JP2016015820A - Battery controller and battery control system - Google Patents

Battery controller and battery control system Download PDF

Info

Publication number
JP2016015820A
JP2016015820A JP2014136471A JP2014136471A JP2016015820A JP 2016015820 A JP2016015820 A JP 2016015820A JP 2014136471 A JP2014136471 A JP 2014136471A JP 2014136471 A JP2014136471 A JP 2014136471A JP 2016015820 A JP2016015820 A JP 2016015820A
Authority
JP
Japan
Prior art keywords
voltage
lower limit
battery
power storage
battery control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014136471A
Other languages
Japanese (ja)
Other versions
JP6405754B2 (en
Inventor
高橋 真吾
Shingo Takahashi
真吾 高橋
梶谷 浩司
Koji Kajitani
浩司 梶谷
潤一 宮本
Junichi Miyamoto
潤一 宮本
祐一 今村
Yuichi Imamura
祐一 今村
克也 小野瀬
Katsuya Onose
克也 小野瀬
翔 大谷
Sho Otani
翔 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2014136471A priority Critical patent/JP6405754B2/en
Publication of JP2016015820A publication Critical patent/JP2016015820A/en
Application granted granted Critical
Publication of JP6405754B2 publication Critical patent/JP6405754B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery controller and a battery control system capable of suppressing deterioration of a secondary battery effectively.SOLUTION: A battery controller includes upper and lower limit voltage calculation means for calculating the upper and lower limit voltage range including the total voltage V of a power storage device or the use upper limit value and the use lower limit value of the battery voltage V of a secondary battery in the power storage device, storage electric energy calculation means for calculating the available storage electric energy when the power storage device operates in the upper and lower limit voltage range, and charge and discharge instruction means for instructing charge and discharge to the charge and discharge device with the upper and lower limit voltage range. The upper and lower limit voltage calculation means calculates an upper and lower limit voltage range by using the V-dQ/dV characteristics obtained from the total voltage V or the battery voltage V and the capacity Q of the power storage device. When the storage electric energy goes below a predetermined value, the upper and lower limit voltage calculation means calculates an upper and lower limit voltage range so that the storage electric energy goes above a predetermined value.

Description

本発明は、二次電池の充放電を制御する電池制御装置及び電池制御システムに関し、特に二次電池の劣化を抑制する電池制御装置及び電池制御システムに関する。   The present invention relates to a battery control device and a battery control system that control charging and discharging of a secondary battery, and more particularly to a battery control device and a battery control system that suppress deterioration of a secondary battery.

近年、エネルギー密度の向上により、様々なところでリチウムイオン電池などの二次電池が活用されている。電池の高エネルギー体積密度化および装置の低消費電力化により携帯電話などのポータブルデバイスの小型高性能化が達成され、電池の高エネルギー重量密度化により電気自動車などの移動距離の延長が実現された。それと同時に、風力、太陽光、地熱などの自然エネルギーの活用が注目を集めており、それらの生み出す変動の大きな電力を電池の充放電によって平滑化して供給する方法が注目を集めている。   In recent years, secondary batteries such as lithium ion batteries have been used in various places due to the improvement of energy density. Higher volume density of the battery and lower power consumption of the device have made it possible to reduce the size and performance of portable devices such as mobile phones, while the higher energy weight density of the battery has made it possible to extend the travel distance of electric vehicles and the like. . At the same time, the use of natural energy such as wind power, solar power, and geothermal heat has attracted attention, and the method of smoothing and supplying the large fluctuations of electricity generated by charging and discharging of batteries has attracted attention.

しかしながら、二次電池はその充放電回数などによって充放電できる蓄電容量が劣化するため、製品寿命を延ばす劣化抑制技術や長寿命化技術が重要となっている。   However, since the storage capacity of the secondary battery that can be charged / discharged is deteriorated depending on the number of times of charging / discharging, a deterioration suppressing technique and a long life extending technique are important.

蓄電部を構成する二次電池は、その充放電回数、保存電圧、保存期間など使用履歴によって劣化の進み方が変化する。特に、二次電池の充電上限電圧が高い場合、および放電下限電圧が低い場合に劣化の進度が大きくなる。既存の劣化抑制技術では充電上限電圧が低ければ低いほど劣化が抑制されることから、充電上限電圧を低くし蓄電容量を制限することで劣化を抑制していた。   The progress of deterioration of the secondary battery constituting the power storage unit varies depending on the usage history such as the number of times of charging / discharging, the storage voltage, and the storage period. In particular, the progress of deterioration increases when the charge upper limit voltage of the secondary battery is high and when the discharge lower limit voltage is low. In the existing deterioration suppression technology, the lower the charging upper limit voltage, the more the deterioration is suppressed. Therefore, the deterioration is suppressed by lowering the charging upper limit voltage and limiting the storage capacity.

また特許文献1には次のような二次電池システムが記載されている。電池電圧Vと、電池容量Qの変化を電池電圧Vの変化で除算した値dQ/dVとの関係を表すV-dQ/dV曲線は第1,第2の2つのピークを持つ。ピーク間の電圧である実測電圧差分値に基づいて二次電池の内部状態(内部抵抗上昇、接続不良、内部微小短絡の発生)を判断する。さらに、二次電池の充放電電圧を、第2ピーク(電池電圧が高い方のピーク)に相当する電圧を上回らないようにすることで、正極からのMn2+の溶出を抑制する。 Patent Document 1 describes the following secondary battery system. The V-dQ / dV curve representing the relationship between the battery voltage V and the value dQ / dV obtained by dividing the change in the battery capacity Q by the change in the battery voltage V has first and second peaks. The internal state of the secondary battery (internal resistance increase, poor connection, occurrence of internal minute short circuit) is determined based on the actually measured voltage difference value that is the voltage between the peaks. Furthermore, by preventing the charge / discharge voltage of the secondary battery from exceeding the voltage corresponding to the second peak (the peak with the higher battery voltage), elution of Mn 2+ from the positive electrode is suppressed.

