JP2016015644A - 信号変換回路 - Google Patents

信号変換回路 Download PDF

Info

Publication number
JP2016015644A
JP2016015644A JP2014137084A JP2014137084A JP2016015644A JP 2016015644 A JP2016015644 A JP 2016015644A JP 2014137084 A JP2014137084 A JP 2014137084A JP 2014137084 A JP2014137084 A JP 2014137084A JP 2016015644 A JP2016015644 A JP 2016015644A
Authority
JP
Japan
Prior art keywords
signal
output terminal
input
terminal
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014137084A
Other languages
English (en)
Other versions
JP6432183B2 (ja
Inventor
正夷 李
Zhengyi Li
正夷 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014137084A priority Critical patent/JP6432183B2/ja
Publication of JP2016015644A publication Critical patent/JP2016015644A/ja
Application granted granted Critical
Publication of JP6432183B2 publication Critical patent/JP6432183B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

【課題】信号処理の特性を改善した信号変換回路を提供する。
【解決手段】信号変換回路100は、2入力2出力型の第1〜第4の90度ハイブリッド回路110、120、130、140と、第1の90度ハイブリッド回路110の第1出力端子と第3の90度ハイブリッド回路130の第1入力端子とを接続する第1信号線171と、第1の90度ハイブリッド回路110の第2出力端子と第4の90度ハイブリッド回路140の第1入力端子とを接続する第2信号線172と、第4の90度ハイブリッド回路140の第2入力端子と第2の90度ハイブリッド回路120の第2出力端子とを接続する第3信号線173と、第2の90度ハイブリッド回路120の第1出力端子と第3の90度ハイブリッド回路130の第2入力端子とを接続する第4信号線174と、基板101の第2面に形成されるグランド層180で構成される。
【選択図】図2

