JPS6123625B2 - - Google Patents

Info

Publication number
JPS6123625B2
JPS6123625B2 JP11188479A JP11188479A JPS6123625B2 JP S6123625 B2 JPS6123625 B2 JP S6123625B2 JP 11188479 A JP11188479 A JP 11188479A JP 11188479 A JP11188479 A JP 11188479A JP S6123625 B2 JPS6123625 B2 JP S6123625B2
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
heat insulating
collector plate
unit cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11188479A
Other languages
Japanese (ja)
Other versions
JPS5635373A (en
Inventor
Teruo Yamane
Hirosuke Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11188479A priority Critical patent/JPS5635373A/en
Publication of JPS5635373A publication Critical patent/JPS5635373A/en
Publication of JPS6123625B2 publication Critical patent/JPS6123625B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 本発明は、素電池と発熱剤を内蔵した熱電池に
関するものでその目的は発熱剤燃焼初期の過激な
温度上昇により、負極が過度に加熱され溶融して
正極との間に電橋を形成し、短絡を生ずるなどの
信頼性を損うおそれのない熱電池を提供すること
にある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal battery containing a unit cell and a heat generating agent.The purpose of the present invention is to prevent the negative electrode from being excessively heated and melted due to the rapid temperature rise at the beginning of combustion of the heating agent, and to prevent the negative electrode from colliding with the positive electrode. It is an object of the present invention to provide a thermal battery in which there is no risk of impairing reliability by forming an electric bridge between the two and causing a short circuit.

熱電池は正極にCaCrO4,PbCrO4、負極に
Mg,Ca、正負極集電板にNi,Fe、電解質にKC1
―LiC1,KBr―LiBr共融塩などがそれぞれ用い
られた電池で、常温では電解質が非電導性の固体
塩であるため、電池としては不活性な状態にある
が、高温に加熱すると電解質が溶融し良好なイオ
ン伝導性となつて外部に電力を供給し得るような
性質の電池である。この種の電池には次のような
特長があることが知られている。(1)貯蔵中の自己
消耗が実用上皆無で、長期貯蔵後においても、製
造直後と同様の放電特性を発揮する。(2)製造時に
素電池加熱用の発熱剤を組込み、電池使用に際し
て発熱剤を使用させ、短時間で電池を活用化する
ことが出来るので緊急の用途に便利である。(3)電
解質が無水であるため、超低電位負極材料の使用
が可能で素電池当りの電圧を高め得ることができ
るので小形軽量化に有利である。(4)−50℃〜+70
℃におよぶ広い温度領域で使用できる。などであ
り、ロケツトや緊急用電源として実用化されつつ
ある。
Thermal batteries use CaCrO 4 and PbCrO 4 for the positive electrode and negative electrode.
Mg, Ca, Ni, Fe for positive and negative current collector plates, KC1 for electrolyte
- LiC1, KBr - A battery that uses LiBr eutectic salt, etc. At room temperature, the electrolyte is a non-conductive solid salt, so it is inactive as a battery, but when heated to high temperatures, the electrolyte melts. This battery has good ionic conductivity and can supply power to an external device. This type of battery is known to have the following features. (1) There is practically no self-depletion during storage, and even after long-term storage, it exhibits the same discharge characteristics as immediately after manufacture. (2) A heat-generating agent for heating the unit cell is incorporated during manufacturing, and the heat-generating agent is used when the battery is used, allowing the battery to be utilized in a short time, making it convenient for emergency use. (3) Since the electrolyte is anhydrous, it is possible to use an ultra-low potential negative electrode material and the voltage per unit cell can be increased, which is advantageous in reducing size and weight. (4)−50℃〜+70
Can be used in a wide temperature range up to ℃. It is being put into practical use as a rocket and emergency power source.