また特許文献2では、劣化量Dが所定値を越えたら上限電圧の使用域を上げており、それによってバッテリー性能寿命が延びるとしている。特許文献2ではdQ/dVについての言及はない。   Further, in Patent Document 2, when the deterioration amount D exceeds a predetermined value, the usage range of the upper limit voltage is increased, thereby extending the battery performance life. Patent Document 2 does not mention dQ / dV.

特許第5287872号公報Japanese Patent No.5287872 特開2012-085452号公報JP 2012-085452 JP

特許文献1ではdQ/dVの第2ピークに相当する電池電圧以下になるように制御している。しかし電池電圧の下限には着目していない。   In patent document 1, it controls so that it may become below the battery voltage corresponded to the 2nd peak of dQ / dV. However, no attention is paid to the lower limit of the battery voltage.

本発明の目的は、電池電圧の上下限に着目して蓄電部の充放電条件を制御することで、二次電池の劣化を効果的に抑制できる電池制御装置及び電池制御システムを提供することにある。   An object of the present invention is to provide a battery control device and a battery control system capable of effectively suppressing deterioration of a secondary battery by controlling charge / discharge conditions of a power storage unit by paying attention to upper and lower limits of the battery voltage. is there.

本発明は、蓄電装置からの総電圧または電池電圧の情報を用いて充放電装置の充放電を制御する電池制御装置であって、前記蓄電装置の総電圧Vまたは前記蓄電装置が有する電池の電池電圧Vの使用上限値および使用下限値を含む上下限電圧範囲を計算する上下限電圧計算手段と、前記上下限電圧範囲内で前記蓄電装置が動作した場合の使用可能な蓄電電力量を計算する蓄電電力量計算手段を備え、前記上下限電圧範囲の範囲内で充放電装置へ充放電を指示する充放電指示手段と、を備え、前記上下限電圧計算手段は前記総電圧Vまたは電池電圧Vと前記蓄電装置の容量Qから求められるV−dQ/dV特性を用いて前記上下限電圧範囲を計算し、前記蓄電電力量が予め定められた値を下回った場合に、前記上下限電圧計算手段は、前記蓄電電力量が予め定められた値を上回るように前記上下限電圧範囲を計算する電池制御装置である。   The present invention relates to a battery control device that controls charging / discharging of a charging / discharging device using information on a total voltage or a battery voltage from a power storage device, the battery voltage of the power storage device or a battery of the battery included in the power storage device Upper / lower limit voltage calculation means for calculating an upper / lower limit voltage range including an upper limit value and a lower limit value for use of voltage V, and an amount of stored stored energy when the power storage device operates within the upper / lower limit voltage range A charge / discharge instruction means for instructing charge / discharge devices to charge / discharge within a range of the upper / lower limit voltage range, and the upper / lower limit voltage calculation means includes the total voltage V or the battery voltage V. And the upper and lower limit voltage range using the V-dQ / dV characteristic obtained from the capacity Q of the power storage device, and the upper and lower limit voltage calculation means when the stored power amount falls below a predetermined value Is determined in advance. A battery control unit for calculating the upper and lower limit voltage range to exceed the obtained values.

本発明によれば、二次電池の劣化を効果的に抑制した電池制御装置及び電池制御システムを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the battery control apparatus and battery control system which suppressed the deterioration of the secondary battery effectively can be provided.

第1の実施形態に係る電池制御装置の構成をその使用環境も含めて示した図である。It is the figure which showed the structure of the battery control apparatus which concerns on 1st Embodiment also including the use environment. 第1の実施形態に係る電池制御装置が行う制御フローチャートである。It is a control flowchart which the battery control apparatus which concerns on 1st Embodiment performs. 第1の実施形態に係る電池制御装置がどのよう上下限総電圧を決定するかを説明するための図である。It is a figure for demonstrating how the battery control apparatus which concerns on 1st Embodiment determines an upper / lower limit total voltage. 第1の実施形態に係る電池制御装置がV−dQ/dVを逐次計算していくのを説明するための図である。It is a figure for demonstrating that the battery control apparatus which concerns on 1st Embodiment calculates V-dQ / dV sequentially. 二次電池が経時劣化して、当初設定した上下限総電圧範囲を用いた充放電条件では要求される容量QLOWを維持できない場合の再設定を説明するための図である。It is a figure for demonstrating the reset when the capacity | capacitance QLOW required by the charge / discharge conditions using the initially set upper and lower limit total voltage range cannot be maintained because a secondary battery deteriorates with time. 個々の二次電池についてV−dQ/dV特性を求め、上下限電圧を求める手法を説明する図である。It is a figure explaining the method of calculating | requiring V-dQ / dV characteristic about each secondary battery, and calculating | requiring an upper / lower limit voltage.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施形態)
本発明者は、劣化の抑制効果を判断するために、電圧Vに対する蓄電電力量Q(以下蓄電容量、容量とも称する)の傾きdQ/dVに注目した。dQ/dVは、ある電圧範囲で蓄電できる蓄電容量を表しており、一般的にリチウムイオン二次電池を含む二次電池のdQ/dVは複数のピークを持つ。このピークは充電や放電時の化学反応に起因しており、その位置、数や大きさは正極、負極、電解液の組成、充放電電流等によって変化する。この複数あるピークの間には谷が存在し、この谷の電圧範囲では、両脇のピークに相当する化学反応が同時に生じていることから、意図外の化学反応がおこり、劣化が加速されると考えた。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(First embodiment)
The present inventor paid attention to the slope dQ / dV of the stored power amount Q (hereinafter also referred to as storage capacity or capacity) with respect to the voltage V in order to determine the effect of suppressing deterioration. dQ / dV represents a storage capacity that can be stored in a certain voltage range. Generally, dQ / dV of a secondary battery including a lithium ion secondary battery has a plurality of peaks. This peak is attributed to a chemical reaction during charging or discharging, and the position, number, and size vary depending on the positive electrode, the negative electrode, the composition of the electrolytic solution, the charge / discharge current, and the like. There is a valley between these peaks, and in this voltage range, chemical reactions corresponding to the peaks on both sides occur at the same time, causing unintended chemical reactions and accelerating degradation. I thought.