Description

本発明は、信号変換回路に関する。
従来より、個別に無線周波信号が入力される(2N−1)個(N=「2」以上の整数)の入力端子と、パイロット信号が入力される単一の入力端子とを有し、これらの無線周波信号およびパイロット信号を2N個の出力端子に分配合成する第一の分配合成手段を備えるマルチポート増幅器がある。
マルチポート増幅器は、前記2N個の出力端子を介して供給された無線周波信号およびパイロット信号を個別に増幅する2N個の増幅手段と、2N個の出力端子を有し、これらの出力端子に、前記2N個の増幅手段によって出力された信号を分配合成する第二の分配合成手段をさらに備える。
マルチポート増幅器は、前記2N個の増幅手段の伝達特性と、前記無線周波信号の信号源の特性との双方もしくは何れか一方に関して、前記第二の分配合成手段が有する2N個の出力端子の内、主に前記パイロット信号が出力される特定の出力端子に伝達されたパイロット信号の電力を規定の値または規定の範囲に維持する自動制御または適応制御を行う制御手段をさらに備える。
第一の分配合成手段は、4つの90度ハイブリッドを有する。また、第一の分配合成手段の内部では、4つの90度ハイブリッドがたすき掛けの関係で接続されているため、信号線同士が交差している。これは、第二の分配合成手段においても同一である(例えば、特許文献1の請求項1、段落0051参照)。
特開2005−269043号公報
ところで、従来のマルチポート増幅器は、90度ハイブリッド同士を接続する信号線同士が交差しているため、カップリングが発生し、第一と第二の分配合成手段において信号を分配合成する信号処理の特性が低下するという問題点がある。
そこで、信号処理の特性を改善した信号変換回路を提供することを目的とする。
本発明の実施の形態の信号変換回路は、基板と、前記基板の第1面に形成され、マトリクス状に配置される4つの受信アンテナにそれぞれ接続される第1乃至第4の信号入力端子と、前記基板の第1面に形成される第1乃至第4の信号出力端子と、前記基板の前記第1面に形成される、2入力2出力型の第1の90度ハイブリッド回路であって、前記第1の信号入力端子及び前記第2の信号入力端子に接続される第1入力端子及び第2入力端子を有する第1の90度ハイブリッド回路と、前記基板の前記第1面に形成される、2入力2出力型の第2の90度ハイブリッド回路であって、前記第3の信号入力端子及び前記第4の信号入力端子に接続される第1入力端子及び第2入力端子を有する第2の90度ハイブリッド回路と、前記基板の前記第1面に形成される、2入力2出力型の第3の90度ハイブリッド回路であって、前記第1の信号出力端子及び前記第2の信号出力端子に接続される第1出力端子及び第2出力端子を有する第3の90度ハイブリッド回路と、前記基板の前記第1面に形成される、2入力2出力型の第4の90度ハイブリッド回路であって、前記第3の信号出力端子及び前記第4の信号出力端子に接続される第1出力端子及び第2出力端子を有する第4の90度ハイブリッド回路と、前記第1の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第1入力端子とを接続する第1信号線と、前記第1の90度ハイブリッド回路の第2出力端子と、前記第4の90度ハイブリッド回路の第1入力端子とを接続する第2信号線と、前記第4の90度ハイブリッド回路の第2入力端子と、前記第2の90度ハイブリッド回路の第2出力端子とを接続する第3信号線と、前記第2の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第2入力端子とを接続する第4信号線と、前記基板の第2面の少なくとも所定の領域内に形成され、基準電位に保持される基準電位層とを含み、前記第1乃至第4の90度ハイブリッド回路は、平面視で、前記第1の90度ハイブリッド回路、前記第4の90度ハイブリッド回路、前記第2の90度ハイブリッド回路、前記第3の90度ハイブリッド回路の順に時計回りに配設されており、前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線の長さは、互いに等しく、前記所定の領域は、平面視で、前記第1乃至第4の90度ハイブリッド回路と、前記第1乃至第4信号線とが形成される領域である。
信号処理の特性を改善した信号変換回路を提供することができる。
実施の形態1の信号変換回路100を含む4*4 Los MIMO送受信システム50を示す図である。 信号変換回路100を示す斜視図である。 信号変換回路100の表面側の詳細な構成を示す平面図である。 信号変換回路100の等価回路図である。 実施の形態2の信号変換回路200を示す図である。 信号変換回路200の等価回路図である。 実施の形態2の変形例による信号変換回路200Aを示す図である。 変換部271B1の構成を示す図である。
以下、本発明の信号変換回路を適用した実施の形態について説明する。
<実施の形態1>
図1は、実施の形態1の信号変換回路100を含む4*4 Los MIMO送受信システム50を示す図である。
4*4 Los(Line-of-Sight) MIMO(Multiple Input Multiple Output)送受信システム50は、4つのTxアンテナ10A〜10D、4つのRxアンテナ20A〜20D、及び、信号変換回路100を含む。4*4 Los MIMO送受信システム50は、例えば、10Gbps以上の伝送容量を実現する無線通信システムである。
Txアンテナ10A〜10Dは、送信用のアンテナであり、Rxアンテナ20A〜20Dは、受信用のアンテナである。
Txアンテナ10A〜10Dは、一辺の長さがRの正方形の4つの頂点の位置に配置されており、同様に、Rxアンテナ20A〜20Dは、一辺の長さがRの正方形の4つの頂点の位置に配置されている。長さRは次式(1)で与えられる。
Figure 2016015644
Txアンテナ10A〜10Dと、Rxアンテナ20A〜20Dとは、それぞれ、4*4 Los MIMOを構築する位置に配設され、互いの正方形同士の位置を合わせた状態で、距離Dを隔てて配設されている。なお、λは、Txアンテナ10A〜10Dと、Rxアンテナ20A〜20Dとの通信周波数における波長である。
Txアンテナ10A〜10Dと、Rxアンテナ20A〜20Dとを上述のような位置に配置することにより、4*4 Los MIMOを実現している。
信号変換回路100は、Rxアンテナ20A〜20Dで受信される4つのデータy1、y2、y3、y4を分離して出力する。信号変換回路100の構成については後述する。
このような4*4 Los MIMO送受信システム50において、例えば、Txアンテナ10A〜10Dをデータ送信装置に接続し、信号変換回路100をデータ受信装置に接続する。データ送信装置から入力されるデータx1、x2、x3、x4をTxアンテナ10A〜10Dが送信すると、Rxアンテナ20A〜20Dは、それぞれ、データy1、y2、y3、y4を受信する。
信号変換回路100は、Rxアンテナ20A〜20Dで受信される4つのデータy1、y2、y3、y4を分離して、データx1、x2、x3、x4をデータ受信装置に出力する。なお、ここでは、信号変換回路100を受信側に設ける形態について説明するが、信号変換回路100は、Txアンテナ10A〜10Dとデータ送信装置との間に設けられていてもよい。この場合には、信号変換回路100は、データ送信装置が出力する4つのデータをデータx1、x2、x3、x4に変換してTxアンテナ10A〜10Dに出力する。
図2は、信号変換回路100を示す斜視図である。図2では、直交座標系としてXYZ座標系を定義する。図2(A)には信号変換回路100の表面側の構成を示し、図2(B)には信号変換回路100の裏面側の構成を示す。
信号変換回路100は、基板101、90度ハイブリッド回路110、120、130、140、入力端子151、152、153、154、出力端子161、162、163、164、信号線171、172、173、174、及びグランド層180を含む。
基板101は、例えば、FR4(Flame Retardant type 4)の規格によるガラスエポキシ製の基板である。基板101の表面には、90度ハイブリッド回路110、120、130、140、入力端子151、152、153、154、出力端子161、162、163、164、及び信号線171、172、173、174が形成されている。また、基板101の裏面には、グランド層180が形成されている。
90度ハイブリッド回路110、120、130、140、入力端子151、152、153、154、出力端子161、162、163、164、及び信号線171、172、173、174は、例えば、基板101の表面の全体に貼り付けられる銅箔をパターニングすることによって形成される。例えば、ウェットエッチングを行えばよい。
グランド層180は、例えば、基板101の裏面の全体に貼り付けられる銅箔である(図2(B)参照)。グランド層180は、基準電位層の一例である。ここでは、基準電位層がグランド層180である形態について説明するが、基準電位層は、所定の正又は負の基準電位に保持されていてもよい。
グランド層180は、基板101の裏面において、少なくとも、平面視で90度ハイブリッド回路110、120、130、140、入力端子151、152、153、154、出力端子161、162、163、164、及び信号線171、172、173、174が位置する領域の内部に形成されていればよい。
ここで、90度ハイブリッド回路110、120、130、140、入力端子151、152、153、154、出力端子161、162、163、164、及び信号線171、172、173、174の構成を説明するために図3を用いる。
図3は、信号変換回路100の表面側の詳細な構成を示す平面図である。図3では図2と共通のXYZ座標系を用いる。なお、XYZ座標系は、平面視で正方形の基板101の表面の中心を原点とする。
90度ハイブリッド回路110、120、130、140は、平面視で正方形の基板101の中心101Cに対して、点対称な位置に配置されている。90度ハイブリッド回路110、120、130、140は、それぞれ、2入力2出力型の90度ハイブリッド回路である。90度ハイブリッド回路110、120、130、140は、中心101Cの周りに、90度ハイブリッド回路110、140、120、130の順に時計回りに配設されている。
90度ハイブリッド回路110は、中心101CよりもZ軸正方向側に位置し、Z軸に対して線対称な形状を有する。90度ハイブリッド回路110は、入力端子110A、110B、出力端子110C、110D、シリーズアーム111、112、及びシャントアーム113、114を有する。
90度ハイブリッド回路110は、第1の90度ハイブリッド回路の一例である。入力端子110A、110Bは、それぞれ、第1の90度ハイブリッド回路の第1入力端子及び第2入力端子の一例である。出力端子110C、110Dは、それぞれ、第1の90度ハイブリッド回路の第1出力端子及び第2出力端子の一例である。
基板101の裏面にはグランド層180(図2参照)が形成されるため、シリーズアーム111、112、及び、シャントアーム113、114は、マイクロストリップラインを構築している。
シリーズアーム111、112は、X軸方向に離間して平行に形成されており、Z軸正方向側の端部同士の間にシャントアーム113が接続され、Z軸負方向側の端子同士の間にシャントアーム114が接続されている。
シリーズアーム111、112、及び、シャントアーム113、114の長さは、すべてλ/4である。このため、シリーズアーム111、112と、シャントアーム113、114とは、平面視で、正方形状の四辺に沿って配列されている。なお、長さは電気長であり、λは、Txアンテナ10A〜10Dと、Rxアンテナ20A〜20Dとの通信周波数における波長である。