しかしながら熱電池に残された問題として、発
熱剤の燃焼時に発生する約1000℃前後の瞬間高熱
が、熱伝導の良好な負極集電板を経由して負極に
加わるため負極が過度に加熱され、例えばマグネ
シウムのような低融点(mp.650℃)負極の場合
はその一部または大部分が溶融して電池系外に流
出することにより、正負極間に電橋を形成し、こ
れが軽微な場合は電圧のふらつきとなつて現わ
れ、一方極端な場合は完全な短絡状態となつて外
部に対して電力の供給が不能となる現象がしばし
ば認められた。またカルシウムを負極に用いる
と、過度の加熱により電解質中のリチウムイオン
とカルシウムとがイオン置換を行なつてリチウム
が生じ、これがカルシウムと反応して低融点合金
(mp.230℃)であるCaLi2を過量に生成し、これ
が電池系外に流出して正負極間に電橋を形成する
ことにより電圧の瞬間変動を生じたり、極端な場
合にはマグネシウム負極の場合と同様の現象を生
ずることが時々認められた。このような現象をな
くすための対策としては従来は発熱剤量を減らす
手段をとつていたが、このようにすると熱電池特
有の冷却が早まり放電時間が短縮されたり、立上
りが遅れるなどの欠点があつた。このような欠点
を回避する他の方法として、(イ)負極集電板の発熱
剤接触面側と発熱剤との間に耐熱性断熱材、例え
ばアスベスト紙,ガラスクロス,マイカなどの断
熱板を挿入するか、(ロ)アスベスト紙のような耐熱
性断熱基板上に発熱剤を形成して断熱材と発熱剤
とを一体とし、その断熱材面を負極集電板に面し
て配置する手段がとられていた。
However, a problem that remains with thermal batteries is that the instantaneous high heat of around 1000°C generated when the exothermic agent burns is applied to the negative electrode via the negative electrode current collector plate, which has good heat conduction, resulting in excessive heating of the negative electrode. For example, in the case of a low melting point (mp. 650℃) negative electrode such as magnesium, a part or most of it melts and flows out of the battery system, forming an electric bridge between the positive and negative electrodes, and if this is slight. This appears as fluctuations in the voltage, and in extreme cases, a complete short circuit is often observed, making it impossible to supply power to the outside world. Furthermore, when calcium is used in the negative electrode, excessive heating causes ion replacement between lithium ions in the electrolyte and calcium, producing lithium, which reacts with calcium to form CaLi 2 , a low melting point alloy (mp. 230°C). This can generate an excessive amount of ions, which can flow out of the battery system and form a bridge between the positive and negative electrodes, causing instantaneous fluctuations in voltage. In extreme cases, the same phenomenon as with magnesium negative electrodes can occur. sometimes recognized. Conventionally, measures to eliminate this phenomenon have been taken to reduce the amount of heat generating agent, but this has the disadvantages of speeding up the cooling characteristic of thermal batteries, shortening the discharge time, and delaying start-up. It was hot. Another way to avoid these drawbacks is to (a) insert a heat-resistant insulating material, such as asbestos paper, glass cloth, or mica, between the exothermic agent contacting surface of the negative electrode current collector plate and the exothermic agent; (b) A means of forming a heat generating agent on a heat-resistant heat insulating substrate such as asbestos paper to integrate the heat insulating material and the heat generating agent, and placing the heat insulating material side facing the negative electrode current collector plate. was taken.

これらの方法により、使用する発熱剤量を減量
した時のような支障はなうなつたものの、新たな
問題として(イ)の方法の場合には断熱板を入れ忘れ
たり、断熱板を正極集電板の間に挿入する作業ミ
スが間々生じることが避けられなかつた。また(ロ)
の方法の場合でも断熱層との一体層を挿入する際
に、断熱層面を正極電板側に配置する誤りを完全
になくすことができなかつた。このような作業ミ
スを含んで生産された熱電池は、電圧のふらつき
または電圧降下などの不都合が生じる結果とな
り、緊急用途に供される性格上、更に信頼性の高
い対策が望まれていた。
Although these methods have eliminated the problems encountered when reducing the amount of heat generating agent used, new problems have arisen in the case of method (a), such as forgetting to insert a heat insulating plate or placing the heat insulating plate between the positive electrode current collector plate. It was unavoidable that mistakes would occur from time to time when inserting the paper into the machine. Again (b)
Even in the case of the above method, it was not possible to completely eliminate the error of placing the heat insulating layer surface on the positive electrode side when inserting the layer integrated with the heat insulating layer. Thermal batteries produced with such operational errors result in inconveniences such as voltage fluctuations or voltage drops, and since they are intended for emergency use, a more reliable countermeasure has been desired.

本発明はこのような要望に答えるもので、電池
組立時に作業者の不注意などで負極が過度に加熱
されて信頼性を損なうことがないように改良を加
え、上記問題を解決したものである。
The present invention is an attempt to meet these demands, and solves the above-mentioned problems by making improvements to prevent the negative electrode from being excessively heated due to operator carelessness during battery assembly, thereby impairing reliability. .

以下本発明をその実施例により説明する。第1
図は熱電池の全体構成を示す縦断面図である。図
中、1は詳しくは後で述べるが、本発明の特徴で
ある負極と負極集電板との間に断熱層を介在させ
た素電池で、高温に加熱されて発電する発電要部
をなしており、任意の数の素電池が直列に連結さ
れて全体として必要な電圧が発生するように構成
されている。2は発熱剤で、ジルコニウム粉末と
クロム酸鉛粉末とに少量のバインダーを加えシー
ト状に成形したもので、発熱反応によつて素電池
を加熱発電させるために用いられる。3は点火器
で、一対の起動端子4に瞬間電流を通じると火炎
を発生し、火道孔5を通じて発熱剤2に着火する
ことによつて素電池1を活性化するために備えら
れている。6は出力端子で素電池連結体の所定の
位置に導通されている。7は素電池1の外側をと
り囲む断熱層でアスベスト紙,マイカシート,ガ
ラスクロスなどの断熱材で構成されており、素電
池1の保温および素電池1の高温が周囲物質に熱
的損傷を与えることを防止するために備えられて
いる。8は外装体で金属ケースと金属蓋からな
り、両者ははめ合部で溶接された密閉構造となつ
ている。
The present invention will be explained below with reference to Examples. 1st
The figure is a longitudinal sectional view showing the overall configuration of the thermal battery. In the figure, 1 is a unit cell in which a heat insulating layer is interposed between the negative electrode and the negative electrode current collector plate, which is a feature of the present invention, and is the main power generation part that generates electricity by being heated to a high temperature, which will be described in detail later. An arbitrary number of unit cells are connected in series to generate the necessary voltage as a whole. 2 is an exothermic agent, which is made by adding a small amount of binder to zirconium powder and lead chromate powder and forming it into a sheet shape, and is used to heat the unit cell to generate electricity through an exothermic reaction. Reference numeral 3 denotes an igniter, which generates a flame when an instantaneous current is passed through a pair of starting terminals 4, and activates the unit cell 1 by igniting the exothermic agent 2 through the vent hole 5. . Reference numeral 6 denotes an output terminal which is electrically connected to a predetermined position of the unit cell assembly. Reference numeral 7 denotes a heat insulating layer that surrounds the outside of the unit cell 1 and is made of insulating materials such as asbestos paper, mica sheet, glass cloth, etc., and is designed to keep the unit cell 1 warm and prevent the high temperature of the unit cell 1 from causing thermal damage to surrounding materials. Provisions are made to prevent this from occurring. 8 is an exterior body consisting of a metal case and a metal lid, both of which are welded at the fitting part to form a hermetically sealed structure.

第2図〜第7図は先にも述べた如く、本発明の
負極熱防止対策を施した素電池の構成例を示し、
夫々の図において、9はニツケルからなる正極集
電板、10は塩化カリウム・塩化リチウムの共融
塩をカオリンと混合した電解質層と、クロム酸カ
ルシウムを主体とした正極合剤層の二層を一体成
形したペレツトである。なお、この電解質層と正
極合剤層とは個別に成形したものを用いてもよ
い。11はマグネシウムまたはカルシウムからな
る負極で、これはアスベスト紙、フアイバーフラ
ツクス紙などからなる断熱性の絶縁シート12を
介してニツケルからなる負極集電板13に設けら
れた突起に加圧により喰込ませるなどの方法によ
り集電体13との間に電気導通を保つた状態で一
体化されている。この場合、負極11と負極集電
板13との間に介在する断熱性絶縁シート12
は、負極集電板13に設けられた突起が喰込むこ
とによつてこれを貫通しているか、またその部分
が予め除去されているかのいずれかによつて負極
11と負極集電板13が直接接触している。第5
図,第6図における14および15はアスベスト
紙,フアイバーフラツクス紙などからなる保護リ
ング負極11を保護するために同心円的に設けら
れている。
As mentioned above, FIGS. 2 to 7 show examples of the structure of a unit cell in which the negative electrode heat prevention measures of the present invention are taken,
In each figure, 9 is a positive electrode current collector plate made of nickel, 10 is an electrolyte layer made of eutectic salt of potassium chloride and lithium chloride mixed with kaolin, and a positive electrode mixture layer mainly made of calcium chromate. It is an integrally molded pellet. Note that the electrolyte layer and the positive electrode mixture layer may be formed separately. Reference numeral 11 denotes a negative electrode made of magnesium or calcium, which is pressed into a protrusion provided on a negative electrode current collector plate 13 made of nickel through a heat-insulating insulating sheet 12 made of asbestos paper, fiber flux paper, etc. The current collector 13 is integrated with the current collector 13 while maintaining electrical continuity therebetween. In this case, a heat-insulating insulating sheet 12 interposed between the negative electrode 11 and the negative electrode current collector plate 13
In this case, the negative electrode 11 and the negative electrode current collector plate 13 are connected to each other because the protrusion provided on the negative electrode current collector plate 13 bites through the protrusion, or the protrusion is removed in advance. in direct contact. Fifth
14 and 15 in FIG. 6 are concentric circles for protecting the protective ring negative electrode 11 made of asbestos paper, fiber flux paper, or the like.

この本発明の実施例における素電池について更
につけ加えて説明する。第2図の素電池は断熱性
絶縁シート12として、マイカシートのような硬
質シートを用いた場合で、負極11の内外周縁部
は露出状態となつている最も単純な構成例であ
る。一方、第5図,第6図は負極11の内外周縁
部を発熱剤燃焼時の火炎から保護するためのアス
ベスト紙、フアイバーフラツクスのようなセラミ
ツクペーパ等からなる保護リング14,15を配
置したもので、過熱に対する安全性は一段と強化
されている。第3図,第4図も負極11の内外周
縁部を発熱剤の火炎から保護するために第3図の
例では電解質層の内外周縁部に凸部が設けられて
おり、第4図においては断熱シート12に弾力性
のある材料,例えばフアイバーフラツクスフエル
ト,フアイバーフラツクスブランケツト,低密度
アスベスト紙などを用いることにより負極11と
負極集電板13により圧縮されている部分以外は
元の厚味が維持されるので図に示すような状態と
なり、負極11の内外周縁部が保護される。故に
第3図,第4図に示した実施列は過熱からの保護
の面では第5図,第6図に示した実施例と比較し
て遜色なく、その上保護リングを準備する必要が
ないので、素電池の組立工数も省ける好都合な構
成である。第7図はいわゆるカツプ形セルで、負
極集電板13の両面に断熱シート12を介してカ
ルシウムからなる負極11が集電板13と電導状
態に一体化されており、発熱剤の燃焼による瞬間
高温の影響は正極集電板の方向からのみ受けるの
で、第2図〜第6図の実施例とは様相が異なる
が、負極11と負極集電板13との間に弾力性で
かつ吸液性のある例えばフアイバーフラツクスフ
エルトなどからなる断熱シート12を用いること
により、第4図の例の場合と同様に負極周縁部が
保護されるので万一,素電池が多少過熱状態にな
つても、負極内外周縁に存在する余剰な電解質は
断熱シート12に吸収され、余剰の電解質が多い
時、あるいは素電池温度が高すぎるとき適量に生
成する低融点合金であるCaLi2を最少限に押える
か、又は多少生成するとしても、流出に至らず、
従つて電圧変動や短絡を生ずる心配がない。なお
第2図〜第6図において、断熱シート12の内径
および外径寸法は負極集電板13とほぼ同一寸法
となつているが、組立工程上支障のない範囲にお
いて前記寸法を大きくまたは小さく変更してもよ
い。但し負極11の外径より小さく、内径より大
きくすることは目的とする負極11の断熱上好ま
しくないので避けるべきである。また夫々の実施
例において、断熱シート12の厚味については言
及しなかつたが、1秒以内に所定の出力を供給で
きるような速い立上りを要求される場合には断熱
シート12の材料として何を選択するかによつて
も異なるが、、負極11と負極集電板13によつ
て圧縮されている部分の厚味で約50〜200μm程
度が望ましい。薄すぎると断熱剤効果が不十分と
なり、逆に厚すぎると立上りが遅くなる。但し立
上りが少々遅くても機能上許容される場合は更に
厚いものが使用できる。断熱シート12の材料と
しては以上の実施例で述べた以外にガラスクロ
ス,カーボン繊維布を使用することもできる。場
合によつては断熱塗料で塗膜を形成してもよい。
また2種以上の断熱材料を複合して用いてもよ
い。
The unit cell in this embodiment of the present invention will be further explained. The unit cell shown in FIG. 2 is the simplest example in which a hard sheet such as a mica sheet is used as the heat insulating sheet 12, and the inner and outer peripheral edges of the negative electrode 11 are exposed. On the other hand, in FIGS. 5 and 6, protective rings 14 and 15 made of asbestos paper, ceramic paper such as fiber flux, etc. are arranged to protect the inner and outer peripheral edges of the negative electrode 11 from flames during combustion of the exothermic agent. This further enhances safety against overheating. 3 and 4, in order to protect the inner and outer edges of the negative electrode 11 from the flame of the exothermic agent, in the example in FIG. 3, convex portions are provided on the inner and outer edges of the electrolyte layer, By using an elastic material such as fiber flux felt, fiber flux blanket, or low-density asbestos paper for the heat insulating sheet 12, the original thickness is maintained except for the portion compressed by the negative electrode 11 and the negative electrode current collector plate 13. Since the taste is maintained, the state shown in the figure is achieved, and the inner and outer peripheral edges of the negative electrode 11 are protected. Therefore, the implementation rows shown in Figures 3 and 4 are comparable to the embodiments shown in Figures 5 and 6 in terms of protection from overheating, and there is no need to prepare a protective ring. Therefore, it is a convenient configuration that can also save the number of man-hours for assembling the unit cell. FIG. 7 shows a so-called cup-shaped cell, in which a negative electrode 11 made of calcium is integrated with the current collector plate 13 in an electrically conductive state through a heat insulating sheet 12 on both sides of the negative electrode current collector plate 13, and the moment when the exothermic agent burns, the negative electrode 11 is electrically conductive. The effect of high temperature is only from the direction of the positive electrode current collector plate, so the aspect is different from the embodiments shown in FIGS. 2 to 6. By using the heat insulating sheet 12 made of a material such as fiber flux felt, the peripheral edge of the negative electrode is protected as in the case of the example shown in FIG. The excess electrolyte present on the inner and outer edges of the negative electrode is absorbed by the heat insulating sheet 12, and CaLi 2 , a low melting point alloy, which is produced in an appropriate amount when there is a large amount of excess electrolyte or when the cell temperature is too high, is minimized. , or even if some amount is generated, it does not lead to leakage,
Therefore, there is no need to worry about voltage fluctuations or short circuits. In FIGS. 2 to 6, the inner diameter and outer diameter of the heat insulating sheet 12 are approximately the same as those of the negative electrode current collector plate 13, but the dimensions may be changed to be larger or smaller as long as it does not interfere with the assembly process. You may. However, it should be avoided to make the diameter smaller than the outer diameter of the negative electrode 11 and larger than the inner diameter, as this is not preferable for the purpose of thermal insulation of the negative electrode 11. Furthermore, although the thickness of the heat insulating sheet 12 was not mentioned in each of the embodiments, what material should be used for the heat insulating sheet 12 when a fast rise that can supply a predetermined output within 1 second is required. The thickness of the portion compressed by the negative electrode 11 and the negative electrode current collector plate 13 is preferably about 50 to 200 μm, although it varies depending on the selection. If it is too thin, the heat insulating effect will be insufficient, and if it is too thick, the rise will be slow. However, if it is functionally acceptable even if the rise is a little slow, a thicker one can be used. As the material for the heat insulating sheet 12, other than those mentioned in the above embodiments, glass cloth or carbon fiber cloth can also be used. In some cases, a coating may be formed using a heat insulating paint.
Also, two or more types of heat insulating materials may be used in combination.

このように本発明では、負極と負極集電板との
間に層状の断熱材を介在させ、かつ負極と負極集
電板との間に電流を取り出すに十分な電気導通を
保つた状態に一体化して素電池を構成したので、
従来のように発熱剤と負極集電板との間に断熱板
を挿入することなく、負極が過度に加熱されるこ
とを防止できる。しかもこの断熱板のように押入
ミスが生ずる心配もない。また断熱層と発熱層と
の一体層を用いる場合には表裏を間違つて挿入
し、負極集電板側に発熱層面が配置されることも
間々あつたが、これらの心配がミスを引き起こす
機会が完全に解消され、電圧変動や短絡を生ずる
ことのない従来と比較して一段と信頼性の高い熱
電池の提供を可能にしたものである。
In this way, in the present invention, a layered heat insulating material is interposed between the negative electrode and the negative electrode current collector plate, and the negative electrode and the negative electrode current collector plate are integrated in a state where sufficient electrical conduction is maintained to take out the current. , and constructed a unit cell.
The negative electrode can be prevented from being excessively heated without inserting a heat insulating plate between the exothermic agent and the negative electrode current collector plate as in the conventional case. Moreover, unlike this heat insulating board, there is no need to worry about insertion errors. Furthermore, when using an integrated layer consisting of a heat insulating layer and a heat generating layer, there were cases where the front and back sides were inserted incorrectly, and the heat generating layer side was placed on the negative electrode current collector side, but these concerns created opportunities for mistakes. This completely eliminates the problem of voltage fluctuations and short circuits, making it possible to provide a thermal battery that is even more reliable than conventional batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における熱電池の全体
構成を示す縦断面図、第2図〜第7図は本発明で
の素電池の構成例を示す断面図である。 1……素電池、1……発熱剤、3……点火器、
9……正極集電板、10……正極合剤・電解質
層、11……負極、12……断熱シート(層)、
13……負極集電板。
FIG. 1 is a longitudinal cross-sectional view showing the overall structure of a thermal battery according to an embodiment of the present invention, and FIGS. 2 to 7 are cross-sectional views showing examples of the structure of a unit cell according to the present invention. 1...Battery, 1...Exothermic agent, 3...Igniter,
9... Positive electrode current collector plate, 10... Positive electrode mixture/electrolyte layer, 11... Negative electrode, 12... Heat insulation sheet (layer),
13...Negative electrode current collector plate.

