JP2016018903A - Thermoelectric conversion material, thermoelectric conversion module and method for producing thermoelectric conversion material - Google Patents

Thermoelectric conversion material, thermoelectric conversion module and method for producing thermoelectric conversion material Download PDF

Info

Publication number
JP2016018903A
JP2016018903A JP2014141005A JP2014141005A JP2016018903A JP 2016018903 A JP2016018903 A JP 2016018903A JP 2014141005 A JP2014141005 A JP 2014141005A JP 2014141005 A JP2014141005 A JP 2014141005A JP 2016018903 A JP2016018903 A JP 2016018903A
Authority
JP
Japan
Prior art keywords
phase
thermoelectric conversion
conversion material
different
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014141005A
Other languages
Japanese (ja)
Inventor
拓也 青柳
Takuya Aoyagi
拓也 青柳
内藤 孝
Takashi Naito
孝 内藤
正 藤枝
Tadashi Fujieda
正 藤枝
一宗 児玉
Kazumune Kodama
一宗 児玉
高橋 研
Ken Takahashi
研 高橋
大郊 高松
Daiko TAKAMATSU
大郊 高松
尚平 寺田
Shohei Terada
尚平 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014141005A priority Critical patent/JP2016018903A/en
Publication of JP2016018903A publication Critical patent/JP2016018903A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve conversion efficiency of a thermoelectric conversion material.SOLUTION: A thermoelectric conversion material includes a first phase and a second phase different from the first phase, the first phase forming a quantum well structure by sandwiching both faces of the first phase in a thin film state with the second phase, and the first phase including a parent phase and a hetero-phase different from the parent phase. A thermoelectric conversion material includes a first phase and a second phase different from the first phase, a plurality of the first phases forming a quantum well structure by alternately laminating the first phase in a thin film state and the second phase in a thin film state, and the first phase including a parent phase and a hetero-phase different from the parent phase.SELECTED DRAWING: Figure 1

Description

本発明は、熱電変換材料、熱電変換モジュール、熱電変換材料の製造方法に関する。   The present invention relates to a thermoelectric conversion material, a thermoelectric conversion module, and a method for manufacturing a thermoelectric conversion material.

熱電変換材料は、2種類の物質を接合させて両端に温度差を生じさせると電圧が発生するゼーベック効果が基本になっている。これまでにBi2Te3等からなる熱電変換材料が開発され、実用化されているが、希少金属や有害金属を含むことや変換効率が低いことが普及への課題となっている。 The thermoelectric conversion material is based on the Seebeck effect in which a voltage is generated when two kinds of substances are joined to cause a temperature difference between both ends. So far, thermoelectric conversion materials made of Bi 2 Te 3 and the like have been developed and put into practical use. However, the inclusion of rare metals and toxic metals and low conversion efficiency are problems for diffusion.

この変換効率を向上させるためのアプローチとして、熱電変換材料をナノサイズ化することでバルク状態の熱電変換材料に比べて変換効率が向上することが理論的に示されている。ここで、熱電変換材料の指標として一般的に使用される性能指数Zは以下の式(1)によって定義されている。   As an approach for improving the conversion efficiency, it has been theoretically shown that the conversion efficiency is improved by making the thermoelectric conversion material nano-sized as compared with the bulk thermoelectric conversion material. Here, the figure of merit Z generally used as an index of the thermoelectric conversion material is defined by the following formula (1).

Z=S2×σ/κ (1)
ナノサイズ化することにより性能が向上する理由は2つある。1つは、ナノサイズ化することによってフォノンを効果的に散乱することにより熱伝導率κが低減するためである。もう1つは、熱電変換材料が量子サイズまで小さくなったときに発現する量子効果によって状態密度が変化することによりゼーベック係数Sが向上するためである。後者は性能向上のために特に効果が大きいことが予測されているが、特性は熱電変換材料の次元数によっても変化する。例えば、2次元化した材料(超格子薄膜)よりも1次元化した材料(ナノワイヤ)の方が特性は向上することが予測されている。
Z = S 2 × σ / κ (1)
There are two reasons why the performance is improved by the nano-size. One is that the thermal conductivity κ is reduced by effectively scattering phonons by nano-sizing. The other is that the Seebeck coefficient S is improved by changing the density of states due to the quantum effect that appears when the thermoelectric conversion material is reduced to the quantum size. The latter is expected to be particularly effective for improving performance, but the characteristics also change depending on the dimensionality of the thermoelectric conversion material. For example, it is predicted that characteristics are improved in a one-dimensional material (nanowire) than in a two-dimensional material (superlattice thin film).

例えば、ガラス部材の中に熱電変換材料を充填し、その後延伸してナノワイヤ化された熱電変換材料が公開されている(特許文献1参照)。   For example, a thermoelectric conversion material in which a glass member is filled with a thermoelectric conversion material and then drawn into a nanowire is disclosed (see Patent Document 1).