シリーズアーム111、112と、シャントアーム113、114とは、それぞれ、特性インピーダンスが最適化されている。このため、シリーズアーム111、112と、シャントアーム113、114との太さは異なる。
シリーズアーム111、112の特性インピーダンスは、例えば、35.4Ωであり、シャントアーム113、114の特性インピーダンスは、50Ωである。シリーズアーム111、112の特性インピーダンスと、シャントアーム113、114の特性インピーダンスとの比は、1/√2:1である。
入力端子110Aは、シリーズアーム111とシャントアーム113との接続点に接続されるごく短い線路状のパターンである。入力端子110Aの特性インピーダンスは50Ωである。このため、入力端子110Aの幅は、シャントアーム113の幅と等しい。
入力端子110Bは、シリーズアーム112とシャントアーム113との接続点に接続されるごく短い線路状のパターンである。入力端子110Bの特性インピーダンスは50Ωである。このため、入力端子110Bの幅は、シャントアーム113の幅と等しい。
出力端子110Cは、シリーズアーム111とシャントアーム114との接続点に接続されるごく短い線路状のパターンである。出力端子110Cの特性インピーダンスは50Ωである。このため、出力端子110Cの幅は、シャントアーム114の幅と等しい。
出力端子110Dは、シリーズアーム112とシャントアーム114との接続点に接続されるごく短い線路状のパターンである。出力端子110Dの特性インピーダンスは50Ωである。このため、出力端子110Dの幅は、シャントアーム114の幅と等しい。
入力端子110A、110Bは、それぞれ、入力端子151、152に接続される。出力端子110C、110Dは、それぞれ、信号線171、172に接続される。
90度ハイブリッド回路110は、入力端子110Aのデータの位相を90度遅れさせて出力端子110Cに出力するとともに、入力端子110Aのデータの位相を180度遅れさせて出力端子110Dに出力する。また、入力端子110Bのデータの位相を90度遅れさせて出力端子110Dに出力するとともに、入力端子110Bのデータの位相を180度遅れさせて出力端子110Cに出力する。
90度ハイブリッド回路120は、中心101CよりもZ軸負方向側に位置し、Z軸に対して線対称な形状を有する。90度ハイブリッド回路120は、90度ハイブリッド回路110と同様の構成を有する。90度ハイブリッド回路120は、第2の90度ハイブリッド回路の一例である。
90度ハイブリッド回路120は、入力端子120A、120B、出力端子120C、120D、シリーズアーム121、122、及びシャントアーム123、124を有する。入力端子120A、120Bは、それぞれ、第2の90度ハイブリッド回路の第1入力端子及び第2入力端子の一例である。出力端子120C、120Dは、それぞれ、第2の90度ハイブリッド回路の第1出力端子及び第2出力端子の一例である。
シリーズアーム121、122、及び、シャントアーム123、124は、マイクロストリップラインを構築している。シリーズアーム121、122、及び、シャントアーム123、124の長さ(電気長)は、すべてλ/4であるため、シリーズアーム121、122と、シャントアーム123、124とは、平面視で、正方形状の四辺に沿って配列されている。
シリーズアーム121、122の特性インピーダンスは、例えば、35.4Ωであり、シャントアーム123、124の特性インピーダンスは、50Ωである。
入力端子120A、120B、及び、出力端子120C、120Dは、それぞれ、ごく短い線路状のパターンであり、特性インピーダンスは50Ωである。
入力端子120Aは、シリーズアーム121とシャントアーム123との接続点に接続される。入力端子120Bは、シリーズアーム122とシャントアーム123との接続点に接続される。
出力端子120Cは、シリーズアーム121とシャントアーム124との接続点に接続される。出力端子120Dは、シリーズアーム122とシャントアーム124との接続点に接続される。
入力端子120A、120Bは、それぞれ、入力端子153、154に接続される。出力端子120C、120Dは、それぞれ、信号線174、173に接続される。
90度ハイブリッド回路120は、入力端子120Aのデータの位相を90度遅れさせて出力端子120Cに出力するとともに、入力端子120Aのデータの位相を180度遅れさせて出力端子120Dに出力する。また、入力端子120Bのデータの位相を90度遅れさせて出力端子120Dに出力するとともに、入力端子120Bのデータの位相を180度遅れさせて出力端子120Cに出力する。
90度ハイブリッド回路130は、中心101CよりもX軸正方向側に位置し、X軸に対して線対称な形状を有する。90度ハイブリッド回路130は、90度ハイブリッド回路110と同様の構成を有する。90度ハイブリッド回路130は、第3の90度ハイブリッド回路の一例である。
90度ハイブリッド回路130は、入力端子130A、130B、出力端子130C、130D、シリーズアーム131、132、及びシャントアーム133、134を有する。入力端子130A、130Bは、それぞれ、第3の90度ハイブリッド回路の第1入力端子及び第2入力端子の一例である。出力端子130C、130Dは、それぞれ、第3の90度ハイブリッド回路の第1出力端子及び第2出力端子の一例である。
シリーズアーム131、132、及び、シャントアーム133、134は、マイクロストリップラインを構築している。シリーズアーム131、132、及び、シャントアーム133、134の長さ(電気長)は、すべてλ/4であるため、シリーズアーム131、132と、シャントアーム133、134とは、平面視で、正方形状の四辺に沿って配列されている。
シリーズアーム131、132の特性インピーダンスは、例えば、35.4Ωであり、シャントアーム133、134の特性インピーダンスは、50Ωである。
入力端子130A、130B、及び、出力端子130C、130Dは、それぞれ、ごく短い線路状のパターンであり、特性インピーダンスは50Ωである。
入力端子130Aは、シリーズアーム131とシャントアーム134との接続点に接続される。入力端子130Bは、シリーズアーム132とシャントアーム134との接続点に接続される。
出力端子130Cは、シリーズアーム131とシャントアーム133との接続点に接続される。出力端子130Dは、シリーズアーム132とシャントアーム133との接続点に接続される。
入力端子130A、130Bは、それぞれ、信号線171、174に接続される。出力端子130C、130Dは、それぞれ、出力端子161、162に接続される。
90度ハイブリッド回路130は、入力端子130Aのデータの位相を90度遅れさせて出力端子130Cに出力するとともに、入力端子130Aのデータの位相を180度遅れさせて出力端子130Dに出力する。また、入力端子130Bのデータの位相を90度遅れさせて出力端子130Dに出力するとともに、入力端子130Bのデータの位相を180度遅れさせて出力端子130Cに出力する。
90度ハイブリッド回路140は、中心101CよりもX軸負方向側に位置し、X軸に対して線対称な形状を有する。90度ハイブリッド回路140は、90度ハイブリッド回路130と同様の構成を有する。90度ハイブリッド回路140は、第4の90度ハイブリッド回路の一例である。
90度ハイブリッド回路140は、入力端子140A、140B、出力端子140C、140D、シリーズアーム141、142、及びシャントアーム143、144を有する。入力端子140A、140Bは、それぞれ、第4の90度ハイブリッド回路の第1入力端子及び第2入力端子の一例である。出力端子140C、140Dは、それぞれ、第4の90度ハイブリッド回路の第1出力端子及び第2出力端子の一例である。
シリーズアーム141、142、及び、シャントアーム143、144は、マイクロストリップラインを構築している。シリーズアーム141、142、及び、シャントアーム143、144の長さ(電気長)は、すべてλ/4であるため、シリーズアーム141、142と、シャントアーム143、144とは、平面視で、正方形状の四辺に沿って配列されている。
シリーズアーム141、142の特性インピーダンスは、例えば、35.4Ωであり、シャントアーム143、144の特性インピーダンスは、50Ωである。
入力端子140A、140B、及び、出力端子140C、140Dは、それぞれ、ごく短い線路状のパターンであり、特性インピーダンスは50Ωである。
入力端子140Aは、シリーズアーム141とシャントアーム144との接続点に接続される。入力端子140Bは、シリーズアーム142とシャントアーム144との接続点に接続される。
出力端子140Cは、シリーズアーム141とシャントアーム143との接続点に接続される。出力端子140Dは、シリーズアーム142とシャントアーム143との接続点に接続される。
入力端子140A、140Bは、それぞれ、信号線172、173に接続される。出力端子140C、140Dは、それぞれ、出力端子163、164に接続される。
90度ハイブリッド回路140は、入力端子140Aのデータの位相を90度遅れさせて出力端子140Cに出力するとともに、入力端子140Aのデータの位相を180度遅れさせて出力端子140Dに出力する。また、入力端子140Bのデータの位相を90度遅れさせて出力端子140Dに出力するとともに、入力端子140Bのデータの位相を180度遅れさせて出力端子140Cに出力する。
入力端子151、152、153、154は、それぞれ、図1に示すRxアンテナ20A、20B、20D、20Cに接続される。入力端子151、152、153、154は、それぞれ、第1乃至第4の信号入力端子の一例である。
入力端子151、152、153、154は、Rxアンテナ20A、20B、20D、20Cで受信されるデータy1、y2、y4、y3を入力端子110A、110B、120A、120Bを介して、90度ハイブリッド回路110、120に入力する。
なお、入力端子151、152、153、154の特性インピーダンスは50Ωである。
出力端子161、162、163、164は、それぞれ、出力端子130C、130D、140C、140Dに接続されており、図1に示すデータx3、x2、x4、x1を出力する。出力端子161、162、163、164は、それぞれ、第1乃至第4の信号出力端子の一例である。
信号線171は、出力端子110Cと入力端子130Aとを接続する。信号線171は、平面視でL字型であり、L字に折り曲げられる部分の外側は面取りされている。信号線171の特性インピーダンスは50Ωである。
信号線172、173、174は、信号線171と同様の構成を有する。信号線172は、出力端子110Dと入力端子140Aとを接続する。信号線173は、入力端子140Bと出力端子120Dとを接続する。信号線174は、入力端子130Bと出力端子120Cとを接続する。
信号線171、172、173、174は、すべて同一の長さ(電気長)を有する。これは、4つの信号線171、172、173、174を伝送されるデータの位相を揃えるためである。信号線171、172、173、174は、それぞれ、第1信号線、第2信号線、第3信号線、及び第4信号線の一例である。
ここで、信号変換回路100の伝達関数を表す行列式を求める。
