention member 200a, 200b 1st and 2nd heat absorption part 300a, 300b 1st And second liquid leakage prevention part

Claims (7)

第1発熱体と、
前記第1発熱体と対向する第2発熱体と、
前記第1発熱体と前記第2発熱体の間に配置され、順次積層された正極、電解質及び負極を有する発電セルと、
前記第1発熱体と前記第2発熱体の間に配置され、前記発電セルの外側に配置される電気絶縁性の熱吸収部材と、
前記第1発熱体と前記第2発熱体の間に配置され、前記熱吸収部材の外側に配置される漏液防止部材と、
を備え、
前記熱吸収部材の熱伝導率は、前記漏液防止部材の熱伝導率よりも高い、
熱電池。
A first heating element;
A second heating element facing the first heating element;
A power generation cell having a positive electrode, an electrolyte, and a negative electrode disposed between the first heating element and the second heating element and sequentially stacked;
An electrically insulating heat absorbing member disposed between the first heat generating element and the second heat generating element and disposed outside the power generation cell;
A liquid leakage preventing member disposed between the first heating element and the second heating element and disposed outside the heat absorbing member;
With
The thermal conductivity of the heat absorbing member is higher than the thermal conductivity of the liquid leakage preventing member,
Thermal battery.
前記熱吸収部材の密度は、前記漏液防止部材の密度よりも大きい、
請求項1に記載の熱電池。
The density of the heat absorbing member is greater than the density of the liquid leakage preventing member,
The thermal battery according to claim 1.
前記熱吸収部材は、セラミックス焼結体である、
請求項1又は2に記載の熱電池。
The heat absorbing member is a ceramic sintered body.
The thermal battery according to claim 1 or 2.
前記漏液防止部材は、セラミックス繊維である、
請求項1乃至3のいずれかに記載の熱電池。
The liquid leakage preventing member is a ceramic fiber.
The thermal battery according to any one of claims 1 to 3.
回転軸を中心として回転しながら飛翔可能な回転飛翔体であって、
本体と、
前記本体の内部に配置される請求項1乃至4のいずれかに記載の熱電池と、
を備える回転飛翔体。
A rotating projectile capable of flying while rotating about a rotation axis,
The body,
The thermal battery according to any one of claims 1 to 4, which is disposed inside the main body,
Rotating projectile with
前記第1発熱体及び前記第2発熱体は、前記回転軸と垂直に交差しており、
前記熱吸収部材は、前記発電セルの外側全体を取り囲み、
前記漏液防止部材は、前記熱吸収部材の外側全体を取り囲んでいる、
請求項5に記載の回転飛翔体。
The first heating element and the second heating element intersect the rotation axis perpendicularly,
The heat absorbing member surrounds the entire outside of the power generation cell;
The liquid leakage preventing member surrounds the entire outside of the heat absorbing member,
The rotary flying object according to claim 5.
前記第1発熱体及び前記第2発熱体は、前記回転軸と平行に配置されており、
前記熱吸収部材は、前記発電セルの両外側において前記回転軸と平行にそれぞれ延びる第1及び第2熱吸収部を有し、
前記漏液防止部材は、前記第1及び第2熱吸収部それぞれの両外側において前記回転軸と平行にそれぞれ延びる第1及び第2漏液防止部を有する、
請求項5に記載の回転飛翔体。
The first heating element and the second heating element are arranged in parallel with the rotation axis,
The heat absorbing member has first and second heat absorbing portions extending in parallel with the rotation axis on both outer sides of the power generation cell,
The liquid leakage prevention member has first and second liquid leakage prevention portions that extend in parallel with the rotation axis on both outer sides of the first and second heat absorption portions, respectively.
The rotary flying object according to claim 5.
JP2014145158A 2014-07-15 2014-07-15 Thermal battery and rotating flying object Active JP6246087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014145158A JP6246087B2 (en) 2014-07-15 2014-07-15 Thermal battery and rotating flying object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014145158A JP6246087B2 (en) 2014-07-15 2014-07-15 Thermal battery and rotating flying object

Publications (2)

Publication Number Publication Date
JP2016021346A true JP2016021346A (en) 2016-02-04
JP6246087B2 JP6246087B2 (en) 2017-12-13

Family

ID=55266083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014145158A Active JP6246087B2 (en) 2014-07-15 2014-07-15 Thermal battery and rotating flying object

Country Status (1)

Country Link
JP (1) JP6246087B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS455766Y1 (en) * 1966-10-08 1970-03-20
JPS5011054B1 (en) * 1968-06-21 1975-04-26
JPS634560A (en) * 1986-06-24 1988-01-09 マイン・セイフテイ・アプライアンセス・カンパニ− Heat battery
JPS63261681A (en) * 1987-04-20 1988-10-28 Japan Storage Battery Co Ltd High temperature battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS455766Y1 (en) * 1966-10-08 1970-03-20
JPS5011054B1 (en) * 1968-06-21 1975-04-26
JPS634560A (en) * 1986-06-24 1988-01-09 マイン・セイフテイ・アプライアンセス・カンパニ− Heat battery
JPS63261681A (en) * 1987-04-20 1988-10-28 Japan Storage Battery Co Ltd High temperature battery

Also Published As

Publication number Publication date
JP6246087B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6246087B2 (en) Thermal battery and rotating flying object
JPS61171065A (en) Thermal cell
JP6008744B2 (en) Rotating flying object
JP2013219002A (en) Low profile igniter and manufacturing method thereof
KR960001978Y1 (en) Thermocouple for multi-extension rocket bullet fuses
KR101553897B1 (en) Thermal battery
JP4381092B2 (en) Thermal battery
CN211017219U (en) Columnar lithium ion rechargeable battery and controller thereof
US3759749A (en) Readily manufacturable thermal cell unit for explosive projectiles
EP2932186A1 (en) Miniature electro-pyrotechnic igniter, and ignition head for the same
JP5483779B1 (en) Flying object with thermal battery
TWI736211B (en) Graphene thermal battery structure
JPS63261681A (en) High temperature battery
US3540937A (en) Thermal battery with thallium sesquioxide depolarizer
JPH053111B2 (en)
JPH08279361A (en) Power source system for flying object
RU2123659C1 (en) Guided missile
JP2009152094A (en) Thermal battery
CN111755646A (en) Columnar lithium ion rechargeable battery and controller thereof
JPH0234763Y2 (en)
JPS6123625B2 (en)
JPS6116154B2 (en)
JP3185303B2 (en) Thermal battery
JP4563063B2 (en) Thermal battery
JPS6057186B2 (en) molten salt battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171114

R150 Certificate of patent or registration of utility model

Ref document number: 6246087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250