特開2010−80521号公報JP 2010-80521 A

しかし、特許文献1に記載の熱電変換材料は、変換効率に改良の余地がある。   However, the thermoelectric conversion material described in Patent Document 1 has room for improvement in conversion efficiency.

そこで本発明の目的は、上記問題に鑑みてなされたものであり、変換効率を向上することにある。   Accordingly, an object of the present invention has been made in view of the above problems, and is to improve conversion efficiency.

上記目的は、例えば特許請求の範囲に記載された発明により達成される。   The above object can be achieved, for example, by the invention described in the claims.

本発明によれば、変換効率を向上することができる。   According to the present invention, the conversion efficiency can be improved.

本発明の実施形態に係る複合熱電変換材料の断面の模式図である。It is a schematic diagram of the cross section of the composite thermoelectric conversion material which concerns on embodiment of this invention. 本発明の実施形態に係る複合熱電変換材料中の熱電変換相の上面模式図である。It is an upper surface schematic diagram of the thermoelectric conversion phase in the composite thermoelectric conversion material which concerns on embodiment of this invention. 本発明の実施形態に係るπ型熱電変換モジュールの構造の一例である。1 is an example of a structure of a π-type thermoelectric conversion module according to an embodiment of the present invention. 本発明の実施形態に係る複合熱電変換材料のTEM像である。It is a TEM image of the composite thermoelectric conversion material which concerns on embodiment of this invention.

以下、本発明の実施形態について、図面を参照しながら説明する。なお、本発明はここで取り上げた実施形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to embodiment taken up here, A combination and improvement are possible suitably in the range which does not change a summary.

図1は、本実施形態に係る熱電変換材料の模式図である。熱電変換材料100は、薄膜状(平板状)の熱電変換相102とその両面を挟む相101を少なくとも備え、これらは異なる相である。図では3層に薄膜が積層した場合を示すが、熱電変換相102とそれを挟む相101の少なくとも2種類の異なる相を交互に積層し、4層以上形成してもよい。また、相101を薄膜より厚い基板とし、この基板上に熱電変換相102を形成し、この熱電変換相102上に基板と同じ成分の相101を形成してもよい。熱電変換相102上に形成する相101は基板と同じ成分でなくてもよく、熱電変換相102中の母相104と異なる成分であればよい。   FIG. 1 is a schematic view of a thermoelectric conversion material according to the present embodiment. The thermoelectric conversion material 100 includes at least a thin film (flat plate) thermoelectric conversion phase 102 and a phase 101 sandwiching both surfaces thereof, which are different phases. Although the figure shows a case where thin films are laminated in three layers, at least two different phases of the thermoelectric conversion phase 102 and the phase 101 sandwiching it may be alternately laminated to form four or more layers. Alternatively, the phase 101 may be a substrate thicker than the thin film, the thermoelectric conversion phase 102 may be formed on the substrate, and the phase 101 having the same component as the substrate may be formed on the thermoelectric conversion phase 102. The phase 101 formed on the thermoelectric conversion phase 102 may not be the same component as the substrate, and may be a component different from the parent phase 104 in the thermoelectric conversion phase 102.

熱電変換相は量子井戸構造となっており、熱電変換相中には母相104と異なる異相103が存在する。ここで量子井戸構造とは、バンドギャップの小さい熱電変換相102がバンドギャップの大きい相101に挟まれることによって、電子の移動方向が束縛された構造のことを指す。このとき、熱電変換相102の厚みは、10nm以下であることが望ましい。この理由は、10nm以下になることで量子閉じ込め効果によるゼーベック係数の向上の効果が発現されるためである。   The thermoelectric conversion phase has a quantum well structure, and a different phase 103 different from the parent phase 104 exists in the thermoelectric conversion phase. Here, the quantum well structure refers to a structure in which the moving direction of electrons is constrained by sandwiching the thermoelectric conversion phase 102 having a small band gap between the phases 101 having a large band gap. At this time, the thickness of the thermoelectric conversion phase 102 is desirably 10 nm or less. This is because the effect of improving the Seebeck coefficient due to the quantum confinement effect is exhibited when the thickness is 10 nm or less.

図2は熱電変換相102の上面模式図である。熱電変換相102には、母相104を柱状の異相103が複数本貫通している。異相103の上端面と下端面は熱電変換相を挟む相101と接触しており、異相103の上端面から下端面までは途中で途切れず連続している。言い換えると、複数本の立設した異相103間を母相104で満たすことで熱電変換相102を形成している。そのため、熱電変換相102の上面図も横断面図も、母相104中に異相103が分散した様子となる。   FIG. 2 is a schematic top view of the thermoelectric conversion phase 102. In the thermoelectric conversion phase 102, a plurality of columnar heterogeneous phases 103 penetrates the matrix phase 104. The upper end surface and the lower end surface of the different phase 103 are in contact with the phase 101 sandwiching the thermoelectric conversion phase, and the upper end surface and the lower end surface of the different phase 103 are continuous without interruption. In other words, the thermoelectric conversion phase 102 is formed by filling a plurality of standing heterogeneous phases 103 with the mother phase 104. Therefore, both the top view and the cross-sectional view of the thermoelectric conversion phase 102 show that the heterogeneous phase 103 is dispersed in the matrix phase 104.

熱電変換相を挟む相101は、電気的に熱電変換相102よりも高抵抗であることが求められ、絶縁層であることが好ましい。これは、熱電変換相102と同程度以下の電気抵抗である場合には、電子の閉じ込め効果が低減し、ゼーベック係数向上の効果が得られにくくなるためである。   The phase 101 sandwiching the thermoelectric conversion phase is required to be electrically higher in resistance than the thermoelectric conversion phase 102, and is preferably an insulating layer. This is because when the electric resistance is equal to or lower than that of the thermoelectric conversion phase 102, the effect of confining electrons is reduced, and the effect of improving the Seebeck coefficient is difficult to obtain.

また、熱電変換相を挟む相101は、非晶質であることが望ましい。これは、非晶質になることでフォノンを散乱しやすくなり、熱伝導率を低下させることができるためである。熱伝導率が低下することにより、変換効率を向上させることができる。SiO2などを含む非晶質酸化物であれば、高抵抗と低熱伝導率を満たすことができるために特に望ましい。このとき、熱電変換相を挟む相101は、SiO2成分の他にB23やAl23やZnOなどのガラス形成成分が入っていても良い。 Moreover, it is desirable that the phase 101 sandwiching the thermoelectric conversion phase is amorphous. This is because it becomes easy to scatter phonons by becoming amorphous, and thermal conductivity can be lowered. By reducing the thermal conductivity, the conversion efficiency can be improved. An amorphous oxide containing SiO 2 or the like is particularly desirable because it can satisfy high resistance and low thermal conductivity. At this time, the phase 101 sandwiching the thermoelectric conversion phase may contain glass forming components such as B 2 O 3 , Al 2 O 3, and ZnO in addition to the SiO 2 component.

本実施形態の熱電変換相102の微細構造を形成する手法としては特に限定されるところではないが、共スパッタ法が挙げられる。共スパッタ法とは、複数種のターゲットを同時にスパッタする方法である。熱電変換相102の母相104となる元素を含むターゲットと、母相とは固溶体を形成しない異相103を形成する元素を含むターゲットとを同時にスパッタすることによって、母相104と異相103との相分離現象が生じ、母相104と異相103とがあまり混ざらずに母相同士、異相同士で自己組織化し、図2に示すような熱電変換相102を形成することができる。   A technique for forming the fine structure of the thermoelectric conversion phase 102 of the present embodiment is not particularly limited, and a co-sputtering method may be mentioned. The co-sputtering method is a method in which a plurality of types of targets are sputtered simultaneously. By simultaneously sputtering a target including an element that becomes the parent phase 104 of the thermoelectric conversion phase 102 and a target including an element that forms the different phase 103 that does not form a solid solution with the parent phase, a phase between the parent phase 104 and the different phase 103 is obtained. A separation phenomenon occurs, and the matrix phase 104 and the heterogeneous phase 103 are not mixed so much that the matrix phases and the heterogeneous phases self-organize to form a thermoelectric conversion phase 102 as shown in FIG.

熱電変換相102の母相104は、特に限定されるところではないが、例えばBi、Bi2Te3、PbTe、NaCoO2、Ca3Co49、Si、SiGeなど一般的に熱電変換材料として特性が良好な材料を使用することができる。この中でも特にBiを使用することが望ましい。この理由は、Biは、フェルミ波長が長いために量子サイズ効果を得やすく、ナノサイズ化したときに得られる効果が大きいためである。このBiには、キャリア濃度をコントロールするために微小のTeやSbなどのドーピングがされることが望ましい。 The parent phase 104 of the thermoelectric conversion phase 102 is not particularly limited. For example, Bi, Bi 2 Te 3 , PbTe, NaCoO 2 , Ca 3 Co 4 O 9 , Si, and SiGe are generally used as thermoelectric conversion materials. Materials with good properties can be used. Among these, it is particularly preferable to use Bi. This is because Bi has a long Fermi wavelength, so that it is easy to obtain the quantum size effect, and the effect obtained when nano-sized is large. This Bi is preferably doped with a minute amount of Te, Sb or the like in order to control the carrier concentration.

熱電変換相102中に存在する異相103は、母相104と固溶しない物質であればよい。酸化物は、熱電変換相102の材料とは固溶体を形成しにくく、ほとんどの種類を用いることができる。異相103も熱伝導率が低い方が良いため、非晶質化しやすいSiO2などを用いることが望ましい。また、異相103と熱電変換相を挟む相101とが酸化物の場合には、両者の密着性も向上させることができる。 The heterogeneous phase 103 present in the thermoelectric conversion phase 102 may be any substance that does not dissolve in the matrix phase 104. Oxide hardly forms a solid solution with the material of the thermoelectric conversion phase 102, and almost any kind can be used. Since the heterogeneous phase 103 preferably has a low thermal conductivity, it is desirable to use SiO 2 or the like that is easily amorphized. Further, when the heterogeneous phase 103 and the phase 101 sandwiching the thermoelectric conversion phase are oxides, the adhesion between them can also be improved.

図3には、本実施形態の熱電変換材料を用いて作製したπ型熱電変換モジュール300の一例を示す。熱電変換モジュール300は、高温部と低温部の温度差を利用して電気を取り出す、もしくは電気を流すことにより発熱部と吸熱部を発生させることを可能とするデバイスである。   FIG. 3 shows an example of a π-type thermoelectric conversion module 300 manufactured using the thermoelectric conversion material of the present embodiment. The thermoelectric conversion module 300 is a device that can generate a heat generating part and a heat absorbing part by taking out electricity by using a temperature difference between a high temperature part and a low temperature part, or by flowing electricity.

図3に示すように熱電変換モジュール300は、絶縁性基板302の一方の面に取り出し電極301を形成し、2枚の絶縁性基板302の取り出し電極301を向かい合わせて、取り出し電極301をP型とN型の熱電変換素子303で接合することで形成される。この絶縁性基板302の片側を熱源等に貼り付け、もう片側を水冷や空冷することによって絶縁性基板間に温度差を形成し、発電することができる。ただし、熱電変換モジュールの構造は、特にこれに限定されるところではなく、様々な形態が考えられる。熱電変換素子303は、前記熱電変換材料100を積層し、これを立てて膜の面内方向に温度差を形成することで形成することができる。   As shown in FIG. 3, in the thermoelectric conversion module 300, the extraction electrode 301 is formed on one surface of the insulating substrate 302, the extraction electrodes 301 of the two insulating substrates 302 face each other, and the extraction electrode 301 is formed into a P-type. And an N-type thermoelectric conversion element 303. By attaching one side of the insulating substrate 302 to a heat source or the like and cooling the other side with water or air, a temperature difference can be formed between the insulating substrates to generate electric power. However, the structure of the thermoelectric conversion module is not particularly limited to this, and various forms are conceivable. The thermoelectric conversion element 303 can be formed by stacking the thermoelectric conversion materials 100 and standing up to form a temperature difference in the in-plane direction of the film.

以下、実施例を用いて更に詳細に説明する。ただし、本発明は、ここで取り上げた実施例の記載に限定されることはなく、適宜組み合わせてもよい。   Hereinafter, it demonstrates in detail using an Example. However, the present invention is not limited to the description of the embodiments taken up here, and may be combined as appropriate.

熱電変換材料は、RFマグネトロンスパッタリング法を用いて以下の条件で作製した。Biのターゲット上にSiO2の15mm角のチップを数個並べたものをターゲットとし、RF電源を用いてAr流量:50sccm、放電圧力0.7Pa、投入電力0.1kWの条件でスパッタした。基板には、SiO2を使用し、基板上に約200nm成膜を実施した。また、成膜は室温にて行った。 The thermoelectric conversion material was produced under the following conditions using an RF magnetron sputtering method. Sputtering was performed under the conditions of Ar flow rate: 50 sccm, discharge pressure 0.7 Pa, input power 0.1 kW using RF power supply with several SiO 2 15 mm square chips arranged on a Bi target. As the substrate, SiO 2 was used, and a film was formed on the substrate at about 200 nm. The film formation was performed at room temperature.

得られた薄膜のX線回折を実施したところ、いずれの試料もBiのピークのみが観察されたことから、Biは結晶として、SiO2は非晶質として存在することが判明した。薄膜の組成をエネルギー分散型X線分光法によって分析した結果を表1に示す。形成した薄膜(A−3)のTEM観察結果を図4に示す。これより、Biの母体中に数nm程度のSiO2の非晶質粒子が分散した微細構造となっていた。 When X-ray diffraction was performed on the obtained thin film, only the peak of Bi was observed in any of the samples. Thus, it was found that Bi was present as crystals and SiO 2 was present as amorphous. Table 1 shows the results of analyzing the composition of the thin film by energy dispersive X-ray spectroscopy. The TEM observation result of the formed thin film (A-3) is shown in FIG. Thus, a fine structure in which amorphous particles of SiO 2 of about several nm were dispersed in the Bi matrix.

また、表1には熱伝導率の評価結果も示した。作製したサンプルの熱伝導率の評価は、薄膜の上面にMoを成膜し、パルス光加熱サーモリフレクタンス法を用いて実施した。表1には、比較例A−1サンプルの熱伝導率よりも高くなったものを「×」、0.9以上1.0倍未満の同等であったものを「○」、0.6以上0.9倍未満のものを「◎」として相対評価したものを示した。   Table 1 also shows the evaluation results of thermal conductivity. Evaluation of the thermal conductivity of the produced sample was performed by depositing Mo on the upper surface of the thin film and using the pulsed light heating thermoreflectance method. In Table 1, “X” indicates that the thermal conductivity of the sample of Comparative Example A-1 is higher, “○” indicates that the sample is equivalent to 0.9 or more and less than 1.0 times, and “0.6” or greater. Those less than 0.9 times were shown as relative evaluation as “◎”.

さらに、四端子法によって測定した電気抵抗値を同様に相対評価したものを表1に示した。電気抵抗値に関しては、比較例A−1サンプルの電気抵抗値の2.0倍以上のものを「×」、1.5倍以上2.0倍未満のものを「△」、1.0倍以上1.5倍未満のものを「○」として評価した。ゼーベック係数に関しては、室温でゼーベック係数測定装置(Resitest8300:東陽テクニカ製)を使用して測定した値を示した。   Further, Table 1 shows the relative evaluation of the electrical resistance values measured by the four probe method. Regarding the electrical resistance value, 2.0 times or more of the electrical resistance value of Comparative Example A-1 sample is “x”, 1.5 times or more and less than 2.0 times “Δ”, 1.0 times Those with less than 1.5 times were evaluated as “◯”. Regarding the Seebeck coefficient, the value measured using a Seebeck coefficient measuring device (Resitest 8300: manufactured by Toyo Technica) at room temperature is shown.

表1の結果より、熱電変換相中に異相が存在することによって、その特性が向上できることが判明した。   From the results in Table 1, it has been found that the presence of a heterogeneous phase in the thermoelectric conversion phase can improve the characteristics.

熱電変換材料の膜厚依存性の検討を、RFマグネトロンスパッタリング法を用いて実施例1と同様の条件で実施した。薄膜の組成は、実施例1のA−3サンプルと同じものを用いて、表2のB−1〜B−6に示す膜厚になるように成膜した。また、成膜したサンプルの上からさらに、RFマグネトロンスパッタリング(Ar流量:50sccm、放電圧力0.7Pa、投入電力0.3kW)によって、10nmのSiO2を成膜することで図1に示すような超格子構造を作製した。 The film thickness dependence of the thermoelectric conversion material was examined under the same conditions as in Example 1 using the RF magnetron sputtering method. The composition of the thin film was the same as that of the A-3 sample of Example 1, and was formed so as to have film thicknesses shown in B-1 to B-6 of Table 2. Further, by depositing 10 nm of SiO 2 on the deposited sample by RF magnetron sputtering (Ar flow rate: 50 sccm, discharge pressure 0.7 Pa, input power 0.3 kW) as shown in FIG. A superlattice structure was fabricated.

作製したサンプルは、実施例1と同様にゼーベック係数測定装置を用いて評価した。その結果を表2に示す。   The produced samples were evaluated using a Seebeck coefficient measuring apparatus in the same manner as in Example 1. The results are shown in Table 2.

以上の結果より、10nm以下の薄膜となったときに量子閉じ込め構造によってゼーベック係数が格段に向上することが確認された。   From the above results, it was confirmed that the Seebeck coefficient was remarkably improved by the quantum confinement structure when the thin film was 10 nm or less.

Bi2Te3ターゲット上にSiO2の15mm角のチップを5個並べたものをターゲットとし、実施例1と同様にRFマグネトロンスパッタリングを実施した。スパッタ条件は、Ar流量:50sccm、放電圧力0.7Pa、投入電力0.1kWで行った。基板は、実施例1と同様にSiO2を用いた。成膜は、基板温度400℃にて行い、厚み10nmを成膜した。 RF magnetron sputtering was performed in the same manner as in Example 1 using five Bi 2 Te 3 targets on which five 15 mm square chips of SiO 2 were arranged. The sputtering conditions were Ar flow rate: 50 sccm, discharge pressure 0.7 Pa, and input power 0.1 kW. As for the substrate, SiO 2 was used as in Example 1. Film formation was performed at a substrate temperature of 400 ° C., and a film having a thickness of 10 nm was formed.

得られた薄膜のTEM観察を実施したところ、図4と同等の微細組織を形成していることが確認できた。また、比較としてBi2Te3単体を同様の条件で成膜した。これらの薄膜に対し、実施例2と同様に10nmのSiO2を成膜することで、図1に示すような超格子構造を作製した。 When the TEM observation of the obtained thin film was implemented, it has confirmed that the fine structure equivalent to FIG. 4 was formed. For comparison, a Bi 2 Te 3 simple substance was formed under the same conditions. A superlattice structure as shown in FIG. 1 was produced by depositing 10 nm of SiO 2 on these thin films in the same manner as in Example 2.

また、熱伝導率の測定を実施例1と同様に行ったところ、Bi2Te3単体を成膜した比較例と比べて0.84倍となっていたことから、熱伝導率の低減が確認できた。 Further, when the thermal conductivity was measured in the same manner as in Example 1, it was 0.84 times that of the comparative example in which the Bi 2 Te 3 single film was formed, and it was confirmed that the thermal conductivity was reduced. did it.

熱電変換材料は、DCマグネトロンスパッタリング法を用いて以下の条件で作製した。Biのターゲット上にSiの10mm角のチップを8個並べたものをターゲットとし、DC電源を用いてAr流量:50sccm、放電圧力0.7Pa、投入電力0.1kWの条件でスパッタした。基板には、SiO2を使用し、基板上に約10nm成膜を実施した。また、成膜は室温にて行った。 The thermoelectric conversion material was produced using the DC magnetron sputtering method under the following conditions. Sputtering was performed under the conditions of Ar flow rate: 50 sccm, discharge pressure 0.7 Pa, and input power 0.1 kW using a DC power supply with eight Si 10 mm square chips arranged on a Bi target. As the substrate, SiO 2 was used, and a film was formed on the substrate with a thickness of about 10 nm. The film formation was performed at room temperature.

得られた薄膜のTEM観察を実施したところ、図4と同様の微細組織を形成していることが確認できた。また、比較としてBi単体を同様の条件にて成膜した。続いて、その上からDCマグネトロンスパッタリング法(Ar流量:50sccm、放電圧力0.7Pa、投入電力0.3kW)によって、それぞれ10nmのSiを成膜することで図1に示すような超格子構造を作製した。   When the TEM observation of the obtained thin film was implemented, it has confirmed that the same fine structure as FIG. 4 was formed. For comparison, a single Bi film was formed under the same conditions. Subsequently, a 10 nm Si film is formed on each of them by a DC magnetron sputtering method (Ar flow rate: 50 sccm, discharge pressure 0.7 Pa, input power 0.3 kW) to form a superlattice structure as shown in FIG. Produced.

作製したサンプルをXRD分析した結果からはBiのピークのみが観察されたことから、異相として熱電変換相中に存在するSi及び上面に成膜しているSiはどちらも非晶質で存在することが判明した。さらに、実施例1と同様に熱伝導率の測定を実施したところ、Bi単体を成膜した比較例と比べて0.88倍になっていたことから熱伝導率の低減が確認できた。   From the results of XRD analysis of the prepared sample, only the Bi peak was observed, and therefore Si present in the thermoelectric conversion phase as a different phase and Si deposited on the upper surface were both present in an amorphous state. There was found. Further, when the thermal conductivity was measured in the same manner as in Example 1, it was confirmed that the thermal conductivity was reduced because it was 0.88 times that of the comparative example in which the Bi alone was formed.

実施例2と同様の条件でB−1のサンプルとB−5のサンプルの薄膜を幅4mm、厚み0.5mmのSiO2基板上に作製した。このとき、実施例2では、10nmの熱電変換相と10nmのSiO2相を形成したが、本実施例においてはこのプロセスを50回繰り返し、厚み約1μmの薄膜とした。 Under the same conditions as in Example 2, samples B-1 and B-5 were prepared on a SiO 2 substrate having a width of 4 mm and a thickness of 0.5 mm. At this time, in Example 2, a 10 nm thermoelectric conversion phase and a 10 nm SiO 2 phase were formed. In this example, this process was repeated 50 times to obtain a thin film having a thickness of about 1 μm.

次に、この作製した成膜基板にマスクをして側面にのみDCマグネトロンスパッタリング法(Ar流量:50sccm、放電圧力0.7Pa、投入電力0.3kW)によってNiスパッタをして熱電変換素子とした。この熱電変換素子を薄膜の面内方向に温度差が取れるようにAlN基板の上に立て、熱電変換素子とAlN基板とを銀ペーストで接続することで、π型熱電変換モジュールを形成した。接続時に銀ペーストを150℃、30分間加熱した。この熱電変換モジュールの片面にホットプレートをあて、50℃まで加熱したところ、電力を発生したことから熱電変換モジュールとして正常に動作することが確認できた。   Next, the produced film formation substrate was masked, and Ni was sputtered only on the side surface by a DC magnetron sputtering method (Ar flow rate: 50 sccm, discharge pressure 0.7 Pa, input power 0.3 kW) to form a thermoelectric conversion element. . This thermoelectric conversion element was stood on an AlN substrate so that a temperature difference could be taken in the in-plane direction of the thin film, and the thermoelectric conversion element and the AlN substrate were connected with a silver paste to form a π-type thermoelectric conversion module. At the time of connection, the silver paste was heated at 150 ° C. for 30 minutes. When a hot plate was applied to one side of this thermoelectric conversion module and heated to 50 ° C., it was confirmed that the thermoelectric conversion module operates normally because electric power was generated.

100:熱電変換材料、101:熱電変換相を挟む相、102:熱電変換相、103:母相と異なる異相(異相)、104:母相、300:熱電変換モジュール、301:取り出し電極、302:絶縁性基板、303:熱電変換素子 100: thermoelectric conversion material, 101: phase sandwiching the thermoelectric conversion phase, 102: thermoelectric conversion phase, 103: different phase (different phase) different from the parent phase, 104: parent phase, 300: thermoelectric conversion module, 301: extraction electrode, 302: Insulating substrate, 303: thermoelectric conversion element

Claims (12)

第1の相と前記第1の相と異なる第2の相とを備え、薄膜状の前記第1の相の両面を前記第2の相で挟むことで前記第1の相が量子井戸構造を形成し、前記第1の相は母相と前記母相と異なる異相とを備えることを特徴とする熱電変換材料。   A first phase and a second phase different from the first phase, wherein the first phase has a quantum well structure by sandwiching both surfaces of the thin film-like first phase with the second phase. A thermoelectric conversion material formed, wherein the first phase includes a parent phase and a different phase different from the parent phase. 第1の相と前記第1の相と異なる第2の相とを備え、薄膜状の前記第1の相と薄膜状の前記第2の相とを交互に積層することで複数の前記第1の相が量子井戸構造を形成し、前記第1の相は母相と前記母相と異なる異相とを備えることを特徴とする熱電変換材料。   The first phase and the second phase different from the first phase are provided, and the first phase in the form of a thin film and the second phase in the form of a thin film are alternately stacked to form a plurality of the first phases. The thermoelectric conversion material is characterized in that the first phase has a quantum well structure, and the first phase includes a parent phase and a different phase different from the parent phase. 請求項1又は2において、前記第1の相は熱電変換相であり、厚みが10nm以下であることを特徴とする熱電変換材料。   3. The thermoelectric conversion material according to claim 1, wherein the first phase is a thermoelectric conversion phase and has a thickness of 10 nm or less. 請求項1又は2において、前記第2の相は非晶質又は酸化物であることを特徴とする熱電変換材料。   3. The thermoelectric conversion material according to claim 1, wherein the second phase is amorphous or oxide. 請求項1又は2において、前記第2の相の電気抵抗は、前記第1の相よりも高いことを特徴とする熱電変換材料。   3. The thermoelectric conversion material according to claim 1, wherein an electric resistance of the second phase is higher than that of the first phase. 請求項1又は2において、前記第2の相の熱伝導率は、前記第1の相よりも低いことを特徴とする熱電変換材料。   3. The thermoelectric conversion material according to claim 1, wherein the thermal conductivity of the second phase is lower than that of the first phase. 請求項1又は2において、前記母相はBiを含むことを特徴とする熱電変換材料。   The thermoelectric conversion material according to claim 1, wherein the parent phase contains Bi. 請求項1又は2において、前記異相はSiO2を含むことを特徴とする熱電変換材料。 3. The thermoelectric conversion material according to claim 1, wherein the hetero phase includes SiO 2 . 請求項1又は2において、前記異相は前記母相中に形成され、前記異相は前記母相の上面から下面にかけて貫通した柱状構造であることを特徴とする熱電変換材料。   3. The thermoelectric conversion material according to claim 1, wherein the hetero phase is formed in the mother phase, and the hetero phase has a columnar structure penetrating from an upper surface to a lower surface of the mother phase. 請求項1又は2の熱電変換材料を用いた熱電変換モジュール。   A thermoelectric conversion module using the thermoelectric conversion material according to claim 1. 基板上に薄膜状の第1の相を形成する工程と、前記第1の相上に薄膜状の第2の相を形成する工程とを備え、
前記第1の相を形成する工程は、複数種のターゲットをスパッタすることにより、一の前記ターゲットに含まれる元素を含む母相と、他の前記ターゲットに含まれる元素を含む異相とを備える前記第1の相を形成する工程であり、
前記第2の相を形成する工程は、前記母相と異なるターゲットをスパッタすることにより、前記母相と異なるターゲットに含まれる元素を含む薄膜状の前記第2の相を前記第1の相上に形成する工程である
ことを特徴とする熱電変換材料の製造方法。
Forming a thin film-like first phase on the substrate; and forming a thin film-like second phase on the first phase,
The step of forming the first phase includes a mother phase containing an element contained in one of the targets and a heterogeneous phase containing an element contained in the other target by sputtering a plurality of types of targets. Forming a first phase;
The step of forming the second phase is performed by sputtering a target different from the parent phase so that the thin film-like second phase containing an element contained in the target different from the parent phase is formed on the first phase. A process for producing a thermoelectric conversion material, which is a step of forming a thermoelectric conversion material.
請求項11において、前記第1の相を形成する工程と前記第2の相を形成する工程とを交互に繰り返すことを特徴とする熱電変換材料の製造方法。   The method for producing a thermoelectric conversion material according to claim 11, wherein the step of forming the first phase and the step of forming the second phase are alternately repeated.
JP2014141005A 2014-07-09 2014-07-09 Thermoelectric conversion material, thermoelectric conversion module and method for producing thermoelectric conversion material Pending JP2016018903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014141005A JP2016018903A (en) 2014-07-09 2014-07-09 Thermoelectric conversion material, thermoelectric conversion module and method for producing thermoelectric conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014141005A JP2016018903A (en) 2014-07-09 2014-07-09 Thermoelectric conversion material, thermoelectric conversion module and method for producing thermoelectric conversion material

Publications (1)

Publication Number Publication Date
JP2016018903A true JP2016018903A (en) 2016-02-01

Family

ID=55233919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014141005A Pending JP2016018903A (en) 2014-07-09 2014-07-09 Thermoelectric conversion material, thermoelectric conversion module and method for producing thermoelectric conversion material

Country Status (1)

Country Link
JP (1) JP2016018903A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056161A (en) * 2016-09-26 2018-04-05 株式会社東芝 Thermoelectric conversion device
JP2019537275A (en) * 2016-09-21 2019-12-19 トヨタ・モーター・ヨーロッパToyota Motor Europe Multilayer thin film and its preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019537275A (en) * 2016-09-21 2019-12-19 トヨタ・モーター・ヨーロッパToyota Motor Europe Multilayer thin film and its preparation
JP2018056161A (en) * 2016-09-26 2018-04-05 株式会社東芝 Thermoelectric conversion device

Similar Documents

Publication Publication Date Title
Luo et al. High thermoelectric performance in the new cubic semiconductor AgSnSbSe3 by high-entropy engineering
Li et al. Synthesis and thermoelectric properties of the new oxide materials Ca3-x Bi x Co4O9+ δ (0.0< x< 0.75)
CN101969095B (en) Quasi one-dimensional nano structural thermoelectric material, device and preparation method thereof
US9461227B2 (en) Thermoelectric material including nano-inclusions, thermoelectric module and thermoelectric apparatus including the same
Wang et al. Orbital alignment for high performance thermoelectric YbCd2Sb2 alloys
Shu et al. Modification of bulk heterojunction and Cl doping for high-performance thermoelectric SnSe2/SnSe nanocomposites
JP2013021089A (en) Thermoelectric conversion element
JP6603518B2 (en) Thermoelectric conversion material and thermoelectric conversion module
US11233187B2 (en) Thermoelectric leg and thermoelectric element comprising same
Kriener et al. Modification of electronic structure and thermoelectric properties of hole-doped tungsten dichalcogenides
JP6176319B2 (en) Thermoelectric conversion element
US8841539B2 (en) High efficiency thermoelectric device
Qiu et al. Enhancing the thermoelectric and mechanical properties of Bi0. 5Sb1. 5Te3 modulated by the texture and dense dislocation networks
KR102592148B1 (en) Thermoelectric composite, and thermoelectric element and device including the same
Lee et al. Enhanced Cross-Plane Thermoelectric Figure of Merit Observed in an Al2O3/ZnO Superlattice Film by Hole Carrier Blocking and Phonon Scattering
JP2016018903A (en) Thermoelectric conversion material, thermoelectric conversion module and method for producing thermoelectric conversion material
WO2018131532A1 (en) Thermoelectric conversion element and method for manufacturing same
KR101980194B1 (en) Thermoelectric material comprising nano-inclusions, thermoelectric module and thermoelectric apparatus comprising same
US20120024335A1 (en) Multi-layered thermoelectric device and method of manufacturing the same
JP6869590B2 (en) Thermoelectric structure, thermoelectric element and its manufacturing method
WO2012045312A1 (en) Stable thermoelectric devices
Kim et al. Development of indium-tin oxide diffusion barrier for attaining high reliability of skutterudite modules
WO2016002061A1 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
JP2008227321A (en) Thermoelectric conversion material and thermoelectric conversion module using the same
Priyambada et al. Effect of vacancies on structural, electronic, elastic, and thermoelectric properties of CdIn2Se4 defect chalcopyrite-type semiconductor: An ab-initio approach

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112