Claims (1)

【特許請求の範囲】[Claims] 1 素電池と発熱剤とを交互に積層した構成であ
つて、素電池の負極と負極集電板との間に断熱層
を介在し、かつ前記負極と前記負極集電板とは相
互の電気導通を保つて一体化されていることを特
徴とする熱電池。
1 A structure in which a unit cell and a heat generating agent are alternately laminated, a heat insulating layer is interposed between the negative electrode of the unit cell and a negative electrode current collector plate, and the negative electrode and the negative electrode current collector plate are mutually electrically conductive. A thermal battery characterized by being integrated while maintaining continuity.
JP11188479A 1979-08-31 1979-08-31 Thermal battery Granted JPS5635373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11188479A JPS5635373A (en) 1979-08-31 1979-08-31 Thermal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11188479A JPS5635373A (en) 1979-08-31 1979-08-31 Thermal battery

Publications (2)

Publication Number Publication Date
JPS5635373A JPS5635373A (en) 1981-04-08
JPS6123625B2 true JPS6123625B2 (en) 1986-06-06

Family

ID=14572557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11188479A Granted JPS5635373A (en) 1979-08-31 1979-08-31 Thermal battery

Country Status (1)

Country Link
JP (1) JPS5635373A (en)

Also Published As

Publication number Publication date
JPS5635373A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
GB1329889A (en) Thermal battery
JPH0458455A (en) Lithium battery
US3510357A (en) Thermally activated ammonia vapor battery
GB1281849A (en) Thermal battery
JPS6123625B2 (en)
JP3078058B2 (en) Lithium battery
JPS61171065A (en) Thermal cell
JPS5853027Y2 (en) thermal battery
JP2808652B2 (en) Thermal battery
JP2964768B2 (en) Thermal battery
JPS6123626B2 (en)
JPS6057186B2 (en) molten salt battery
JP2537043Y2 (en) Thermal battery
JPS6057185B2 (en) thermal battery
JPH0878023A (en) Thermal battery
JP2976691B2 (en) Thermal battery
JP2765325B2 (en) Thermal battery
JPS6121800Y2 (en)
JPS6074267A (en) Thermal battery
JPS6091566A (en) Thermal cell
JP4417703B2 (en) Thermal battery
JPS5885280A (en) Thermal battery
JP4666959B2 (en) Thermal battery
JPS6127070A (en) Thermal battery
JP3010716B2 (en) Thermal battery