図1に示すTxアンテナ10A〜10DからRxアンテナ20A〜20Dにデータを送信する際の伝達関数を表す行列式Hは次式(2)で表される。行列式Hは、4*4 Los MIMO送受信システム50におけるTxアンテナ10A〜10DとRxアンテナ20A〜20Dの配置と、配置によって特定されるデータの位相とによって定まる。
なお、Txアンテナ10A〜10DとRxアンテナ20A〜20Dの配置とは、上述のように、Txアンテナ10A〜10DとRxアンテナ20A〜20Dが、それぞれ、一辺の長さがRの正方形の4つの頂点の位置に配置され、互いの正方形同士の位置を合わせた状態で、距離Dを隔てて配設されていることである。
Figure 2016015644
また、Txアンテナ10A〜10Dから放射されるデータx1、x2、x3、x4と、Rxアンテナ20A〜20Dで受信されるデータy1、y2、y3、y4との関係は、次式(3)のように表せる。
Figure 2016015644
従って、行列式Hの逆行列に比例する行列式Sは、次式(4)のように表すことができ、さらに式(5)が得られる。
Figure 2016015644
Figure 2016015644
ここで、式(2)と式(4)とにより、行列式Sは次式(6)で表される。
Figure 2016015644
従って、Rxアンテナ20A〜20Dで受信されるデータy1、y2、y3、y4を信号変換回路100がデータx1、x2、x3、x4に分離できるのであれば、信号変換回路100の伝達関数は、行列式Sに等しいことになる。
図4は、信号変換回路100の等価回路図である。図4には、90度ハイブリッド回路110、120、130、140、及び、信号線171、172、173、174を示す。また、90度ハイブリッド回路110、120、130、140については、入力端子110A、110B、120A、120B、130A、130B、140A、140B、及び、出力端子110C、110D、120C、120D、130C、130D、140C、140Dを示す。
信号変換回路100では、信号線171、172、173、174は交差しておらず、かつ、長さは等しい。このため、信号変換回路100は、カップリング及び位相ずれは生じさせずに、Rxアンテナ20A〜20Dで受信されるデータy1、y2、y3、y4をデータx1、x2、x3、x4に分離できる。このため、信号変換回路100は、式(6)を満たす。
式(2)より次式(7)を得る。
Figure 2016015644
従って、90度ハイブリッド回路110の出力端子110Dに出力されるデータは、次式(8)で表される。
Figure 2016015644
また、90度ハイブリッド回路120の出力端子120Dに出力されるデータは、次式(9)で表される。
Figure 2016015644
ここで、信号線171〜174における信号の遅延量をθとすると、90度ハイブリッド回路140の入力端子140Aに入力されるデータは、次式(10)で表される。
Figure 2016015644
同様に、90度ハイブリッド回路140の入力端子140Bに入力されるデータは、次式(11)で表される。
Figure 2016015644
90度ハイブリッド回路140は、入力端子140Aのデータの位相を180度遅れさせて出力端子140Dに出力するとともに、入力端子140Bのデータの位相を90度遅れさせて出力端子140Dに出力する。
従って、90度ハイブリッド回路140の出力端子140Dに出力されるデータは、次式(12)で表される。
Figure 2016015644
同様に、90度ハイブリッド回路130の出力端子130Dに出力されるデータは、次式(13)で表される。
Figure 2016015644
同様に、90度ハイブリッド回路130の出力端子130Cに出力されるデータは、次式(14)で表される。
Figure 2016015644
また、90度ハイブリッド回路140の出力端子140Cに出力されるデータは、次式(15)で表される。
Figure 2016015644
以上より、式(6)におけるcの値は2(c=2)と求まり、信号変換回路100の伝達関数を表す行列式Sは、次式(16)で表される。
Figure 2016015644
以上のような伝達関数S(式(16)参照)を有する信号変換回路100は、カップリング及び位相ずれを生じさせずに、Rxアンテナ20A〜20Dで受信されるデータy1、y2、y3、y4をデータx1、x2、x3、x4に分離できる。
これは、図3に示すように、互いに同一の長さ(電気長)を有し、かつ、交差することのない信号線171〜174で、90度ハイブリッド回路110〜140を接続したためである。
以上より、実施の形態1によれば、信号処理の特性を改善した信号変換回路100を提供することができる。
また、信号変換回路100のようにデータy1、y2、y3、y4をデータx1、x2、x3、z4に分離する処理を、例えば、デバイダ(分離器)及び位相調整器等を用いて行うと、回路構成が複雑になる。特に、4*4 Los MIMOに適用する回路では、データ量が多いため、回路構成の複雑化に加えて、処理速度の高速化が要求される。また、分離されたデータに対して、例えば、DSP(Digital Signal Processor)等を用いて、信号処理が必要になる場合がある。
これに対して、実施の形態1の信号変換回路100は、簡単な構成でデータの分離を行えるため、4*4 Los MIMOへの有用性が高い。
また、実施の形態1の信号変換回路100は、データの分離を確実に行えるため、分離された後のデータx1、x2、x3、z4に対して行うデータ処理が簡便になるというメリットがある。
なお、以上では、90度ハイブリッド回路110のシリーズアーム111、112、及びシャントアーム113、114がマイクロストリップラインによって実現される形態について説明した。
しかしながら、シリーズアーム111、112及びシャントアーム113、114の代わりに、入力信号に対して90度と180度の位相差を有する信号を出力する導波管を90度ハイブリッド回路110として用いてもよい。これは、90度ハイブリッド回路120、130、140についても同様である。この場合は、90度ハイブリッド回路110は、基板101とグランド層180を含まなくてもよい。また、この場合には、入力端子151、152、153、154、出力端子161、162、163、164、又は信号線171、172、173、174は、マイクロストリップラインによって実現されてもよく、導波管、同軸ケーブル、又は、その他の特性インピーダンスが最適化された伝送路を用いてもよい。
また、以上では、入力端子151、152、153、154、及び、出力端子161、162、163、164として説明したが、入力端子と出力端子を入れ替えてもよい。
<実施の形態2>
図5は、実施の形態2の信号変換回路200を示す図である。信号変換回路200は、実施の形態1の信号変換回路100を三次元的な構造に変えたものである。以下、実施の形態1の信号変換回路100と同様の構成要素には同一符号を付し、その説明を省略する。
信号変換回路200は、基板201、202、203、204、90度ハイブリッド回路110、120、130、140、入力端子151、152、153、154、出力端子161、162、163、164、導波管271、272、273、274、及び、グランド層281、282、283、284を含む。
なお、信号変換回路200は三次元的な構成を有することから、図5では一部の符号を省略する。ここでは、図6に示す等価回路も用いて説明を行う。
図6は、信号変換回路200の等価回路図である。図6には、90度ハイブリッド回路110、120、130、140、及び、導波管271、272、273、274を示す。また、90度ハイブリッド回路110、120、130、140については、入力端子110A、110B、120A、120B、130A、130B、140A、140B、及び、出力端子110C、110D、120C、120D、130C、130D、140C、140Dを示す。
信号変換回路200の等価回路は、図4に示す実施の形態1の信号変換回路100の等価回路と同様である。
以下、図5及び図6を参照して説明する。
基板201、202、203、204は、実施の形態1の基板101を平面視で小さくしたものであり、例えば、FR4規格の基板である。基板201、202、203、204は、それぞれ、第1基板、第2基板、第3基板、第4基板の一例である。
基板201、202、203、204の一方の面には、それぞれ、90度ハイブリッド回路110、120、130、140が形成される。また、他方の面の全体には、グランド層281、282、283、284が形成される。
基板201及び202は互いに平行であり、基板203及び204は互いに平行である。基板201及び202と、基板203及び204とは、互いに垂直である。
導波管271、272、273、274は、実施の形態1の信号線171、172、173、174の代わりに、90度ハイブリッド回路110、120、130、140の間を接続する。導波管271、272、273、274は、断面が矩形であり、特性インピーダンスは50Ωである。また、導波管271、272、273、274の長さは、すべて等しい。なお、導波管271、272、273、274の断面は円形であってもよい。
導波管271、272、273、274は、それぞれ、図5に示すように90度ねじられている。導波管271、272、273、274のねじられている区間の長さは、伝送する信号の波長λに対して、2λより長い長さに設定される。
導波管271は、出力端子110Cから出力されるデータを内部で伝送し、入力端子130Aに入力する。導波管271は、出力端子110Cの表面と、入力端子130Aの表面とを接続するようにねじられている。これは、導波管271の断面が矩形の内面も同様である。なお、導波管271は、グランド層281とグランド層283に接続されている。
導波管272は、出力端子110Dから出力されるデータを内部で伝送し、入力端子140Aに入力する。導波管272は、出力端子110Dの表面と、入力端子140Aの表面とを接続するようにねじられている。これは、導波管272の断面が矩形の内面も同様である。なお、導波管272は、グランド層281とグランド層284に接続されている。
導波管273は、出力端子120Dから出力されるデータを内部で伝送し、入力端子140Bに入力する。導波管273は、出力端子120Dの表面と、入力端子140Bの表面とを接続するようにねじられている。これは、導波管273の断面が矩形の内面も同様である。なお、導波管273は、グランド層282とグランド層284に接続されている。
導波管274は、出力端子120Cから出力されるデータを内部で伝送し、入力端子130Bに入力する。導波管274は、出力端子120Cの表面と、入力端子130Bの表面とを接続するようにねじられている。これは、導波管274の断面が矩形の内面も同様である。なお、導波管274は、グランド層282とグランド層283に接続されている。
導波管271、272、273、274は、90度ハイブリッド回路110、120から90度ハイブリッド回路130、140にデータを伝送する。
以上のような信号変換回路200は、実施の形態1の信号変換回路100と同様の回路構成を有するため、式(16)で表される伝達関数を有する。
このため、信号変換回路200は、実施の形態1の信号変換回路100と同様にデータy1、y2、y3、y4を分離し、データx1、x2、x3、x4を出力する。
以上より、実施の形態2によれば、信号処理の特性を改善した信号変換回路200を提供することができる。
なお、以上では、基板201及び202は互いに平行であり、基板203及び204は互いに平行である。基板201及び202と、基板203及び204とは、互いに垂直である形態について説明した。
しかしながら、基板201及び202が互いに平行であり、かつ、基板203及び204が互いに平行であれば、基板201及び202と、基板203及び204とは、互いに垂直ではなくてもよい。
また、ここでは、導波管271、272、273、274を含む信号変換回路200について説明したが、導波管271、272、273、274の代わりに、同軸ケーブル又はマイクロストリップ線路のように、特性インピーダンスが最適化された信号線を用いてもよい。
図7は、実施の形態2の変形例による信号変換回路200Aを示す図である。信号変換回路200Aは、信号変換回路200(図5参照)の導波管271、272、273、274の代わりに、同軸ケーブル271A、272A、273A、274A、及び、変換部271B1、271B2、272B1、272B2、273B1、273B2、274B1、274B2を含む。なお、これらのうち、変換部274B2は、90度ハイブリッド回路140の陰になっているため、図示を省略する。
同軸ケーブル271A、272A、273A、274Aの長さは、すべて等しい。
変換部271B1、271B2、272B1、272B2、273B1、273B2、274B1、274B2は、同軸ケーブルとマイクロストリップラインとの変換部である。
同軸ケーブル271Aの芯線は、変換部271B1及び271B2を介して出力端子110Cと入力端子130Aを接続し、シールド線は、変換部271B1及び271B2を介してグランド層281とグランド層283を接続する。
同軸ケーブル272Aの芯線は、変換部272B1及び272B2を介して出力端子110Dと入力端子140Aを接続し、シールド線は、変換部272B1及び272B2を介してグランド層281とグランド層284を接続する。
同軸ケーブル273Aの芯線は、変換部273B1及び273B2を介して出力端子120Dと入力端子140Bを接続し、シールド線は、変換部273B1及び273B2を介してグランド層282とグランド層284を接続する。
同軸ケーブル274Aの芯線は、変換部274B1及び274B2を介して出力端子120Cと入力端子130Bを接続し、シールド線は、変換部274B1及び274B2を介してグランド層282とグランド層283を接続する。
図8は、変換部271B1の構成を示す図である。変換部271B1は、本体271B11、信号線271B12、及びコネクタ271B13を含む。本体271B11には、信号線271B12とコネクタ271B13が固定されており、信号線271B12は、一端が出力端子110Cに接続され、他端は同軸ケーブル271Aの芯線に接続される。コネクタ271B13は、信号線271B12の周囲を覆っており、一端がグランド層281に接続され、他端は同軸ケーブル271Aのシールド線に接続される。
変換部271B2、272B1、272B2、273B1、273B2、274B1、274B2も変換部271Bと同様の構成を有する。
同軸ケーブル271A、272A、273A、274Aは、90度ハイブリッド回路110、120から90度ハイブリッド回路130、140にデータを伝送する。
このような信号変換回路200Aによっても、信号変換回路200(図5参照)、及び、実施の形態1の信号変換回路100と同様に、データy1、y2、y3、y4を分離し、データx1、x2、x3、x4を出力する。
以上より、実施の形態2の変形例によれば、信号処理の特性を改善した信号変換回路200Aを提供することができる。
なお、以上では、90度ハイブリッド回路110のシリーズアーム111、112、及びシャントアーム113、114がマイクロストリップラインによって実現される形態について説明した。
しかしながら、シリーズアーム111、112及びシャントアーム113、114の代わりに、入力信号に対して90度と180度の位相差を有する信号を出力する導波管を90度ハイブリッド回路110として用いてもよい。これは、90度ハイブリッド回路120、130、140についても同様である。この場合は、90度ハイブリッド回路110は、基板101とグランド層180を含まなくてもよい。また、この場合には、入力端子151、152、153、154、出力端子161、162、163、164、又は信号線171、172、173、174は、マイクロストリップラインによって実現されてもよく、導波管、同軸ケーブル、又は、その他の特性インピーダンスが最適化された伝送路を用いてもよい。
また、以上では、入力端子151、152、153、154、及び、出力端子161、162、163、164として説明したが、入力端子と出力端子を入れ替えてもよい。
以上、本発明の例示的な実施の形態の信号変換回路について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
以上の実施の形態に関し、さらに以下の付記を開示する。
(付記1)
基板と、
前記基板の第1面に形成され、四角形の頂点に位置するようにそれぞれ配置される4つの受信アンテナにそれぞれ接続される第1乃至第4の信号入力端子と、
前記基板の第1面に形成される第1乃至第4の信号出力端子と、
前記基板の前記第1面に形成される、2入力2出力型の第1の90度ハイブリッド回路であって、前記第1の信号入力端子及び前記第2の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第1の90度ハイブリッド回路と、
前記基板の前記第1面に形成される、2入力2出力型の第2の90度ハイブリッド回路であって、前記第3の信号入力端子及び前記第4の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第2の90度ハイブリッド回路と、
前記基板の前記第1面に形成される、2入力2出力型の第3の90度ハイブリッド回路であって、前記第1の信号出力端子及び前記第2の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第3の90度ハイブリッド回路と、
前記基板の前記第1面に形成される、2入力2出力型の第4の90度ハイブリッド回路であって、前記第3の信号出力端子及び前記第4の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第4の90度ハイブリッド回路と、
前記第1の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第1入力端子とを接続する第1信号線と、
前記第1の90度ハイブリッド回路の第2出力端子と、前記第4の90度ハイブリッド回路の第1入力端子とを接続する第2信号線と、
前記第4の90度ハイブリッド回路の第2入力端子と、前記第2の90度ハイブリッド回路の第2出力端子とを接続する第3信号線と、
前記第2の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第2入力端子とを接続する第4信号線と、
前記基板の第2面の少なくとも所定の領域内に形成され、基準電位に保持される基準電位層と
を含み、
前記第1乃至第4の90度ハイブリッド回路は、平面視で、前記第1の90度ハイブリッド回路、前記第4の90度ハイブリッド回路、前記第2の90度ハイブリッド回路、前記第3の90度ハイブリッド回路の順に時計回りに配設されており、
前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線の電気長は、互いに等しく、
前記所定の領域は、平面視で、前記第1乃至第4の90度ハイブリッド回路と、前記第1乃至第4信号線とが形成される領域である、信号変換回路。
(付記2)
基板と、
前記基板の第1面に形成される第1乃至第4の信号入力端子と、
前記基板の第1面に形成され、四角形の頂点に位置するようにそれぞれ配置される4つの送信アンテナにそれぞれ接続される第1乃至第4の信号出力端子と、
前記基板の前記第1面に形成される、2入力2出力型の第1の90度ハイブリッド回路であって、前記第1の信号入力端子及び前記第2の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第1の90度ハイブリッド回路と、
前記基板の前記第1面に形成される、2入力2出力型の第2の90度ハイブリッド回路であって、前記第3の信号入力端子及び前記第4の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第2の90度ハイブリッド回路と、
前記基板の前記第1面に形成される、2入力2出力型の第3の90度ハイブリッド回路であって、前記第1の信号出力端子及び前記第2の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第3の90度ハイブリッド回路と、
前記基板の前記第1面に形成される、2入力2出力型の第4の90度ハイブリッド回路であって、前記第3の信号出力端子及び前記第4の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第4の90度ハイブリッド回路と、
前記第1の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第1入力端子とを接続する第1信号線と、
前記第1の90度ハイブリッド回路の第2出力端子と、前記第4の90度ハイブリッド回路の第1入力端子とを接続する第2信号線と、
前記第4の90度ハイブリッド回路の第2入力端子と、前記第2の90度ハイブリッド回路の第2出力端子とを接続する第3信号線と、
前記第2の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第2入力端子とを接続する第4信号線と、
前記基板の第2面の少なくとも所定の領域内に形成され、基準電位に保持される基準電位層と
を含み、
前記第1乃至第4の90度ハイブリッド回路は、平面視で、前記第1の90度ハイブリッド回路、前記第4の90度ハイブリッド回路、前記第2の90度ハイブリッド回路、前記第3の90度ハイブリッド回路の順に時計回りに配設されており、
前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線の電気長は、互いに等しく、
前記所定の領域は、平面視で、前記第1乃至第4の90度ハイブリッド回路と、前記第1乃至第4信号線とが形成される領域である、信号変換回路。
(付記3)
前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線は、それぞれ、導波管、又は、特性インピーダンスが最適化された伝送路である、付記1又は2記載の信号変換回路。
(付記4)
前記第1乃至第4の90度ハイブリッド回路は、点対称に配置される、付記1乃至3のいずれか一項記載の信号変換回路。
(付記5)
第1基板と、
前記第1基板に平行に配置される第2基板と、
第3基板と、
前記第3基板に平行に配置される第4基板と、
前記第1基板の第1面に形成され、2つの受信アンテナにそれぞれ接続される第1及び第2の信号入力端子と、
前記第2基板の第1面に形成され、前記2つの受信アンテナとは異なる2つの受信アンテナにそれぞれ接続される第3及び第4の信号入力端子と、
前記第3基板の第1面に形成される第1及び第2の信号出力端子と、
前記第4基板の第1面に形成される第3及び第4の信号出力端子と、
前記第1基板の前記第1面に形成される、2入力2出力型の第1の90度ハイブリッド回路であって、前記第1の信号入力端子及び前記第2の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第1の90度ハイブリッド回路と、
前記第2基板の前記第1面に形成される、2入力2出力型の第2の90度ハイブリッド回路であって、前記第3の信号入力端子及び前記第4の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第2の90度ハイブリッド回路と、
前記第3基板の前記第1面に形成される、2入力2出力型の第3の90度ハイブリッド回路であって、前記第1の信号出力端子及び前記第2の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第3の90度ハイブリッド回路と、
前記第4基板の前記第1面に形成される、2入力2出力型の第4の90度ハイブリッド回路であって、前記第3の信号出力端子及び前記第4の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第4の90度ハイブリッド回路と、
前記第1の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第1入力端子とを接続する第1信号線と、
前記第1の90度ハイブリッド回路の第2出力端子と、前記第4の90度ハイブリッド回路の第1入力端子とを接続する第2信号線と、
前記第4の90度ハイブリッド回路の第2入力端子と、前記第2の90度ハイブリッド回路の第2出力端子とを接続する第3信号線と、
前記第2の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第2入力端子とを接続する第4信号線と、
前記第1乃至第4基板の第2面の少なくとも第1乃至第4領域内にそれぞれ形成され、基準電位に保持される第1乃至第4基準電位層と
を含み、
前記第1及び第2の信号入力端子に接続される2つの受信アンテナと、第3及び第4の信号入力端子に接続される2つの受信アンテナとは、四角形の頂点に位置するようにそれぞれ配置されており、
前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線の電気長は、互いに等しく、
前記第1乃至第4領域は、それぞれ、平面視で、前記第1乃至第4の90度ハイブリッド回路が形成される領域である、信号変換回路。
(付記6)
第1基板と、
前記第1基板に平行に配置される第2基板と、
第3基板と、
前記第3基板に平行に配置される第4基板と、
前記第1基板の第1面に形成される第1及び第2の信号入力端子と、
前記第2基板の第1面に形成される第3及び第4の信号入力端子と、
前記第3基板の第1面に形成され、2つの送信アンテナにそれぞれ接続される第1及び第2の信号出力端子と、
前記第4基板の第1面に形成され、前記2つの送信アンテナとは異なる2つの送信アンテナにそれぞれ接続される第3及び第4の信号出力端子と、
前記第1基板の前記第1面に形成される、2入力2出力型の第1の90度ハイブリッド回路であって、前記第1の信号入力端子及び前記第2の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第1の90度ハイブリッド回路と、
前記第2基板の前記第1面に形成される、2入力2出力型の第2の90度ハイブリッド回路であって、前記第3の信号入力端子及び前記第4の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第2の90度ハイブリッド回路と、
前記第3基板の前記第1面に形成される、2入力2出力型の第3の90度ハイブリッド回路であって、前記第1の信号出力端子及び前記第2の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第3の90度ハイブリッド回路と、
前記第4基板の前記第1面に形成される、2入力2出力型の第4の90度ハイブリッド回路であって、前記第3の信号出力端子及び前記第4の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第4の90度ハイブリッド回路と、
前記第1の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第1入力端子とを接続する第1信号線と、
前記第1の90度ハイブリッド回路の第2出力端子と、前記第4の90度ハイブリッド回路の第1入力端子とを接続する第2信号線と、
前記第4の90度ハイブリッド回路の第2入力端子と、前記第2の90度ハイブリッド回路の第2出力端子とを接続する第3信号線と、
前記第2の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第2入力端子とを接続する第4信号線と、
前記第1乃至第4基板の第2面の少なくとも第1乃至第4領域内にそれぞれ形成され、基準電位に保持される第1乃至第4基準電位層と
を含み、
前記第1及び第2の信号入力端子に接続される2つの送信アンテナと、第3及び第4の信号入力端子に接続される2つの送信アンテナとは、四角形の頂点に位置するようにそれぞれ配置されており、
前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線の電気長は、互いに等しく、
前記第1乃至第4領域は、それぞれ、平面視で、前記第1乃至第4の90度ハイブリッド回路が形成される領域である、信号変換回路。
(付記7)
前記第1基板及び前記第2基板に対して、前記第3基板及び前記第4基板は、垂直に配置される、付記5又は6記載の信号変換回路。
(付記8)
前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線は、それぞれ、導波管、又は、特性インピーダンスが最適化された伝送路である、付記5乃至7のいずれか一項記載の信号変換回路。
(付記9)
前記4つの受信アンテナは、4*4 Los MIMOによる配置である、付記1乃至8のいずれか一項記載の信号変換回路。
(付記10)
四角形の頂点に位置するようにそれぞれ配置される4つの受信アンテナにそれぞれ接続される第1乃至第4の信号入力端子と、
第1乃至第4の信号出力端子と、
2入力2出力型の第1の90度ハイブリッド回路であって、前記第1の信号入力端子及び前記第2の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第1の90度ハイブリッド回路と、
2入力2出力型の第2の90度ハイブリッド回路であって、前記第3の信号入力端子及び前記第4の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第2の90度ハイブリッド回路と、
2入力2出力型の第3の90度ハイブリッド回路であって、前記第1の信号出力端子及び前記第2の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第3の90度ハイブリッド回路と、
2入力2出力型の第4の90度ハイブリッド回路であって、前記第3の信号出力端子及び前記第4の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第4の90度ハイブリッド回路と、
前記第1の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第1入力端子とを接続する第1信号線と、
前記第1の90度ハイブリッド回路の第2出力端子と、前記第4の90度ハイブリッド回路の第1入力端子とを接続する第2信号線と、
前記第4の90度ハイブリッド回路の第2入力端子と、前記第2の90度ハイブリッド回路の第2出力端子とを接続する第3信号線と、
前記第2の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第2入力端子とを接続する第4信号線と
を含み、
前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線の電気長は、互いに等しい、信号変換回路。
(付記11)
2つの受信アンテナにそれぞれ接続される第1及び第2の信号入力端子と、
前記2つの受信アンテナとは異なる2つの受信アンテナにそれぞれ接続される第3及び第4の信号入力端子と、
第1及び第2の信号出力端子と、
第3及び第4の信号出力端子と、
2入力2出力型の第1の90度ハイブリッド回路であって、前記第1の信号入力端子及び前記第2の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第1の90度ハイブリッド回路と、
2入力2出力型の第2の90度ハイブリッド回路であって、前記第3の信号入力端子及び前記第4の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第2の90度ハイブリッド回路と、
2入力2出力型の第3の90度ハイブリッド回路であって、前記第1の信号出力端子及び前記第2の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第3の90度ハイブリッド回路と、
2入力2出力型の第4の90度ハイブリッド回路であって、前記第3の信号出力端子及び前記第4の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第4の90度ハイブリッド回路と、
前記第1の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第1入力端子とを接続する第1信号線と、
前記第1の90度ハイブリッド回路の第2出力端子と、前記第4の90度ハイブリッド回路の第1入力端子とを接続する第2信号線と、
前記第4の90度ハイブリッド回路の第2入力端子と、前記第2の90度ハイブリッド回路の第2出力端子とを接続する第3信号線と、
前記第2の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第2入力端子とを接続する第4信号線と
を含み、
前記第1及び第2の信号入力端子に接続される2つの受信アンテナと、第3及び第4の信号入力端子に接続される2つの受信アンテナとは、四角形の頂点に位置するようにそれぞれ配置されており、
前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線の電気長は、互いに等しい、信号変換回路。
(付記12)
前記第1乃至第4の90度ハイブリッド回路及び前記第1乃至第4信号線は、マイクロストリップラインである、付記10又は11記載の信号変換回路。
(付記13)
前記第1乃至第4の90度ハイブリッド回路及び前記第1乃至第4信号線は、導波管である、付記10又は11記載の送受信回路。
50 4*4 Los MIMO送受信システム
10A〜10D Txアンテナ
20A〜20D Rxアンテナ
100 信号変換回路
101 基板
110、120、130、140 90度ハイブリッド回路
151、152、153、154 入力端子
161、162、163、164 出力端子
171、172、173、174 信号線
180 グランド層
110A、110B、120A、120B、130A、130B、140A、140B 入力端子
110C、110D、120C、120D、130C、130D、140C、140D 出力端子
111、112、121、122、131、132、141、142 シリーズアーム
113、114、123、124、133、134、143、144 シャントアーム
200、200A 信号変換回路
201、202、203、204 基板
271、272、273、274 導波管
281、282、283、284 グランド層
271A、272A、273A、274A 同軸ケーブル

Claims (11)

  1. 基板と、
    前記基板の第1面に形成され、四角形の頂点に位置するようにそれぞれ配置される4つの受信アンテナにそれぞれ接続される第1乃至第4の信号入力端子と、
    前記基板の第1面に形成される第1乃至第4の信号出力端子と、
    前記基板の前記第1面に形成される、2入力2出力型の第1の90度ハイブリッド回路であって、前記第1の信号入力端子及び前記第2の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第1の90度ハイブリッド回路と、
    前記基板の前記第1面に形成される、2入力2出力型の第2の90度ハイブリッド回路であって、前記第3の信号入力端子及び前記第4の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第2の90度ハイブリッド回路と、
    前記基板の前記第1面に形成される、2入力2出力型の第3の90度ハイブリッド回路であって、前記第1の信号出力端子及び前記第2の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第3の90度ハイブリッド回路と、
    前記基板の前記第1面に形成される、2入力2出力型の第4の90度ハイブリッド回路であって、前記第3の信号出力端子及び前記第4の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第4の90度ハイブリッド回路と、
    前記第1の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第1入力端子とを接続する第1信号線と、
    前記第1の90度ハイブリッド回路の第2出力端子と、前記第4の90度ハイブリッド回路の第1入力端子とを接続する第2信号線と、
    前記第4の90度ハイブリッド回路の第2入力端子と、前記第2の90度ハイブリッド回路の第2出力端子とを接続する第3信号線と、
    前記第2の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第2入力端子とを接続する第4信号線と、
    前記基板の第2面の少なくとも所定の領域内に形成され、基準電位に保持される基準電位層と
    を含み、
    前記第1乃至第4の90度ハイブリッド回路は、平面視で、前記第1の90度ハイブリッド回路、前記第4の90度ハイブリッド回路、前記第2の90度ハイブリッド回路、前記第3の90度ハイブリッド回路の順に時計回りに配設されており、
    前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線の電気長は、互いに等しく、
    前記所定の領域は、平面視で、前記第1乃至第4の90度ハイブリッド回路と、前記第1乃至第4信号線とが形成される領域である、信号変換回路。
  2. 基板と、
    前記基板の第1面に形成される第1乃至第4の信号入力端子と、
    前記基板の第1面に形成され、四角形の頂点に位置するようにそれぞれ配置される4つの送信アンテナにそれぞれ接続される第1乃至第4の信号出力端子と、
    前記基板の前記第1面に形成される、2入力2出力型の第1の90度ハイブリッド回路であって、前記第1の信号入力端子及び前記第2の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第1の90度ハイブリッド回路と、
    前記基板の前記第1面に形成される、2入力2出力型の第2の90度ハイブリッド回路であって、前記第3の信号入力端子及び前記第4の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第2の90度ハイブリッド回路と、
    前記基板の前記第1面に形成される、2入力2出力型の第3の90度ハイブリッド回路であって、前記第1の信号出力端子及び前記第2の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第3の90度ハイブリッド回路と、
    前記基板の前記第1面に形成される、2入力2出力型の第4の90度ハイブリッド回路であって、前記第3の信号出力端子及び前記第4の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第4の90度ハイブリッド回路と、
    前記第1の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第1入力端子とを接続する第1信号線と、
    前記第1の90度ハイブリッド回路の第2出力端子と、前記第4の90度ハイブリッド回路の第1入力端子とを接続する第2信号線と、
    前記第4の90度ハイブリッド回路の第2入力端子と、前記第2の90度ハイブリッド回路の第2出力端子とを接続する第3信号線と、
    前記第2の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第2入力端子とを接続する第4信号線と、
    前記基板の第2面の少なくとも所定の領域内に形成され、基準電位に保持される基準電位層と
    を含み、
    前記第1乃至第4の90度ハイブリッド回路は、平面視で、前記第1の90度ハイブリッド回路、前記第4の90度ハイブリッド回路、前記第2の90度ハイブリッド回路、前記第3の90度ハイブリッド回路の順に時計回りに配設されており、
    前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線の電気長は、互いに等しく、
    前記所定の領域は、平面視で、前記第1乃至第4の90度ハイブリッド回路と、前記第1乃至第4信号線とが形成される領域である、信号変換回路。
  3. 前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線は、それぞれ、導波管、又は、特性インピーダンスが最適化された伝送路である、請求項1又は2記載の信号変換回路。
  4. 第1基板と、
    前記第1基板に平行に配置される第2基板と、
    第3基板と、
    前記第3基板に平行に配置される第4基板と、
    前記第1基板の第1面に形成され、2つの受信アンテナにそれぞれ接続される第1及び第2の信号入力端子と、
    前記第2基板の第1面に形成され、前記2つの受信アンテナとは異なる2つの受信アンテナにそれぞれ接続される第3及び第4の信号入力端子と、
    前記第3基板の第1面に形成される第1及び第2の信号出力端子と、
    前記第4基板の第1面に形成される第3及び第4の信号出力端子と、
    前記第1基板の前記第1面に形成される、2入力2出力型の第1の90度ハイブリッド回路であって、前記第1の信号入力端子及び前記第2の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第1の90度ハイブリッド回路と、
    前記第2基板の前記第1面に形成される、2入力2出力型の第2の90度ハイブリッド回路であって、前記第3の信号入力端子及び前記第4の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第2の90度ハイブリッド回路と、
    前記第3基板の前記第1面に形成される、2入力2出力型の第3の90度ハイブリッド回路であって、前記第1の信号出力端子及び前記第2の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第3の90度ハイブリッド回路と、
    前記第4基板の前記第1面に形成される、2入力2出力型の第4の90度ハイブリッド回路であって、前記第3の信号出力端子及び前記第4の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第4の90度ハイブリッド回路と、
    前記第1の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第1入力端子とを接続する第1信号線と、
    前記第1の90度ハイブリッド回路の第2出力端子と、前記第4の90度ハイブリッド回路の第1入力端子とを接続する第2信号線と、
    前記第4の90度ハイブリッド回路の第2入力端子と、前記第2の90度ハイブリッド回路の第2出力端子とを接続する第3信号線と、
    前記第2の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第2入力端子とを接続する第4信号線と、
    前記第1乃至第4基板の第2面の少なくとも第1乃至第4領域内にそれぞれ形成され、基準電位に保持される第1乃至第4基準電位層と
    を含み、
    前記第1及び第2の信号入力端子に接続される2つの受信アンテナと、第3及び第4の信号入力端子に接続される2つの受信アンテナとは、四角形の頂点に位置するようにそれぞれ配置されており、
    前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線の電気長は、互いに等しく、
    前記第1乃至第4領域は、それぞれ、平面視で、前記第1乃至第4の90度ハイブリッド回路が形成される領域である、信号変換回路。
  5. 第1基板と、
    前記第1基板に平行に配置される第2基板と、
    第3基板と、
    前記第3基板に平行に配置される第4基板と、
    前記第1基板の第1面に形成される第1及び第2の信号入力端子と、
    前記第2基板の第1面に形成される第3及び第4の信号入力端子と、
    前記第3基板の第1面に形成され、2つの送信アンテナにそれぞれ接続される第1及び第2の信号出力端子と、
    前記第4基板の第1面に形成され、前記2つの送信アンテナとは異なる2つの送信アンテナにそれぞれ接続される第3及び第4の信号出力端子と、
    前記第1基板の前記第1面に形成される、2入力2出力型の第1の90度ハイブリッド回路であって、前記第1の信号入力端子及び前記第2の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第1の90度ハイブリッド回路と、
    前記第2基板の前記第1面に形成される、2入力2出力型の第2の90度ハイブリッド回路であって、前記第3の信号入力端子及び前記第4の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第2の90度ハイブリッド回路と、
    前記第3基板の前記第1面に形成される、2入力2出力型の第3の90度ハイブリッド回路であって、前記第1の信号出力端子及び前記第2の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第3の90度ハイブリッド回路と、
    前記第4基板の前記第1面に形成される、2入力2出力型の第4の90度ハイブリッド回路であって、前記第3の信号出力端子及び前記第4の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第4の90度ハイブリッド回路と、
    前記第1の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第1入力端子とを接続する第1信号線と、
    前記第1の90度ハイブリッド回路の第2出力端子と、前記第4の90度ハイブリッド回路の第1入力端子とを接続する第2信号線と、
    前記第4の90度ハイブリッド回路の第2入力端子と、前記第2の90度ハイブリッド回路の第2出力端子とを接続する第3信号線と、
    前記第2の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第2入力端子とを接続する第4信号線と、
    前記第1乃至第4基板の第2面の少なくとも第1乃至第4領域内にそれぞれ形成され、基準電位に保持される第1乃至第4基準電位層と
    を含み、
    前記第1及び第2の信号入力端子に接続される2つの送信アンテナと、第3及び第4の信号入力端子に接続される2つの送信アンテナとは、四角形の頂点に位置するようにそれぞれ配置されており、
    前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線の電気長は、互いに等しく、
    前記第1乃至第4領域は、それぞれ、平面視で、前記第1乃至第4の90度ハイブリッド回路が形成される領域である、信号変換回路。
  6. 前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線は、それぞれ、導波管、又は、特性インピーダンスが最適化された伝送路である、請求項4又は5記載の信号変換回路。
  7. 前記4つの受信アンテナは、4*4 Los MIMOによる配置である、請求項1乃至6のいずれか一項記載の信号変換回路。
  8. 四角形の頂点に位置するようにそれぞれ配置される4つの受信アンテナにそれぞれ接続される第1乃至第4の信号入力端子と、
    第1乃至第4の信号出力端子と、
    2入力2出力型の第1の90度ハイブリッド回路であって、前記第1の信号入力端子及び前記第2の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第1の90度ハイブリッド回路と、
    2入力2出力型の第2の90度ハイブリッド回路であって、前記第3の信号入力端子及び前記第4の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第2の90度ハイブリッド回路と、
    2入力2出力型の第3の90度ハイブリッド回路であって、前記第1の信号出力端子及び前記第2の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第3の90度ハイブリッド回路と、
    2入力2出力型の第4の90度ハイブリッド回路であって、前記第3の信号出力端子及び前記第4の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第4の90度ハイブリッド回路と、
    前記第1の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第1入力端子とを接続する第1信号線と、
    前記第1の90度ハイブリッド回路の第2出力端子と、前記第4の90度ハイブリッド回路の第1入力端子とを接続する第2信号線と、
    前記第4の90度ハイブリッド回路の第2入力端子と、前記第2の90度ハイブリッド回路の第2出力端子とを接続する第3信号線と、
    前記第2の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第2入力端子とを接続する第4信号線と
    を含み、
    前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線の電気長は、互いに等しい、信号変換回路。
  9. 2つの受信アンテナにそれぞれ接続される第1及び第2の信号入力端子と、
    前記2つの受信アンテナとは異なる2つの受信アンテナにそれぞれ接続される第3及び第4の信号入力端子と、
    第1及び第2の信号出力端子と、
    第3及び第4の信号出力端子と、
    2入力2出力型の第1の90度ハイブリッド回路であって、前記第1の信号入力端子及び前記第2の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第1の90度ハイブリッド回路と、
    2入力2出力型の第2の90度ハイブリッド回路であって、前記第3の信号入力端子及び前記第4の信号入力端子に接続される第1入力端子及び第2入力端子を有し、前記第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第1出力端子及び第2出力端子からそれぞれ出力するとともに、前記第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を第2出力端子及び第1出力端子からそれぞれ出力する第2の90度ハイブリッド回路と、
    2入力2出力型の第3の90度ハイブリッド回路であって、前記第1の信号出力端子及び前記第2の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第3の90度ハイブリッド回路と、
    2入力2出力型の第4の90度ハイブリッド回路であって、前記第3の信号出力端子及び前記第4の信号出力端子に接続される第1出力端子及び第2出力端子を有し、第1入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第1出力端子及び前記第2出力端子からそれぞれ出力するとともに、第2入力端子に入力される信号に対して、90度及び180度の位相差を有する信号を前記第2出力端子及び前記第1出力端子からそれぞれ出力する第4の90度ハイブリッド回路と、
    前記第1の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第1入力端子とを接続する第1信号線と、
    前記第1の90度ハイブリッド回路の第2出力端子と、前記第4の90度ハイブリッド回路の第1入力端子とを接続する第2信号線と、
    前記第4の90度ハイブリッド回路の第2入力端子と、前記第2の90度ハイブリッド回路の第2出力端子とを接続する第3信号線と、
    前記第2の90度ハイブリッド回路の第1出力端子と、前記第3の90度ハイブリッド回路の第2入力端子とを接続する第4信号線と
    を含み、
    前記第1及び第2の信号入力端子に接続される2つの受信アンテナと、第3及び第4の信号入力端子に接続される2つの受信アンテナとは、四角形の頂点に位置するようにそれぞれ配置されており、
    前記第1信号線、前記第2信号線、前記第3信号線、及び前記第4信号線の電気長は、互いに等しい、信号変換回路。
  10. 前記第1乃至第4の90度ハイブリッド回路及び前記第1乃至第4信号線は、マイクロストリップラインである、請求項8又は9記載の信号変換回路。
  11. 前記第1乃至第4の90度ハイブリッド回路及び前記第1乃至第4信号線は、導波管である、請求項8又は9記載の送受信回路。
JP2014137084A 2014-07-02 2014-07-02 信号変換回路 Expired - Fee Related JP6432183B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014137084A JP6432183B2 (ja) 2014-07-02 2014-07-02 信号変換回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014137084A JP6432183B2 (ja) 2014-07-02 2014-07-02 信号変換回路

Publications (2)

Publication Number Publication Date
JP2016015644A true JP2016015644A (ja) 2016-01-28
JP6432183B2 JP6432183B2 (ja) 2018-12-05

Family

ID=55231526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014137084A Expired - Fee Related JP6432183B2 (ja) 2014-07-02 2014-07-02 信号変換回路

Country Status (1)

Country Link
JP (1) JP6432183B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107708A (ja) * 1981-12-22 1983-06-27 Toshiba Corp マイクロ波電力合成回路
JPH05243821A (ja) * 1991-07-18 1993-09-21 Matra Marconi Space Uk Ltd マルチポートマイクロ波カップラー
JP2005236590A (ja) * 2004-02-19 2005-09-02 Nippon Hoso Kyokai <Nhk> アンテナ装置及び該アンテナ装置を備えた移動体通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107708A (ja) * 1981-12-22 1983-06-27 Toshiba Corp マイクロ波電力合成回路
JPH05243821A (ja) * 1991-07-18 1993-09-21 Matra Marconi Space Uk Ltd マルチポートマイクロ波カップラー
JP2005236590A (ja) * 2004-02-19 2005-09-02 Nippon Hoso Kyokai <Nhk> アンテナ装置及び該アンテナ装置を備えた移動体通信装置

Also Published As

Publication number Publication date
JP6432183B2 (ja) 2018-12-05

Similar Documents

Publication Publication Date Title
US10573964B2 (en) Combined phase shifter and multi-band antenna network system
CA3135484C (en) Antenna system for a portable communication device
US10312584B2 (en) Dual antenna device
WO2009113307A1 (ja) 信号分波器とこれを用いた電子機器、アンテナ装置およびこれらに使われる信号伝送方式
US10333215B2 (en) Multi-band array antenna
JP5639217B2 (ja) 送受信分離アンテナ装置
WO2022048512A1 (zh) 天线结构和电子设备
US10511102B2 (en) Feeder circuit
JP5594599B2 (ja) 電磁結合器及びそれを搭載した情報通信機器
JP2018196037A (ja) 方向性結合器、高周波フロントエンドモジュール、および、通信機器
WO2021098042A1 (zh) 天线、终端中框及终端
JP6432183B2 (ja) 信号変換回路
WO2022085653A1 (ja) アンテナ装置、およびレーダ装置
EP3297092A1 (en) Cable and high-frequency device using same
JP5505794B2 (ja) 電磁結合器及びそれを搭載した情報通信機器
JP5785007B2 (ja) アンテナ装置、及び、通信装置
EP3343700A1 (en) Antenna radiation unit and antenna
JP2008244733A (ja) 平面アレーアンテナ装置とそれを備えた無線通信装置
TWI420737B (zh) 天線與通訊裝置
EP2437349A1 (en) Display device
JP2019153827A (ja) アンテナおよび無線通信装置
JP3895716B2 (ja) 高周波伝送基板および高周波伝送基板接続構造
JP2015504230A (ja) コネクタ及びそれを使う電子システム
JP2015192322A (ja) ワイヤレス通信システム
JP5440954B2 (ja) 電磁結合器及びそれを搭載した情報通信機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181022

R150 Certificate of patent or registration of utility model

Ref document number: 6432183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees