JP2016017952A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2016017952A
JP2016017952A JP2014143397A JP2014143397A JP2016017952A JP 2016017952 A JP2016017952 A JP 2016017952A JP 2014143397 A JP2014143397 A JP 2014143397A JP 2014143397 A JP2014143397 A JP 2014143397A JP 2016017952 A JP2016017952 A JP 2016017952A
Authority
JP
Japan
Prior art keywords
ultrasonic
propagation time
frequency
circuit
ultrasonic transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014143397A
Other languages
Japanese (ja)
Inventor
鷹箸 幸夫
Yukio Takahashi
幸夫 鷹箸
前出 幸彦
Yukihiko Maede
幸彦 前出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014143397A priority Critical patent/JP2016017952A/en
Publication of JP2016017952A publication Critical patent/JP2016017952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter capable of measuring the flow rate with high accuracy by suppressing influence due to pulsation.SOLUTION: An ultrasonic flowmeter which has a pair of facing ultrasonic vibrators 11, 12 with a constant distance on the upstream side and the downstream side of a flow channel 10 where gas flows in the ultrasonic flowmeter, repeatedly performs transmission and reception of ultrasonic signals plural times between the facing ultrasonic vibrators 11, 12, and measures the propagation time of the ultrasonic wave between the ultrasonic vibrator 11 on the upstream side and the ultrasonic vibrator 12 on the downstream side to calculate the flow rate value on the basis of the propagation time difference comprises at least: a frequency discrimination circuit 19 discriminating the frequency component of the propagation time from the propagation time; and a timing generation circuit 20 which decides the timing of the driving pulse signal of transmission of the ultrasonic vibrator 11 on the upstream side and the ultrasonic vibrator 12 on the downstream side in accordance with output of the frequency discrimination circuit.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、脈動による影響を抑制して高精度な流量計測が可能な超音波流量計に関する。   Embodiments of the present invention relate to an ultrasonic flowmeter capable of measuring flow rate with high accuracy while suppressing the influence of pulsation.

従来の超音波流量計として、都市ガスなどの気体が流れる流路の上流側と下流側に一定の距離をおいて一対の超音波振動子を対向して設置し、その間で相互に超音波信号を複数回繰り返して送受信を行ない、上流側から下流側への超音波信号の伝播時間の積算時間と、下流側から上流側への超音波信号の伝播時間の積算時間との差から流速を求め、流速に流路の断面積を乗じて流体の瞬時流量を算出し、さらに瞬時流量値を積算して積算流量値を求めるものがある。   As a conventional ultrasonic flow meter, a pair of ultrasonic transducers are installed facing each other at a certain distance on the upstream side and downstream side of a flow path through which gas such as city gas flows, and an ultrasonic signal is transmitted between them. Repeatedly transmit and receive multiple times to obtain the flow velocity from the difference between the accumulated time of the ultrasonic signal propagation time from the upstream side to the downstream side and the accumulated time of the ultrasonic signal propagation time from the downstream side to the upstream side. In some cases, the flow rate is multiplied by the cross-sectional area of the flow path to calculate the instantaneous flow rate of the fluid, and the instantaneous flow rate value is integrated to obtain the integrated flow rate value.

このような超音波流量計においては、例えば同一のガス配管に接続する隣家にガスエンジンヒートポンプが設置されている場合、ガスヒートポンプが使用されると供給ガス圧に圧力変動の繰り返し動作が生じ、これによってガス配管内を流れるガスに数Hzから20Hz程度の脈動が発生する。この脈動は、超音波流量計の流路内を流れるガスに伝わり、瞬時流量として計測され、実際に使用しているガス流量に対して誤計測をしてしまうという問題がある。   In such an ultrasonic flow meter, for example, when a gas engine heat pump is installed in a neighbor connected to the same gas pipe, when the gas heat pump is used, a repeated operation of pressure fluctuation occurs in the supply gas pressure. As a result, a pulsation of several Hz to 20 Hz is generated in the gas flowing in the gas pipe. This pulsation is transmitted to the gas flowing in the flow path of the ultrasonic flowmeter, is measured as an instantaneous flow rate, and there is a problem that erroneous measurement is performed on the gas flow rate actually used.