つまり、本発明者は、二次電池の使用電力を維持できる電圧範囲のうち、電圧Vに対するdQ/dVの変動がピークを含み、谷を極力含まないように選ばれた電圧範囲で使用することで、最低限必要な容量を維持したまま、二次電池の劣化を抑制できることを見出した。本発明者は、ピークとピークの間の谷の電圧では両脇のピークに相当する化学反応が同時に生じているので意図外の化学反応が起こり、劣化が促進されると推測している。   In other words, the present inventor uses the voltage range selected so that the fluctuation of dQ / dV with respect to the voltage V includes a peak and does not include a valley as much as possible, among the voltage range in which the power consumption of the secondary battery can be maintained. Thus, the inventors have found that the deterioration of the secondary battery can be suppressed while maintaining the minimum necessary capacity. The present inventor presumes that the chemical reaction corresponding to the peaks on both sides occurs simultaneously at the valley voltage between the peaks, so that an unintended chemical reaction occurs and the deterioration is promoted.

図1は、第1の実施形態に係る電池制御システム10をその使用環境とともに示した図である。電池制御システム10は、複数の二次電池で構成された蓄電装置100と、それを充放電する充放電装置200と、それらを制御する制御装置300で構成される。図1には、充放電装置200と接続した外部電力網400,制御装置300に制御指令を与える外部システム500も示している。ここでいう使用環境とは外部電力網、外部制御システムのことである。   FIG. 1 is a diagram showing a battery control system 10 according to the first embodiment together with its use environment. The battery control system 10 includes a power storage device 100 composed of a plurality of secondary batteries, a charge / discharge device 200 that charges and discharges the power storage device 100, and a control device 300 that controls them. FIG. 1 also shows an external system 500 that gives a control command to an external power network 400 and a control device 300 connected to the charge / discharge device 200. The use environment here refers to an external power network and an external control system.

蓄電装置100は、複数の二次電池101が直列に接続された蓄電手段102、電池電圧測定手段103、総電圧測定手段104によって構成される。蓄電手段102は、リチウムイオン二次電池などの充放電可能な蓄電部品で構成され、充放電装置200との充放電電力のやりとりで蓄電量および電圧が変化する機能を持つ。   The power storage device 100 includes a power storage unit 102, a battery voltage measurement unit 103, and a total voltage measurement unit 104 in which a plurality of secondary batteries 101 are connected in series. The power storage means 102 is composed of a chargeable / dischargeable power storage component such as a lithium ion secondary battery, and has a function of changing the power storage amount and voltage by exchanging charge / discharge power with the charge / discharge device 200.

電池電圧測定手段103は、たとえば電圧センサ、オペアンプなどで構成され、二次電池の電圧を個別に測定する機能を有す。総電圧測定手段104は、たとえば電圧センサ、オペアンプなどで構成され、直列に接続された前記二次電池の電圧の合計値である総電圧を測定する機能を備えている。また蓄電装置100は制御装置300との間で情報のやりとりを行う。   The battery voltage measuring means 103 is composed of, for example, a voltage sensor, an operational amplifier, etc., and has a function of individually measuring the voltage of the secondary battery. The total voltage measuring means 104 is composed of, for example, a voltage sensor, an operational amplifier, etc., and has a function of measuring a total voltage that is a total value of the voltages of the secondary batteries connected in series. In addition, the power storage device 100 exchanges information with the control device 300.

充放電装置200は、充放電手段201で構成される。充放電手段201は、ACDCコンバータ、DCDCコンバータ、PCS(Power Condition Subsystem)などで構成され、制御装置300からの充放電指示に従って蓄電装置100と外部電力網400との間で電力をやり取りする。   The charging / discharging device 200 includes charging / discharging means 201. Charging / discharging means 201 includes an ACDC converter, a DCDC converter, a PCS (Power Condition Subsystem), and the like, and exchanges power between power storage device 100 and external power network 400 in accordance with a charge / discharge instruction from control device 300.

制御装置300は、充放電指示手段301、上下限総電圧記憶手段302、上下限総電圧計算手段303、蓄電電力量計算手段304で構成される。制御装置300は外部システム500からの制御指令に従いながら、蓄電装置100の状態に応じて充放電装置200に対して制御つまり充放電指示手段301からの充放電指示を行う。   The control device 300 includes charge / discharge instruction means 301, upper / lower limit total voltage storage means 302, upper / lower limit total voltage calculation means 303, and stored power amount calculation means 304. While following the control command from external system 500, control device 300 controls charge / discharge device 200 according to the state of power storage device 100, that is, issues a charge / discharge instruction from charge / discharge instruction means 301.

図2は、第1の実施形態に係る制御システムが行う制御フローチャートの例である。   FIG. 2 is an example of a control flowchart performed by the control system according to the first embodiment.

充放電動作が開始された時(A1)、上下限総電圧計算手段303は予め蓄電装置100から与えられた二次電池101の電池電圧および蓄電装置の総電圧などの特性を考慮して、要求される容量QLOWを確保できる上下限総電圧範囲を計算する。計算結果を上下限総記憶手段302が記憶する(A2)。上下限総電圧範囲の決定方法を図3(a)、(b)に示す。 When the charging / discharging operation is started (A1), the upper and lower limit total voltage calculating means 303 requests the battery in consideration of characteristics such as the battery voltage of the secondary battery 101 and the total voltage of the power storage device given in advance from the power storage device 100 Calculate the upper and lower total voltage range that can secure the capacity Q LOW . The upper and lower limit total storage means 302 stores the calculation result (A2). A method for determining the upper and lower limit total voltage range is shown in FIGS.

図3(a)の右側に二次電池の充放電容量Qとセル電圧Vの関係を示すQ-V特性を示す。このQ-V特性を変形し、図3(a)の左側に示すV-dQ/dV特性を求める。図3(b)は図3(a)の左側と同じ図である。V-dQ/dV特性は通常、複数のピークを有する。なおV-dQ/dVは以下dQ/dVと略称することがある。ここで用いるVはセル電圧が望ましいが、蓄電装置の総電圧でもよい。   The QV characteristic indicating the relationship between the charge / discharge capacity Q of the secondary battery and the cell voltage V is shown on the right side of FIG. This Q-V characteristic is modified to obtain the V-dQ / dV characteristic shown on the left side of FIG. FIG. 3B is the same view as the left side of FIG. The V-dQ / dV characteristic usually has a plurality of peaks. V-dQ / dV may be abbreviated as dQ / dV hereinafter. V used here is preferably a cell voltage, but may be the total voltage of the power storage device.

dQ/dVに複数の山がある場合、dQ/dVが等しい電圧は複数存在する。このうち、dQ/dVが最大となる電圧に最も近い上限値および下限値を選択する。dQ/dVが大きな電圧付近で蓄電装置100を充放電することで、二次電池の上下限総電圧範囲を狭くすることが可能となる。ここでは、dQ/dVが最大となる電圧を含み、あらかじめ定められた充放電電力容量QLOWを維持できる範囲で、できる限り電圧差が小さい上下限総電圧範囲を設定することが好ましい。この時、上下限総電圧範囲は充電時と放電時で異なる範囲となってもよい。dQ/dVが最大となる電圧を含んだ電圧範囲を設定する理由は、その電圧範囲が最も容量が大きいためである。同じ電圧差であれば、容量が大きい範囲を使うと良い。逆に同じ容量であれば、狭い電圧範囲で使用した方がよい。 When there are multiple peaks in dQ / dV, there are multiple voltages with the same dQ / dV. Among these, an upper limit value and a lower limit value that are closest to the voltage at which dQ / dV is maximized are selected. By charging / discharging the power storage device 100 in the vicinity of a voltage having a large dQ / dV, the upper and lower limit total voltage range of the secondary battery can be narrowed. Here, it is preferable to set an upper and lower limit total voltage range in which the voltage difference is as small as possible within a range in which a predetermined charge / discharge power capacity Q LOW can be maintained including a voltage at which dQ / dV is maximized. At this time, the upper and lower limit total voltage range may be different between charging and discharging. The reason why the voltage range including the voltage at which dQ / dV is maximized is set because the voltage range has the largest capacity. If the voltage difference is the same, it is better to use a large capacity range. On the other hand, if it is the same capacity, it is better to use it in a narrow voltage range.

なお図1の場合、あらかじめ定められた充放電電力容量QLOWは二次電池システム10が外部電力網400から要求される電力容量もしくは、出荷時に設定された値である。 In the case of FIG. 1, the predetermined charge / discharge power capacity Q LOW is a power capacity required by the secondary battery system 10 from the external power network 400 or a value set at the time of shipment.

図2に示す通り、上下限総電圧範囲を設定後、外部システム500からの指示、実際には充放電指示手段301からの指示に従い、充放電装置200は充放電動作を継続する(A3)。充放電動作を行いながら、充放電動作中のある定められた時間以上の期間にある定められた電力もしくは電流以下での定電流動作もしくは定電力動作がなされた場合には、蓄電電力量計算手段304はその情報つまり蓄電電力量Qを記憶しておき、逐次dQ/dVを計算し記憶する(A4)。使用時間が増えるにしたがって徐々にdQ/dV特性が完成する。たとえば、放電レート1/10Cで1時間以上の定電流動作が継続された場合、蓄電電力量計算手段304はその期間のdQ/dVを計算し記憶する。図4はその様子を表した図である。図4の上側には、セル電圧と電流レートの使用履歴の例を示す。ここで1Cは、公称容量の電池を定格放電してちょうど1時間(1h)で放電終了となる電流値のことである。   As shown in FIG. 2, after setting the upper and lower limit total voltage range, the charging / discharging device 200 continues the charging / discharging operation in accordance with an instruction from the external system 500, actually according to an instruction from the charging / discharging instruction unit 301 (A 3). In the case where a constant current operation or a constant power operation is performed at or below a predetermined power or current in a period longer than a predetermined time during the charge / discharge operation while performing the charge / discharge operation, the stored energy calculation means 304 stores the information, that is, the stored electric energy Q, and sequentially calculates and stores dQ / dV (A4). The dQ / dV characteristics are gradually completed as the usage time increases. For example, when a constant current operation for 1 hour or more is continued at a discharge rate of 1/10 C, the stored energy calculation means 304 calculates and stores dQ / dV for that period. FIG. 4 is a diagram showing this state. On the upper side of FIG. 4, an example of the usage history of the cell voltage and current rate is shown. Here, 1 C is a current value at which discharge is finished in just one hour (1 h) after rated discharge of a battery having a nominal capacity.

ここで電流レートは、充電時を正、放電時を負の数値で示している。使用履歴から、±1C以下の電流レートが1時間継続した場合の電圧と電流値から計算した電力量を抽出し、dQ/dVを計算する。これらdQ/dVの断片を組み合わせることで、V-dQ/dV特性を再現したのが図4の下の図である。このように計算されたV-dQ/dV特性を用いて、dQ/dVが最大となる電圧を含み、あらかじめ定められた充放電電力容量QLOWを維持でき、かつ、出来る限り範囲が小さい上下限総電圧範囲を設定することが好ましい。出来る限り範囲が小さい方が好ましい理由は、dQ/dVの谷を含むと上下限電圧の範囲が広くなるので、劣化が大きくなると考えられるためである。劣化を少なくするためには、電圧差が小さいことが望ましい。 Here, the current rate is indicated by a positive numerical value during charging and a negative numerical value during discharging. From the usage history, extract the electric energy calculated from the voltage and current value when the current rate of ± 1C or less continues for 1 hour, and calculate dQ / dV. The lower diagram of FIG. 4 reproduces the V-dQ / dV characteristics by combining these dQ / dV fragments. Using the V-dQ / dV characteristics calculated in this way, it is possible to maintain the predetermined charge / discharge power capacity Q LOW including the voltage at which dQ / dV is maximized, and the range is as small as possible. It is preferable to set the total voltage range. The reason why it is preferable that the range is as small as possible is that if the valley of dQ / dV is included, the range of the upper and lower limit voltages is widened, so that the deterioration is considered to be large. In order to reduce deterioration, it is desirable that the voltage difference is small.

その後充放電指示手段301から充放電停止指示があった場合(A5のYes)は、充放電動作を停止する(A7)。   Thereafter, when there is a charge / discharge stop instruction from the charge / discharge instruction means 301 (Yes in A5), the charge / discharge operation is stopped (A7).

充放電指示手段301から充放電停止指示がない場合(A5のNo)は、充放電を継続する。蓄電電力量計算手段304は、蓄電電力量Qが上述のあらかじめ定められた充放電電力容量QLOWを下回っているかどうかを、適宜のタイミングでチェックする。下回っていない場合(A6のNo)は充放電動作を継続する(A3)。下回った場合(A6のYes)、蓄電電力量計算手段304は稼働当初に設定した上下限総電圧範囲を再設定する。以下この再設定について説明する。 When there is no charge / discharge stop instruction from the charge / discharge instruction means 301 (No in A5), the charge / discharge is continued. The stored power amount calculation means 304 checks at an appropriate timing whether the stored power amount Q is below the above-described predetermined charge / discharge power capacity Q LOW . If not lower (No in A6), the charge / discharge operation is continued (A3). When it falls below (Yes of A6), the stored energy calculation means 304 resets the upper and lower limit total voltage range set at the beginning of operation. This resetting will be described below.

dQ/dV特性は二次電池101の経時劣化等の理由により変化する。その結果当初設定した上下限総電圧範囲を用いた充放電条件では要求される容量QLOWを維持できなくなる。その場合には、dQ/dV特性を再測定しそれを元にして上下限総電圧範囲計算手段303が上下限総電圧を再計算し、再設定する(図2のA6)。再設定とは例えば、dQ/dVが最大となる電圧を中心とし、要求される容量QLOWを満足するまで上下限総電圧の上限値と下限値の少なくとも一方をdQ/dVが等しい値になるように上下限総電圧範囲を変更することである。通常は上下限総電圧範囲を広げていく。 The dQ / dV characteristics change due to reasons such as deterioration of the secondary battery 101 over time. As a result, the required capacity Q LOW cannot be maintained under the charge / discharge conditions using the initially set upper and lower limit total voltage range. In that case, the dQ / dV characteristic is measured again, and based on this, the upper and lower limit total voltage range calculation means 303 recalculates and resets the upper and lower limit total voltage (A6 in FIG. 2). For example, the reset is centered on the voltage at which dQ / dV is maximum, and dQ / dV is equal to at least one of the upper limit value and the lower limit value of the upper and lower total voltage until the required capacity Q LOW is satisfied. Thus, the upper and lower limit total voltage range is changed. Normally, the upper and lower total voltage range is expanded.

図3(c)、(d)は、劣化によってdQ/dVが変化した場合の上下限総電圧範囲をこの順に時系列で表したものである。図中ではdQ/dVは点線→破線→一点鎖線の順に変化している。dQ/dVが最大となる電圧が変化するごとに、充放電範囲を変えている。容量QLOW以上を保ちつつ劣化を最小に抑える上下限総電圧範囲を設定する。 FIGS. 3C and 3D show the upper and lower limit total voltage ranges in time series in this order when dQ / dV changes due to deterioration. In the figure, dQ / dV changes in the order of a dotted line, a broken line, and an alternate long and short dash line. The charge / discharge range is changed each time the voltage at which dQ / dV is maximized changes. Set the upper and lower total voltage range that minimizes deterioration while maintaining the capacity Q LOW or higher.

図5(a)、(b)は図3(c)、(d)と同じ図である。図5(a)の破線のdQ/dVでは、点線に比べて最大ピーク値が下がっており、dQ/dVが最大となる電圧を中心にして両側の谷を含まないように上下限総電圧範囲を設定するとQLOWを満足しない(図中の「要求される容量が足りない上下限総電圧範囲」)。そのため下限値を、dQ/dVが最大となる電圧に二番目に近いdQ/dVが等しい電圧に広げている(図中の「要求される容量を満足する上下限総電圧範囲」)。この結果、上下限総電圧範囲の蓄電容量がQLOWを満足すればその上下限総電圧範囲を用い、満足しない場合は再度上限値または下限値をさらに更新する。なお図5(a)では更新した上下限総電圧範囲はdQ/dV特性の谷を一つ含んでいるが、含まれる谷の数を最小限にすることで二次電池の劣化をできる限り防止する。 FIGS. 5A and 5B are the same as FIGS. 3C and 3D. In the dQ / dV indicated by the broken line in FIG. 5 (a), the maximum peak value is lower than the dotted line, and the upper and lower total voltage ranges are such that the valleys on both sides are not included around the voltage at which dQ / dV is maximum. When is set, Q LOW is not satisfied (“Total upper and lower voltage range where required capacity is insufficient” in the figure). For this reason, the lower limit value is expanded to a voltage having the same dQ / dV that is second closest to the voltage that maximizes dQ / dV (“upper and lower limit total voltage range that satisfies the required capacity” in the figure). As a result, if the storage capacity of the upper / lower limit total voltage range satisfies Q LOW , the upper / lower limit total voltage range is used, and if not, the upper limit value or lower limit value is updated again. In FIG. 5 (a), the updated upper and lower total voltage range includes one dQ / dV characteristic trough. By minimizing the number of troughs included, the secondary battery can be prevented from being degraded as much as possible. To do.

図5(b)は二次電池101の劣化が更に進んで、dQ/dV特性が一点鎖線のように変化した場合を示す。最も低電圧側のピークがdQ/dVが最大となる電圧である。この場合下限総電圧を最大ピークを含むように広げ、上限総電圧は谷を含まないよう図5(a)よりも少し低くする。   FIG. 5B shows a case where the secondary battery 101 is further deteriorated and the dQ / dV characteristic changes as indicated by a one-dot chain line. The peak on the lowest voltage side is the voltage at which dQ / dV is maximum. In this case, the lower limit total voltage is expanded to include the maximum peak, and the upper limit total voltage is set slightly lower than that in FIG.

なおここで設定した上下限総電圧範囲は劣化を抑制するための目安であり、非常時などの高い充電要求・放電要求がある場合には無視することも可能である。   The upper and lower limit total voltage range set here is a guideline for suppressing deterioration, and can be ignored when there is a high charge request / discharge request in an emergency or the like.

