JP2016018650A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2016018650A
JP2016018650A JP2014140192A JP2014140192A JP2016018650A JP 2016018650 A JP2016018650 A JP 2016018650A JP 2014140192 A JP2014140192 A JP 2014140192A JP 2014140192 A JP2014140192 A JP 2014140192A JP 2016018650 A JP2016018650 A JP 2016018650A
Authority
JP
Japan
Prior art keywords
flow rate
gas
fuel cell
increase
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014140192A
Other languages
Japanese (ja)
Other versions
JP6052245B2 (en
Inventor
真明 松末
Masaaki Matsusue
真明 松末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014140192A priority Critical patent/JP6052245B2/en
Publication of JP2016018650A publication Critical patent/JP2016018650A/en
Application granted granted Critical
Publication of JP6052245B2 publication Critical patent/JP6052245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize output by enhancing the effectiveness of suppression of over-drying and over-wetting of an electrolyte membrane during load variation transition period.SOLUTION: When performing increase and decrease control of gas flow rate and gas pressure under transient situation of load variation, depending on the load variation, a fuel cell stack shifts the change timing of gas pressure rate increase and decrease change to the delay side, for the change timing of gas flow rate increase and decrease change beneficial for shifting over-wetting or over-drying to the proper wetting side. If the gas pressure increase and decrease is beneficial for shifting the over-wetting or over-drying to the proper wetting side, the change timing of gas flow rate increase and decrease is shifted to the delay side, for the change timing of the gas pressure increase and decrease change.SELECTED DRAWING: Figure 5

Description

本発明は、燃料電池システムに関する。   The present invention relates to a fuel cell system.

燃料電池システムを構成する燃料電池スタックは、燃料ガスと酸素含有の酸化剤ガスの供給を受けて発電し、その発電電力を外部の負荷に出力する。こうした燃料電池システムでは、通常、外部の負荷が要求する要求電力に対応したガス量で上記の燃料ガスと酸化剤ガス、例えば水素ガスと空気が供給される。燃料電池の発電は、プロトン伝導性を有する電解質膜を介した水素ガス中の水素と空気中の酸素の電気化学的な反応に基づいており、電解質膜は適宜な湿潤状態でプロトン伝導性を発揮し、出力は安定する。このため、電解質膜が過乾燥であったり過湿潤であると出力が安定しないので、電解質膜の過乾燥や過湿潤を抑制することが望ましい。ところで、要求される負荷は、一律とは限らず、例えば燃料電池システムを搭載した車両では、アクセルの急踏込に伴う負荷の急増やアクセルの戻しに伴う負荷の低減が往々にして繰り返される。こうした負荷変動の過渡において電解質膜が過乾燥であったり過湿潤であると、出力の安定が損なわれることから、電解質膜の過乾燥や過湿潤を上記した負荷低減の過渡期においても抑制する手法が提案されている(例えば、特許文献1等)。   The fuel cell stack constituting the fuel cell system receives the supply of the fuel gas and the oxygen-containing oxidant gas, generates power, and outputs the generated power to an external load. In such a fuel cell system, the above-described fuel gas and oxidant gas, for example, hydrogen gas and air, are usually supplied in a gas amount corresponding to the required power required by an external load. Fuel cell power generation is based on an electrochemical reaction between hydrogen in hydrogen gas and oxygen in the air through an electrolyte membrane having proton conductivity, and the electrolyte membrane exhibits proton conductivity in an appropriate wet state. The output is stable. For this reason, since the output is not stable if the electrolyte membrane is overdried or overwet, it is desirable to suppress overdrying or overwetting of the electrolyte membrane. By the way, the required load is not always uniform. For example, in a vehicle equipped with a fuel cell system, a sudden increase in load caused by a sudden depression of the accelerator and a reduction in load caused by the return of the accelerator are often repeated. If the electrolyte membrane is overdried or wetted during such load fluctuation transients, the stability of the output will be impaired. Therefore, a method to suppress overdrying and overwetting of the electrolyte membrane even during the above-mentioned load reduction transient period. Has been proposed (for example, Patent Document 1).

特開2012−109182号公報JP 2012-109182 A

上記した特許文献では、負荷低減の過渡期における電解質膜の過乾燥や過湿潤を抑制するに当たり、カソードガスのガス流量自体を、電解質膜の過乾燥や過湿潤の検知に伴って制御したり、カソードガスのガス圧力の制御を通したガス通過時間の制御を、電解質膜の過乾燥や過湿潤の検知に伴って実行している。電解質膜の過乾燥や過湿潤の抑制に、ガス流量制御やガス圧力制御は有益であるが、このいずれかの制御では電解質膜の過乾燥や過湿潤の抑制に限界があるので、負荷変動過渡期における電解質膜の過乾燥や過湿潤の抑制の実効性を高めて、出力の安定化を図ることが要請されるに到った。   In the above-mentioned patent document, in order to suppress overdrying and overwetting of the electrolyte membrane in the transition period of load reduction, the gas flow rate of the cathode gas itself is controlled along with detection of overdrying and overwetting of the electrolyte membrane, The control of the gas passage time through the control of the gas pressure of the cathode gas is executed in accordance with the detection of overdrying or overwetting of the electrolyte membrane. Gas flow control and gas pressure control are useful for suppressing electrolyte membrane overdrying and overwetting, but either of these controls limits the suppression of electrolyte membrane overdrying or overwetting, so load fluctuation transients It has been requested to stabilize the output by improving the effectiveness of suppressing excessive drying and overwetting of the electrolyte membrane in the period.

本発明は、上記した課題を踏まえ、負荷変動過渡期における燃料電池の出力の安定化を高め得る新たな手法を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a new technique that can improve the stabilization of the output of a fuel cell in a load fluctuation transition period.

上記した課題の少なくとも一部を達成するために、本発明は、以下の形態として実施することができる。   In order to achieve at least a part of the problems described above, the present invention can be implemented as the following forms.

(1)本発明の一形態によれば、燃料電池システムが提供される。この燃料電池システムは、反応ガスの供給を受けて発電する燃料電池スタックと、該燃料電池スタックに求められる負荷要求に基づく制御パラメータにガス流量とガス圧力とを含み、前記負荷要求に基づいた前記制御パラメータで前記燃料電池スタックへの前記反応ガスのガス供給を制御するガス供給制御部と、前記負荷要求に基づいて、負荷変動の過渡の状況か否かを判断する負荷変動判断部と、前記燃料電池スタックの湿潤状態を判断する湿潤判断部とを備える。そして、前記ガス供給制御部は、前記負荷変動判断部が負荷変動の過渡の状況にあると判断すると、前記制御パラメータのうち、前記湿潤判断部の判断した湿潤状態を湿潤適正の側に推移させることに寄与するガス流量或いはガス圧力の一方の制御パラメータの変更タイミングに対して、他方の制御パラメータの変更タイミングを遅延側にずらす。   (1) According to one aspect of the present invention, a fuel cell system is provided. The fuel cell system includes a fuel cell stack that generates power upon receiving supply of a reaction gas, and a control parameter based on a load requirement required for the fuel cell stack, and a gas flow rate and a gas pressure. A gas supply control unit that controls gas supply of the reaction gas to the fuel cell stack with control parameters; a load variation determination unit that determines whether or not a load variation is in a transient state based on the load request; A wetness determination unit that determines a wet state of the fuel cell stack. When the gas supply control unit determines that the load variation determination unit is in a state of transient load variation, the gas supply control unit shifts the wet state determined by the wet determination unit out of the control parameters to a proper moisture level. The change timing of the other control parameter is shifted to the delay side with respect to the change timing of one control parameter of the gas flow rate or gas pressure that contributes to this.

この形態の燃料電池システムは、要求負荷に増大或いは低減の変動を来した負荷変動の過渡の状況において燃料電池スタックの湿潤状態が湿潤適正の状態から逸脱すると、湿潤状態を湿潤適正の側に推移させることに寄与するガス流量或いはガス圧力の一方の制御パラメータの変更を行い、この変更に遅延して、他方の制御パラメータを変更する。こうした変更タイミングのズレにより、変更遅延の間においては、他方の制御パラメータは負荷変動前の状況が維持される。こうして維持された負荷変動前のガス流量或いはガス圧力の状況は、負荷要求の変動に対応したガス流量或いはガス圧力に対して、ガス流量の低減や増大、ガス圧力の低減や増大の状況となる。よって、湿潤状態を湿潤適正の側に推移させるのに有益なガス流量或いはガス圧力とされた一方の制御パラメータと、負荷変動前の状況が維持されたガス流量或いはガス圧力の他方の制御パラメータとでもたらされるガス供給状況は、例えば、湿潤状態が過乾燥であるためにこれを適正の側に推移させるのに有益な水分持ち去りの低減や水分保持をもたらすガス流量低減やガス圧力の増大の状況、或いは、適正推移に有益なガス流量増大やガス圧力の低減の状況といった種々のガス流量・圧力状況となり、こうしたガス供給状況が、負荷変動の過渡において実現される。湿潤状態が過湿潤であれば、これを適正の側に推移させるのに有益な水分持ち去りの増大をもたらすガス流量増大とガス圧力の低減の状況、或いは、適正推移に有益なガス流量低減とガス圧力の増大の状況といった種々のガス流量・圧力状況が、負荷変動の過渡において実現される。この結果、この形態の燃料電池システムによれば、負荷変動過渡期における燃料電池スタック、詳しくは電解質膜の過乾燥や過湿潤の抑制の実効性を高めて、出力の安定化を図ることができる。   In this type of fuel cell system, when the wet state of the fuel cell stack deviates from the proper wet state in a transient state of load fluctuation that has caused an increase or decrease in the required load, the wet state shifts to the proper wet state. One control parameter of the gas flow rate or gas pressure contributing to the change is changed, and the other control parameter is changed after being delayed. Due to such a change in the change timing, during the change delay, the other control parameter is maintained in the state before the load change. The state of the gas flow rate or gas pressure before the load change maintained in this way becomes a state of reduction or increase of the gas flow rate or reduction or increase of the gas pressure with respect to the gas flow rate or gas pressure corresponding to the change of the load request. . Therefore, one control parameter that is a gas flow rate or gas pressure that is useful for shifting the wet state to a proper wetness state, and the other control parameter that is the gas flow rate or gas pressure that maintains the state before the load change. For example, the gas supply situation brought about by the reduction of moisture removal, which is useful for shifting the wet state to an appropriate side because the wet state is excessively dry, the reduction of gas flow rate and the increase of gas pressure, which lead to moisture retention Various gas flow rate / pressure situations such as a situation, or a gas flow rate increase or gas pressure reduction situation that is beneficial for proper transition, and such a gas supply situation is realized in a load fluctuation transient. If the wet state is excessively wet, the situation of gas flow rate increase and gas pressure reduction leading to an increase in moisture removal that is beneficial for shifting this to the proper side, or gas flow rate reduction beneficial for proper transition Various gas flow rate / pressure situations, such as the situation of an increase in gas pressure, are realized in a load fluctuation transient. As a result, according to the fuel cell system of this embodiment, it is possible to improve the effectiveness of suppressing the overdrying and overwetting of the fuel cell stack, specifically, the electrolyte membrane in the load fluctuation transition period, and to stabilize the output. .

(2)上記形態の燃料電池システムにおいて、前記ガス供給制御部は、前記一方の制御パラメータを変更するに当たり、前記湿潤判断部の判断した湿潤状態を湿潤適正の側に推移させ得る適正化調整を経たガス流量或いはガス圧力に前記一方の制御パラメータを変更し、前記適正化調整を経ないガス流量或いはガス圧力である前記他方の制御パラメータの変更タイミングを前記適正化調整を経た変更タイミングに対して遅延側にずらすようにしてもよい。こうすれば、燃料電池スタックへのガス供給状況は、湿潤状態の適正に有益な水分持ち去りの低減や水分保持、或いは水分持ち去りの増大をもたらすガス流量・圧力の増大または低減の各種状況となり、こうした状況を実現できる。この結果、この形態の燃料電池システムによれば、負荷変動の過渡期における燃料電池スタック、詳しくは電解質膜の過乾燥や過湿潤の抑制の実効性をより高めて、負荷に対応した出力を安定して得ることができる。   (2) In the fuel cell system according to the above aspect, the gas supply control unit performs an adjustment adjustment that can shift the wet state determined by the wetness determination unit to a proper wetness side when changing the one control parameter. The one control parameter is changed to the gas flow rate or gas pressure that has passed, and the change timing of the other control parameter that is the gas flow rate or gas pressure that has not passed the optimization adjustment is changed with respect to the change timing that has passed the optimization adjustment You may make it shift to the delay side. In this way, the gas supply status to the fuel cell stack will be various situations of increasing or decreasing the gas flow rate and pressure that will bring about a decrease in moisture removal, moisture retention, or an increase in moisture removal that is beneficial in a wet state. This situation can be realized. As a result, according to the fuel cell system of this embodiment, the fuel cell stack in the transition period of the load fluctuation, more specifically, the effectiveness of suppressing the excessive drying and overwetting of the electrolyte membrane is further improved, and the output corresponding to the load is stabilized. Can be obtained.

(3)上記形態の燃料電池システムにおいて、前記ガス供給制御部は、前記負荷変動判断部が負荷増大の過渡にあると判断すると、前記適正化調整をガス流量或いはガス圧力の増大適正化調整とし、該増大適正化調整を経たガス流量或いはガス圧力に前記一方の制御パラメータを変更するようにしてもよい。こうすれば、燃料電池スタックへのガス供給状況は、湿潤状態の適正に有益な水分持ち去りの低減や水分保持、或いは水分持ち去りの増大をより効果的にもたらすガス流量の増大またはガス圧力の増大の状況となり、こうした状況を実現できる。この結果、この形態の燃料電池システムによれば、負荷の増大変動の過渡期における燃料電池スタック、詳しくは電解質膜の過乾燥や過湿潤の抑制の実効性をより高めて、増大負荷に対応した出力を安定して得ることができる。   (3) In the fuel cell system according to the above aspect, when the gas supply control unit determines that the load variation determination unit is in a load increase transition, the optimization adjustment is performed as an increase optimization adjustment of a gas flow rate or a gas pressure. The one control parameter may be changed to the gas flow rate or gas pressure that has undergone the increase optimization adjustment. In this way, the state of gas supply to the fuel cell stack will increase the gas flow rate or the gas pressure more effectively resulting in reduced moisture removal, moisture retention, or increased moisture removal that is beneficial in a wet state. This situation can be realized. As a result, according to the fuel cell system of this embodiment, the fuel cell stack in the transition period of the increase fluctuation of the load, more specifically, the effectiveness of suppressing the overdrying and overwetting of the electrolyte membrane is further improved to cope with the increased load. Output can be obtained stably.

(4)上記形態の燃料電池システムにおいて、前記ガス供給制御部は、前記増大適正化調整を経たガス流量或いはガス圧力への前記一方の制御パラメータの変更を、前記湿潤判断部が湿潤適正と判断した湿潤状態の時における前記負荷要求に基づいた増大調整目標値より一時的に大きい増大調整目標値となるように実行するようにしてもよい。こうすれば、燃料電池スタックへのガス供給は、増大する負荷に対応してガス流量或いはガス圧力を増大させる際の増大調整目標値より大きい増大調整目標値に一時的になるようなガス流量或いはガス圧力でなされる。こうしたガス流量或いはガス圧力の増大は、負荷の増大変動の過渡期において、湿潤状態の適正に有益な水分持ち去りの低減や水分保持、或いは水分持ち去りの増大がより顕著に現れるガス供給状況となる。この結果、この形態の燃料電池システムによれば、負荷増大の過渡期における燃料電池スタック、詳しくは電解質膜の過乾燥や過湿潤の抑制の実効性をより高めて、より増大負荷に対応した出力の安定化が可能となる。   (4) In the fuel cell system according to the above aspect, the gas supply control unit determines that the change of the one control parameter to the gas flow rate or the gas pressure after the increase optimization adjustment is determined to be wet proper by the wetness determination unit. The increase adjustment target value may be temporarily larger than the increase adjustment target value based on the load request in the wet state. In this way, the gas supply to the fuel cell stack is such that the gas flow rate or gas pressure temporarily increases to an increase adjustment target value that is larger than the increase adjustment target value when increasing the gas flow rate or gas pressure in response to an increasing load. Made at gas pressure. Such an increase in gas flow rate or gas pressure is a gas supply situation in which a decrease in moisture removal, moisture retention, or an increase in moisture removal is more prominent in the transient state of fluctuations in load increase. Become. As a result, according to the fuel cell system of this embodiment, the fuel cell stack in the transition period of the load increase, more specifically, the effectiveness of suppressing the excessive drying and overwetting of the electrolyte membrane is further improved, and the output corresponding to the increased load is increased. Can be stabilized.

(5)先の形態の燃料電池システムにおいて、前記ガス供給制御部は、前記負荷変動判断部が負荷低減の過渡にあると判断すると、前記適正化調整をガス流量或いはガス圧力の低減適正化調整とし、該低減適正化調整を経たガス流量或いはガス圧力に前記一方の制御パラメータを変更するようにしてもよい。こうすれば、燃料電池スタックへのガス供給状況は、湿潤状態の適正に有益な水分持ち去りの低減や水分保持、或いは水分持ち去りの増大をより効果的にもたらすガス流量の低減またはガス圧力の低減の状況となり、こうした状況を実現できる。この結果、この形態の燃料電池システムによれば、負荷の低減変動の過渡期における燃料電池スタック、詳しくは電解質膜の過乾燥や過湿潤の抑制の実効性をより高めて、低減負荷に対応した出力を安定して得ることができる。   (5) In the fuel cell system according to the above aspect, when the gas supply control unit determines that the load fluctuation determination unit is in a load reduction transition, the optimization adjustment is performed by reducing the gas flow rate or the gas pressure. The one control parameter may be changed to the gas flow rate or gas pressure that has undergone the reduction optimization. In this way, the gas supply status to the fuel cell stack can be reduced by reducing the gas flow rate or increasing the gas pressure, which effectively reduces the moisture removal and moisture retention, or increases the moisture removal, which is beneficial in a wet state. This situation can be realized. As a result, according to this form of the fuel cell system, the fuel cell stack in the transition period of the load reduction fluctuation, more specifically, the effectiveness of suppressing excessive drying and overwetting of the electrolyte membrane is further improved to cope with the reduced load. Output can be obtained stably.