この問題に対して、超音波流量検出手段で計測した瞬時流量Q(i)と前回に計測した瞬時流量Q(i−1)との差を取り、その差が所定値以上の場合に脈動ありと判別し、脈動ありの場合にはフィルター処理を介して安定流量算出手段によって流量を算出する技術がある。   To solve this problem, there is a pulsation when the difference between the instantaneous flow rate Q (i) measured by the ultrasonic flow rate detection means and the instantaneous flow rate Q (i-1) measured last time is taken and the difference is greater than or equal to a predetermined value. In the case where there is pulsation, there is a technique for calculating a flow rate by a stable flow rate calculation means through a filter process.

特開2000−298042号公報JP 2000-298042 A

しかしながら、上述の従来技術では、瞬時流量の差のみで脈動の有無を判定しているため、脈動の繰返し周期と瞬時流量の計測サンプリング周期が一致した場合、脈動波形の同一箇所を毎回サンプリングするため脈動による瞬時流量の差を検出できないといった問題が考えられるため、結果的に脈動が発生しているのにも関わらず、発生無しの判定をしてしまう可能性があった。   However, in the above-described prior art, since the presence or absence of pulsation is determined only by the difference in instantaneous flow rate, when the repetition cycle of pulsation coincides with the measurement sampling cycle of instantaneous flow rate, the same portion of the pulsation waveform is sampled every time. There is a possibility that a difference in instantaneous flow rate due to pulsation cannot be detected, and as a result, there is a possibility that it may be determined that there is no pulsation despite occurrence of pulsation.

本発明の実施形態は、脈動による影響を抑制して高精度な流量計測が可能な超音波流量計を提供することを目的とする。   An object of an embodiment of the present invention is to provide an ultrasonic flowmeter capable of measuring the flow rate with high accuracy while suppressing the influence of pulsation.

上述の目的を達成するため、本発明の実施形態の超音波流量計は、気体が流れる流路の上流側と下流側に一定の距離をおいて一対の超音波振動子を対向して設置し、その間で相互に超音波信号を複数回繰り返して発信及び受信を行い、上流側の超音波振動子と下流側の超音波振動子との間の超音波の伝播時間を計測し、該伝播時間差に基づいて流量値を算出する超音波流量計において、少なくとも、前記伝播時間から伝播時間の周波数成分を判別する周波数判別回路と、前記周波数判別回路の出力に応じて前記上流側の超音波振動子及び前記下流側の超音波振動子の発信の駆動パルス信号のタイミングを決定するタイミング生成回路と、を備えることを特徴とする。   In order to achieve the above-described object, the ultrasonic flowmeter according to the embodiment of the present invention has a pair of ultrasonic transducers facing each other with a certain distance between the upstream side and the downstream side of the flow path through which the gas flows. In the meantime, transmission and reception of ultrasonic signals are repeated several times between each other, the propagation time of the ultrasonic wave between the ultrasonic transducer on the upstream side and the ultrasonic transducer on the downstream side is measured, and the difference in propagation time In the ultrasonic flowmeter that calculates the flow value based on the frequency, a frequency discrimination circuit that discriminates at least a frequency component of the propagation time from the propagation time, and the upstream ultrasonic transducer according to the output of the frequency discrimination circuit And a timing generation circuit for determining the timing of the drive pulse signal transmitted from the downstream ultrasonic transducer.

本発明の一実施形態に係る超音波流量計の断面図を含むブロック図。The block diagram containing sectional drawing of the ultrasonic flowmeter which concerns on one Embodiment of this invention. 図1の伝播時間計測回路の動作を説明する図であり、(a)はガスがほぼ一定流量で流れている時の上流側超音波振動子から下流側超音波振動子への超音波の伝播時間、(b)は(a)で示した一定流量で流れているガスに周期τ、振幅Dの脈動が重畳した時の上流側超音波振動子から下流側超音波振動子への超音波の伝播時間。FIG. 2 is a diagram for explaining the operation of the propagation time measuring circuit of FIG. 1, wherein (a) is the propagation of ultrasonic waves from the upstream ultrasonic transducer to the downstream ultrasonic transducer when the gas is flowing at a substantially constant flow rate. Time (b) shows the ultrasonic wave from the upstream ultrasonic transducer to the downstream ultrasonic transducer when a pulsation of period τ and amplitude D is superimposed on the gas flowing at a constant flow shown in (a). Propagation time. 本発明の一実施形態に係る超音波流量計を用いた計測方法を説明する図であり、(a)はτの1/2の周期で送受信を行い伝達時間計測回路で伝播時間を求める方法、(b)は(a)から抽出した脈動の周波数成分のスペクトルの一例。It is a figure explaining the measuring method using the ultrasonic flowmeter concerning one embodiment of the present invention, and (a) is a method of performing transmission and reception with a period of 1/2 of τ, and obtaining propagation time with a transmission time measuring circuit, (B) is an example of the spectrum of the frequency component of the pulsation extracted from (a).

以下、本発明の実施形態について、図面を参照して具体的に説明する。   Embodiments of the present invention will be specifically described below with reference to the drawings.

(構成)
図1は本発明の一実施形態に係る超音波流量計の断面図を含むブロック図である。
図1に示すように、超音波流量計1は、都市ガスなどの気体が流れるガス流路10の上流側と下流側に一定の距離(L)をおいて対向して設置された一対の超音波振動子11、12と、超音波振動子11と12に印加して超音波を出力させる駆動パルス信号を生成する発信回路13と、超音波振動子11、12の送信と受信を切替える送受信切替回路14と、超音波振動子11と12から出力する受信信号を増幅する受信回路15と、受信回路15からのアナログ信号をデジタル信号に変換するコンパレータ回路16と、コンパレータ回路16の出力信号と送信信号から超音波振動子11と12間の超音波の伝播時間を計測する伝播時間計測回路17と、伝播時間計測回路17で求めた伝播時間と流路10の断面積を乗じてガスの流量を算出する流量計測回路18と、伝播時間計測回路17で求めた伝播時間から伝播時間の周波数成分を判別する周波数判別回路19と、発信回路13で生成する駆動パルス信号のタイミングを周波数判別回路19の出力を基に生成するタイミング生成回路20と、伝播時間計測回路17及びタイミング生成回路20で用いるクロック信号を発生する発振回路21と、を備えて構成されている。
(Constitution)
FIG. 1 is a block diagram including a cross-sectional view of an ultrasonic flowmeter according to an embodiment of the present invention.
As shown in FIG. 1, the ultrasonic flowmeter 1 includes a pair of super flow meters installed facing each other at a certain distance (L) on the upstream side and the downstream side of a gas flow path 10 through which a gas such as city gas flows. The ultrasonic transducers 11 and 12, the transmission circuit 13 that generates a drive pulse signal that is applied to the ultrasonic transducers 11 and 12 to output ultrasonic waves, and the transmission / reception switching that switches between transmission and reception of the ultrasonic transducers 11 and 12. A circuit 14, a reception circuit 15 that amplifies reception signals output from the ultrasonic transducers 11 and 12, a comparator circuit 16 that converts an analog signal from the reception circuit 15 into a digital signal, and an output signal of the comparator circuit 16 and transmission The propagation time measurement circuit 17 that measures the propagation time of the ultrasonic wave between the ultrasonic transducers 11 and 12 from the signal, and the gas flow rate is multiplied by the propagation time obtained by the propagation time measurement circuit 17 and the cross-sectional area of the flow path 10. Calculation The flow rate measuring circuit 18, the frequency discriminating circuit 19 for discriminating the frequency component of the propagation time from the propagation time obtained by the propagation time measuring circuit 17, and the output of the frequency discriminating circuit 19 for the timing of the drive pulse signal generated by the transmitting circuit 13. A timing generation circuit 20 that generates the clock signal, and an oscillation circuit 21 that generates a clock signal used in the propagation time measurement circuit 17 and the timing generation circuit 20.

(作用)
図1において、タイミング生成回路20で生成した信号は発信回路13で増幅され、送受信切替回路14を通して超音波振動子11または12に駆動パルスとして加えられる。これにより、超音波振動子11または12は、パルスの信号レベルに応じた超音波を他方の超音波振動子12または11に向けて出力する。超音波は、その音速Vと超音波振動子11、12間の距離Lおよび流体の流速に応じた伝播時間を要して他方の超音波振動子11、12に受信される。受信した超音波は電気信号に変換して出力される。
(Function)
In FIG. 1, the signal generated by the timing generation circuit 20 is amplified by the transmission circuit 13 and applied as a drive pulse to the ultrasonic transducer 11 or 12 through the transmission / reception switching circuit 14. Thereby, the ultrasonic transducer 11 or 12 outputs an ultrasonic wave corresponding to the signal level of the pulse toward the other ultrasonic transducer 12 or 11. The ultrasonic waves are received by the other ultrasonic vibrators 11 and 12 with a propagation time corresponding to the distance L between the sound velocity V and the ultrasonic vibrators 11 and 12 and the flow velocity of the fluid. The received ultrasonic wave is converted into an electrical signal and output.

超音波振動子11または12からの受信信号は、送受信切替回路14を通して受信回路15に入力され、受信回路15に内蔵する一定利得を持った増幅器で増幅される。その後、コンパレータ16でデジタル信号に変換され、伝播時間計測回路17で送信信号の出力から受信信号が到達するまでに要した伝播時間が算出される。具体的には、超音波振動子11、12での送信と受信動作を送受信切替回路14で切替えて、上流の超音波振動子11から超音波振動子12への伝播時間Tdと、超音波振動子12から超音波振動子11への伝播時間Tuを複数回繰返して求め、その積算した伝播時間の差から流体の流速を求める。   A reception signal from the ultrasonic transducer 11 or 12 is input to the reception circuit 15 through the transmission / reception switching circuit 14 and is amplified by an amplifier having a certain gain built in the reception circuit 15. Thereafter, the signal is converted into a digital signal by the comparator 16, and the propagation time required until the reception signal arrives from the output of the transmission signal is calculated by the propagation time measurement circuit 17. Specifically, the transmission and reception operations of the ultrasonic transducers 11 and 12 are switched by the transmission / reception switching circuit 14, the propagation time Td from the upstream ultrasonic transducer 11 to the ultrasonic transducer 12, and the ultrasonic vibration The propagation time Tu from the child 12 to the ultrasonic transducer 11 is repeatedly obtained several times, and the fluid flow velocity is obtained from the difference of the accumulated propagation times.

(脈動が重畳したガスの伝播時間の計測方法)
図2(a)は、ガスがほぼ一定流量で流れている時の上流側超音波振動子11から下流側超音波振動子12への超音波の伝播時間を示すもので、その伝播時間Tdはほぼ一定である。図2(b)は、(a)で示した一定流量で流れているガスに周期τ、振幅Dの脈動が重畳した時の上流側超音波振動子11から下流側超音波振動子12への超音波の伝播時間である。図2(b)のガス流量を計測する場合に、脈動の周期τと同等の図中に示す●印の周期で送受信を行うと、使用しているガス流量による伝播時間Tdと異なる伝播時間の極大値Thが毎回計測され、誤計測となる。同様に、超音波振動子12から超音波振動11への超音波の伝播時間の計測でも上述の誤計測がなされることになる。
(Measurement method of propagation time of gas with superimposed pulsation)
FIG. 2A shows the propagation time of the ultrasonic wave from the upstream ultrasonic transducer 11 to the downstream ultrasonic transducer 12 when the gas is flowing at a substantially constant flow rate. The propagation time Td is It is almost constant. FIG. 2B shows the flow from the upstream ultrasonic transducer 11 to the downstream ultrasonic transducer 12 when a pulsation of period τ and amplitude D is superimposed on the gas flowing at a constant flow shown in FIG. Ultrasonic propagation time. When measuring the gas flow rate in FIG. 2 (b), if transmission / reception is performed with the period of the mark ● shown in the figure equivalent to the pulsation period τ, the propagation time differs from the propagation time Td depending on the gas flow rate used. The maximum value Th is measured every time, resulting in erroneous measurement. Similarly, the above-described erroneous measurement is also performed in the measurement of the propagation time of the ultrasonic wave from the ultrasonic transducer 12 to the ultrasonic vibration 11.

以下に、脈動が重畳したガスの伝播時間を正確に計測する方法を説明する。
まず、発生が考えられる脈動の最大周波数の約2倍の周波数で、超音波の送受信を行い脈動の周波数を特定する(標本化定理)。例えば、図3(a)で◇印で示すように、図2(b)で示したτの1/2の周期で送受信を行い、伝達時間計測回路17で伝播時間を求める。求めた伝播時間は、周波数判別回路19で図示しないメモリ回路に保存を行い、保存された複数のデータを用いて高速フーリェ変換(以下、「FFT」と記す)を行い、脈動の周波数成分を抽出する。抽出した周波数成分のスペクトルの一例を図3(b)に示す。図3(b)では、図3(a)の脈動周波数が10Hzであることを示している。
Hereinafter, a method for accurately measuring the propagation time of a gas with superimposed pulsation will be described.
First, the frequency of the pulsation is specified by transmitting / receiving ultrasonic waves at a frequency about twice the maximum frequency of the pulsation that can occur (sampling theorem). For example, as shown by ◇ in FIG. 3A, transmission / reception is performed at a period of ½ of τ shown in FIG. 2B, and the propagation time measurement circuit 17 obtains the propagation time. The obtained propagation time is stored in a memory circuit (not shown) by the frequency discriminating circuit 19, and fast Fourier transform (hereinafter referred to as "FFT") is performed using a plurality of stored data to extract the frequency component of pulsation. To do. An example of the extracted frequency component spectrum is shown in FIG. FIG. 3B shows that the pulsation frequency in FIG. 3A is 10 Hz.

本実施形態では、図3(b)から、図3(a)の脈動周波数を特定し、特定した周波数を基に送受信を行う周期を決定する。例えば、脈動が発生しうる最大周波数が20Hzの場合、2倍の周波数40Hzで送受信を繰返し伝播時間の計測を行い、FFTによる抽出で実際に発生している脈動の周波数を特定する。   In the present embodiment, the pulsation frequency of FIG. 3A is specified from FIG. 3B, and the transmission / reception cycle is determined based on the specified frequency. For example, when the maximum frequency at which pulsation can occur is 20 Hz, transmission / reception is repeatedly performed at twice the frequency of 40 Hz, the propagation time is measured, and the frequency of the pulsation actually occurring is identified by extraction by FFT.

特定した脈動周波数が図3(b)に示す10Hzであった場合、40Hzの繰返し周期で計測を継続すると、計測で消費する電力が大きく超音波式ガスメータに搭載している電池の消耗が多くなり、予定していた電池寿命が早まることになる。よって、消費電力を少なくし、電池寿命を延ばすためには、脈動周波数に見合った周波数で超音波の送受信の繰返しを行う必要がある。   When the specified pulsation frequency is 10 Hz as shown in FIG. 3B, if measurement is continued at a repetition period of 40 Hz, the power consumed by the measurement is large and the consumption of the battery mounted on the ultrasonic gas meter increases. The expected battery life will be accelerated. Therefore, in order to reduce power consumption and extend battery life, it is necessary to repeat transmission / reception of ultrasonic waves at a frequency commensurate with the pulsation frequency.

上述の脈動周波数が10Hzの場合、標本化定理から超音波の送受信を2倍の周波数20Hzで行うようにタイミング生成回路20で作成し、発信回路13を介して駆動パルスを超音波振動子11と12に印加する。20Hzの送受信で求めた複数の伝播時間計測値を平均化することによって、脈動で変動する極大値Thを伝播時間とすることなく伝播時間Tdを得ることが可能となる。これにより、脈動の変動周期の検出と消費電力の低減を図ることができる。   When the above pulsation frequency is 10 Hz, the timing generation circuit 20 creates the ultrasonic wave transmission / reception at the double frequency 20 Hz from the sampling theorem, and the drive pulse is transmitted to the ultrasonic transducer 11 via the transmission circuit 13. 12 is applied. By averaging a plurality of measured propagation time values obtained by transmission / reception at 20 Hz, the propagation time Td can be obtained without using the maximum value Th that fluctuates due to pulsation as the propagation time. Thereby, it is possible to detect the fluctuation period of the pulsation and reduce the power consumption.

(脈動の周波数が変化し、または脈動が無くなった場合)
上述の方法で脈動の周波数を特定し、それに基づいて送受信の周波数を決定して伝播時間の計測中に、脈動の周波数が変化し、または脈動が無くなった場合に、同一の周波数で伝播時間の計測を継続すると、伝播時間の誤計測となる。
(When pulsation frequency changes or pulsation disappears)
When the frequency of pulsation changes or the pulsation disappears during measurement of propagation time by specifying the frequency of pulsation by the above method and determining the frequency of transmission and reception based on it, the propagation time of the same frequency is If the measurement is continued, the propagation time is erroneously measured.

この誤計測を防止するため、計測した伝播時間を前回値との差分を求め、差分値が所定の設定値(例えば、±5%)以上に変化した場合には、上述した脈動の最大周波数の約2倍の周波数で超音波の送受信を行い、FFTにより脈動の周波数の特定を行った後、特定した周波数の2倍の周波数(標本化定理)で送受信を行う。また、周波数が特定できない場合は、上記差分判別回路が脈動が無いとの判断を行い、送受信の周波数を1Hzなどの低周波で変更を行う。これにより、誤計測の防止と消費電力の抑制が可能となる。   In order to prevent this erroneous measurement, the difference between the measured propagation time and the previous value is obtained, and when the difference value changes to a predetermined set value (for example, ± 5%) or more, the maximum frequency of the pulsation described above is obtained. Ultrasound is transmitted / received at about twice the frequency, and after specifying the frequency of pulsation by FFT, transmission / reception is performed at twice the specified frequency (sampling theorem). If the frequency cannot be specified, the difference determination circuit determines that there is no pulsation, and changes the transmission / reception frequency at a low frequency such as 1 Hz. Thereby, it is possible to prevent erroneous measurement and suppress power consumption.

(効果)
本実施形態によれば、脈動の周波数をFFTにより検知し、脈動周波数に見合った周期で超音波の送受信を繰返し行い、その伝播時間を平均化することにより、脈動による影響を抑制し、高精度な流量計測が可能となる。
(effect)
According to this embodiment, the frequency of pulsation is detected by FFT, ultrasonic waves are repeatedly transmitted and received at a period corresponding to the pulsation frequency, and the propagation time is averaged, thereby suppressing the influence of pulsation and high accuracy. Can measure the flow rate.

[他の実施形態]
(1)上記実施形態では、脈動が発生しうる最大周波数が20Hzの場合、2倍の周波数40Hzで送受信を繰返し伝播時間の計測を行ったが、正確に2倍とすることはなく、2倍以上であれば、50Hzや100Hzで伝播時間の計測を行っても良い。
[Other embodiments]
(1) In the above embodiment, when the maximum frequency at which pulsation can occur is 20 Hz, transmission / reception is repeatedly measured at a double frequency of 40 Hz. However, the propagation time is not accurately doubled, but doubled. If it is above, you may measure propagation time at 50 Hz or 100 Hz.

(2)上記実施形態では、高速フーリェ変換(FFT)を行うことによって脈動の周波数成分を抽出したが、高速フーリェ変換(FFT)だけでなく、他の方法によって脈動の周波数成分を抽出しても良い。 (2) In the above embodiment, the frequency component of pulsation is extracted by performing fast Fourier transform (FFT). However, not only the fast Fourier transform (FFT) but also the frequency component of pulsation can be extracted by other methods. good.

(3)上記実施形態では、計測した伝播時間を前回値との差分を求め、差分値が所定の設定値以上に変化した場合には、上述した脈動の最大周波数の約2倍の周波数で超音波の送受信を行い、FFTにより脈動の周波数の特定を行ったが、伝播時間の差分ではなく、例えば、流量が±5%以上変化した場合等、流量の差分が所定の設定値以上に変化した場合に、上記処理を行うこともできる。 (3) In the above-described embodiment, the difference between the measured propagation time and the previous value is obtained, and when the difference value changes to a predetermined set value or more, the difference is greater than about twice the maximum pulsation frequency described above. The sound wave was transmitted and received, and the frequency of the pulsation was specified by FFT, but the difference in flow rate changed to a predetermined set value or more, for example, when the flow rate changed by ± 5% or more, not the difference in propagation time. In some cases, the above processing can also be performed.

(4)以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 (4) Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1…超音波流量計
10…流路
11…上流側超音波振動子
12…下流側超音波振動子
13…発信回路
14…送受信切替回路
15…受信回路
16…コンパレータ回路
17…伝播時間計測回路
18…流量計測回路
19…周波数判別回路
20…タイミング生成回路
21…発振回路
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic flowmeter 10 ... Flow path 11 ... Upstream ultrasonic transducer | vibrator 12 ... Downstream ultrasonic transducer | vibrator 13 ... Transmission circuit 14 ... Transmission / reception switching circuit 15 ... Reception circuit 16 ... Comparator circuit 17 ... Propagation time measurement circuit 18 ... Flow measurement circuit 19 ... Frequency discrimination circuit 20 ... Timing generation circuit 21 ... Oscillation circuit

Claims (5)

超音波流量計内で気体が流れる流路の上流側と下流側に一定の距離をおいて一対の超音波振動子を対向して設置し、その間で相互に超音波信号を複数回繰り返して発信及び受信を行い、上流側の超音波振動子と下流側の超音波振動子との間の超音波の伝播時間を計測し、該伝播時間差に基づいて流量値を算出する超音波流量計において、少なくとも、
前記伝播時間から伝播時間の周波数成分を判別する周波数判別回路と、
前記周波数判別回路の出力に応じて前記上流側の超音波振動子及び前記下流側の超音波振動子の発信の駆動パルス信号のタイミングを決定するタイミング生成回路と、
を備えることを特徴とする超音波流量計。
A pair of ultrasonic transducers are placed facing each other at a certain distance upstream and downstream of the flow path through which gas flows in the ultrasonic flow meter, and ultrasonic signals are repeatedly transmitted between them several times between them. In the ultrasonic flow meter that performs reception and measures the propagation time of the ultrasonic wave between the ultrasonic transducer on the upstream side and the ultrasonic transducer on the downstream side, and calculates the flow value based on the propagation time difference, at least,
A frequency discriminating circuit for discriminating a frequency component of the propagation time from the propagation time;
A timing generation circuit that determines the timing of the drive pulse signal for transmission of the upstream ultrasonic transducer and the downstream ultrasonic transducer according to the output of the frequency discrimination circuit;
An ultrasonic flowmeter comprising:
前記周波数判別回路は、前記伝播時間に関する複数のデータを用いて高速フーリェ変換を行うことにより脈動の周波数成分を抽出することを特徴とする請求項1記載の超音波流量計。   The ultrasonic flowmeter according to claim 1, wherein the frequency discrimination circuit extracts a frequency component of pulsation by performing high-speed Fourier transform using a plurality of data relating to the propagation time. 前記タイミング生成回路は、前記抽出した脈動の周波数成分の2倍以上の周波数になるように、前記上流側の超音波振動子及び前記下流側の超音波振動子の発信の駆動パルス信号のタイミングを決定することを特徴とする請求項2記載の超音波流量計。   The timing generation circuit sets the timing of drive pulse signals transmitted from the upstream ultrasonic transducer and the downstream ultrasonic transducer so that the frequency is twice or more the frequency component of the extracted pulsation. The ultrasonic flowmeter according to claim 2, wherein the ultrasonic flowmeter is determined. 前記伝播時間の計測値が前回の計測値と比較して所定の値を超えた場合に、前記周波数判別回路が前記伝播時間から伝播時間の周波数成分を判別し、前記タイミング生成回路が前記周波数判別回路の出力に応じて前記上流側の超音波振動子及び前記下流側の超音波振動子の発信の駆動パルス信号のタイミングを決定することを特徴とする請求項1〜3のいずれか1項記載の超音波流量計。   When the measured value of the propagation time exceeds a predetermined value compared with the previous measured value, the frequency discriminating circuit discriminates the frequency component of the propagating time from the propagation time, and the timing generation circuit performs the frequency discrimination The timing of the drive pulse signal of transmission of the said upstream ultrasonic transducer | vibrator and the said downstream ultrasonic transducer | vibrator is determined according to the output of a circuit, The any one of Claims 1-3 characterized by the above-mentioned. Ultrasonic flow meter. さらに、前記伝播時間と前記流路の断面積を乗じてガス流量を算出する流量計測回路を備え、前記流量計測回路で算出したガス流量の計測値が前回の計測値と比較して所定の値を超えた場合に、前記周波数判別回路が前記伝播時間から伝播時間の周波数成分を判別し、前記タイミング生成回路が前記周波数判別回路の出力に応じて前記上流側の超音波振動子及び前記下流側の超音波振動子の発信の駆動パルス信号のタイミングを決定することを特徴とする請求項1〜3のいずれか1項記載の超音波流量計。   Furthermore, a flow rate measurement circuit that calculates the gas flow rate by multiplying the propagation time and the cross-sectional area of the flow path is provided, and the measured value of the gas flow rate calculated by the flow rate measurement circuit is a predetermined value compared to the previous measurement value. The frequency discriminating circuit discriminates the frequency component of the propagating time from the propagation time, and the timing generation circuit determines the upstream ultrasonic transducer and the downstream side according to the output of the frequency discriminating circuit. The ultrasonic flowmeter according to any one of claims 1 to 3, wherein the timing of the drive pulse signal transmitted from the ultrasonic transducer is determined.
JP2014143397A 2014-07-11 2014-07-11 Ultrasonic flowmeter Pending JP2016017952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014143397A JP2016017952A (en) 2014-07-11 2014-07-11 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014143397A JP2016017952A (en) 2014-07-11 2014-07-11 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2016017952A true JP2016017952A (en) 2016-02-01

Family

ID=55233250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014143397A Pending JP2016017952A (en) 2014-07-11 2014-07-11 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2016017952A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021124790A1 (en) * 2019-12-20 2021-06-24
JP2021144005A (en) * 2020-03-13 2021-09-24 オムロン株式会社 Flow rate measuring device, gas meter having flow rate measuring device, and flow rate measuring device unit for gas meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021124790A1 (en) * 2019-12-20 2021-06-24
JP2021144005A (en) * 2020-03-13 2021-09-24 オムロン株式会社 Flow rate measuring device, gas meter having flow rate measuring device, and flow rate measuring device unit for gas meter

Similar Documents

Publication Publication Date Title
WO2010079568A1 (en) Flow rate measurement device
EP2515089B1 (en) Flow rate measuring device
JP2019049423A (en) Ultrasonic flowmeter
JP2007187506A (en) Ultrasonic flowmeter
JP2016017952A (en) Ultrasonic flowmeter
JP2018138891A (en) Ultrasonic flowmeter
US20220291026A1 (en) Propagation time measurement device
JP2006308439A (en) Flow measuring device of fluid
KR20170035555A (en) Signal processing system for ultrasonic floemeter
RU118743U1 (en) ULTRASONIC FLOW METER
JP2010223855A (en) Ultrasonic flowmeter
JP5326697B2 (en) Ultrasonic measuring instrument
JP4797515B2 (en) Ultrasonic flow measuring device
JP2008185441A (en) Ultrasonic flowmeter
JP5345006B2 (en) Ultrasonic flow meter
JP2019028040A (en) Ultrasonic flowmeter
JP5649476B2 (en) Ultrasonic flow meter
JP5229349B2 (en) Fluid flow measuring device
JP5316795B2 (en) Ultrasonic measuring instrument
JP2007064988A (en) Flowmeter
JP5287628B2 (en) Fluid flow measuring device
EA201792102A1 (en) METHOD FOR DETERMINING THE VALUE OF THE ULTRASONIC PULSE TRAVEL TIME, IN PARTICULAR IN THE ULTRASONIC FLOWMETER, AND FLOWMETER
JP6283565B2 (en) Ultrasonic flow meter and propagation length abnormality detection method
JP5309188B2 (en) Ultrasonic flow meter
JP2012002625A (en) Flow rate measuring apparatus