なお再設定のタイミングは任意で良いが、例えば、実際の使用可能容量がある閾値を下回った場合、制御装置300は、容量が足りなくなったと判断して再設定を指示する。これ以外のタイミングとしては、定期的(6か月毎、1年毎など)に行う、dQ/dVの断片が得られる定電流での運用がなされるタイミングで行う等が考えられる。   Although the resetting timing may be arbitrary, for example, when the actual usable capacity falls below a certain threshold, the control device 300 determines that the capacity is insufficient and instructs the resetting. Other timing may be performed periodically (every 6 months, every year, etc.) or at a timing at which operation with a constant current at which a dQ / dV fragment is obtained.

上限値の範囲を広げるか下限値の範囲を広げるかで、システム思想が変わる。上限値が高くなるように広げることで、下限値を高くすることができ、非常時に下限値以下の残量を使用することが可能となる。一方、下限値が低くなるように広げることで、上限値を低くすることができ、劣化を抑制することができる。   The system philosophy changes depending on whether the upper limit range is expanded or the lower limit range is expanded. By expanding the upper limit value to be higher, the lower limit value can be increased, and the remaining amount equal to or lower than the lower limit value can be used in an emergency. On the other hand, by expanding the lower limit value to be lower, the upper limit value can be lowered and deterioration can be suppressed.

以上説明したように、二次電池のV-dQ/dV特性を計算して、大きなdQが得られる電圧範囲を設定することにより、必要な容量を維持しながら、充放電動作に伴う二次電池の劣化を効果的に抑制することができる。本実施形態の電池制御システムは、外から見ると一定容量を確保したまま劣化が少ないシステムに見える。また蓄電容量Qを維持したまま、上下限電圧の差を最小にするシステムに見える。
(第2の実施形態)
第1の実施形態で「ここで用いるVはセル電圧が望ましいが、蓄電装置の総電圧でもよい」と述べた。個々の二次電池101のdQ/dV特性が揃っている理想的な状態であれば、総電圧を使うのもセル電圧を使うのも同じである。しかし経時変化等によって二次電池にバラつきが存在する場合は、まずすべての二次電池101のdQ/dVから谷電圧を個別に求める。そして最大ピークを含んだ電圧範囲であって、この最大ピークに最も近い(内側の)谷の間の電圧範囲を上下限電圧とする。図6では二次電池が3つある場合の上下限電圧を求めている。各二次電池101の最大ピークが3本重なっており、そのうちの最も高いピークを含み、両側の谷を含まない狭い電圧範囲を上下限電圧としている。図6では最も長い縦の細線の間の電圧として示している。なお、劣化等によってdQ/dV特性が変化した場合の上下限電圧の再設定方法は第1の実施形態と同様である。
As described above, by calculating the V-dQ / dV characteristic of the secondary battery and setting a voltage range in which a large dQ can be obtained, the secondary battery accompanying the charge / discharge operation is maintained while maintaining the necessary capacity. Can be effectively suppressed. The battery control system of this embodiment looks like a system with little deterioration while ensuring a constant capacity when viewed from the outside. Moreover, it looks like a system that minimizes the difference between the upper and lower limit voltages while maintaining the storage capacity Q.
(Second Embodiment)
In the first embodiment, “V used here is preferably a cell voltage, but may be a total voltage of a power storage device”. If the dQ / dV characteristics of each secondary battery 101 are ideal, the total voltage is the same as the cell voltage. However, if there are variations in secondary batteries due to changes over time or the like, first, valley voltages are obtained individually from dQ / dV of all secondary batteries 101. The voltage range including the maximum peak and between the valleys (inner) closest to the maximum peak is defined as the upper and lower limit voltages. In FIG. 6, the upper and lower limit voltages when there are three secondary batteries are obtained. Three maximum peaks of each secondary battery 101 overlap, and a narrow voltage range including the highest peak and not including valleys on both sides is set as the upper and lower limit voltages. FIG. 6 shows the voltage between the longest vertical thin lines. A method for resetting the upper and lower limit voltages when the dQ / dV characteristic changes due to deterioration or the like is the same as that in the first embodiment.

総電圧でdQ/dVを求めた場合、個別に求めた場合に比べ広い谷電圧となるため、いくつかのセル(二次電池)において個別に求めた谷電圧よりも広い上下限電圧で充放電される。そのため個別に求めた場合に比べれば劣化が加速される。劣化をより抑制するには個別セル電圧を求める方が好ましい。しかしすべてのセルのdQ/dVを個別に求められない場合または計算を簡略化したい場合には、総電圧のdQ/dVを用いて代用する。
(他の実施形態)
再設定について述べる。第1の実施形態では、再設定は、二次電池の稼働初期はQLOWを満足していたが劣化でdQ/dVが変化して満足しなくなった状況で行っている。しかし要求されるQLOWが高いと蓄電装置の使用初期に計算してもQLOWを満足しない場合もありうる。その場合でも同様に再設定すればよい。
When dQ / dV is calculated from the total voltage, the valley voltage is wider than that obtained individually. Therefore, charging and discharging is performed with a wider upper and lower limit voltage than the valley voltage obtained individually in some cells (secondary batteries). Is done. Therefore, the deterioration is accelerated as compared with the case of obtaining individually. In order to further suppress the deterioration, it is preferable to obtain the individual cell voltage. However, if the dQ / dV of all cells cannot be obtained individually or if it is desired to simplify the calculation, the total voltage dQ / dV is used instead.
(Other embodiments)
Describe the resetting. In the first embodiment, the resetting is performed in a situation where the secondary battery satisfies Q LOW in the initial operation, but dQ / dV changes due to deterioration and is no longer satisfied. However, if the required Q LOW is high, there is a case where Q LOW is not satisfied even if calculation is performed in the initial stage of use of the power storage device. Even in that case, the resetting may be performed similarly.