(6)上記形態の燃料電池システムにおいて、前記ガス供給制御部は、前記低減適正化調整を経たガス流量或いはガス圧力への前記一方の制御パラメータの変更を、前記湿潤判断部が湿潤適正と判断した湿潤状態の時における前記負荷要求に基づいた低減調整目標値より一時的に小さい低減調整目標値となるように実行するようにしてもよい。こうすれば、燃料電池スタックへのガス供給は、低減する負荷に対応してガス流量或いはガス圧力を低減させる際の低減調整目標値より小さい低減調整目標値に一時的になるようなガス流量或いはガス圧力でなされる。こうしたガス流量或いはガス圧力の低減は、負荷の低減変動の過渡期において、湿潤状態の適正に有益な水分持ち去りの低減や水分保持、或いは水分持ち去りの増大がより顕著に現れるガス供給状況となる。この結果、この形態の燃料電池システムによれば、負荷低減の過渡期における燃料電池スタック、詳しくは電解質膜の過乾燥や過湿潤の抑制の実効性をより高めて、より低減負荷に対応した出力の安定化が可能となる。   (6) In the fuel cell system according to the above aspect, the gas supply control unit determines that the change of the one control parameter to the gas flow rate or the gas pressure after the reduction optimization adjustment is determined as appropriate by the wetness determination unit. The reduction adjustment target value may be temporarily smaller than the reduction adjustment target value based on the load request in the wet state. In this way, the gas supply to the fuel cell stack is such that the gas flow rate or the gas flow rate temporarily corresponding to a reduction adjustment target value smaller than the reduction adjustment target value when the gas flow rate or the gas pressure is reduced corresponding to the load to be reduced. Made at gas pressure. This reduction in gas flow rate or gas pressure is a gas supply situation in which a decrease in moisture removal, moisture retention, or an increase in moisture removal is more prominent in a transitional period of load reduction fluctuation. Become. As a result, according to the fuel cell system of this embodiment, the fuel cell stack in the transition period of load reduction, more specifically, the effectiveness of suppressing overdrying and overwetting of the electrolyte membrane is further improved, and the output corresponding to the reduced load is further increased. Can be stabilized.

本発明は、燃料電池スタックの運転方法や、燃料電池システムを搭載してその発電電力を駆動力として用いる車両、燃料電池システムを設置して燃料電池スタックを発電源とする定置式の発電システムとしても適用できる。   The present invention relates to a fuel cell stack operation method, a vehicle equipped with a fuel cell system and using the generated power as a driving force, and a stationary power generation system using the fuel cell stack as a power source. Is also applicable.

本発明の実施形態としての燃料電池搭載車両20を概略的に平面視して示す説明図である。It is explanatory drawing which shows the fuel cell mounting vehicle 20 as embodiment of this invention in planar view roughly. 要求負荷の変動過渡の状況下における燃料電池スタック100の発電制御のうち要求負荷の増大過渡の状況下での制御手順を示すフローチャートである。It is a flowchart which shows the control procedure in the condition of the increase transient of a demand load among the electric power generation control of the fuel cell stack 100 in the condition of the fluctuation of a demand load. 要求負荷の増大過渡の状況下における過湿潤回復第1処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the excessive wet recovery 1st process in the condition of the increase transient of a request | requirement load. 過湿潤回復第1処理における判定処理の内容を説明する説明図である。It is explanatory drawing explaining the content of the determination process in an overhumidity recovery 1st process. 要求負荷の増大過渡の状況下における過湿潤回復第1処理でもたらされるガス供給の状況を概略的に説明する説明図である。It is explanatory drawing which illustrates schematically the condition of the gas supply brought about by the overhumidity recovery 1st process in the condition of the increase transient of a request | requirement load. 要求負荷の増大過渡の状況下における過湿潤回復第1処理で得られる過湿潤適正化の様子を概略的に示す説明図である。It is explanatory drawing which shows roughly the mode of the overwetting optimization obtained by the overwetting recovery 1st process in the condition of the increase transient of a request | requirement load. 要求負荷の増大過渡の状況下における過乾燥回復第1処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the overdrying recovery 1st process in the condition of the increase transient of a request | requirement load. 過乾燥回復第1処理における判定処理の内容を説明する説明図である。It is explanatory drawing explaining the content of the determination process in an overdrying recovery 1st process. 要求負荷の増大過渡の状況下における過乾燥回復第1処理でもたらされるガス供給の状況を概略的に説明する説明図である。It is explanatory drawing which illustrates roughly the condition of the gas supply brought about by the overdrying recovery 1st process in the condition of the increase transient of a required load. 要求負荷の増大過渡の状況下における過乾燥回復第1処理で得られる過乾燥適正化の様子を概略的に示す説明図である。It is explanatory drawing which shows roughly the mode of the overdrying optimization obtained by the overdrying recovery 1st process in the condition of the increase transient of a required load. 要求負荷の低減過渡の状況下における燃料電池スタック100の発電制御の制御手順を示すフローチャートである。4 is a flowchart showing a control procedure of power generation control of the fuel cell stack 100 under a situation where the required load is reduced. 要求負荷の低減過渡の状況下における過湿潤回復第2処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the excessive wet recovery 2nd process in the condition of the reduction | decrease transient of a demand load. 要求負荷の低減過渡の状況下における過湿潤回復第2処理でもたらされるガス供給の状況を概略的に説明する説明図である。It is explanatory drawing which illustrates roughly the condition of the gas supply brought about by the overhumidity recovery 2nd process in the condition of the reduction | decrease transient of a demand load. 要求負荷の低減過渡の状況下における過湿潤回復第2処理で得られる過湿潤適正化の様子を概略的に示す説明図である。It is explanatory drawing which shows schematically the mode of the overwetting optimization obtained by the overwetting recovery 2nd process in the condition of the reduction | decrease transient of a demand load. 要求負荷の低減過渡の状況下における過乾燥回復第2処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the overdrying recovery 2nd process in the condition of the reduction | decrease transient of a required load. 要求負荷の低減過渡の状況下における過乾燥回復第2処理でもたらされるガス供給の状況を概略的に説明する説明図である。It is explanatory drawing which illustrates schematically the condition of the gas supply brought about by the overdrying recovery 2nd process in the condition of the reduction | decrease transient of a demand load. 要求負荷の増大過渡の状況下における過乾燥回復第2処理で得られる過乾燥適正化の様子を概略的に示す説明図である。It is explanatory drawing which shows roughly the mode of the overdrying optimization obtained by the overdrying recovery 2nd process in the condition of the increase transient of a request | requirement load. 第2実施例の燃料電池スタック100において要求負荷の増大過渡の状況下でなされる過湿潤回復第1処理でのガス供給状況を概略的に説明する説明図である。It is explanatory drawing which illustrates schematically the gas supply condition in the overhumidity recovery 1st process made in the condition of the increase transient of a required load in the fuel cell stack 100 of 2nd Example. 第2実施例の燃料電池スタック100において要求負荷の増大過渡の状況下でなされる過乾燥回復第1処理でのガス供給状況を概略的に説明する説明図である。It is explanatory drawing which illustrates roughly the gas supply condition in the overdrying recovery 1st process made in the condition of the increase transient of a required load in the fuel cell stack 100 of 2nd Example. 先の実施形態における要求負荷の増大過渡の状況下での過乾燥回復第1処理の処理内容の変更とこれに伴うガス供給状況の推移を示す説明図である。It is explanatory drawing which shows the change of the processing content of the overdrying recovery 1st process in the condition of the increase transient of the request | requirement load in previous embodiment, and transition of the gas supply condition accompanying this. 湿潤適正化のためのガス流量増大制御を一時的に大きな増大調整目標値となるようにした場合の利点を示す説明図である。It is explanatory drawing which shows the advantage at the time of making the gas flow rate increase control for wet optimization become a large increase adjustment target value temporarily. 湿潤適正化のためのガス流量増大制御を一時的に大きな増大調整目標値となるようにする他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment which makes the gas flow rate increase control for wet optimization become a big increase adjustment target value temporarily. 先の実施形態における要求負荷の低減過渡の状況下での過乾燥回復第2処理の処理内容の変更とこれに伴うガス供給状況の推移を示す説明図である。It is explanatory drawing which shows the change of the processing content of the excessive drying recovery 2nd process in the condition of reduction reduction of the required load in previous embodiment, and transition of the gas supply condition accompanying this.

以下、本発明の実施の形態について、図面に基づき説明する。図1は本発明の実施形態としての燃料電池搭載車両20を概略的に平面視して示す説明図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view schematically showing a fuel cell vehicle 20 as an embodiment of the present invention in plan view.

図示するように、この燃料電池搭載車両20は、車体22に、燃料電池システム30を搭載する。この燃料電池システム30は、燃料電池スタック100と、水素ガスタンク110を含む水素ガス供給系120と、モーター駆動のコンプレッサ130を含む空気供給系140と、ラジエータ150およびファン152を含む冷却系160と、2次電池172と、DC/DCコンバーター174とを備える。燃料電池システム30は、燃料電池スタック100の発電電力、或いは2次電池172の充電電力を、前輪駆動用のモーター170を始めとする負荷に供給する。   As shown in the figure, this fuel cell vehicle 20 has a fuel cell system 30 mounted on a vehicle body 22. The fuel cell system 30 includes a fuel cell stack 100, a hydrogen gas supply system 120 including a hydrogen gas tank 110, an air supply system 140 including a motor-driven compressor 130, a cooling system 160 including a radiator 150 and a fan 152, A secondary battery 172 and a DC / DC converter 174 are provided. The fuel cell system 30 supplies the power generated by the fuel cell stack 100 or the charging power of the secondary battery 172 to a load including the front-wheel drive motor 170.

燃料電池スタック100は、電池セルを備え、この電池セルは、図1の拡大模式図に示すように、電解質膜101の両側にアノード102とカソード103の両電極を備える。アノード102とカソード103は、電解質膜101の両膜面に接合され電解質膜101と共に膜電極接合体(Membrane Electrode Assembly/MEA)を形成する。この他、電池セルは、上記のMEAを両側から挟持するアノード側ガス拡散層104とカソード側ガス拡散層105とを備え(図1参照)、両ガス拡散層は、対応する電極に接合されている。   The fuel cell stack 100 includes battery cells, and the battery cells include both anode 102 and cathode 103 electrodes on both sides of the electrolyte membrane 101 as shown in the enlarged schematic view of FIG. The anode 102 and the cathode 103 are joined to both membrane surfaces of the electrolyte membrane 101 to form a membrane electrode assembly (MEA) together with the electrolyte membrane 101. In addition, the battery cell includes an anode-side gas diffusion layer 104 and a cathode-side gas diffusion layer 105 that sandwich the MEA from both sides (see FIG. 1), and both the gas diffusion layers are joined to corresponding electrodes. Yes.

電解質膜101は、固体高分子材料、例えばフッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好な電気伝導性を示す。アノード102およびカソード103は、触媒(例えば白金、あるいは白金合金)を備えており、これらの触媒を、導電性を有する担体(例えば、カーボン粒子)上に担持させることによって形成されている。アノード側ガス拡散層104とカソード側ガス拡散層105は、ガス透過性を有する導電性で多孔質な部材、例えば、カーボンペーパやカーボンクロスを多孔質基材として形成される。   The electrolyte membrane 101 is a proton conductive ion exchange membrane formed of a solid polymer material, for example, a fluorine-based resin, and exhibits good electrical conductivity in a wet state. The anode 102 and the cathode 103 include a catalyst (for example, platinum or a platinum alloy), and are formed by supporting these catalysts on a conductive carrier (for example, carbon particles). The anode-side gas diffusion layer 104 and the cathode-side gas diffusion layer 105 are formed using a conductive porous member having gas permeability, for example, carbon paper or carbon cloth as a porous substrate.

燃料電池スタック100は、上記した電池セルを積層して構成されたスタック構造とされ、前輪FWと後輪RWの間において車両床下に位置する。そして、燃料電池スタック100は、後述の水素ガス供給系120と空気供給系140から供給された水素ガス中の水素と空気中の酸素との電気化学反応を各電池セルユニットにて起こして発電し、その発電電力にてモーター170等の負荷を駆動する。燃料電池スタック100の発電状態は電流センサー106にて計測され、その計測結果は電流センサー106から後述の制御装置200に出力される。この場合、電池セルユニットの積層数は、燃料電池スタック100に要求される出力に応じて任意に設定可能である。   The fuel cell stack 100 has a stack structure configured by stacking the battery cells described above, and is located below the vehicle floor between the front wheel FW and the rear wheel RW. The fuel cell stack 100 generates electricity by causing an electrochemical reaction between hydrogen in hydrogen gas supplied from a hydrogen gas supply system 120 and an air supply system 140 described later and oxygen in the air in each battery cell unit. The load such as the motor 170 is driven by the generated power. The power generation state of the fuel cell stack 100 is measured by the current sensor 106, and the measurement result is output from the current sensor 106 to the control device 200 described later. In this case, the number of stacked battery cell units can be arbitrarily set according to the output required for the fuel cell stack 100.

水素ガス供給系120は、水素ガスタンク110から燃料電池スタック100に到る水素供給経路121と、未消費の水素ガス(アノードオフガス)を水素供給経路121に循環させる循環経路122と、アノードオフガスを大気放出するための放出経路123を備える。そして、この水素ガス供給系120は、水素供給経路121の開閉バルブ124の経路開閉と、減圧バルブ125での減圧を経て、水素ガスタンク110の水素ガスを燃料電池スタック100(詳しくは、各電池セルのアノード102)に供給する。この際、水素ガス供給系120は、減圧バルブ125の下流の水素供給機器126にて調整した流量と、循環経路122の循環ポンプ127にて調整した循環流量との合算した流量の水素ガスを、燃料電池スタック100のアノードに供給する。また、水素ガス供給系120は、減圧バルブ125での減圧程度を変えることで、種々のガス圧力で水素ガスを燃料電池スタック100のアノードに供給する。燃料電池スタック100に水素ガスを供給する際の水素ガス流量とガス圧力は、アクセル180の操作に基づいて、後述の制御装置200にて定められ、燃料電池スタック100に求められる負荷に応じたものとなる。そして、本実施形態の燃料電池スタック100では、制御装置200による減圧バルブ125での減圧調整と水素供給機器126での流量調整とにより、水素ガス供給の際の水素ガスのガス流量とガス圧力とを個別に調整可能とされている。なお、水素ガス供給系120は、循環経路122から分岐した放出経路123の開閉バルブ129の開閉調整を経て、適宜、アノードオフガスを放出経路142を経て大気放出する。   The hydrogen gas supply system 120 includes a hydrogen supply path 121 extending from the hydrogen gas tank 110 to the fuel cell stack 100, a circulation path 122 for circulating unconsumed hydrogen gas (anode offgas) to the hydrogen supply path 121, and the anode offgas to the atmosphere. A discharge path 123 for discharging is provided. The hydrogen gas supply system 120 passes through the opening / closing of the opening / closing valve 124 of the hydrogen supply path 121 and the pressure reduction by the pressure reducing valve 125, and supplies the hydrogen gas in the hydrogen gas tank 110 to the fuel cell stack 100 (specifically, each battery cell). To the anode 102). At this time, the hydrogen gas supply system 120 supplies a hydrogen gas having a flow rate that is the sum of the flow rate adjusted by the hydrogen supply device 126 downstream of the pressure reducing valve 125 and the circulation flow rate adjusted by the circulation pump 127 of the circulation path 122. This is supplied to the anode of the fuel cell stack 100. Further, the hydrogen gas supply system 120 supplies hydrogen gas to the anode of the fuel cell stack 100 at various gas pressures by changing the degree of pressure reduction by the pressure reducing valve 125. The hydrogen gas flow rate and gas pressure when supplying hydrogen gas to the fuel cell stack 100 are determined by the control device 200 described later based on the operation of the accelerator 180, and correspond to the load required for the fuel cell stack 100. It becomes. In the fuel cell stack 100 of the present embodiment, the gas flow rate and gas pressure of the hydrogen gas at the time of hydrogen gas supply are adjusted by the pressure reduction valve 125 by the control device 200 and the flow rate adjustment by the hydrogen supply device 126. Can be adjusted individually. The hydrogen gas supply system 120 appropriately releases the anode off-gas to the atmosphere via the discharge path 142 through the opening / closing adjustment of the opening / closing valve 129 of the discharge path 123 branched from the circulation path 122.

空気供給系140は、コンプレッサ130を経て燃料電池スタック100に到る酸素供給経路141と、未消費の空気(カソードオフガス)を大気放出する放出経路142とを備える。そして、この空気供給系140は、酸素供給経路141の開口端から取り込んだ空気を、コンプレッサ130での流量調整とその下流の圧力調整バルブ145での圧力調整を経た上で、燃料電池スタック100(詳しくは、各電池セルのカソード103)に、通常は酸素供給経路141を経て供給しつつ、放出経路142の排出流量調整バルブ143で調整された流量でカソードオフガスを放出経路142を経て大気放出する。このように空気供給系140にて空気供給とカソードオフガス排出とを行う場合、空気供給系140は、酸素供給経路141の排出流量調整バルブ143を所定開度にした上で、コンプレッサ130にて空気を供給する。この際の空気供給量にあっても、水素ガスと同様に、アクセル180の操作に基づいて制御装置200にて定められ、燃料電池スタック100に求められる負荷に応じた供給量となる。そして、本実施形態の燃料電池スタック100では、制御装置200によるコンプレッサ130での流量調整と圧力調整バルブ145での圧力調整とにより、空気供給の際の空気のガス流量とガス圧力とを個別に調整可能とされている。なお、排出流量調整バルブ143は、制御装置200による流量調整を経て、カソード側の背圧についてもこれを調整する。   The air supply system 140 includes an oxygen supply path 141 that reaches the fuel cell stack 100 via the compressor 130 and a discharge path 142 that discharges unconsumed air (cathode offgas) to the atmosphere. The air supply system 140 adjusts the flow of the air taken in from the open end of the oxygen supply path 141 in the compressor 130 and the pressure in the pressure adjustment valve 145 downstream thereof, and then the fuel cell stack 100 ( Specifically, the cathode off-gas is released to the atmosphere via the discharge path 142 at a flow rate adjusted by the discharge flow rate adjustment valve 143 of the discharge path 142 while being supplied to the cathode 103) of each battery cell normally via the oxygen supply path 141. . When air supply and cathode off-gas discharge are performed by the air supply system 140 in this way, the air supply system 140 sets the discharge flow rate adjustment valve 143 of the oxygen supply path 141 to a predetermined opening, and then the air by the compressor 130. Supply. Even in the air supply amount at this time, similarly to the hydrogen gas, the supply amount is determined by the control device 200 based on the operation of the accelerator 180 and corresponds to the load required for the fuel cell stack 100. In the fuel cell stack 100 of the present embodiment, the gas flow rate and the gas pressure of the air at the time of air supply are individually adjusted by the flow rate adjustment at the compressor 130 and the pressure adjustment at the pressure adjustment valve 145 by the control device 200. Adjustable. The discharge flow rate adjusting valve 143 adjusts the back pressure on the cathode side through the flow rate adjustment by the control device 200.

冷却系160は、ラジエータ150から燃料電池スタック100への冷却媒体の循環を図る循環経路161と、バイパス経路162と、経路合流点の三方流量調整弁163と、循環ポンプ164と、温度センサー166を備える。そして、この冷却系160は、ラジエータ150にて熱交換した冷却媒体を循環経路161を経て燃料電池スタック100の図示しないセル内循環経路に導き、燃料電池スタック100を所定温度に冷却する。この場合、循環ポンプ164の駆動量、即ち冷却媒体の循環供給量や、三方流量調整弁163による調整流量は、温度センサー166の検出温度たる燃料電池温度(セル温度)や電流センサー106の検出した発電状態に基づいて、制御装置200にて定められる。   The cooling system 160 includes a circulation path 161 that circulates the cooling medium from the radiator 150 to the fuel cell stack 100, a bypass path 162, a three-way flow rate adjustment valve 163 at the path junction, a circulation pump 164, and a temperature sensor 166. Prepare. The cooling system 160 guides the cooling medium heat-exchanged by the radiator 150 to the in-cell circulation path (not shown) of the fuel cell stack 100 through the circulation path 161, and cools the fuel cell stack 100 to a predetermined temperature. In this case, the driving amount of the circulation pump 164, that is, the circulation supply amount of the cooling medium and the adjustment flow rate by the three-way flow rate adjustment valve 163 are detected by the fuel cell temperature (cell temperature) as the detection temperature of the temperature sensor 166 and the current sensor 106. It is determined by the control device 200 based on the power generation state.

2次電池172は、DC/DCコンバーター174を介して燃料電池スタック100に接続されており、燃料電池スタック100とは別の電力源として機能し、モーター170等に供給する電力源として燃料電池スタック100と併用される。本実施例では、後述するように燃料電池スタック100をアクセル180の踏込に応じた発電状態下で運転制御(通常制御)することを前提とするので、燃料電池スタック100の運転停止状態において、2次電池172は、その充電電力をモーター170に供給する。2次電池172としては、例えば、鉛充電池や、ニッケル水素電池、リチウムイオン電池などを採用することができる。2次電池172には、容量検出センサー176が接続され、当該センサーは、2次電池172の充電状態を検出し、その検出充電量(電池容量)を制御装置200に出力する。   The secondary battery 172 is connected to the fuel cell stack 100 via a DC / DC converter 174, functions as a power source different from the fuel cell stack 100, and serves as a power source supplied to the motor 170 and the like. Used with 100. In this embodiment, since it is assumed that the fuel cell stack 100 is operated and controlled (normal control) in a power generation state corresponding to the depression of the accelerator 180 as will be described later, in the operation stop state of the fuel cell stack 100, 2 The secondary battery 172 supplies the charging power to the motor 170. As the secondary battery 172, for example, a lead-charged battery, a nickel metal hydride battery, a lithium ion battery, or the like can be employed. A capacity detection sensor 176 is connected to the secondary battery 172, and the sensor detects a charging state of the secondary battery 172 and outputs the detected charge amount (battery capacity) to the control device 200.

DC/DCコンバーター174は、2次電池172の充・放電を制御する充放電制御機能を有しており、制御装置200の制御信号を受けて2次電池172の充・放電を制御する。この他、DC/DCコンバーター174は、燃料電池スタック100の発電電力および2次電池172の蓄電電力の引出とモーター170への電圧印加とを、制御装置200の制御下で行い、電力引出状態とモーター170に掛かる電圧レベルを可変に調整する。   The DC / DC converter 174 has a charge / discharge control function for controlling charge / discharge of the secondary battery 172, and controls charge / discharge of the secondary battery 172 in response to a control signal from the control device 200. In addition, the DC / DC converter 174 performs the extraction of the generated power of the fuel cell stack 100 and the stored power of the secondary battery 172 and the application of the voltage to the motor 170 under the control of the control device 200, The voltage level applied to the motor 170 is variably adjusted.

制御装置200は、論理演算を実行するCPUやROM、RAM等を備えたいわゆるマイクロコンピュータで構成され、アクセル180等のセンサー入力を受けて燃料電池搭載車両20の種々の制御を司る。例えば、制御装置200は、アクセル180の操作状態に応じたモーター170への要求電力(要求負荷)を求め、その要求電力が燃料電池スタック100の発電で得られるよう、或いは、2次電池172の充電電力、もしくはこの両者で賄うよう、燃料電池スタック100を発電制御して当該スタックからの発電電力の出力を制御しつつ、モーター170に電力を供給する。モーター170への要求負荷を燃料電池スタック100の発電で得る場合には、制御装置200は、その要求負荷に見合うよう水素ガス供給系120や空気供給系140でのガス供給量(ガス流量)やガス圧力を制御(通常制御)する。また、制御装置200は、モーター170への要求電力に応じて、DC/DCコンバーター174を制御する。   The control device 200 is configured by a so-called microcomputer having a CPU, a ROM, a RAM and the like for executing logical operations, and receives various sensor inputs from the accelerator 180 and controls various controls of the fuel cell vehicle 20. For example, the control device 200 obtains the required power (required load) to the motor 170 according to the operation state of the accelerator 180, so that the required power can be obtained by the power generation of the fuel cell stack 100, or the secondary battery 172 Electric power is supplied to the motor 170 while controlling the power generation of the fuel cell stack 100 and controlling the output of the generated power from the stack so as to cover the charging power or both. When the required load on the motor 170 is obtained by the power generation of the fuel cell stack 100, the control device 200 determines the gas supply amount (gas flow rate) in the hydrogen gas supply system 120 and the air supply system 140 to meet the required load. Control gas pressure (normal control). Further, the control device 200 controls the DC / DC converter 174 according to the required power to the motor 170.

この他、制御装置200は、車速センサー182の検出した車速や、外気温センサー184の検出した外気温、水素ガス供給系120において流量センサー128が検出した水素ガス流量、空気供給系140において流量センサー147の検出したエアー流量、容量検出センサー176が検出した2次電池172の電池容量(以下、SOC)等を、上記した制御を行う上での制御パラメータとして入力する。   In addition, the control device 200 includes a vehicle speed detected by the vehicle speed sensor 182, an outside air temperature detected by the outside air temperature sensor 184, a hydrogen gas flow rate detected by the flow sensor 128 in the hydrogen gas supply system 120, and a flow rate sensor in the air supply system 140. The air flow rate detected by 147, the battery capacity (hereinafter referred to as SOC) of the secondary battery 172 detected by the capacity detection sensor 176, etc. are input as control parameters for performing the above-described control.

次に、上記した構成を有する燃料電池搭載車両20の制御装置200が要求負荷変動の過渡状況において行う燃料電池スタック100の発電制御について説明する。要求負荷変動の過渡状況は、要求負荷の増大過渡の状況と低減過渡の状況に分けられるので、まず、要求負荷の増大過渡の状況下での制御について説明する。図2は要求負荷の変動過渡の状況下における燃料電池スタック100の発電制御のうち要求負荷の増大過渡の状況下での制御手順を示すフローチャートである。要求負荷の低減過渡の状況下での制御については、図11以降の図を用いて後述する。   Next, power generation control of the fuel cell stack 100 performed by the control device 200 of the fuel cell-equipped vehicle 20 having the above-described configuration in a transient state of required load fluctuation will be described. Since the transient state of the required load fluctuation is divided into an increase transient state of the required load and a transient state of reduction, first, control under the increase transient state of the required load will be described. FIG. 2 is a flowchart showing a control procedure in the situation where the required load increases in the power generation control of the fuel cell stack 100 under the condition where the required load fluctuates. The control under the situation of the required load reduction transition will be described later with reference to FIG.

制御装置200は、燃料電池システム30が起動すると、ドライバーからの燃料電池搭載車両20に対する駆動要求(要求負荷)に基づいて燃料電池スタック100を発電制御する通常運転制御を、通常、常時実行している。この際の燃料電池搭載車両20に対するドライバーからの駆動要求は、ドライバーによるアクセル180の踏込操作量やその踏込速度等から要求電力Pt(要求負荷)として取得される。そして、この要求電力Ptが得られるよう、制御装置200は、既述したように水素ガスおよび空気のガス流量・ガス圧力を、燃料電池のI−V特性、I−P特性等を参照して算出し、その算出したガス流量・ガス圧力で、水素ガスおよび空気を燃料電池スタック100に供給する。こうした通常の発電制御を行いつつ、制御装置200は、図2に示す要求負荷の変動過渡の状況下における燃料電池スタック100の発電制御を繰り返し実行する。この図2の発電制御では、まず、制御装置200は、アクセル180(図1参照)の踏込操作量やその踏込速度等の踏込操作状況を図示しないアクセルセンサーから読み取り、そのセンサー出力に基づいて、要求負荷を取得する(ステップS100)。   When the fuel cell system 30 is activated, the control device 200 normally executes normal operation control for controlling the power generation of the fuel cell stack 100 based on a drive request (required load) from the driver to the vehicle 20 equipped with the fuel cell. Yes. The drive request from the driver to the fuel cell-equipped vehicle 20 at this time is acquired as the required power Pt (required load) from the amount of stepping operation of the accelerator 180 by the driver, the stepping speed, and the like. In order to obtain the required power Pt, the control device 200 refers to the hydrogen gas and air gas flow rates and gas pressures as described above, referring to the IV characteristics, IP characteristics, etc. of the fuel cell. The hydrogen gas and air are supplied to the fuel cell stack 100 at the calculated gas flow rate and gas pressure. While performing such normal power generation control, the control device 200 repeatedly executes the power generation control of the fuel cell stack 100 under the condition of fluctuation of the required load shown in FIG. In the power generation control of FIG. 2, first, the control device 200 reads a stepping operation state such as a stepping operation amount and a stepping speed of the accelerator 180 (see FIG. 1) from an accelerator sensor (not shown), and based on the sensor output, The required load is acquired (step S100).

次いで、制御装置200は、取得した要求負荷の推移から、現状の負荷の要求状況が負荷増減の過渡の状況にあるか否かを判断し(ステップS110)、ここで、負荷増減の過渡状況に無いと判定すると、一旦処理を終了する。よって、この場合は、図2の制御の影響を受けること無く、通常の発電制御がなされる。   Next, the control device 200 determines whether or not the current load request status is a transient state of load increase / decrease from the acquired transition of the required load (step S110). If it is determined that there is not, the process is temporarily terminated. Therefore, in this case, normal power generation control is performed without being affected by the control of FIG.

負荷変動の過渡の状況は、負荷増大の過渡状況或いは負荷低減の過渡状況のいずれかであることから、制御装置200は、ステップS110で負荷の増減変動の状況にあると判断すると、負荷過渡の種別に応じて、図2のステップS120以降の処理、或いは後述する図11のステップS200以降の処理を行う。ステップS110で負荷増大の過渡状況であると判断すると、制御装置200は、ステップS120において、温度センサー166(図1参照)から燃料電池スタック100を経路に含む冷却系160の冷却水温度を取得し、その取得した冷却水温度を基準温度αと対比する(ステップS130)。冷却水温度は、燃料電池スタック100の温度、即ちMEA(図1参照)における電解質膜101の温度と相関があるので、ステップS130では、MEAの温度が基準温度αと対比されることになる。本実施形態では、この基準温度αを、燃料電池スタック100の暖気前の温度であってMEAが適正な湿潤状態にある場合を想定したMEA適正温度(例えば80℃)より低い温度とし、MEAが過湿潤にある時に発現しがちな温度(例えば40℃)とした。よって、ステップS130で肯定判定すると、冷却水温度が低い故にMEAの過湿潤が起き得ていると想定されることから、この過湿潤の適正化を図るべく、制御装置200は、ステップS140の過湿潤回復第1処理に移行する。この過湿潤回復第1処理は、燃料電池スタック100のMEAにおけるアノード102とカソード103とで、それぞれ過湿潤の適正化に有益なガス供給状況をもたらす処理であり、その詳細は後述する。   Since the transient state of the load fluctuation is either the transient situation of the load increase or the transient situation of the load reduction, if the control device 200 determines that the load is increasing or decreasing in step S110, the load transient state is changed. Depending on the type, the processing after step S120 in FIG. 2 or the processing after step S200 in FIG. If it is determined in step S110 that the load increase is in a transient state, the control device 200 acquires the coolant temperature of the cooling system 160 including the fuel cell stack 100 in the path from the temperature sensor 166 (see FIG. 1) in step S120. The acquired cooling water temperature is compared with the reference temperature α (step S130). Since the coolant temperature has a correlation with the temperature of the fuel cell stack 100, that is, the temperature of the electrolyte membrane 101 in the MEA (see FIG. 1), in step S130, the temperature of the MEA is compared with the reference temperature α. In the present embodiment, the reference temperature α is set to a temperature lower than the MEA appropriate temperature (for example, 80 ° C.) that is assumed to be the temperature before the fuel cell stack 100 is warmed up and the MEA is in a proper wet state. The temperature (for example, 40 ° C.), which tends to be manifested when over-humid, was used. Therefore, if an affirmative determination is made in step S130, it is assumed that the MEA is excessively wet because the cooling water temperature is low. Therefore, in order to optimize this excessive wetness, the control device 200 performs the excessive increase in step S140. The process proceeds to the first wet recovery process. The first process of recovery from overwetting is a process that brings about a gas supply situation useful for optimizing overwetting at the anode 102 and the cathode 103 in the MEA of the fuel cell stack 100, and details thereof will be described later.

一方、ステップS130で否定判定すると、制御装置200は、ステップS120で取得済みの冷却水温度を基準温度βと対比する(ステップS150)。本実施形態では、この基準温度βを、MEAが適正な湿潤状態にある場合を想定したMEA適正温度(例えば80℃)とし、冷却水温度、即ちMEAの温度がこの基準温度βを超えるほど高ければ、MEAが過乾燥にあると想定される。そして、ステップS150で否定判定すれば、ステップS130での否定判定と相まって、冷却水温度はMEAが適正な湿潤状態にある場合を想定した温度範囲内であるので、過湿潤・過乾燥の適正化は無用であるとして、一旦処理を終了する。そして、ステップS150で肯定判定すると、冷却水温度が高い故にMEAの過乾燥が起き得ていると想定されることから、この過乾燥の適正化を図るべく、制御装置200は、ステップS160の過乾燥回復第1処理に移行する。この過乾燥回復第1処理は、燃料電池スタック100のMEAにおけるアノード102とカソード103とで、それぞれ過乾燥の適正化に有益なガス供給状況をもたらす処理であり、その詳細は後述する。   On the other hand, if a negative determination is made in step S130, the control device 200 compares the coolant temperature acquired in step S120 with the reference temperature β (step S150). In the present embodiment, the reference temperature β is set to an appropriate MEA temperature (for example, 80 ° C.) assuming that the MEA is in a proper wet state, and the cooling water temperature, that is, the temperature of the MEA is increased to exceed the reference temperature β. For example, it is assumed that the MEA is overdried. If a negative determination is made in step S150, coupled with a negative determination in step S130, the cooling water temperature is within the temperature range assuming that the MEA is in a proper wet state. Is temporarily useless. If an affirmative determination is made in step S150, it is assumed that the MEA overdrying may have occurred because the cooling water temperature is high. Therefore, in order to optimize the overdrying, the control device 200 performs the overdriving in step S160. The process proceeds to the drying recovery first process. The first process of recovery from overdrying is a process that brings about a gas supply situation useful for optimizing overdrying at the anode 102 and the cathode 103 in the MEA of the fuel cell stack 100, and details thereof will be described later.

ここで、ステップS130での肯定判定に続くステップS140の過湿潤回復第1処理について説明する。図3は要求負荷の増大過渡の状況下における過湿潤回復第1処理の詳細を示すフローチャート、図4は過湿潤回復第1処理における判定処理の内容を説明する説明図である。図3に示すように、過湿潤回復第1処理では、制御装置200は、改めて冷却水温度を基準温度αと対比する(ステップS142)。この温度対比は、冷却水温度がどの程度、基準温度αから低温側に逸脱しているのかを判定するためのものである。   Here, the first process of overwetting recovery in step S140 following the affirmative determination in step S130 will be described. FIG. 3 is a flowchart showing details of the first process of overwetting recovery under a situation where the required load increases transiently, and FIG. 4 is an explanatory diagram for explaining the contents of the determination process in the first process of overwetting recovery. As shown in FIG. 3, in the first overhumidity recovery process, the control device 200 again compares the coolant temperature with the reference temperature α (step S142). This temperature comparison is for determining how much the coolant temperature deviates from the reference temperature α to the low temperature side.

このステップS142で、図4に示すように、冷却水温度は基準温度αより所定温度幅α0以上に低い低温度側に逸脱していると判定した場合は、冷却水温度が基準温度αより大きく低いためにMEAの過湿潤も顕著であると想定される。よって、制御装置200は、MEAの過湿潤をより高い実効性で湿潤適正の側に推移すべく、MEAにおけるアノード102へのガス供給とカソード103へのガス供給を、共に過湿潤適正化に有益なガス供給となるよう同時並行的に制御する(ステップS144)。図5は要求負荷の増大過渡の状況下における過湿潤回復第1処理でもたらされるガス供給の状況を概略的に説明する説明図、図6は要求負荷の増大過渡の状況下における過湿潤回復第1処理で得られる過湿潤適正化の様子を概略的に示す説明図である。図5は、ある時刻(以下、開始時刻ts)において要求負荷が急増し、所定時間経過後の時刻(以下、終了時刻tm)において要求負荷に対応するガス流量およびガス圧力でのガス供給に達するガス供給状況と、開始時刻tsから終了時刻tmまでの負荷要求の増大過渡状況下におけるカソード側・アノード側でのガス流量推移およびガス圧力推移を示している。   In step S142, as shown in FIG. 4, when it is determined that the cooling water temperature has deviated to a low temperature side lower than the reference temperature α by a predetermined temperature range α0 or more, the cooling water temperature is higher than the reference temperature α. Since it is low, it is assumed that MEA overwetting is also significant. Therefore, the control apparatus 200 is beneficial for the optimization of overwetting by supplying both the gas supply to the anode 102 and the gas supply to the cathode 103 in the MEA in order to shift the overwetting of the MEA to the appropriate wetness side with higher effectiveness. Control is performed simultaneously and in parallel so as to achieve a correct gas supply (step S144). FIG. 5 is an explanatory diagram schematically illustrating the state of gas supply provided in the first process of recovery from overhumidity under the condition of increase in demand load, and FIG. It is explanatory drawing which shows roughly the mode of the overwetting optimization obtained by 1 process. FIG. 5 shows that the required load increases rapidly at a certain time (hereinafter referred to as start time ts), and reaches a gas supply at a gas flow rate and gas pressure corresponding to the required load at a time after a predetermined time (hereinafter referred to as end time tm). The gas supply status and the gas flow rate transition and gas pressure transition on the cathode side and the anode side under an increasing transient state of the load request from the start time ts to the end time tm are shown.

MEAの過湿潤の湿潤適正推移には、カソード103においては、生成水の水分持ち去りの増大が有益であり、アノード102においては、電気化学反応の進行が活発なカソードでの空気の入口側への水分搬送を抑制する水分保持が有益である。そして、カソード103における水分持ち去りの増大は、空気のガス流量の増大による直接的な水分持ち去りの増大化と、空気供給時のガス圧力の増大回避、換言すれば、要求負荷の増大過渡以前の低ガス圧力維持による体積流量増加により、起きる。アノード102における水分保持は、水素ガスのガス流量の増大回避、換言すれば、要求負荷の増大過渡以前の低ガス流量維持による直接的な水分持ち去りの低減化と、水素ガス供給時のガス圧力の増大による体積流量低減により、起きる。   For the proper transition of the MEA overwetting, it is beneficial to increase the moisture removal of the generated water at the cathode 103, and at the anode 102 to the air inlet side at the cathode where the electrochemical reaction proceeds actively. It is beneficial to retain moisture to suppress the moisture transport. The increase in moisture removal at the cathode 103 is due to an increase in direct moisture removal due to an increase in the gas flow rate of air and an increase in gas pressure during air supply, in other words, before the transient increase in required load. This is caused by an increase in volume flow rate by maintaining a low gas pressure. Moisture retention at the anode 102 is to avoid an increase in the gas flow rate of hydrogen gas, in other words, to reduce direct moisture removal by maintaining a low gas flow rate before a transient increase in required load, and a gas pressure at the time of hydrogen gas supply Occurs due to volumetric flow reduction due to an increase in.

こうしたことから、ステップS144では、図5に示すように、要求負荷の増大に伴うカソード103への空気供給の際のガス流量の増大変更のタイミング(開始時刻ts)に対して、要求負荷の増大に伴うガス圧力の増大変更のタイミングを遅延時刻taまで遅延側にずらす。こうすることで、制御装置200は、カソード103への空気供給に当たり、ガス流量の増大制御をガス圧力の増大制御に先行して実施する。こうしたガス流量の増大制御は、制御装置200によるコンプレッサ130(図1参照)の駆動制御でもたらされ、ガス圧力の増大の遅延およびその後の増大制御は、制御装置200による圧力調整バルブ145の駆動制御でもたらされる。こうしたカソード側での機器制御は、後述の回復処理でも同様である。そして、カソード103では、図6に示すように、ガス流量の増大による直接的な水分持ち去りの増大化と、要求負荷の増大過渡の以前(開始時刻ts以前)の低ガス圧力維持による体積流量増加により、水分持ち去りの増量化が起きる。   Therefore, in step S144, as shown in FIG. 5, the required load increases with respect to the change timing (start time ts) of the gas flow rate when the air is supplied to the cathode 103 as the required load increases. The timing of the gas pressure increase change due to is shifted to the delay side until the delay time ta. By doing so, the control device 200 performs the increase control of the gas flow rate prior to the increase control of the gas pressure when supplying the air to the cathode 103. Such an increase control of the gas flow rate is brought about by the drive control of the compressor 130 (see FIG. 1) by the control device 200, and the delay of the increase of the gas pressure and the subsequent increase control are the drive control of the pressure regulating valve 145 by the control device 200. Brought in. The device control on the cathode side is the same in the recovery process described later. Then, in the cathode 103, as shown in FIG. 6, the volumetric flow rate by increasing the direct moisture removal by increasing the gas flow rate and maintaining the low gas pressure before the demand load increase transient (before the start time ts). The increase causes an increase in moisture removal.

また、このステップS144では、図5に示すように、要求負荷の増大に伴うアノード102への水素ガス供給の際のガス圧力の増大変更のタイミング(開始時刻ts)に対して、要求負荷の増大に伴うガス流量の増大変更のタイミングを遅延時刻taまで遅延側にずらす。こうすることで、制御装置200は、アノード102への水素ガス供給に当たり、ガス圧力の増大制御をガス流量増大制御に先行して実施する。こうしたガス圧力の増大制御は、制御装置200による減圧バルブ125(図1参照)の駆動制御でもたらされ、ガス流量の増大の遅延およびその後の増大制御は、制御装置200による水素供給機器126の駆動制御でもたらされる。こうしたアノード側での機器制御は、後述の回復処理でも同様である。そして、アノード102では、図6に示すように、水素ガスのガス圧力の増大による体積流量低減と、要求負荷の増大過渡の以前の低ガス流量維持による直接的な水分持ち去りの低減化により、カソードの空気入口への水の搬送が低減化して、水分保持が起きる。しかも、ステップS144では、上記した過湿潤の適正側推移に有益なガス供給状況がアノード102とカソード103とにおいて同時にもたらされ、その後、本ルーチンを終了する。   Further, in step S144, as shown in FIG. 5, the required load increases with respect to the change timing (start time ts) of the gas pressure when the hydrogen gas is supplied to the anode 102 due to the increase in the required load. The timing of the increase change of the gas flow rate accompanying this is shifted to the delay side until the delay time ta. By doing so, the control device 200 performs an increase control of the gas pressure prior to the gas flow rate increase control when supplying the hydrogen gas to the anode 102. Such increase control of the gas pressure is brought about by the drive control of the pressure reducing valve 125 (see FIG. 1) by the control device 200. The delay of the increase of the gas flow rate and the subsequent increase control are driven by the control device 200 to drive the hydrogen supply device 126. Brought in control. The device control on the anode side is the same in the recovery process described later. Then, in the anode 102, as shown in FIG. 6, by reducing the volume flow rate by increasing the gas pressure of hydrogen gas and reducing direct moisture removal by maintaining the low gas flow rate before the increase transient of the required load, Water transport to the cathode air inlet is reduced and moisture retention occurs. Moreover, in step S144, a gas supply situation useful for the above-described proper transition of overwetting is brought about at the anode 102 and the cathode 103 at the same time, and then this routine is terminated.

上記したステップS142で、図4に示すように、冷却水温度は基準温度αより低温度側に逸脱しているもののその隔たりは小さいと判定した場合は、MEAは過湿潤ではあるものの過湿潤の程度はそれほど大きくないと想定される。よって、制御装置200は、こうしたMEAの過湿潤を湿潤適正の側に推移すべく、上記した過湿潤適正化に有益なガス供給を、アノード102とカソード103のいずれかを選択して実行し(ステップS146)、本ルーチンを一旦終了する。本実施形態では、カソード103における水分持ち去りの増量化を優先して、カソード103での既述したガス供給を実行する。   In step S142 described above, as shown in FIG. 4, when it is determined that the cooling water temperature has deviated to a lower temperature side than the reference temperature α but the gap is small, the MEA is overwetting, but the MEA is overwetting. It is assumed that the degree is not so great. Therefore, the control device 200 executes the gas supply useful for the above-described proper overwetting by selecting either the anode 102 or the cathode 103 in order to shift such overwetting of the MEA to the appropriate wetness side ( Step S146), this routine is once ended. In the present embodiment, the gas supply described above at the cathode 103 is executed with priority given to increasing the amount of moisture removed at the cathode 103.

上記したようにMEAの加湿潤の湿潤適正推移のための空気供給時のガス流量の増大制御を行うに当たり、制御装置200は、図5に示すように、カソード103における開始時刻tsからのガス流量増大を、MEAの湿潤状態が適正な場合に要求負荷の増大に伴って行うガス流量増大よりも大きな流量増大となるようにする。こうしたガス流量の増大調整は、カソード103では、ガス流量増大による直接的な水分持ち去りがより顕著となり、MEAの過湿潤の湿潤適正推移に有益である。また、MEAの加湿潤の湿潤適正推移のための水素ガス供給時のガス圧力の増大制御を行うに当たり、制御装置200は、図5に示すように、アノード102における開始時刻tsからのガス圧力増大を、MEAの湿潤状態が適正な場合に要求負荷の増大に伴って行うガス圧力増大よりも大きな圧力増大となるようにする。こうしたガス圧力の増大調整は、アノード102では、ガス圧力増大による体積流量低減がより顕著となり、MEAの過湿潤の湿潤適正推移に有益である。つまり、制御装置200は、MEAの過湿潤を湿潤適正の側に推移させ得る適正化調整として、カソード103に供給する空気については、ガス流量増大調整をし、アノード102に供給する水素ガスについては、ガス圧力増大調整を図る。   As described above, in performing the increase control of the gas flow rate at the time of supplying the air for the proper wetness transition of the MEA, as shown in FIG. 5, the control device 200 controls the gas flow rate from the start time ts at the cathode 103. The increase is such that the flow rate increase is greater than the increase in gas flow rate that accompanies an increase in required load when the wet state of the MEA is appropriate. Such an increase adjustment of the gas flow rate is more effective for the proper transition of the MEA overwetting because the direct moisture removal due to the increase of the gas flow rate becomes more remarkable at the cathode 103. In addition, in performing the increase control of the gas pressure at the time of supplying the hydrogen gas for the proper wetting of the MEA humidification, the control device 200 increases the gas pressure from the start time ts at the anode 102 as shown in FIG. The pressure increase is greater than the increase in gas pressure that accompanies an increase in required load when the wet state of the MEA is appropriate. Such an increase adjustment of the gas pressure makes the volume flow rate decrease due to the increase of the gas pressure more remarkable at the anode 102, which is beneficial for the proper transition of the MEA overwetting. That is, the control device 200 adjusts the gas flow rate increase for the air supplied to the cathode 103 and adjusts the hydrogen gas supplied to the anode 102 as an optimization adjustment that can shift the overwetting of the MEA to the appropriate wetness side. Then, increase gas pressure is adjusted.

次に、図2のステップS150での肯定判定に続くステップS160の過乾燥回復第1処理について説明する。図7は要求負荷の増大過渡の状況下における過乾燥回復第1処理の詳細を示すフローチャート、図8は過乾燥回復第1処理における判定処理の内容を説明する説明図である。図7に示すように、過乾燥回復第1処理では、制御装置200は、改めて冷却水温度を基準温度βと対比する(ステップS162)。この温度対比は、冷却水温度がどの程度、基準温度βから高温側に逸脱しているのかを判定するためのものである。   Next, the overdrying recovery first process in step S160 following the affirmative determination in step S150 of FIG. 2 will be described. FIG. 7 is a flowchart showing details of the first process of recovery from overdrying in a situation where the required load increases transiently, and FIG. 8 is an explanatory diagram for explaining the contents of the determination process in the first process of recovery from overdrying. As shown in FIG. 7, in the overdrying recovery first process, the control device 200 again compares the coolant temperature with the reference temperature β (step S162). This temperature comparison is for determining how much the coolant temperature deviates from the reference temperature β to the high temperature side.

このステップS162で、図8に示すように、冷却水温度は基準温度βより所定温度幅β0以上に高い高温度側に逸脱していると判定した場合は、冷却水温度が基準温度βより大きく高いためにMEAの過乾燥も顕著であると想定される。よって、制御装置200は、MEAの過乾燥をより高い実効性で湿潤適正の側に推移すべく、MEAにおけるアノード102へのガス供給とカソード103へのガス供給を、共に過乾燥適正化に有益なガス供給となるよう同時並行的に制御する(ステップS164)。図9は要求負荷の増大過渡の状況下における過乾燥回復第1処理でもたらされるガス供給の状況を概略的に説明する説明図、図10は要求負荷の増大過渡の状況下における過乾燥回復第1処理で得られる過乾燥適正化の様子を概略的に示す説明図である。図8にあっても、図5と同様、開始時刻tsにおいて要求負荷が急増し、終了時刻tmにおいて要求負荷に対応するガス流量およびガス圧力でのガス供給に達するガス供給状況と、開始時刻tsから終了時刻tmまでの負荷要求の増加過渡状況下におけるカソード側・アノード側でのガス流量推移およびガス圧力推移を示している。   In this step S162, as shown in FIG. 8, when it is determined that the cooling water temperature has deviated to a high temperature side higher than the reference temperature β by a predetermined temperature range β0, the cooling water temperature is higher than the reference temperature β. It is assumed that the MEA is excessively dry due to its high value. Therefore, the control device 200 is beneficial for the proper overdrying of the gas supply to the anode 102 and the gas supply to the cathode 103 in the MEA in order to shift the overdrying of the MEA to the wetness appropriate side with higher effectiveness. Control is performed simultaneously and in parallel so as to achieve a correct gas supply (step S164). FIG. 9 is an explanatory diagram schematically illustrating the state of gas supply provided in the first process of recovery from overdrying under the condition of increase in required load, and FIG. 10 is a diagram illustrating recovery from overdrying under the condition of increase in required load. It is explanatory drawing which shows roughly the mode of the overdrying optimization obtained by 1 process. Even in FIG. 8, as in FIG. 5, the required load increases rapidly at the start time ts, and the gas supply situation reaches the gas supply at the gas flow rate and gas pressure corresponding to the required load at the end time tm, and the start time ts. 3 shows the gas flow rate transition and gas pressure transition on the cathode side / anode side under the increasing transient situation of the load demand from to the end time tm.

MEAの過乾燥の湿潤適正推移には、カソード103においては、生成水の水分持ち去りの低減が有益であり、アノード102においては、電気化学反応の進行が活発なカソードでの空気の入口側への水搬送の増量とこれに伴うアノード側からカソード側への水移動が有益である。そして、カソード103における水分持ち去りの低減は、空気供給時のガス流量の増大回避、換言すれば、要求負荷の増大過渡以前の低ガス流量維持による直接的な水分持ち去りの低減化と、空気供給時のガス圧力の増大による体積流量低減により、起きる。アノード102における上記した水搬送と水移動の増量は、水素ガス供給のガス流量の増大による直接的な水分持ち去りの増大化と、ガス圧力の増大回避、換言すれば、要求負荷の増大過渡以前の低ガス圧力維持による体積流量増加により、起きる。   For proper transition of MEA overdrying, it is beneficial to reduce the moisture removal of the generated water at the cathode 103, and at the anode 102 to the air inlet side at the cathode where the electrochemical reaction proceeds actively. It is beneficial to increase the amount of water transport and to move the water from the anode side to the cathode side. The reduction of moisture removal at the cathode 103 avoids an increase in the gas flow rate during air supply, in other words, a reduction in direct moisture removal by maintaining a low gas flow rate before the transient increase in required load, and air Occurs due to volumetric flow reduction due to increased gas pressure during supply. The increase in water conveyance and water movement described above at the anode 102 is due to an increase in direct moisture removal due to an increase in the gas flow rate of the hydrogen gas supply, avoiding an increase in gas pressure, in other words, before a transient increase in required load. This is caused by an increase in volume flow rate by maintaining a low gas pressure.

こうしたことから、ステップS164では、図9に示すように、要求負荷の増大に伴うカソード103への空気供給の際のガス圧力の増大変更のタイミング(開始時刻ts)に対して、要求負荷の増大に伴うガス流量の増大変更のタイミングを遅延時刻taまで遅延側にずらす。こうすることで、制御装置200は、カソード103への空気供給に当たり、ガス圧力の増大制御をガス流量の増大制御に先行して実施する。そして、カソード103では、図10に示すように、要求負荷の増大過渡の以前(開始時刻ts以前)の低ガス流量維持による直接的な水分持ち去りの低減化と、ガス圧力の増大による体積流量低減により、水分持ち去りの低減化が起きる。   Therefore, in step S164, as shown in FIG. 9, the required load increases with respect to the change timing (start time ts) of the gas pressure when the air is supplied to the cathode 103 as the required load increases. The timing of the increase change of the gas flow rate accompanying this is shifted to the delay side until the delay time ta. By doing so, the control device 200 performs the increase control of the gas pressure prior to the increase control of the gas flow rate when supplying the air to the cathode 103. Then, in the cathode 103, as shown in FIG. 10, the reduction of direct moisture removal by maintaining the low gas flow rate before the increase in required load (before the start time ts) and the volume flow rate by increasing the gas pressure are achieved. Reduction reduces moisture removal.

また、このステップS164では、図9に示すように、要求負荷の増大に伴うアノード102への水素ガス供給の際のガス流量の増大変更のタイミング(開始時刻ts)に対して、要求負荷の増大に伴うガス圧力の増大変更のタイミングを遅延時刻taまで遅延側にずらす。こうすることで、制御装置200は、アノード102への水素ガス供給に当たり、ガス流量の増大制御をガス圧力増大制御に先行して実施する。そして、アノード102では、図10に示すように、ガス流量の増大による水搬送の増大化と、要求負荷の増大過渡の以前(開始時刻ts以前)の低ガス圧力維持による体積流量増加により、アノード側からカソード側への水移動の増量化が起きる。しかも、ステップS164では、上記した過乾燥の適正側推移に有益なガス供給状況がアノード102とカソード103とにおいて同時にたらされ、その後、本ルーチンを終了する。   In step S164, as shown in FIG. 9, the required load increases with respect to the change timing (start time ts) of the gas flow rate when the hydrogen gas is supplied to the anode 102 due to the increase in the required load. The timing of the gas pressure increase change due to is shifted to the delay side until the delay time ta. By doing so, the control device 200 performs the increase control of the gas flow rate prior to the gas pressure increase control when supplying the hydrogen gas to the anode 102. Then, in the anode 102, as shown in FIG. 10, by increasing the water conveyance due to the increase in the gas flow rate, and by increasing the volume flow rate due to the low gas pressure maintenance before the demand load increase transient (before the start time ts), Increase in water transfer from the cathode to the cathode occurs. Moreover, in step S164, the gas supply situation useful for the above-described proper side transition of the overdrying is simultaneously caused in the anode 102 and the cathode 103, and then this routine is terminated.

上記したステップS162で、図8に示すように、冷却水温度は基準温度βより高温度側に逸脱しているもののその隔たりは小さいと判定した場合は、MEAは過乾燥ではあるものの過乾燥の程度はそれほど大きくないと想定される。よって、制御装置200は、こうしたMEAの過乾燥を湿潤適正の側に推移すべく、上記した過乾燥適正化に有益なガス供給を、アノード102とカソード103のいずれかを選択して実行し(ステップS166)、本ルーチンを一旦終了する。本実施形態では、カソード103における水分持ち去りの低減化を優先して、カソード103での既述したガス供給を実行する。   In step S162 described above, as shown in FIG. 8, when it is determined that the cooling water temperature has deviated higher than the reference temperature β but the gap is small, the MEA is overdried but not overdried. It is assumed that the degree is not so great. Therefore, the control device 200 selects either the anode 102 or the cathode 103 and executes gas supply useful for optimizing the overdrying in order to shift the overdrying of the MEA to the proper wetness side ( Step S166), this routine is finished once. In the present embodiment, the above-described gas supply at the cathode 103 is executed with priority given to reducing moisture removal at the cathode 103.

上記したようにMEAの加乾燥の湿潤適正推移のための空気供給時のガス圧力の増大制御を行うに当たり、制御装置200は、図9に示すように、カソード103における開始時刻tsからのガス圧力増大を、MEAの湿潤状態が適正な場合に要求負荷の増大に伴って行うガス圧力増大よりも大きなガス圧力となるようにする。こうしたガス圧力の増大調整は、カソード103では、負荷変動以前の低ガス流量でのガス供給と相まって、水分持ち去りがより抑制され、MEAの過乾燥の湿潤適正推移に有益である。また、MEAの加乾燥の湿潤適正推移のための水素ガス供給時のガス流量の増大制御を行うに当たり、制御装置200は、図9に示すように、アノード102における開始時刻tsからのガス流量増大を、MEAの湿潤状態が適正な場合に要求負荷の増大に伴って行うガス流量増大よりも大きなガス流量となるようにする。こうしたガス流量の増大調整は、アノード102では、ガス流量増大による水搬送とこれに伴うカソード側への水移動がより顕著となり、MEAの過乾燥の湿潤適正推移に有益である。つまり、制御装置200は、MEAの過乾燥を湿潤適正の側に推移させ得る適正化調整として、カソード103に供給する空気については、ガス圧力増大調整をし、アノード102に供給する水素ガスについては、ガス流量増大調整を図る。   As described above, in performing the increase control of the gas pressure at the time of supplying the air for the proper wet and dry transition of the MEA, as shown in FIG. 9, the control device 200 controls the gas pressure from the start time ts at the cathode 103. The increase is such that the gas pressure is greater than the increase in gas pressure that accompanies the increase in required load when the wet state of the MEA is appropriate. Such an increase adjustment of the gas pressure is coupled with gas supply at a low gas flow rate before the load change at the cathode 103, and moisture removal is further suppressed, which is beneficial for proper transition of MEA overdrying. Further, in performing the increase control of the gas flow rate at the time of supplying the hydrogen gas for the proper wetness transition of the MEA addition / drying, the control device 200 increases the gas flow rate from the start time ts in the anode 102 as shown in FIG. The gas flow rate is set to be larger than the gas flow rate increase performed with the increase in the required load when the wet state of the MEA is appropriate. Such an increase adjustment of the gas flow rate is beneficial for the proper transition of the MEA overdrying in the anode 102 because water conveyance due to the gas flow rate increase and the accompanying water movement to the cathode side become more remarkable. That is, the control device 200 adjusts the gas pressure for the air supplied to the cathode 103 and adjusts the hydrogen pressure to be supplied to the anode 102 as an adjustment adjustment that can shift the over-drying of the MEA to the appropriate wetness side. , Increase gas flow rate adjustment.

次に、図2のステップS110において負荷低減の過渡状況であると判断した場合の制御について説明する。図11は要求負荷の低減過渡の状況下における燃料電池スタック100の発電制御の制御手順を示すフローチャートである。制御装置200は、ステップS110での要求負荷の低減過渡状況の判断に続き、既述したステップS120〜130と同様、冷却水温度の取得(ステップS200)と、取得した冷却水温度の対比(ステップS2100)とを行う。制御装置200は、ステップS210で肯定判定すると、冷却水温度が低い故にMEAの過湿潤が起き得ていると想定されることから、この過湿潤の適正化を図るべく、ステップS220の過湿潤回復第2処理に移行する。この過湿潤回復第2処理は、既述した第1処理と同様、燃料電池スタック100のMEAにおけるアノード102とカソード103とで、それぞれ過湿潤の適正化に有益なガス供給状況をもたらす処理である。   Next, the control when it is determined in step S110 of FIG. 2 that the load reduction is in a transient state will be described. FIG. 11 is a flowchart showing a control procedure of power generation control of the fuel cell stack 100 under the condition of reduction of required load. Following the determination of the required load reduction transient in step S110, the control device 200 obtains the coolant temperature (step S200) and compares the acquired coolant temperature (step S200) as in steps S120 to S130 described above. S2100). If the control device 200 makes an affirmative determination in step S210, it is assumed that the MEA is excessively wet because the cooling water temperature is low. Therefore, in order to optimize the excessive wetness, the excessive wetness recovery in step S220 is performed. The process proceeds to the second process. This overwetting recovery second process is a process that brings about a gas supply situation that is beneficial for optimizing overwetting at the anode 102 and the cathode 103 in the MEA of the fuel cell stack 100, as in the first process described above. .

一方、ステップS210で否定判定すると、制御装置200は、ステップS200で取得済みの冷却水温度を基準温度βと対比し(ステップS230)、このステップS230で否定判定すれば、ステップS210での否定判定と相まって、冷却水温度はMEAが適正な湿潤状態にある場合を想定した温度範囲内であるので、過湿潤・過乾燥の適正化は無用であるとして、一旦処理を終了する。そして、ステップS230で肯定判定すると、冷却水温度が高い故にMEAの過乾燥が起き得ていると想定されることから、この過乾燥の適正化を図るべく、制御装置200は、ステップS240の過乾燥回復第2処理に移行する。この過乾燥回復第2処理は、既述した第1処理と同様、燃料電池スタック100のMEAにおけるアノード102とカソード103とで、それぞれ過乾燥の適正化に有益なガス供給状況をもたらす処理である。   On the other hand, if a negative determination is made in step S210, the control device 200 compares the coolant temperature acquired in step S200 with the reference temperature β (step S230), and if a negative determination is made in step S230, a negative determination in step S210. Since the cooling water temperature is within the temperature range assuming that the MEA is in a proper wet state, the process is temporarily terminated assuming that the optimization of overwetting and overdrying is unnecessary. If an affirmative determination is made in step S230, it is assumed that the MEA overdrying may have occurred because the cooling water temperature is high. Therefore, in order to optimize the overdrying, the control device 200 performs the overdriving in step S240. The process proceeds to the drying recovery second process. This overdrying recovery second process is a process that brings about a gas supply situation useful for optimizing overdrying at the anode 102 and the cathode 103 in the MEA of the fuel cell stack 100, as in the first process described above. .

ここで、ステップS210での肯定判定に続くステップS220の過湿潤回復第2処理について説明する。図12は要求負荷の低減過渡の状況下における過湿潤回復第2処理の詳細を示すフローチャートである。図12に示すように、過湿潤適正化第2処理では、制御装置200は、既述したステップS142と同様、改めて冷却水温度を基準温度αと対比し(ステップS222)、基準温度αから低温側への冷却水温度の逸脱程度を判定する。   Here, the second process of overwetting recovery in step S220 following the affirmative determination in step S210 will be described. FIG. 12 is a flowchart showing the details of the second process of overwetting recovery under the transient state of required load reduction. As shown in FIG. 12, in the overhumidity optimization second process, the control device 200 again compares the cooling water temperature with the reference temperature α (step S222) as in step S142 described above, and lowers the temperature from the reference temperature α. The deviation degree of the cooling water temperature to the side is determined.

このステップS222で、図4に示すように、冷却水温度は基準温度αより所定温度幅α0以上に低い低温度側に逸脱していると判定した場合は、冷却水温度が基準温度αより大きく低いためにMEAの過湿潤も顕著であると想定される。よって、制御装置200は、MEAの過湿潤をより高い実効性で湿潤適正の側に推移すべく、MEAにおけるアノード102へのガス供給とカソード103へのガス供給を、共に過湿潤適正化に有益なガス供給となるよう同時並行的に制御する(ステップS224)。図13は要求負荷の低減過渡の状況下における過湿潤回復第2処理でもたらされるガス供給の状況を概略的に説明する説明図、図14は要求負荷の低減過渡の状況下における過湿潤回復第2処理で得られる過湿潤適正化の様子を概略的に示す説明図である。図13にあっては、開始時刻tsにおいて要求負荷が急減し、終了時刻tmにおいて要求負荷に対応するガス流量およびガス圧力でのガス供給に達するガス供給状況と、開始時刻tsから終了時刻tmまでの負荷要求の低減過渡状況下におけるカソード側・アノード側でのガス流量推移およびガス圧力推移を示している。   In step S222, as shown in FIG. 4, when it is determined that the cooling water temperature has deviated to a low temperature side lower than the reference temperature α by a predetermined temperature range α0 or more, the cooling water temperature is higher than the reference temperature α. Since it is low, it is assumed that MEA overwetting is also significant. Therefore, the control apparatus 200 is beneficial for the optimization of overwetting by supplying both the gas supply to the anode 102 and the gas supply to the cathode 103 in the MEA in order to shift the overwetting of the MEA to the appropriate wetness side with higher effectiveness. Control is performed simultaneously and in parallel so that a correct gas supply is obtained (step S224). FIG. 13 is an explanatory diagram schematically illustrating the state of gas supply brought about by the second process of over-humidity recovery under a transient state of required load reduction, and FIG. It is explanatory drawing which shows roughly the mode of the overwetting optimization obtained by 2 processes. In FIG. 13, the required load sharply decreases at the start time ts, and the gas supply state reaches the gas supply at the gas flow rate and the gas pressure corresponding to the required load at the end time tm, and from the start time ts to the end time tm. This shows the gas flow rate transition and gas pressure transition on the cathode side and anode side under the transient condition of reducing the load demand.

MEAの過湿潤の湿潤適正推移には、カソード103においては、既述したように生成水の水分持ち去りの増大が有益であり、アノード102においては、電気化学反応の進行が活発なカソードでの空気の入口側への水分搬送を抑制する水分保持が有益である。そして、要求負荷の低減過渡におけるカソード103での水分持ち去りの増大は、空気供給時のガス流量の低減回避、換言すれば、要求負荷の低減過渡以前の高ガス流量維持による直接的な水分持ち去りの増大化と、空気のガス圧力の低減による体積流量増加により、起きる。要求負荷の低減過渡におけるアノード102での水分保持は、水素ガスのガス流量の低減による直接的な水分持ち去りの低減化と、水素ガス供給時のガス圧力の低減回避、換言すれば、要求負荷の低減過渡以前の高ガス圧力維持による体積流量低減により、起きる。   As described above, an increase in the moisture removal of the produced water is beneficial in the cathode 103, and the anode 102 has an active electrochemical reaction in the cathode. Moisture retention that suppresses moisture transport to the air inlet side is beneficial. The increase in moisture removal at the cathode 103 during the demand load reduction transient avoids the reduction of the gas flow rate when supplying air, in other words, the direct moisture retention by maintaining the high gas flow rate before the demand load reduction transient. This is caused by an increase in volume and an increase in volumetric flow rate due to a reduction in air gas pressure. The moisture retention at the anode 102 during the transition of the required load is reduced by reducing the direct moisture removal by reducing the gas flow rate of the hydrogen gas, and avoiding the reduction of the gas pressure when supplying the hydrogen gas, in other words, the required load. This occurs due to volumetric flow reduction by maintaining high gas pressure before the transition.

こうしたことから、ステップS224では、図13に示すように、要求負荷の低減に伴うカソード103への空気供給の際のガス圧力の低減変更のタイミング(開始時刻ts)に対して、要求負荷の低減に伴うガス流量の低減変更のタイミングを遅延時刻taまで遅延側にずらす。こうすることで、制御装置200は、カソード103への空気供給に当たり、ガス圧力の低減制御をガス流量の低減制御に先行して実施する。そして、カソード103では、図14に示すように、ガス圧力の低減による体積流量増加と、要求負荷の低減過渡の以前(開始時刻ts以前)の高ガス流量維持による直接的な水分持ち去りの増大化により、水分持ち去りの増量化が起きる。   For this reason, in step S224, as shown in FIG. 13, the required load is reduced with respect to the change timing (start time ts) of the gas pressure when the air is supplied to the cathode 103 due to the reduction of the required load. The timing of the gas flow reduction change accompanying this is shifted to the delay side until the delay time ta. By doing so, the control device 200 performs the gas pressure reduction control prior to the gas flow rate reduction control when supplying air to the cathode 103. In the cathode 103, as shown in FIG. 14, an increase in volumetric flow rate due to a reduction in gas pressure and an increase in direct moisture removal due to the maintenance of a high gas flow rate before the required load reduction transient (before the start time ts). As a result, moisture removal increases.

また、このステップS224では、図13に示すように、要求負荷の低減に伴うアノード102への水素ガス供給の際のガス流量の低減変更のタイミング(開始時刻ts)に対して、要求負荷の低減に伴うガス圧力の低減変更のタイミングを遅延時刻taまで遅延側にずらす。こうすることで、制御装置200は、アノード102への水素ガス供給に当たり、ガス流量の低減制御をガス圧力低減制御に先行して実施する。そして、アノード102では、図14に示すように、水素ガスのガス流量の低減による直接的な水分持ち去りの低減化と、要求負荷の低減過渡の以前の高ガス圧力維持による体積流量低減により、カソードの空気入口への水の搬送が低減化して、水分保持が起きる。しかも、ステップS224では、上記した過湿潤の適正側推移に有益なガス供給状況がアノード102とカソード103とにおいて同時にもたらされ、その後、本ルーチンを終了する。   Further, in step S224, as shown in FIG. 13, the required load is reduced with respect to the change timing (start time ts) of the gas flow rate when the hydrogen gas is supplied to the anode 102 due to the reduction of the required load. The timing of the gas pressure reduction change accompanying this is shifted to the delay side until the delay time ta. By doing so, the control apparatus 200 performs the gas flow rate reduction control prior to the gas pressure reduction control when supplying the hydrogen gas to the anode 102. Then, in the anode 102, as shown in FIG. 14, by reducing the direct moisture removal by reducing the gas flow rate of hydrogen gas and by reducing the volume flow rate by maintaining the high gas pressure before the transition of the required load, Water transport to the cathode air inlet is reduced and moisture retention occurs. Moreover, in step S224, a gas supply situation useful for the above-described proper transition of overwetting is brought about at the anode 102 and the cathode 103 at the same time, and then this routine is terminated.

上記したステップS222で、図4に示すように、冷却水温度は基準温度αより低温度側に逸脱しているもののその隔たりは小さいと判定した場合は、MEAは過湿潤ではあるものの過湿潤の程度はそれほど大きくないと想定される。よって、制御装置200は、こうしたMEAの過湿潤を湿潤適正の側に推移すべく、上記した過湿潤適正化に有益なガス供給を、アノード102とカソード103のいずれかを選択して実行し(ステップS226)、本ルーチンを一旦終了する。本実施形態では、カソード103における水分持ち去りの増量化を優先して、カソード103での既述したガス供給を実行する。   In step S222 described above, as shown in FIG. 4, when it is determined that the cooling water temperature has deviated to a lower temperature side than the reference temperature α, but the gap is small, the MEA is overwetting, but the MEA is overwetting. It is assumed that the degree is not so great. Therefore, the control device 200 executes the gas supply useful for the above-described proper overwetting by selecting either the anode 102 or the cathode 103 in order to shift such overwetting of the MEA to the appropriate wetness side ( Step S226), this routine is ended once. In the present embodiment, the gas supply described above at the cathode 103 is executed with priority given to increasing the amount of moisture removed at the cathode 103.

上記したようにMEAの加湿潤の湿潤適正推移のための空気供給時のガス圧力の低減制御を行うに当たり、制御装置200は、図13に示すように、カソード103における開始時刻tsからのガス圧力低減を、MEAの湿潤状態が適正な場合に要求負荷の低減に伴って行うガス圧力低減よりも大きな圧力低減となるようにする。こうしたガス圧力の低減調整は、カソード103では、ガス圧力低減による体積流量増大による水分持ち去りがより顕著となり、MEAの過湿潤の湿潤適正推移に有益である。また、MEAの加湿潤の湿潤適正推移のための水素ガス供給時のガス流量の低減制御を行うに当たり、制御装置200は、図13に示すように、アノード102における開始時刻tsからのガス流量低減を、MEAの湿潤状態が適正な場合に要求負荷の低減に伴って行うガス流量低減よりも大きな流量低減となるようにする。こうしたガス流量の低減調整は、アノード102では、ガス流量低減による水分持ち去りの低減がより顕著となり、MEAの過湿潤の湿潤適正推移に有益である。つまり、制御装置200は、MEAの過湿潤を湿潤適正の側に推移させ得る適正化調整として、カソード103に供給する空気については、ガス圧力低減調整をし、アノード102に供給する水素ガスについては、ガス流量低減調整を図る。   As described above, in performing the reduction control of the gas pressure at the time of supplying the air for the proper wetness transition of the MEA, as shown in FIG. 13, the control device 200 performs the gas pressure from the start time ts at the cathode 103 as shown in FIG. The reduction is made to be a pressure reduction that is greater than the gas pressure reduction that accompanies the reduction of the required load when the wet state of the MEA is appropriate. Such a gas pressure reduction adjustment is beneficial for the proper transition of the MEA overwetting because the cathode 103 is more prone to moisture removal due to an increase in volume flow rate due to gas pressure reduction. In addition, in performing the reduction control of the gas flow rate at the time of supplying the hydrogen gas for the proper wetness transition of the humidification of the MEA, the control device 200 reduces the gas flow rate from the start time ts in the anode 102 as shown in FIG. The flow rate is reduced more than the gas flow rate reduction that accompanies the reduction of the required load when the wet state of the MEA is appropriate. Such adjustment of the gas flow rate reduction makes the reduction of moisture removal due to the gas flow rate reduction more remarkable in the anode 102, and is beneficial for the proper wetting of MEA overwetting. That is, the control device 200 performs gas pressure reduction adjustment for the air supplied to the cathode 103 and the hydrogen gas supplied to the anode 102 as an adjustment adjustment that can shift the overwetting of the MEA to the proper wetness side. Measure gas flow reduction.

次に、図11のステップS230での肯定判定に続くステップS240の過乾燥回復第2処理について説明する。図15は要求負荷の低減過渡の状況下における過乾燥回復第2処理の詳細を示すフローチャートである。図15に示すように、過乾燥回復第2処理では、制御装置200は、改めて冷却水温度を基準温度βと対比する(ステップS242)。この温度対比は、冷却水温度がどの程度、基準温度βから高温側に逸脱しているのかを判定するためのものである。   Next, the second process of overdrying recovery in step S240 following the affirmative determination in step S230 of FIG. 11 will be described. FIG. 15 is a flowchart showing the details of the second process of recovery from overdrying under the condition of transient reduction of the required load. As shown in FIG. 15, in the overdrying recovery second process, the control device 200 again compares the cooling water temperature with the reference temperature β (step S <b> 242). This temperature comparison is for determining how much the coolant temperature deviates from the reference temperature β to the high temperature side.

このステップS242で、図8に示すように、冷却水温度は基準温度βより所定温度幅β0以上に高い高温度側に逸脱していると判定した場合は、冷却水温度が基準温度βより大きく高いためにMEAの過乾燥も顕著であると想定される。よって、制御装置200は、MEAの過乾燥をより高い実効性で湿潤適正の側に推移すべく、MEAにおけるアノード102へのガス供給とカソード103へのガス供給を、共に過乾燥適正化に有益なガス供給となるよう同時並行的に制御する(ステップS244)。図16は要求負荷の低減過渡の状況下における過乾燥回復第2処理でもたらされるガス供給の状況を概略的に説明する説明図、図17は要求負荷の増大過渡の状況下における過乾燥回復第2処理で得られる過乾燥適正化の様子を概略的に示す説明図である。図16にあっても、開始時刻tsにおいて要求負荷が急減し、終了時刻tmにおいて要求負荷に対応するガス流量およびガス圧力でのガス供給に達するガス供給状況と、開始時刻tsから終了時刻tmまでの負荷要求の低減過渡状況下におけるカソード側・アノード側でのガス流量推移およびガス圧力推移を示している。   In this step S242, as shown in FIG. 8, when it is determined that the cooling water temperature has deviated to a higher temperature side that is higher than the reference temperature β by a predetermined temperature range β0, the cooling water temperature is higher than the reference temperature β. It is assumed that the MEA is excessively dry due to its high value. Therefore, the control device 200 is beneficial for the proper overdrying of the gas supply to the anode 102 and the gas supply to the cathode 103 in the MEA in order to shift the overdrying of the MEA to the wetness appropriate side with higher effectiveness. Control is performed simultaneously and in parallel so as to achieve a correct gas supply (step S244). FIG. 16 is an explanatory diagram schematically illustrating the state of gas supply brought about by the second process of recovery from excessive drying under the transient condition of the required load, and FIG. It is explanatory drawing which shows roughly the mode of the overdrying optimization obtained by 2 processes. Also in FIG. 16, the required load is suddenly reduced at the start time ts, and the gas supply situation reaches the gas supply at the gas flow rate and gas pressure corresponding to the required load at the end time tm, and from the start time ts to the end time tm. This shows the gas flow rate transition and gas pressure transition on the cathode side and anode side under the transient condition of reducing the load demand.

MEAの過乾燥の湿潤適正推移には、カソード103においては、既述したように生成水の水分持ち去りの低減が有益であり、アノード102においては、電気化学反応の進行が活発なカソードでの空気の入口側への水搬送の増量とこれに伴うアノード側からカソード側への水移動が有益である。そして、カソード103における水分持ち去りの低減は、空気供給時のガス流量の低減による直接的な水分持ち去りの低減化と、空気供給時のガス圧力の低減回避、換言すれば、要求負荷の低減過渡以前の高ガス圧力維持による体積流量低減により、起きる。アノード102における上記した水搬送と水移動の増量は、水素ガス供給時のガス圧力の低減による体積流量増加と、ガス流量の低減回避、換言すれば、要求負荷の低減過渡以前の高ガス流量維持による直接的な水分持ち去りの増大化により、起きる。   As described above, it is beneficial to reduce the moisture removal of the generated water at the cathode 103, and the anode 102 has an active electrochemical reaction at the cathode where the progress of the electrochemical reaction is active. Increasing the amount of water transport to the air inlet side and the accompanying water movement from the anode side to the cathode side is beneficial. The reduction of moisture removal at the cathode 103 is achieved by directly reducing moisture removal by reducing the gas flow rate at the time of air supply and reducing the gas pressure at the time of air supply, in other words, reducing the required load. Occurs due to volumetric flow reduction by maintaining high gas pressure before the transient. The increase in water conveyance and water movement described above at the anode 102 is due to an increase in volumetric flow rate due to a reduction in gas pressure when hydrogen gas is supplied, avoidance of gas flow reduction, in other words, reduction of required load, and maintenance of a high gas flow rate before a transient. This is caused by an increase in direct moisture removal by

こうしたことから、ステップS244では、図16に示すように、要求負荷の低減に伴うカソード103への空気供給の際のガス流量の低減変更のタイミング(開始時刻ts)に対して、要求負荷の低減に伴うガス圧力の低減変更のタイミングを遅延時刻taまで遅延側にずらす。こうすることで、制御装置200は、カソード103への空気供給に当たり、ガス流量の低減制御をガス圧力の低減制御に先行して実施する。そして、カソード103では、図17に示すように、ガス流量の低減による直接的な水分持ち去りの低減化と、要求負荷の低減過渡の以前(開始時刻ts以前)の高ガス圧力維持による体積流量低減により、水分持ち去りの低減化が起きる。   For this reason, in step S244, as shown in FIG. 16, the required load is reduced with respect to the change timing (start time ts) of the gas flow rate when the air is supplied to the cathode 103 due to the reduction of the required load. The timing of the gas pressure reduction change accompanying this is shifted to the delay side until the delay time ta. By doing so, the control device 200 performs the gas flow rate reduction control prior to the gas pressure reduction control when supplying the air to the cathode 103. Then, in the cathode 103, as shown in FIG. 17, the volume flow rate by reducing the direct moisture removal by reducing the gas flow rate and maintaining the high gas pressure before the required load reduction transient (before the start time ts). Reduction reduces moisture removal.

また、このステップS244では、図16に示すように、要求負荷の低減に伴うアノード102への水素ガス供給の際のガス圧力の低減変更のタイミング(開始時刻ts)に対して、要求負荷の低減に伴うガス流量の低減変更のタイミングを遅延時刻taまで遅延側にずらす。こうすることで、制御装置200は、アノード102への水素ガス供給に当たり、ガス圧力の低減制御をガス流量低減制御に先行して実施する。そして、アノード102では、図17に示すように、ガス圧力の低減による体積流量増加と、要求負荷の低減過渡の以前(開始時刻ts以前)の高ガス流量維持による水搬送の増大化により、アノード側からカソード側への水移動の増量化が起きる。しかも、ステップS244では、上記した過乾燥の適正側推移に有益なガス供給状況がアノード102とカソード103とにおいて同時にもたらされ、その後、本ルーチンを終了する。   Further, in step S244, as shown in FIG. 16, the required load is reduced with respect to the change timing (start time ts) of the gas pressure when the hydrogen gas is supplied to the anode 102 due to the reduction of the required load. The timing of the gas flow reduction change accompanying this is shifted to the delay side until the delay time ta. Thus, the control device 200 performs the gas pressure reduction control prior to the gas flow rate reduction control when supplying the hydrogen gas to the anode 102. As shown in FIG. 17, the anode 102 increases the volume flow rate by reducing the gas pressure and increases the water conveyance by maintaining the high gas flow rate before the required load reduction transient (before the start time ts). Increase in water transfer from the cathode to the cathode occurs. In addition, in step S244, a gas supply situation useful for the above-described proper side transition of overdrying is simultaneously provided in the anode 102 and the cathode 103, and then this routine is terminated.

上記したステップS242で、図8に示すように、冷却水温度は基準温度βより高温度側に逸脱しているもののその隔たりは小さいと判定した場合は、MEAは過乾燥ではあるものの過乾燥の程度はそれほど大きくないと想定される。よって、制御装置200は、こうしたMEAの過乾燥を湿潤適正の側に推移すべく、上記した過乾燥適正化に有益なガス供給を、アノード102とカソード103のいずれかを選択して実行し(ステップS246)、本ルーチンを一旦終了する。本実施形態では、カソード103における水分持ち去りの低減化を優先して、カソード103での既述したガス供給を実行する。   In step S242 described above, as shown in FIG. 8, when it is determined that the cooling water temperature has deviated to a higher temperature side than the reference temperature β, but the separation is small, the MEA is overdried but overdried. It is assumed that the degree is not so great. Therefore, the control device 200 selects either the anode 102 or the cathode 103 and executes gas supply useful for optimizing the overdrying in order to shift the overdrying of the MEA to the proper wetness side ( Step S246), this routine is ended once. In the present embodiment, the above-described gas supply at the cathode 103 is executed with priority given to reducing moisture removal at the cathode 103.

上記したようにMEAの加乾燥の湿潤適正推移のための空気供給時のガス流量の低減制御を行うに当たり、制御装置200は、図16に示すように、カソード103における開始時刻tsからのガス流量低減を、MEAの湿潤状態が適正な場合に要求負荷の低減に伴って行うガス流量低減よりも小さなガス流量となるようにする。こうしたガス流量の低減調整は、カソード103では、負荷変動以前の高ガス圧力でのガス供給と相まって、水分持ち去りがより抑制され、MEAの過乾燥の湿潤適正推移に有益である。また、MEAの加乾燥の湿潤適正推移のための水素ガス供給時のガス圧力の低減制御を行うに当たり、制御装置200は、図16に示すように、アノード102における開始時刻tsからのガス圧力低減を、MEAの湿潤状態が適正な場合に要求負荷の低減に伴って行うガス圧力低減よりも小さなガス圧力となるようにする。こうしたガス圧力の低減調整は、アノード102では、負荷変動以前の高ガス流量でのガス供給と相まって、水搬送とこれに伴うカソード側への水移動をより顕著とし、MEAの過乾燥の湿潤適正推移に有益である。つまり、制御装置200は、MEAの過乾燥を湿潤適正の側に推移させ得る適正化調整として、カソード103に供給する空気については、ガス流量低減調整をし、アノード102に供給する水素ガスについては、ガス圧力低減調整を図る。   As described above, in performing the reduction control of the gas flow rate at the time of air supply for the proper wet and dry transition of the MEA, as shown in FIG. 16, the control device 200 performs the gas flow rate from the start time ts at the cathode 103. The reduction is performed so that the gas flow rate is smaller than the gas flow rate reduction performed in accordance with the reduction of the required load when the wet state of the MEA is appropriate. Such reduction adjustment of the gas flow rate is coupled with gas supply at a high gas pressure before the load fluctuation at the cathode 103, and moisture removal is further suppressed, which is beneficial for proper transition of MEA overdrying. In addition, when performing control to reduce the gas pressure when supplying hydrogen gas for the proper transition of wetness of MEA, the controller 200 reduces the gas pressure from the start time ts at the anode 102 as shown in FIG. The gas pressure is set to be smaller than the gas pressure reduction performed when the required load is reduced when the wet state of the MEA is appropriate. Such gas pressure reduction adjustment, combined with the gas supply at the high gas flow rate before the load change, makes the water conveyance and the water movement to the cathode side more conspicuous in the anode 102, and the MEA overdrying proper wetness Useful for transition. That is, the control device 200 adjusts the gas flow rate reduction for the air supplied to the cathode 103 and adjusts the hydrogen gas supplied to the anode 102 as an adjustment adjustment that can shift the over-drying of the MEA to an appropriate wetness side. Measure gas pressure reduction.

以上説明したように、本実施例の燃料電池搭載車両20に搭載した燃料電池システム30は、負荷変動の過渡の状況において燃料電池スタック100の湿潤状態が湿潤適正の状態から逸脱しているかを判断する(ステップS110)。そして、湿潤状態を湿潤適正の側に推移させるのに有益な側のガス流量変更、或いはガス圧力変更を、負荷変動の増大過渡の状況と低減化との状況のいずれの過渡状況でも行う。その上で、湿潤状態を湿潤適正の側に推移させるのに有益な制御がガス流量変更制御であれば、負荷変動に伴うガス供給に際して、このガス流量変更を負荷変動の状況に合わせて行い、この変更に遅延して、ガス圧力を変更する(ステップS140、160、220、240、図5、図9、図13、図16)。湿潤状態を湿潤適正の側に推移させるのに有益な制御がガス圧力変更制御であれば、負荷変動に伴うガス供給に際して、このガス圧力変更を負荷変動の状況に合わせて行い、この変更に遅延して、ガス流量を変更する(ステップS140、160、220、240、図5、図9、図13、図16)。   As described above, the fuel cell system 30 mounted on the fuel cell vehicle 20 of the present embodiment determines whether the wet state of the fuel cell stack 100 deviates from the proper wet state in a transient state of load fluctuation. (Step S110). Then, the gas flow rate change or the gas pressure change on the side useful for shifting the wet state to the proper wet state is performed in any of the transient states of the increase transient and the decrease of the load fluctuation. In addition, if the control useful for shifting the wet state to the proper wet state is the gas flow rate change control, this gas flow rate change is performed in accordance with the load fluctuation situation when supplying the gas accompanying the load fluctuation, Delayed by this change, the gas pressure is changed (steps S140, 160, 220, 240, FIG. 5, FIG. 9, FIG. 13, FIG. 16). If the gas pressure change control is useful for shifting the wet state to the proper wet state, this gas pressure change is performed in accordance with the load change situation when the gas is supplied with the load change, and this change is delayed. Then, the gas flow rate is changed (steps S140, 160, 220, 240, FIG. 5, FIG. 9, FIG. 13, FIG. 16).

こうした変更タイミングのズレにより(図5、図9、図13、図16)、変更遅延の間においては、ガス流量変更を負荷変動の状況に合わせて行った場合のガス圧力を、或いはガス圧力変更を負荷変動の状況に合わせて行った場合のガス流量を、負荷変動前の状況に維持する。こうして維持された負荷変動前のガス流量或いはガス圧力の状況は、負荷要求の変動に対応したガス流量或いはガス圧力に対して、ガス流量の低減や増大、ガス圧力の低減や増大の状況となる(図5、図9、図13、図16)。よって、湿潤状態を湿潤適正の側に推移させるのに有益なガス流量或いはガス圧力と、負荷変動前の状況が維持されたガス流量或いはガス圧力とでもたらされるガス供給状況は、例えば、湿潤状態が過乾燥であるためにこれを適正の側に推移させるのに有益な水分持ち去りの低減や水分保持をもたらすガス流量低減やガス圧力の増大の状況、或いは、適正推移に有益なガス流量増大やガス圧力の低減の状況といった種々のガス流量・圧力状況となり(図10、図17)、こうしたガス供給状況が、負荷変動の過渡において確実に実現される。湿潤状態が過湿潤であれば、これを適正の側に推移させるのに有益な水分持ち去りの増大をもたらすガス流量増大とガス圧力の低減の状況、或いは、適正推移に有益なガス流量低減とガス圧力の増大の状況といった種々のガス流量・圧力状況が(図6、図14)、負荷変動の過渡において確実に実現される。この結果、本実施例の燃料電池搭載車両20に搭載した燃料電池システム30によれば、負荷変動過渡期における燃料電池スタック100、詳しくはMEAの電解質膜101の過乾燥や過湿潤の抑制の実効性を高めて、確実に、出力の安定化を図ることができる。   Due to such a shift in the change timing (FIGS. 5, 9, 13, and 16), during the change delay, the gas pressure when the gas flow rate is changed in accordance with the load fluctuation situation or the gas pressure change is changed. When the gas flow is performed according to the load fluctuation, the gas flow rate is maintained in the condition before the load fluctuation. The state of the gas flow rate or gas pressure before the load change maintained in this way becomes a state of reduction or increase of the gas flow rate or reduction or increase of the gas pressure with respect to the gas flow rate or gas pressure corresponding to the change of the load request. (FIGS. 5, 9, 13, and 16). Therefore, the gas supply state brought about by the gas flow rate or gas pressure useful for shifting the wet state to the proper wet state and the gas flow rate or gas pressure in which the state before the load change is maintained is, for example, the wet state. Because it is over-dried, it is useful to reduce the moisture removal that is beneficial for shifting it to the proper side, the situation of gas flow reduction and gas pressure increase that brings moisture retention, or the gas flow increase that is beneficial for proper transition Various gas flow rates and pressure conditions such as a gas pressure reduction situation (FIGS. 10 and 17), and such a gas supply situation is reliably realized in a transient load change. If the wet state is excessively wet, the situation of gas flow rate increase and gas pressure reduction leading to an increase in moisture removal that is beneficial for shifting this to the proper side, or gas flow rate reduction beneficial for proper transition Various gas flow rate and pressure situations such as the situation of an increase in gas pressure (FIGS. 6 and 14) are reliably realized in the transition of the load fluctuation. As a result, according to the fuel cell system 30 mounted on the fuel cell-equipped vehicle 20 of this embodiment, the fuel cell stack 100, more specifically, the MEA electrolyte membrane 101 can be effectively prevented from being excessively dried or excessively wet during the load fluctuation transition period. The output can be improved and the output can be reliably stabilized.

本実施例の燃料電池搭載車両20に搭載した燃料電池システム30は、要求負荷の増大過渡状況において、加湿潤の湿潤適正推移のために、カソード側での空気供給時のガス流量の増大制御とアノード側での水素ガス供給時のガス圧力の増大制御とを行い(図5)、加乾燥の湿潤適正推移のために、カソード側での空気供給時のガス圧力の増大制御とアノード側での水素ガス供給時のガス流量の増大制御とを行う(図9)。そして、これらの増大制御を、MEAの湿潤状態が適正な場合に要求負荷の増大に伴って行うガス流量増大やガス圧力増大よりも大きな流量増大や圧力増大となるように調整する。こうすれば、燃料電池スタック100への空気および水素ガスのそれぞれのガス供給状況を、湿潤状態の適正に有益な水分持ち去りの低減や水分保持、或いは水分持ち去りの増大をより効果的にもたらすガス流量の増大またはガス圧力の増大の状況とでき(図6、図10)、こうした状況を確実に実現できる。この結果、本実施例の燃料電池搭載車両20に搭載した燃料電池システム30によれば、負荷の増大変動の過渡期における燃料電池スタック100、詳しくはMEAの電解質膜101の過乾燥や過湿潤の抑制の実効性をより高めて、増大負荷に対応した出力を確実に安定して得ることができる。   The fuel cell system 30 mounted on the fuel cell-equipped vehicle 20 according to the present embodiment has an increase control of the gas flow rate at the time of air supply on the cathode side in order to achieve a proper transition of humidification in a transient state where the required load increases. Increase control of gas pressure at the time of hydrogen gas supply on the anode side (FIG. 5), and increase control of gas pressure at the time of air supply on the cathode side and control on the anode side for proper wetting of drying and drying Increase control of the gas flow rate during the supply of hydrogen gas is performed (FIG. 9). Then, these increase controls are adjusted so that the flow rate increase and the pressure increase are larger than the gas flow rate increase and the gas pressure increase that accompany the increase in the required load when the wet state of the MEA is appropriate. In this way, the respective gas supply statuses of air and hydrogen gas to the fuel cell stack 100 can effectively reduce moisture retention and moisture retention, or increase moisture removal, which are appropriately beneficial in a wet state. The situation can be such that the gas flow rate is increased or the gas pressure is increased (FIGS. 6 and 10), and such a situation can be reliably realized. As a result, according to the fuel cell system 30 mounted on the fuel cell-equipped vehicle 20 of the present embodiment, the fuel cell stack 100, more specifically, the MEA electrolyte membrane 101 is excessively dried or excessively wet during the transitional period of increase in load. The effectiveness of the suppression can be further increased, and an output corresponding to the increased load can be reliably and stably obtained.

本実施例の燃料電池搭載車両20に搭載した燃料電池システム30は、要求負荷の低減過渡状況において、加湿潤の湿潤適正推移のために、カソード側での空気供給時のガス圧力の低減制御とアノード側での水素ガス供給時のガス流量の低減制御とを行い(図13)、加乾燥の湿潤適正推移のために、カソード側での空気供給時のガス流量の低減制御とアノード側での水素ガス供給時のガス圧力の低減制御とを行う(図16)。そして、これらの低減制御を、MEAの湿潤状態が適正な場合に要求負荷の低減に伴って行うガス流量低減やガス圧力低減よりも大きな流量低減や圧力低減となるように調整する。こうすれば、燃料電池スタック100への空気および水素ガスのそれぞれのガス供給状況を、湿潤状態の適正に有益な水分持ち去りの低減や水分保持、或いは水分持ち去りの増大をより効果的にもたらすガス流量の低減またはガス圧力の低減の状況とでき(図14、図17)、こうした状況を確実に実現できる。この結果、本実施例の燃料電池搭載車両20に搭載した燃料電池システム30によれば、負荷の低減変動の過渡期における燃料電池スタック100、詳しくはMEAの電解質膜101の過乾燥や過湿潤の抑制の実効性をより高めて、低減負荷に対応した出力を確実に安定して得ることができる。   The fuel cell system 30 mounted on the fuel cell-equipped vehicle 20 according to the present embodiment has a gas pressure reduction control at the time of air supply on the cathode side in order to achieve a proper transition of humidification in a transient state where the required load is reduced. Control of gas flow reduction during the supply of hydrogen gas on the anode side (Fig. 13), and control of gas flow reduction during air supply on the cathode side and control on the anode side for proper wetting and drying. Gas pressure reduction control during supply of hydrogen gas is performed (FIG. 16). Then, these reduction controls are adjusted so that the flow rate reduction and pressure reduction are greater than the gas flow rate reduction and gas pressure reduction performed in accordance with the reduction of the required load when the wet state of the MEA is appropriate. In this way, the respective gas supply statuses of air and hydrogen gas to the fuel cell stack 100 can effectively reduce moisture retention and moisture retention, or increase moisture removal, which are appropriately beneficial in a wet state. The situation can be such that the gas flow rate is reduced or the gas pressure is reduced (FIGS. 14 and 17). As a result, according to the fuel cell system 30 mounted on the fuel cell-equipped vehicle 20 of the present embodiment, the fuel cell stack 100, more specifically, the MEA electrolyte membrane 101 is excessively dried or excessively wet during the transition period of the load reduction fluctuation. The effectiveness of the suppression can be further increased, and the output corresponding to the reduced load can be reliably and stably obtained.

次に、他の実施例について説明する。図18は第2実施例の燃料電池スタック100において要求負荷の増大過渡の状況下でなされる過湿潤回復第1処理でのガス供給状況を概略的に説明する説明図、図19は第2実施例の燃料電池スタック100において要求負荷の増大過渡の状況下でなされる過乾燥回復第1処理でのガス供給状況を概略的に説明する説明図である。この実施形態は、要求負荷の増大過渡の状況下でのMEAの過湿潤の湿潤適正推移には、カソード側でのガス流量の増大とアノード側でのガス圧力の増大とを、湿潤状態が適正な場合と同様に要求負荷の増大に合わせて行った上で、カソード側のガス圧力とアノード側のガス流量の増大変更について、その変更タイミングを遅延側にずらした(図18)。また、要求負荷の増大過渡の状況下でのMEAの過乾燥の湿潤適正推移には、カソード側でのガス圧力の増大とアノード側でのガス流量の増大とを、湿潤状態が適正な場合と同様に要求負荷の増大に合わせて行った上で、カソード側のガス流量とアノード側のガス圧力の増大変更について、その変更タイミングを遅延側にずらした(図19)。要求負荷の増大過渡の状況下でのMEAの過湿潤の湿潤適正推移には、既述したようにカソード側でのガス流量の増大とアノード側でのガス圧力の増大とが有益であり、要求負荷の増大過渡では、これらは通常、図示するように増大制御される。要求負荷の増大過渡の状況下でのMEAの過乾燥の湿潤適正推移には、既述したようにカソード側でのガス圧力の増大とアノード側でのガス流量の増大が有益であり、要求負荷の増大過渡では、これらは通常、図示するように増大制御される。そして、この実施形態では、図示するようなガス流量の増大変更タイミングやガス圧力の増大タイミングのずらしにより、要求負荷の増大前のカソード側での低ガス圧力維持、アノード側での停留ガス流量維持を図る。よって、この実施形態によっても、既述した効果に近似した効果を奏することができる。   Next, another embodiment will be described. FIG. 18 is an explanatory diagram schematically illustrating the gas supply status in the first process of overhumidity recovery performed under the condition of increasing transient load demand in the fuel cell stack 100 of the second embodiment, and FIG. 19 is a diagram illustrating the second embodiment. It is explanatory drawing which illustrates schematically the gas supply condition in the overdrying recovery 1st process made in the condition of the increase transient of a required load in the fuel cell stack 100 of an example. In this embodiment, the proper state of wetness of MEA overwetting under the condition of increase in demand load transients is that the wet state is appropriate for the increase in gas flow rate on the cathode side and the increase in gas pressure on the anode side. In the same manner as in this case, the change timing was shifted to the delay side with respect to the increase change of the gas pressure on the cathode side and the gas flow rate on the anode side after performing in accordance with the increase in the required load (FIG. 18). In addition, the appropriate wet transition of MEA overdrying under the condition of transient increase in required load includes an increase in gas pressure on the cathode side and an increase in gas flow rate on the anode side when the wet state is appropriate. Similarly, after changing in accordance with the increase in the required load, the change timing of the increase in the cathode gas flow rate and the anode gas pressure was shifted to the delay side (FIG. 19). As described above, an increase in gas flow rate on the cathode side and an increase in gas pressure on the anode side are beneficial for the proper transition of overwetting of the MEA under the transient condition of increase in demand load. In a load transient, these are usually controlled to increase as shown. As described above, an increase in the gas pressure on the cathode side and an increase in the gas flow rate on the anode side are beneficial for the proper transition of the over-drying of the MEA under the transient condition of the increase in the required load. In the increase transient, these are usually controlled to increase as shown. In this embodiment, the low gas pressure is maintained on the cathode side and the stationary gas flow rate is maintained on the anode side before the required load is increased by shifting the gas flow rate increasing timing and the gas pressure increasing timing as shown in the figure. Plan. Therefore, also by this embodiment, the effect approximated to the effect mentioned above can be show | played.

図20は先の実施形態における要求負荷の増大過渡の状況下での過乾燥回復第1処理の処理内容の変更とこれに伴うガス供給状況の推移を示す説明図である。この実施形態では、ステップS166において過乾燥回復第1処理を実行するに当たり、アノード102での湿潤適正化のためのガス流量増大制御の際に、その増大調整目標値を、湿潤状態適正の際のガス流量増大の増大調整目標値に対して一時的に大きくした。例えば、湿潤状態適正の際のガス流量増大の増大調整目標値に対して例えば20〜30%程度大きな調整目標値となるよう、また、こうした大きな目標値とする期間を、要求負荷の増大に対応したガス流量増大期間における増大制御の終了時刻tmの間際で例えば1〜2sec程度、確保するようにした。図21は湿潤適正化のためのガス流量増大制御を一時的に大きな増大調整目標値となるようにした場合の利点を示す説明図である。図21における比較例は、要求負荷の増大過渡の状況下でMEAが過乾燥であった場合に、要求負荷の増大に伴ってその負荷増大に合致した増大ガス流量目標値となるようにガス供給を制御した。なお、ガス流量増加とガス圧力増加の変更タイミングについても、ズレを来していない。   FIG. 20 is an explanatory diagram showing a change in the processing content of the first overdrying recovery process and a transition of the gas supply status associated therewith under a situation where the required load increases transiently in the previous embodiment. In this embodiment, when executing the first process of recovery from overdrying in step S166, when the gas flow rate increase control for optimizing the wetness at the anode 102 is performed, the increase adjustment target value is set to the value when the wet state is appropriate. The gas flow rate increase was temporarily increased with respect to the increase adjustment target value. For example, an adjustment target value that is, for example, about 20% to 30% larger than the increase adjustment target value for increasing the gas flow rate when the wet state is appropriate, and the period of such a large target value corresponds to an increase in required load. For example, about 1 to 2 sec is secured just before the end time tm of the increase control in the increased gas flow rate period. FIG. 21 is an explanatory diagram showing advantages when the gas flow rate increase control for optimizing wetness is temporarily set to a large increase adjustment target value. In the comparative example in FIG. 21, when the MEA is overdried under the condition of an increase in the required load, the gas supply is performed so that the increased gas flow rate target value that matches the increase in the required load increases as the required load increases. Controlled. Note that there is no deviation in the change timing of the gas flow rate increase and the gas pressure increase.

図21は、燃料電池スタック100が低電流密度の発電状態にある場合に要求負荷の急増に伴って高電流密度の発電状態に推移した場合のセル電圧推移を示している。この図21から、本実施形態では、要求負荷の増大過渡状況における過乾燥からの湿潤適正化がより確実になされ、出力の向上が得ることができた。こうした事象は、次のように説明できる。燃料電池スタック100への水素ガス供給は、増大する負荷に対応してガス流量を増大させる際の増大調整目標値より大きい増大調整目標値に一時的になるようなガス流量でなされる。こうしたガス流量の更なる増大は、負荷の増大変動の過渡期において、アノード側での過乾燥の湿潤適正化に有益な既述した水分持ち去りの低減や水分保持が顕著となり、カソード側への水移動も活性化する。こうしたことから、要求負荷の増大過渡期における燃料電池スタック100、詳しくはMEAの電解質膜101の過乾燥の湿潤適正化が進み、増大負荷に対応した出力を安定して得ることができる。   FIG. 21 shows the cell voltage transition when the fuel cell stack 100 is in a power generation state with a low current density and when the fuel cell stack 100 transitions to a power generation state with a high current density as the required load increases rapidly. From FIG. 21, in this embodiment, the wet optimization from overdrying in the transient state of the required load increased more reliably, and the output can be improved. Such an event can be explained as follows. Hydrogen gas is supplied to the fuel cell stack 100 at a gas flow rate that temporarily becomes an increase adjustment target value that is larger than the increase adjustment target value when the gas flow rate is increased in response to an increasing load. This further increase in the gas flow rate, during the transitional period of fluctuations in the load increase, makes the reduction of moisture removal and moisture retention, which are beneficial for optimizing the wetness of the overdrying on the anode side, becoming noticeable. Water movement is also activated. Therefore, the fuel cell stack 100, specifically, the MEA electrolyte membrane 101 in an excessively transitional period of required load, has been properly dried, and the output corresponding to the increased load can be stably obtained.

図22は湿潤適正化のためのガス流量増大制御を一時的に大きな増大調整目標値となるようにする他の実施形態を示す説明図である。図示するように、この実施形態では、ステップS166において過乾燥回復第1処理を実行するに当たっての湿潤適正化のためのガス流量増大制御の増大調整目標値を、湿潤状態適正の際のガス流量増大の増大調整目標値に対して、増大制御の終了時刻tmの手前の時期において、一時的に大きくした。こうしても、図21に示すような効果を得ることができる。   FIG. 22 is an explanatory diagram showing another embodiment in which the gas flow rate increase control for optimizing wetness is temporarily set to a large increase adjustment target value. As shown in the drawing, in this embodiment, the increase adjustment target value of the gas flow rate increase control for optimizing the wetness in executing the first process of recovery from overdrying in step S166 is set to the increase of the gas flow rate when the wet state is appropriate. The increase adjustment target value is temporarily increased before the increase control end time tm. Even in this case, the effect shown in FIG. 21 can be obtained.

図23は先の実施形態における要求負荷の低減過渡の状況下での過乾燥回復第2処理の処理内容の変更とこれに伴うガス供給状況の推移を示す説明図である。この実施形態では、ステップS246において過乾燥回復第2処理を実行するに当たり、カソード103での湿潤適正化のためのガス流量低減制御の際に、その低減調整目標値を、湿潤状態適正の際のガス流量低減の低減調整目標値に対して一時的に小さくした。例えば、湿潤状態適正の際のガス流量低減の低減調整目標値に対して例えば20〜30%程度小さな調整目標値となるよう、また、こうした小さな目標値とする期間を、要求負荷の低減に対応したガス流量低減期間における低減制御の終了時刻tmの手前で例えば1〜2sec程度、確保するようにした。なお、終了時刻tmの間際で確保するようにしてもよい。こうしても、ガス流量の更なる低減は、負荷の低減変動の過渡期において、カソード側での過乾燥の湿潤適正化に有益な水分持ち去りをより顕著に低減する。この結果、負荷低減の過渡期における燃料電池スタック100、詳しくはMEAの電解質膜101の過乾燥の湿潤適正化が進み、増大低減に対応した出力を安定して得ることができる。   FIG. 23 is an explanatory diagram showing a change in the processing content of the second overdrying recovery second process under the transitional state of reduction of the required load in the previous embodiment and the transition of the gas supply status associated therewith. In this embodiment, when executing the second process of recovery from overdrying in step S246, the reduction adjustment target value is set to the value when the wet state is appropriate in the gas flow rate reduction control for optimizing the wetness at the cathode 103. The gas flow rate reduction was temporarily reduced with respect to the reduction adjustment target value. For example, the adjustment target value is reduced by about 20 to 30%, for example, with respect to the reduction adjustment target value for reducing the gas flow rate when the wet state is appropriate. For example, about 1 to 2 sec is secured before the end time tm of the reduction control in the reduced gas flow rate period. Note that it may be ensured just before the end time tm. Even in this way, further reduction in gas flow will significantly reduce moisture removal, which is beneficial to optimizing over-drying on the cathode side, during the transitional period of load reduction. As a result, the fuel cell stack 100 in the transition period of load reduction, more specifically, the MEA electrolyte membrane 101 has been properly dried and wet, and an output corresponding to the increase and reduction can be stably obtained.

以上、本発明の実施の形態を実施例にて説明したが、本発明は上記した実施例や変形例の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様にて実施することが可能である。   As mentioned above, although the embodiment of the present invention has been described in the embodiments, the present invention is not limited to the above-described embodiments and modifications, and can be implemented in various modes without departing from the gist thereof. Is possible.

例えば、図18や図19に示した要求負荷の増大過渡の状況下での過乾燥或いは過湿潤の湿潤適正化のガス流量増大・ガス圧力増大の変更タイミングのずらしに倣い、要求負荷の低減過渡の状況下での過乾燥或いは過湿潤の湿潤適正化のために、ガス流量低減・ガス圧力定点の変更タイミングをずらしてもよい。   For example, following the shift of the change timing of the gas flow rate increase / gas pressure increase in the over-drying or over-humidity optimization in the situation of the increase transient of the required load shown in FIG. 18 and FIG. In order to optimize over-drying or over-wetting under the above conditions, the gas flow rate reduction / gas pressure fixed point change timing may be shifted.

また、図20や図22に示した要求負荷の増大過渡の状況下での過乾燥の湿潤適正化のためのガス流量増大制御の増大調整目標値を、湿潤状態適正の際のガス流量増大の増大調整目標値に対して一時的に大きくすることに代え、或いはこうしたガス流量増大調整制御と並行して、要求負荷の増大過渡の状況下での湿潤適正化のためのガス圧力増大制御の増大調整目標値を、湿潤状態適正の際のガス圧力増大の増大調整目標値に対して一時的に大きくするガス供給制御を行うようにしてもよい。また、要求負荷の低減過渡の状況下での湿潤適正化のためのガス低減調整やガス圧力低減調整制御の低減調整目標値を、湿潤状態適正の際のガス流量低減やガス圧力低減制御の低減調整目標値に対して一時的に小さくするようにしてもよい。   Further, the increase adjustment target value of the gas flow rate increase control for optimizing the wetness of the overdrying under the transient condition of the increase in the required load shown in FIG. 20 or FIG. Increase of gas pressure increase control for optimizing wetness under the condition of transient increase of demand load instead of temporarily increasing with respect to the increase adjustment target value or in parallel with such increase adjustment control of gas flow rate You may make it perform gas supply control which makes adjustment target value temporarily large with respect to the increase adjustment target value of the gas pressure increase at the time of wet state appropriateness. In addition, the reduction target value of gas reduction adjustment and gas pressure reduction adjustment control for wet optimization under transient conditions of required load reduction, gas flow reduction and gas pressure reduction control reduction when wet condition is appropriate The adjustment target value may be temporarily reduced.

上記した各実施形態では、燃料電池スタック100におけるMEAの電解質膜101の湿潤状態を冷却水温度に基づき判断したが、燃料電池スタック100の抵抗値に基づいて湿潤状態を判断してもよい。この場合には、抵抗値が所定の上限基準抵抗値を超えれば過乾燥と判断し、抵抗値が所定の下限抵抗値を下回れば過湿潤と判断できる。抵抗値に限らず、他の手法にて湿潤状態を判断してもよい。   In each of the embodiments described above, the wet state of the MEA electrolyte membrane 101 in the fuel cell stack 100 is determined based on the coolant temperature, but the wet state may be determined based on the resistance value of the fuel cell stack 100. In this case, if the resistance value exceeds a predetermined upper limit reference resistance value, it is determined that it is overdried, and if the resistance value falls below a predetermined lower limit resistance value, it can be determined that it is excessively wet. The wet state may be determined by other methods without being limited to the resistance value.

また、上記した各実施形態において要求負荷の変動過渡を判断するに当たり、2次電池172の蓄電電力を考慮して、燃料電池スタック100に求められる負荷要求の変動過渡を判断するようにしてもよい。   In each of the above-described embodiments, when determining the required load fluctuation transient, the load demand fluctuation transient required for the fuel cell stack 100 may be determined in consideration of the stored power of the secondary battery 172. .

この他、最先の実施形態においては、MEAの過湿潤や過乾燥の有無を判定した後に、冷却水温度に応じて過湿潤や過乾燥のレベルを判別し(ステップS142:図4,ステップS162:図8)、湿潤状態適正化のためのガス流量・圧力の調整を行うようにしたが、これに限られない。例えば、冷却水温度によりMEAの過湿潤や過乾燥が起きていると判断すれば、レベル判定を行うことなく、湿潤状態適正化のためのガス流量・圧力の調整を行うにしてもよい。また、この際、アノード側とカソード側での湿潤状態適正化のためのガス流量・圧力の調整を並行調整と選択調整のいずれかの手法とするようにしてもよい。   In addition, in the first embodiment, after determining whether or not the MEA is excessively wet or excessively dried, the level of excessively wet or excessively dry is determined according to the cooling water temperature (step S142: FIG. 4, step S162). : FIG. 8), the gas flow rate and pressure are adjusted to optimize the wet state, but the present invention is not limited to this. For example, if it is determined that the MEA is excessively wet or excessively dried due to the cooling water temperature, the gas flow rate / pressure may be adjusted to optimize the wet state without performing level determination. At this time, the adjustment of the gas flow rate and pressure for optimizing the wet state on the anode side and the cathode side may be performed by either parallel adjustment or selective adjustment.

20…燃料電池搭載車両
22…車体
30…燃料電池システム
100…燃料電池スタック
101…電解質膜
102…アノード
103…カソード
104…アノード側ガス拡散層
105…カソード側ガス拡散層
106…電流センサー
110…水素ガスタンク
120…水素ガス供給系
121…水素供給経路
122…循環経路
123…放出経路
124…開閉バルブ
125…減圧バルブ
126…水素供給機器
127…循環ポンプ
128…流量センサー
129…開閉バルブ
130…コンプレッサ
140…空気供給系
141…酸素供給経路
142…放出経路
143…排出流量調整バルブ
145…圧力調整バルブ
147…流量センサー
150…ラジエータ
152…ファン
160…冷却系
161…循環経路
162…バイパス経路
163…三方流量調整弁
164…循環ポンプ
166…温度センサー
170…モーター
172…2次電池
174…DC/DCコンバーター
176…容量検出センサー
180…アクセル
182…車速センサー
184…外気温センサー
200…制御装置
FW…前輪
RW…後輪
ts…開始時刻
ta…遅延時刻
tm…終了時刻
DESCRIPTION OF SYMBOLS 20 ... Vehicle equipped with fuel cell 22 ... Car body 30 ... Fuel cell system 100 ... Fuel cell stack 101 ... Electrolyte membrane 102 ... Anode 103 ... Cathode 104 ... Anode side gas diffusion layer 105 ... Cathode side gas diffusion layer 106 ... Current sensor 110 ... Hydrogen Gas tank 120 ... Hydrogen gas supply system 121 ... Hydrogen supply path 122 ... Circulation path 123 ... Release path 124 ... Open / close valve 125 ... Pressure reducing valve 126 ... Hydrogen supply equipment 127 ... Circulation pump 128 ... Flow sensor 129 ... Open / close valve 130 ... Compressor 140 ... Air supply system 141 ... Oxygen supply path 142 ... Release path 143 ... Exhaust flow rate adjustment valve 145 ... Pressure adjustment valve 147 ... Flow rate sensor 150 ... Radiator 152 ... Fan 160 ... Cooling system 161 ... Circulation path 162 ... Bypass path 163 ... Three Flow control valve 164 ... circulation pump 166 ... temperature sensor 170 ... motor 172 ... secondary battery 174 ... DC / DC converter 176 ... capacity detection sensor 180 ... accelerator 182 ... vehicle speed sensor 184 ... outside air temperature sensor 200 ... control device FW ... front wheel RW ... Rear wheel ts ... Start time ta ... Delay time tm ... End time

Claims (6)

燃料電池システムであって、
反応ガスの供給を受けて発電する燃料電池スタックと、
該燃料電池スタックに求められる負荷要求に基づく制御パラメータにガス流量とガス圧力とを含み、前記負荷要求に基づいた前記制御パラメータで前記燃料電池スタックへの前記反応ガスのガス供給を制御するガス供給制御部と、
前記負荷要求に基づいて、負荷変動の過渡の状況か否かを判断する負荷変動判断部と、
前記燃料電池スタックの湿潤状態を判断する湿潤判断部とを備え、
前記ガス供給制御部は、
前記負荷変動判断部が負荷変動の過渡の状況にあると判断すると、前記制御パラメータのうち、前記湿潤判断部の判断した湿潤状態を湿潤適正の側に推移させることに寄与するガス流量或いはガス圧力の一方の制御パラメータの変更タイミングに対して、他方の制御パラメータの変更タイミングを遅延側にずらす、
燃料電池システム。
A fuel cell system,
A fuel cell stack that generates electricity by receiving the supply of the reaction gas; and
A gas supply that includes a gas flow rate and a gas pressure as control parameters based on a load requirement required for the fuel cell stack, and controls the gas supply of the reaction gas to the fuel cell stack with the control parameter based on the load requirement. A control unit;
Based on the load request, a load variation determination unit that determines whether or not the load variation is in a transient state;
A wetness determination unit for determining the wet state of the fuel cell stack,
The gas supply controller is
When the load variation determination unit determines that the load variation is in a transient state, the gas flow rate or gas pressure that contributes to shifting the wet state determined by the wet determination unit to the proper wet state among the control parameters. The timing of changing the other control parameter is shifted to the delay side with respect to the timing of changing one of the control parameters.
Fuel cell system.
請求項1に記載の燃料電池システムであって、
前記ガス供給制御部は、
前記一方の制御パラメータを変更するに当たり、前記湿潤判断部の判断した湿潤状態を湿潤適正の側に推移させ得る適正化調整を経たガス流量或いはガス圧力に前記一方の制御パラメータを変更し、前記適正化調整を経ないガス流量或いはガス圧力である前記他方の制御パラメータの変更タイミングを前記適正化調整を経た変更タイミングに対して遅延側にずらす、
燃料電池システム。
The fuel cell system according to claim 1,
The gas supply controller is
In changing the one control parameter, the one control parameter is changed to a gas flow rate or a gas pressure that has undergone optimization adjustment that can shift the wet state determined by the wetness determination unit to a proper wetness side. Shift the change timing of the other control parameter, which is the gas flow rate or gas pressure without undergoing the adjustment adjustment, to the delay side with respect to the change timing through the optimization adjustment;
Fuel cell system.
請求項2に記載の燃料電池システムであって、
前記ガス供給制御部は、
前記負荷変動判断部が負荷増大の過渡にあると判断すると、前記適正化調整をガス流量或いはガス圧力の増大適正化調整とし、該増大適正化調整を経たガス流量或いはガス圧力に前記一方の制御パラメータを変更する、
燃料電池システム。
The fuel cell system according to claim 2, wherein
The gas supply controller is
When the load fluctuation determining unit determines that the load is in transition, the optimization adjustment is set to increase optimization of the gas flow rate or gas pressure, and the one control is performed to the gas flow rate or gas pressure after the increase optimization adjustment. Change the parameters,
Fuel cell system.
請求項3に記載の燃料電池システムであって、
前記ガス供給制御部は、
前記増大適正化調整を経たガス流量或いはガス圧力への前記一方の制御パラメータの変更を、前記湿潤判断部が湿潤適正と判断した湿潤状態の時における前記負荷要求に基づいた増大調整目標値より一時的に大きい増大調整目標値となるように実行する、
燃料電池システム。
The fuel cell system according to claim 3,
The gas supply controller is
The change of the one control parameter to the gas flow rate or the gas pressure that has undergone the increase optimization adjustment is temporarily performed based on the increase adjustment target value based on the load request when the wet determination unit determines that the wetness is appropriate. To achieve a large increase adjustment target value,
Fuel cell system.
請求項1に記載の燃料電池システムであって、
前記ガス供給制御部は、
前記負荷変動判断部が負荷低減の過渡にあると判断すると、前記適正化調整をガス流量或いはガス圧力の低減適正化調整とし、該低減適正化調整を経たガス流量或いはガス圧力に前記一方の制御パラメータを変更する、
燃料電池システム。
The fuel cell system according to claim 1,
The gas supply controller is
When the load fluctuation determination unit determines that the load is in a transient state of load reduction, the optimization adjustment is set as a gas flow rate or gas pressure reduction optimization adjustment, and the one control is performed to the gas flow rate or gas pressure after the reduction optimization adjustment. Change the parameters,
Fuel cell system.
請求項5に記載の燃料電池システムであって、
前記ガス供給制御部は、
前記低減適正化調整を経たガス流量或いはガス圧力への前記一方の制御パラメータの変更を、前記湿潤判断部が湿潤適正と判断した湿潤状態の時における前記負荷要求に基づいた低減調整目標値より一時的に小さい低減調整目標値となるように実行する、
燃料電池システム。
The fuel cell system according to claim 5, wherein
The gas supply controller is
The change of the one control parameter to the gas flow rate or the gas pressure that has undergone the reduction optimization adjustment is temporarily performed based on the reduction adjustment target value based on the load request in the wet state determined by the wetness determination unit as being wettable. To achieve a low reduction adjustment target value,
Fuel cell system.
JP2014140192A 2014-07-08 2014-07-08 Fuel cell system Active JP6052245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014140192A JP6052245B2 (en) 2014-07-08 2014-07-08 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014140192A JP6052245B2 (en) 2014-07-08 2014-07-08 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2016018650A true JP2016018650A (en) 2016-02-01
JP6052245B2 JP6052245B2 (en) 2016-12-27

Family

ID=55233743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014140192A Active JP6052245B2 (en) 2014-07-08 2014-07-08 Fuel cell system

Country Status (1)

Country Link
JP (1) JP6052245B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054788A (en) * 2015-09-11 2017-03-16 日産自動車株式会社 Wet controller of fuel cell system, and wet control method
JP2017054790A (en) * 2015-09-11 2017-03-16 日産自動車株式会社 Wet controller of fuel cell system, and wet control method
JP2017147038A (en) * 2016-02-15 2017-08-24 本田技研工業株式会社 Pressure control method during output acceleration of fuel cell system
CN107180984A (en) * 2016-03-10 2017-09-19 丰田自动车株式会社 Fuel cell system and its control method
JP2019021395A (en) * 2017-07-12 2019-02-07 トヨタ自動車株式会社 Fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342473A (en) * 2003-05-16 2004-12-02 Toyota Motor Corp Operation control of fuel cell system
JP2006278046A (en) * 2005-03-28 2006-10-12 Nissan Motor Co Ltd Fuel cell system
JP2013030346A (en) * 2011-07-28 2013-02-07 Nissan Motor Co Ltd Wet condition control device for fuel cell
WO2013157488A1 (en) * 2012-04-16 2013-10-24 本田技研工業株式会社 Fuel cell system
JP2014007097A (en) * 2012-06-26 2014-01-16 Honda Motor Co Ltd Fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342473A (en) * 2003-05-16 2004-12-02 Toyota Motor Corp Operation control of fuel cell system
JP2006278046A (en) * 2005-03-28 2006-10-12 Nissan Motor Co Ltd Fuel cell system
JP2013030346A (en) * 2011-07-28 2013-02-07 Nissan Motor Co Ltd Wet condition control device for fuel cell
WO2013157488A1 (en) * 2012-04-16 2013-10-24 本田技研工業株式会社 Fuel cell system
JP2014007097A (en) * 2012-06-26 2014-01-16 Honda Motor Co Ltd Fuel cell system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054788A (en) * 2015-09-11 2017-03-16 日産自動車株式会社 Wet controller of fuel cell system, and wet control method
JP2017054790A (en) * 2015-09-11 2017-03-16 日産自動車株式会社 Wet controller of fuel cell system, and wet control method
JP2017147038A (en) * 2016-02-15 2017-08-24 本田技研工業株式会社 Pressure control method during output acceleration of fuel cell system
CN107180984A (en) * 2016-03-10 2017-09-19 丰田自动车株式会社 Fuel cell system and its control method
CN107180984B (en) * 2016-03-10 2019-10-25 丰田自动车株式会社 Fuel cell system and its control method
JP2019021395A (en) * 2017-07-12 2019-02-07 トヨタ自動車株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP6052245B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP6131942B2 (en) Fuel cell system and fuel cell operation control method
JP5545378B2 (en) Fuel cell system and vehicle equipped with the same
JP5783324B2 (en) Fuel cell system
JP4320686B2 (en) Fuel cell system and current limiting method thereof
US10199668B2 (en) Fuel cell system and performance improvement method of fuel cell system
WO2013128610A1 (en) Fuel cell system
JP5333575B2 (en) Fuel cell system
JP6052245B2 (en) Fuel cell system
JP2010055927A (en) Fuel cell system
CA2866010A1 (en) Predictive fuel cell system
CA2867039C (en) Controllable output voltage fuel cell system
JP5023447B2 (en) Fuel cell system
JP2007141779A (en) Fuel cell system
JP5867360B2 (en) Fuel cell system and method
JP5769083B2 (en) Fuel cell system and fuel cell vehicle
EP2937925B1 (en) Fuel cell system and control method thereof
JP6304366B2 (en) Fuel cell system
JP2014002844A (en) Fuel cell system
JP2013134866A (en) Fuel cell system and fuel cell system control method
JP2017073376A (en) Fuel battery system and method for enhancement in fuel battery system performance
JP2012094257A (en) Fuel cell system
JP2011018461A (en) Fuel cell system
JP5935839B2 (en) Fuel cell system
JP2014082082A (en) Fuel cell system
JP2013120674A (en) Fuel cell system and vehicle incorporating the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R151 Written notification of patent or utility model registration

Ref document number: 6052245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151