また第1の実施形態では上下限総電圧記憶手段302と上下限総電圧計算手段303を別々に設けているが、上下限総電圧計算手段303に記憶機能があれば上下限総電圧記憶手段302は省略できる。   In the first embodiment, the upper and lower limit total voltage storage unit 302 and the upper and lower limit total voltage calculation unit 303 are provided separately. However, if the upper and lower limit total voltage calculation unit 303 has a storage function, the upper and lower limit total voltage storage unit 302 is provided. Can be omitted.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

10 電池制御システム
100 蓄電装置
101 二次電池
102 蓄電手段
103 電池電圧測定手段
104 総電圧測定手段
200 充放電装置
201 充放電手段
300 制御装置
301 充放電指示手段
302 上下限総電圧記憶手段
303 上下限総電圧計算手段
304 蓄電電力量計算手段
400 外部電力網
500 外部システム
DESCRIPTION OF SYMBOLS 10 Battery control system 100 Power storage device 101 Secondary battery 102 Power storage means 103 Battery voltage measurement means 104 Total voltage measurement means 200 Charge / discharge device 201 Charge / discharge means 300 Control device 301 Charge / discharge instruction means 302 Upper / lower limit total voltage storage means 303 Upper / lower limit Total voltage calculation means 304 Charged energy calculation means 400 External power network 500 External system

Claims (10)

蓄電装置からの総電圧または電池電圧の情報を用いて充放電装置の充放電を制御する電池制御装置であって、
前記蓄電装置の総電圧Vまたは前記蓄電装置が有する電池の電池電圧Vの使用上限値および使用下限値を含む上下限電圧範囲を計算する上下限電圧計算手段と、
前記上下限電圧範囲内で前記蓄電装置が動作した場合の使用可能な蓄電電力量を計算する蓄電電力量計算手段を備え、
前記上下限電圧範囲の範囲内で充放電装置へ充放電を指示する充放電指示手段と、
を備え、
前記上下限電圧計算手段は前記総電圧Vまたは電池電圧Vと前記蓄電装置の容量Qから求められるV−dQ/dV特性を用いて前記上下限電圧範囲を計算し、
前記蓄電電力量が予め定められた値を下回った場合に、前記上下限電圧計算手段は、前記蓄電電力量が予め定められた値を上回るように前記上下限電圧範囲を計算する電池制御装置。
A battery control device that controls charging / discharging of the charging / discharging device using information on the total voltage or battery voltage from the power storage device,
Upper and lower limit voltage calculating means for calculating an upper and lower limit voltage range including a use upper limit value and a use lower limit value of the total voltage V of the power storage device or the battery voltage V of the battery included in the power storage device;
A storage power amount calculating means for calculating a usable stored power amount when the power storage device operates within the upper and lower limit voltage range;
Charge / discharge instruction means for instructing charge / discharge to the charge / discharge device within the range of the upper and lower limit voltage ranges;
With
The upper and lower limit voltage calculating means calculates the upper and lower limit voltage range using a V-dQ / dV characteristic obtained from the total voltage V or the battery voltage V and the capacity Q of the power storage device,
The battery control apparatus that calculates the upper and lower limit voltage ranges so that the stored power amount exceeds a predetermined value when the stored power amount falls below a predetermined value.
前記上下限電圧計算手段は、V-dQ/dV特性の最大ピークを含む電圧範囲を計算する請求項1に記載の電池制御装置。 The battery control device according to claim 1, wherein the upper and lower limit voltage calculating means calculates a voltage range including a maximum peak of V-dQ / dV characteristics. 前記上下限総電圧として前記V-dQ/dV特性の谷の領域を含まない請求項1または2に記載の電池制御装置。   The battery control device according to claim 1, wherein the upper and lower limit total voltage does not include a valley region of the V-dQ / dV characteristic. 前記蓄電電力量が予め定められた値を下回った場合に、前記上下限総電圧として前記V-dQ/dV特性の谷の領域を含める請求項2に記載の電池制御装置。   3. The battery control device according to claim 2, wherein a region of a valley of the V-dQ / dV characteristic is included as the upper and lower limit total voltage when the stored electric energy is lower than a predetermined value. 充放電動作中にある定められた電力もしくは電流以下での定電流動作もしくは定電力動作がなされた場合には、その情報を記憶しておき、逐次V-dQ/dVを計算する請求項1から4のいずれか1項に記載の電池制御装置。   When a constant current operation or a constant power operation below a predetermined power or current during a charge / discharge operation is performed, the information is stored and V-dQ / dV is sequentially calculated. The battery control device according to any one of 4. 運用中における前記総電圧Vまたは電池電圧Vを用いてdQ/dVを部分的に求め、それら組み合わせることでV-dQ/dV特性を計算する請求項5に記載の電池制御装置。   6. The battery control device according to claim 5, wherein dQ / dV is partially obtained by using the total voltage V or battery voltage V during operation, and V-dQ / dV characteristics are calculated by combining them. 運用中に得られる電流および電圧データから予め定められた電流以下の定電流充電もしくは定電流放電の時の前記電流および電圧データをV-dQ/dVの計算に用いる請求項5または6に記載の電池制御装置。   The current and voltage data at the time of constant current charge or constant current discharge equal to or lower than a predetermined current from current and voltage data obtained during operation are used for calculating V-dQ / dV. Battery control device. V-dQ/dV特性の経時劣化により前記上下限電圧範囲を再度計算して設定する請求項1から7のいずれか1項に記載の電池制御装置。   The battery control device according to any one of claims 1 to 7, wherein the upper and lower limit voltage ranges are calculated and set again due to deterioration with time of V-dQ / dV characteristics. 前記電池電圧Vを用いて前記V−dQ/dV特性を求め前記上下限電圧範囲を計算する場合、
個々の前記電池のV-dQ/dV特性のうちの最大ピークを含み谷を含まない電圧範囲を前記上下限電圧範囲とする請求項2から8のいずれか1項に記載の電池制御装置。
When calculating the upper and lower limit voltage range by obtaining the V-dQ / dV characteristics using the battery voltage V,
9. The battery control device according to claim 2, wherein a voltage range that includes a maximum peak and does not include a valley among the V-dQ / dV characteristics of each of the batteries is the upper and lower limit voltage range.
請求項1から9のいずれか1項の電池制御装置を用い、
前記蓄電装置は、複数の二次電池が直列に接続された蓄電手段と、前記二次電池の電池電圧値をそれぞれ測定する電池電圧測定手段と、前記蓄電手段の総電圧値を測定する総電圧測定手段とを備え、
前記充放電装置は、前記電池制御装置の指示に従って前記蓄電装置を充放電する充放電手段を備えた電池制御システム。
Using the battery control device according to any one of claims 1 to 9,
The power storage device includes power storage means in which a plurality of secondary batteries are connected in series, battery voltage measurement means for measuring the battery voltage value of the secondary battery, and total voltage for measuring the total voltage value of the power storage means. Measuring means,
The charging / discharging device is a battery control system including charging / discharging means for charging / discharging the power storage device in accordance with an instruction from the battery control device.
JP2014136471A 2014-07-02 2014-07-02 Battery control device and battery control system Expired - Fee Related JP6405754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014136471A JP6405754B2 (en) 2014-07-02 2014-07-02 Battery control device and battery control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014136471A JP6405754B2 (en) 2014-07-02 2014-07-02 Battery control device and battery control system

Publications (2)

Publication Number Publication Date
JP2016015820A true JP2016015820A (en) 2016-01-28
JP6405754B2 JP6405754B2 (en) 2018-10-17

Family

ID=55231624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014136471A Expired - Fee Related JP6405754B2 (en) 2014-07-02 2014-07-02 Battery control device and battery control system

Country Status (1)

Country Link
JP (1) JP6405754B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017200312A (en) * 2016-04-27 2017-11-02 Jmエナジー株式会社 Control device and control method for capacitor cell, and control device and control method for battery cell
CN107526038A (en) * 2016-06-22 2017-12-29 横河电机株式会社 Secondary battery capacity measurement system and secondary battery capacity assay method
CN109659641A (en) * 2019-01-22 2019-04-19 北京交通大学 A kind of improved dynamic lithium battery secure charging method
JP2019097370A (en) * 2017-11-17 2019-06-20 廣達電腦股▲ふん▼有限公司 Power management circuit
JP7362990B2 (en) 2020-09-09 2023-10-18 エルジー エナジー ソリューション リミテッド Battery management device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210033764A (en) 2019-09-19 2021-03-29 주식회사 엘지화학 Battery management apparatus, battery management method, battery pack and electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011036760A1 (en) * 2009-09-25 2011-03-31 トヨタ自動車株式会社 Secondary battery system
JP2013068458A (en) * 2011-09-21 2013-04-18 Toyota Motor Corp Secondary battery system and vehicle
JP2014002055A (en) * 2012-06-19 2014-01-09 Hitachi Ltd Inspection system, charger/discharger, and inspection method for secondary battery
JP2014007025A (en) * 2012-06-22 2014-01-16 Toyota Motor Corp Diagnostic apparatus and diagnostic method
JP2014092471A (en) * 2012-11-05 2014-05-19 Toyo System Co Ltd Secondary battery assessment method, and assessment program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011036760A1 (en) * 2009-09-25 2011-03-31 トヨタ自動車株式会社 Secondary battery system
JP2013068458A (en) * 2011-09-21 2013-04-18 Toyota Motor Corp Secondary battery system and vehicle
JP2014002055A (en) * 2012-06-19 2014-01-09 Hitachi Ltd Inspection system, charger/discharger, and inspection method for secondary battery
JP2014007025A (en) * 2012-06-22 2014-01-16 Toyota Motor Corp Diagnostic apparatus and diagnostic method
JP2014092471A (en) * 2012-11-05 2014-05-19 Toyo System Co Ltd Secondary battery assessment method, and assessment program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017200312A (en) * 2016-04-27 2017-11-02 Jmエナジー株式会社 Control device and control method for capacitor cell, and control device and control method for battery cell
CN107526038A (en) * 2016-06-22 2017-12-29 横河电机株式会社 Secondary battery capacity measurement system and secondary battery capacity assay method
CN107526038B (en) * 2016-06-22 2021-05-25 横河电机株式会社 Secondary battery capacity measuring system and secondary battery capacity measuring method
JP2019097370A (en) * 2017-11-17 2019-06-20 廣達電腦股▲ふん▼有限公司 Power management circuit
CN109659641A (en) * 2019-01-22 2019-04-19 北京交通大学 A kind of improved dynamic lithium battery secure charging method
CN109659641B (en) * 2019-01-22 2020-07-28 北京交通大学 Improved safe charging method for power lithium battery
JP7362990B2 (en) 2020-09-09 2023-10-18 エルジー エナジー ソリューション リミテッド Battery management device and method

Also Published As

Publication number Publication date
JP6405754B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6405754B2 (en) Battery control device and battery control system
JP6157880B2 (en) Secondary battery system having a plurality of batteries and charge / discharge power distribution method
JP5741701B2 (en) Lead-acid battery system
EP3026752A1 (en) Battery pack and method for controlling the same
JP6386308B2 (en) Power assist system
JP5851879B2 (en) Power control device
JP6790833B2 (en) Storage battery control system, storage battery control method, and recording medium
US9768642B2 (en) Auxiliary power system
JP6289423B2 (en) Storage battery system control method
JP2012253976A (en) Charge/discharge controller, and charge/discharge control method and program
JP2016178052A (en) Control system of secondary cell
JP2014150623A (en) Power storage system and control method of power storage device
KR20160121773A (en) Storage battery control device and storage battery control method
US20240079881A1 (en) Power system and power system control method
JP6414301B2 (en) ADJUSTING DEVICE MANAGEMENT DEVICE, ADJUSTING DEVICE MANAGEMENT METHOD, AND PROGRAM
JP2013183509A (en) Charge/discharge amount prediction system and charge/discharge amount prediction method
CN106159980B (en) Power generation system and energy management method
JPWO2015111144A1 (en) Power supply system and energy management system used therefor
JP5503957B2 (en) Vehicle power supply
JP6624416B2 (en) Demand power target value calculation method and target value calculation device
JP2014236600A (en) Controller for a plurality of purposes of circuit storage battery
JP2014236561A (en) Secondary battery system, control method thereof, and power generation system
JP2014236602A (en) Multiple purpose controller, multiple purpose control system and program of multiple storage batteries
JP6413486B2 (en) Battery control device, battery control method, and battery control program
KR20150145344A (en) Battery charging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6405754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees