JP2016012648A - Substrate for gallium nitride-based light-emitting devices - Google Patents

Substrate for gallium nitride-based light-emitting devices Download PDF

Info

Publication number
JP2016012648A
JP2016012648A JP2014133265A JP2014133265A JP2016012648A JP 2016012648 A JP2016012648 A JP 2016012648A JP 2014133265 A JP2014133265 A JP 2014133265A JP 2014133265 A JP2014133265 A JP 2014133265A JP 2016012648 A JP2016012648 A JP 2016012648A
Authority
JP
Japan
Prior art keywords
gan
substrate
sapphire substrate
light emitting
based light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014133265A
Other languages
Japanese (ja)
Inventor
聡充 内田
Akimi Uchida
聡充 内田
清太 三好
Seita Miyoshi
清太 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samco Inc
Original Assignee
Samco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samco Inc filed Critical Samco Inc
Priority to JP2014133265A priority Critical patent/JP2016012648A/en
Publication of JP2016012648A publication Critical patent/JP2016012648A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sapphire substrate, by which a GaN-based light-emitting device having a higher external quantum efficiency than that achieved in the past can be manufactured.SOLUTION: A substrate for GaN-based light-emitting devices comprises: a sapphire substrate 10; and protrusions 20 disposed on a surface of the sapphire substrate 10 and spaced part from each other by 0.2-4 μm, and made of a substance having a refraction index of 1.70-2.25. The protrusion 20 has a bottom part of 1.0-4.0 μm in diameter, a height of 1.0-4.0 μm, and a shape in which the area of its cross section in parallel with the surface becomes smaller with the increase in the distance from the surface.

Description

本発明は、一般式InxGayAl1-x-yNで表されるGaN系発光素子を製造するために用いられるサファイア基板に関する。 The present invention relates to a sapphire substrate used to manufacture a GaN-based light emitting device represented by the general formula In x Ga y Al 1-xy N.

GaN系発光素子は、例えば、サファイア基板上に、n-GaNからなるn型半導体層、InGaN/GaNの多重量子井戸構造(MQW:Multi Quantum Wells)を有する活性層(発光層)、及びp-GaNからなるp型半導体層を順に積層することにより製造され、p型半導体層から供給される正孔とn型半導体層から供給される電子が活性層において結合して発光する。   A GaN-based light emitting device is, for example, an n-type semiconductor layer made of n-GaN on an sapphire substrate, an active layer (light emitting layer) having an InGaN / GaN multiple quantum well structure (MQW), It is manufactured by sequentially stacking p-type semiconductor layers made of GaN, and holes supplied from the p-type semiconductor layer and electrons supplied from the n-type semiconductor layer are combined in the active layer to emit light.

発光素子の性能を評価する指標の一つに、外部量子効率(EQE:External Quantum Efficiency)がある。外部量子効率は、発光素子の発光効率を評価する指標であり、内部量子効率(IQE:Internal Quantum Efficiency)と光取り出し効率(LEE:Light Extraction Efficiency)の積で表される。従って、内部量子効率及び光取り出し効率のいずれかが大きくなれば、外部量子効率が大きくなり、発光素子の性能が向上する。   One of the indexes for evaluating the performance of a light-emitting element is external quantum efficiency (EQE). The external quantum efficiency is an index for evaluating the light emission efficiency of the light emitting element, and is represented by a product of an internal quantum efficiency (IQE) and a light extraction efficiency (LEE). Therefore, if either the internal quantum efficiency or the light extraction efficiency is increased, the external quantum efficiency is increased, and the performance of the light emitting element is improved.

従来、光取り出し効率を向上させる方法として、サファイア基板の表面に周期的な凹凸構造を形成する方法が採用されてきた。光取り出し効率は、発光層から放出される光子数に対する発光素子外部に取り出される光子数の比で表される。サファイア基板の表面が平坦なGaN系発光素子では、発光層から該サファイア基板の表面またはp型半導体層の表面に臨界角よりも大きな角度で入射した光は全反射を繰り返すため、素子外部に取り出すことができない。これに対して、サファイア基板の表面に凹凸構造を形成して非平坦にすると、こうした光の進行方向が該表面で変化するため素子外部に取り出すことができ、光取り出し効率が向上する。   Conventionally, as a method for improving light extraction efficiency, a method of forming a periodic uneven structure on the surface of a sapphire substrate has been employed. The light extraction efficiency is represented by the ratio of the number of photons extracted outside the light emitting element to the number of photons emitted from the light emitting layer. In a GaN-based light emitting device with a flat sapphire substrate surface, light incident on the surface of the sapphire substrate or the surface of the p-type semiconductor layer from the light emitting layer at an angle larger than the critical angle repeats total reflection, and thus is extracted outside the device I can't. On the other hand, if a concavo-convex structure is formed on the surface of the sapphire substrate to make it uneven, the traveling direction of such light changes on the surface, so that it can be extracted outside the device, and the light extraction efficiency is improved.

サファイア基板の表面に凹凸構造を形成する方法の一つに、該サファイア基板の表面をエッチング加工する方法がある。ところが、この方法で得られた基板(PSS:Patterned Sapphire Substrate)の表面にn型GaN層を結晶成長させると、サファイア基板表面の高さが異なる位置から同時にGaN層の結晶成長が始まるため、n型GaN層の内部に結晶欠陥が生じやすくなる。結晶欠陥では、電子・正孔対の結合による発光が生じないため、このような結晶欠陥が増えると発光層に注入される電子と正孔の対の数に対する発光層から放出される光子数の比で表される内部量子効率が低下する。   One method for forming a concavo-convex structure on the surface of a sapphire substrate is to etch the surface of the sapphire substrate. However, when an n-type GaN layer is grown on the surface of a substrate (PSS: Patterned Sapphire Substrate) obtained by this method, the crystal growth of the GaN layer starts simultaneously from a different position on the surface of the sapphire substrate. Crystal defects are likely to occur inside the type GaN layer. Since crystal defects do not cause light emission due to electron-hole pair coupling, when such crystal defects increase, the number of photons emitted from the light-emitting layer with respect to the number of electron-hole pairs injected into the light-emitting layer is increased. The internal quantum efficiency expressed as a ratio decreases.

一方、サファイア基板の表面にGaNの結晶成長が起こり難い酸化シリコン等からなる周期的な凸部を配置することによって、上記同様に基板表面を非平坦にする方法が提案されている(例えば特許文献1〜3)。このようなサファイア基板を用いると、サファイア基板の表面のうち凸部が形成されていない部分のみからGaN層の結晶成長が始まるため、n型GaN層の内部に欠陥が生じにくい。   On the other hand, a method has been proposed in which the substrate surface is made non-planar in the same manner as described above by arranging periodic protrusions made of silicon oxide or the like on the surface of the sapphire substrate, where GaN crystal growth hardly occurs (for example, Patent Document 1-3). When such a sapphire substrate is used, crystal growth of the GaN layer starts only from the portion of the surface of the sapphire substrate where the convex portions are not formed, so that defects are less likely to occur inside the n-type GaN layer.

特開2009−54898号公報JP 2009-54898 A 特開2008−10809号公報JP 2008-10809 A 特開2011−60917号公報JP 2011-60917 A

上述のように、光取り出し効率や内部量子効率を大きくすることにより外部量子効率を向上させる方法が提案されているが、それらにより達成される外部量子効率は未だ不十分であり、さらに外部量子効率が高い発光素子を製造することができる基板が必要とされている。   As described above, methods for improving the external quantum efficiency by increasing the light extraction efficiency and the internal quantum efficiency have been proposed, but the external quantum efficiency achieved by them is still insufficient, and the external quantum efficiency is further improved. There is a need for a substrate that can produce a light-emitting element having a high value.

本発明が解決しようとする課題は、従来よりも外部量子効率が高いGaN系発光素子を製造することができるサファイア基板を提供することである。   The problem to be solved by the present invention is to provide a sapphire substrate capable of manufacturing a GaN-based light emitting device having higher external quantum efficiency than conventional ones.

上記課題を解決するために成された本発明に係るGaN系発光素子用基板は、
a) サファイア基板と、
b) 前記サファイア基板の表面上において0.2μm〜4.0μm離間して配置された、屈折率が1.70〜2.25の物質からなる複数の凸部であって、底部の径が1.0μm〜4.0μm、高さが1.0μm〜4.0μmであり、前記表面に平行な断面の面積が該表面から遠ざかるにつれて小さくなる形状を有する凸部と、
を備えることを特徴とする。
The substrate for a GaN-based light emitting device according to the present invention, which has been made to solve the above problems,
a) a sapphire substrate;
b) A plurality of convex portions made of a material having a refractive index of 1.70 to 2.25, spaced apart by 0.2 μm to 4.0 μm on the surface of the sapphire substrate, and having a bottom diameter of 1.0 μm to 4.0 μm, high A convex portion having a shape that is 1.0 μm to 4.0 μm, and the area of the cross section parallel to the surface decreases as the distance from the surface increases.
It is characterized by providing.

上記の底部の径は、凸部の底面の周縁部上の2点を結ぶ最長の線分の長さをいう。例えば、底面が円形の場合にはその直径、矩形の場合には対角線が、底部の径に相当する。   The diameter of the bottom portion refers to the length of the longest line segment connecting two points on the peripheral portion of the bottom surface of the convex portion. For example, when the bottom surface is circular, the diameter corresponds to the diameter of the bottom, and when the bottom surface is rectangular, the diagonal corresponds to the diameter of the bottom.

本発明者は、サファイア基板と凸部の屈折率の違いや凸部の形状及び配置間隔によって、発光層から該サファイア基板の表面またはp型半導体層の表面に臨界角よりも大きな角度で入射する光の進行方向を変化させる作用の大きさが異なること等に着目して本発明に想到した。   The inventor enters the surface of the sapphire substrate or the surface of the p-type semiconductor layer from the light emitting layer at an angle larger than the critical angle due to the difference in refractive index between the sapphire substrate and the convex portion, the shape and the arrangement interval of the convex portion. The present invention has been conceived by focusing on the fact that the magnitude of the action of changing the traveling direction of light is different.

本発明者は、まず、サファイア基板表面での臨界角に影響を及ぼす、凸部の材料の屈折率を検討した。その結果、凸部の屈折率を1.70〜2.25にすると、PSSよりも外部量子効率が高くなることを確認した。また、凸部をSiN(屈折率2.06)にすると、外部量子効率が特に高くなることを確認した。   The inventor first examined the refractive index of the convex material that affects the critical angle on the surface of the sapphire substrate. As a result, it was confirmed that when the refractive index of the convex portion was 1.70-2.25, the external quantum efficiency was higher than that of PSS. In addition, it was confirmed that the external quantum efficiency is particularly increased when the convex portion is made of SiN (refractive index 2.06).

続いて凸部の形状と配置間隔を検討した。凸部の形状や配置が異なる複数の条件で、サファイア基板の表面にSiNからなる凸部を配置した基板とPSSを作成して光取り出し効率を比較した。その結果、凸部の配置間隔、底部の径、及び高さを上記範囲内とすることにより、PSSよりも外部量子効率が高くなることを確認した。   Subsequently, the shape of the convex portion and the arrangement interval were examined. Under a plurality of conditions in which the shape and arrangement of the protrusions are different, the PSS was created with a substrate in which the protrusions made of SiN were arranged on the surface of the sapphire substrate, and the light extraction efficiency was compared. As a result, it was confirmed that the external quantum efficiency was higher than that of PSS by setting the arrangement interval of the convex portions, the diameter of the bottom portion, and the height within the above ranges.

前記凸部の形状は、円錐状、角錐状等、種々の形状とすることができる。また、円錐や角錐の上部を切り取って平坦化した形状等としてもよい。さらに、複数の凸部の形状や大きさは、上記要件を満たす限りにおいて、均一であっても、あるいはそれぞれ異なっていてもよい。
前記複数の凸部は、典型的にはサファイア表面上に周期的に配置するが、上記の要件を満たす限りにおいてランダムに配置してもよい。
前記凸部には、SiOxNy(0≦x≦2、0<y≦1)を好適に用いることができる。これらの物質の硬度はサファイアよりも低いため、サファイア基板の表面にエッチング加工を施す従来の基板よりも容易に作製することができる。
The shape of the convex portion can be various shapes such as a conical shape and a pyramid shape. Moreover, it is good also as the shape etc. which cut and flattened the upper part of the cone and the pyramid. Furthermore, the shape and size of the plurality of convex portions may be uniform or different as long as the above requirements are satisfied.
The plurality of convex portions are typically periodically arranged on the sapphire surface, but may be randomly arranged as long as the above requirements are satisfied.
For the convex portion, SiOxNy (0 ≦ x ≦ 2, 0 <y ≦ 1) can be suitably used. Since the hardness of these materials is lower than that of sapphire, it can be easily manufactured as compared with the conventional substrate in which the surface of the sapphire substrate is etched.

本発明に係るGaN系発光素子用基板を用いることにより、従来よりも外部量子効率が高いGaN系発光素子を製造することができる。   By using the substrate for a GaN-based light-emitting element according to the present invention, a GaN-based light-emitting element having higher external quantum efficiency than the conventional one can be manufactured.

本発明に係るGaN系発光素子用基板の一実施例の概略図。Schematic of one Example of the board | substrate for GaN-type light emitting elements which concerns on this invention. 本実施例のGaN系発光素子用基板を用いて製造されるGaN系発光素子の概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic of the GaN-type light emitting element manufactured using the substrate for GaN-type light emitting elements of a present Example. 本実施例のGaN系発光素子用基板における凸部の物質と特性と、プラズマCVD法において用いる材料ガスの種類。The material and characteristics of the protrusions in the GaN-based light emitting device substrate of this example, and the type of material gas used in the plasma CVD method. 凸部の屈折率が異なるGaN系発光素子用の外部量子効率をPSSと比較した結果。Results of external quantum efficiency compared to PSS for GaN-based light-emitting devices with different refractive indices of protrusions. 本実施例におけるシミュレーションで用いたモデル構造。Model structure used in the simulation in this example. 凸部の径と光取り出し効率の関係をシミュレーションした結果を示すグラフ。The graph which shows the result of having simulated the relationship between the diameter of a convex part, and light extraction efficiency. 凸部の高さと光取り出し効率の関係をシミュレーションした結果を示すグラフ。The graph which shows the result of having simulated the relationship between the height of a convex part and light extraction efficiency. 凸部の高さと光取り出し効率の関係をシミュレーションした別の結果を示すグラフ。The graph which shows another result which simulated the relationship between the height of a convex part, and light extraction efficiency. 凸部の高さと光取り出し効率の関係をシミュレーションした、さらに別の結果を示すグラフ。The graph which shows another result which simulated the relationship between the height of a convex part, and light extraction efficiency. 凸部の離間間隔と光取り出し効率の関係をシミュレーションした結果を示すグラフ。The graph which shows the result of having simulated the relationship between the space | interval of a convex part, and light extraction efficiency.

本発明に係るGaN系発光素子用基板の実施形態について、以下、図面を参照して説明する。本実施例のGaN系発光素子用基板(以下、単に「基板」ともいう。)は、図1に示すように、サファイア基板10の表面に、一般式SiOxNy(0≦x≦2, 0<y≦1)で表される物質からなる凸部20を複数、配置したものである。そして、この基板の表面に、例えばu-GaN層(不純物を添加していないGaN層)、n-GaN層、SLS層(Strained Layer Superlattice、超格子歪緩和層)、InGaN/GaNの多重量子井戸構造層、p-AlGaN層、p-GaN層、及びITO層(Indium Tin Oxide)を順に積層することによって、GaN発光素子が製造される(図2参照)。   Embodiments of a GaN-based light emitting device substrate according to the present invention will be described below with reference to the drawings. As shown in FIG. 1, the substrate for a GaN-based light emitting device of this example (hereinafter also simply referred to as “substrate”) has a general formula SiOxNy (0 ≦ x ≦ 2, 0 <y) on the surface of the sapphire substrate 10. A plurality of convex portions 20 made of a substance represented by ≦ 1) are arranged. And on the surface of this substrate, for example, u-GaN layer (GaN layer without added impurities), n-GaN layer, SLS layer (Strained Layer Superlattice), InGaN / GaN multiple quantum well A structural layer, a p-AlGaN layer, a p-GaN layer, and an ITO layer (Indium Tin Oxide) are stacked in this order to manufacture a GaN light emitting device (see FIG. 2).

まず、プラズマCVD(PECVD:plasma-enhanced chemical vapor deposition)法を用いて、サファイア基板上に一般式SiOxNyで表される5種類の物質をそれぞれ成膜し、これをエッチングして円錐状の凸部(高さ1.6μm、底部の直径3.6μm)を6μm間隔で配置した、5種類の基板を作製した。また、比較のために、同様の表面形状を有するPSSも作製した。5種類の物質の屈折率は、それぞれ1.46(SiO2)、1.55、1.70、1.85(SiON)、2.06(SiN)である。各物質の屈折率、波長450nmの光の透過率、及びプラズマCVD成膜において用いる材料ガスの種類を図3に示す。 First, five types of substances represented by the general formula SiOxNy are formed on a sapphire substrate using plasma CVD (PECVD: plasma-enhanced chemical vapor deposition), and etched to form a cone-shaped convex part. Five types of substrates were prepared in which (height 1.6 μm, bottom diameter 3.6 μm) were arranged at intervals of 6 μm. For comparison, a PSS having the same surface shape was also produced. The refractive indexes of the five kinds of materials are 1.46 (SiO 2 ), 1.55, 1.70, 1.85 (SiON), and 2.06 (SiN), respectively. FIG. 3 shows the refractive index of each substance, the light transmittance at a wavelength of 450 nm, and the type of material gas used in plasma CVD film formation.

上記6種類の基板(SiO2、3種類のSiON、SiNのそれぞれからなる凸部を配置した、計5種類の基板、及びPSS)、及び平坦な表面を有するサファイア基板を用いて、図1に示した積層構造を有する計7種類のGaN系発光素子を作製し、それぞれの外部量子効率を求めた。外部量子効率は、積分球の内部に配置した発光素子に20mAの電流を注入したときの、該発光素子からの発光量を測定することにより求めた。 Using the above-mentioned six types of substrates (a total of five types of substrates and protrusions composed of SiO 2 , three types of SiON, and SiN, and PSS) and a sapphire substrate having a flat surface, FIG. A total of seven types of GaN-based light-emitting elements having the laminated structure shown above were fabricated, and the external quantum efficiency of each was determined. The external quantum efficiency was determined by measuring the amount of light emitted from the light emitting device when a current of 20 mA was injected into the light emitting device disposed inside the integrating sphere.

7種類の発光素子の外部量子効率を図4に示す。図中に「flat」と記載しているのは、表面が平坦なサファイア基板を用いて作成した発光素子である。各発光素子の外部量子効率の値から、サファイア基板上に配置する複数の凸部の屈折率を2.25以下にすると、PSSよりも外部量子効率が高くなることが分かる。なお、凸部の屈折率がサファイアの屈折率よりも小さい場合でもPSSより高い外部量子効率が得られるが、これはSiOxNy膜を用いたことで凸部の表面からGaNが結晶成長せずにGaNがELO(Epitaxially Lateral Overgrowth)成長したことでGaN層の転移密度が低減して内部量子効率が向上したことが要因と考えられる。ただし、SiOxNy膜の組成によっては光取り出し効率が十分に向上しなかったので、本実施例の基板では、凸部の屈折率を1.70(外部量子効率がPSSの場合と同じになったSiOxNyの屈折率)よりも大きくしている。   FIG. 4 shows the external quantum efficiencies of the seven types of light emitting elements. In the figure, “flat” indicates a light emitting element manufactured using a sapphire substrate having a flat surface. From the value of the external quantum efficiency of each light emitting element, it can be seen that the external quantum efficiency is higher than that of PSS when the refractive index of the plurality of convex portions arranged on the sapphire substrate is 2.25 or less. Note that even when the refractive index of the convex part is smaller than that of sapphire, an external quantum efficiency higher than that of PSS can be obtained, but this is because GaN does not grow from the surface of the convex part by using the SiOxNy film. This is probably because the growth of ELO (Epitaxially Lateral Overgrowth) reduced the transition density of the GaN layer and improved the internal quantum efficiency. However, because the light extraction efficiency did not improve sufficiently depending on the composition of the SiOxNy film, the refractive index of the convex portion was 1.70 in the substrate of this example (the refractive index of SiOxNy with the same external quantum efficiency as PSS). Rate).

以上のとおり、サファイア基板上に配置する複数の凸部の屈折率を1.70〜2.25の範囲内とすることにより、従来のPSSよりも外部量子効率が高いGaN系発光素子を製造できる。特にSiNからなる凸部を配置すると、外部量子効率が最も高くなる(PSSの1.24倍)ことが分かる。   As described above, by setting the refractive index of the plurality of convex portions arranged on the sapphire substrate within the range of 1.70 to 2.25, a GaN-based light emitting device having higher external quantum efficiency than the conventional PSS can be manufactured. It can be seen that the external quantum efficiency is highest (1.24 times that of PSS) when a convex portion made of SiN is arranged.

続いて、凸部の径(底面の円形の直径)、高さ、及び配置間隔を変化させた基板を作成し、同一形状及び間隔の表面構造を有するPSSとの間で光取り出し効率を比較した。凸部の形状は円錐形とし、凸部の物質はSiNとした。凸部の形状を円錐形としたのは、基板上にGaN層を成長させると、サファイア基板の表面のうち凸部が配置されていない部分からGaNの成長が始まり、徐々に凸部を埋めるように成長していくことを踏まえ、該GaN層の内部に結晶欠陥を生じにくくするためである。   Subsequently, a substrate with the convex portion diameter (circular diameter of the bottom surface), height, and arrangement interval changed was created, and the light extraction efficiency was compared with the PSS having the surface structure of the same shape and interval. . The shape of the convex portion was conical, and the material of the convex portion was SiN. The convex shape is conical because when the GaN layer is grown on the substrate, the growth of GaN starts from the part of the surface of the sapphire substrate where the convex part is not arranged, and gradually fills the convex part. This is to make it difficult for crystal defects to occur inside the GaN layer, taking into account the fact that it grows rapidly.

光取り出し効率の比較は、厚さ80μmの本実施例の基板(又はPSS)上に、厚さ8.5μmのn-GaN層、厚さ0.10μmのp-GaN層、及び厚さ0.15μmのITO層を順に積層した構造モデル(図5参照)を用いたシミュレーションにより行った。また、活性層はp-GaN直下のn-GaN中に点光源として配置している。   The comparison of the light extraction efficiency is as follows. On the substrate (or PSS) of this example having a thickness of 80 μm, an n-GaN layer having a thickness of 8.5 μm, a p-GaN layer having a thickness of 0.10 μm, and an ITO having a thickness of 0.15 μm. The simulation was performed using a structural model (see FIG. 5) in which layers were sequentially stacked. Further, the active layer is arranged as a point light source in n-GaN directly under p-GaN.

凸部の底面の径(円の直径)を1.0μm、1.5μm、2.0μm、2.5μm、3.0μm、4.0μm、5.0μmとした7種類の基板(屈折率を2.00とした)と、表面にそれらと同形状の凹凸構造を有する7種類のPSS(屈折率を1.77とした)について、光取り出し効率をシミュレーションした。いずれの基板でも、凸部の高さは1.0μm、凸部間の離間間隔は1.0μmとした。図6に示すシミュレーションの結果から、底部の径を1.5μm〜2.5μmにすると、PSSよりも高い光取り出し効率が得られることが確認された。また、底部の径を2.0μmとすると光取り出し効率を最も高くなることが確認された。なお、表面が平坦なサファイア基板についても同様にシミュレーションしたところ、光取り出し効率は33.7%であった。なお、光取り出し効率に内部量子効率を掛けることで外部量子効率が得られる。   7 types of substrates (refractive index of 2.00) with the diameter of the bottom of the convex part (circle diameter) 1.0μm, 1.5μm, 2.0μm, 2.5μm, 3.0μm, 4.0μm, 5.0μm and on the surface The light extraction efficiency was simulated for seven types of PSS (with a refractive index of 1.77) having the same concavo-convex structure. In any substrate, the height of the protrusions was 1.0 μm, and the spacing between the protrusions was 1.0 μm. From the simulation results shown in FIG. 6, it was confirmed that when the diameter of the bottom is 1.5 μm to 2.5 μm, light extraction efficiency higher than that of PSS can be obtained. It was also confirmed that the light extraction efficiency was the highest when the diameter of the bottom was 2.0 μm. The same simulation was performed on a sapphire substrate having a flat surface, and the light extraction efficiency was 33.7%. The external quantum efficiency can be obtained by multiplying the light extraction efficiency by the internal quantum efficiency.

次に、凸部の高さを1.00μm、1.25μm、1.50μm、1.75μm、2.00μm、3.00μm、4.00μmとした7種類の基板と、表面にそれらと同形状の凹凸構造を有する7種類のPSSについて、光取り出し効率をシミュレーションした。いずれの基板でも、凸部の底部の径は2.0μm、凸部間の離間間隔は0.2μmとした。図7に示すシミュレーションの結果から、凸部の高さが1.00μm〜4.00μmの範囲内であれば、PSSよりも高い光取り出し効率が得られることが確認された。また、凸部の高さを1.25μmとすると光取り出し効率を最も高くなることが確認された。   Next, the height of the convex part is 1.00μm, 1.25μm, 1.50μm, 1.75μm, 2.00μm, 3.00μm, 4.00μm, and the seven types with the uneven structure of the same shape on the surface The light extraction efficiency was simulated for the PSS. In any substrate, the diameter of the bottom of the protrusions was 2.0 μm, and the spacing between the protrusions was 0.2 μm. From the simulation results shown in FIG. 7, it was confirmed that light extraction efficiency higher than that of PSS can be obtained when the height of the convex portion is in the range of 1.00 μm to 4.00 μm. It was also confirmed that the light extraction efficiency was the highest when the height of the convex portion was 1.25 μm.

また、上記シミュレーションの条件のうち、各基板の凸部間の離間間隔を0.2μmから1.0μmに変更した結果を図8に、各基板の凸部間の離間間隔を0.2μmから2.0μmに変更した結果を図9に、それぞれ示す。これらのシミュレーション結果からも同様に、凸部の高さが1.00μm〜4.00μmの範囲内であれば、PSSよりも高い光取り出し効率が得られることが確認された。なお、図7、図8、及び図9に示す3つのシミュレーション結果から、凸部の高さを1.25μm〜2.00μmにすると、凸部の離間間隔が0.2μm、1.0μm、2.0μmのいずれの場合でも高い光取り出し効率が得られることが分かる。   In addition, among the simulation conditions, the result of changing the spacing between the convex portions of each substrate from 0.2 μm to 1.0 μm is shown in FIG. 8, and the spacing between the convex portions of each substrate is changed from 0.2 μm to 2.0 μm. The results are shown in FIG. Similarly, from these simulation results, it was confirmed that if the height of the convex portion is within the range of 1.00 μm to 4.00 μm, light extraction efficiency higher than that of PSS can be obtained. From the results of the three simulations shown in FIG. 7, FIG. 8, and FIG. 9, when the height of the convex portion is 1.25 μm to 2.00 μm, the spacing between the convex portions is any of 0.2 μm, 1.0 μm, and 2.0 μm. Even in this case, it can be seen that high light extraction efficiency can be obtained.

最後に、凸部の離間間隔を0.2μm、0.5μm、1.0μm、2.0μm、3.0μm、4.0μmとした6種類の基板と、表面にそれらと同形状の凹凸構造を有する6種類のPSSについて、光取り出し効率をシミュレーションした。いずれの基板でも、凸部の底部の径は2.0μm、凸部の高さは1.0μmとした。図10に示すシミュレーションの結果から、凸部の高さが0.2μm〜4.0μmの範囲内であれば、PSSよりも高い光取り出し効率が得られることが確認された。また、凸部の離間間隔を1.0μm以下、特に0.2μmとすると光取り出し効率を最も高くなることが確認された。   Lastly, about 6 types of substrates with the convex spacing of 0.2μm, 0.5μm, 1.0μm, 2.0μm, 3.0μm, 4.0μm, and 6 types of PSS with concavo-convex structure of the same shape on the surface The light extraction efficiency was simulated. In any substrate, the diameter of the bottom of the convex portion was 2.0 μm, and the height of the convex portion was 1.0 μm. From the simulation results shown in FIG. 10, it was confirmed that light extraction efficiency higher than that of PSS can be obtained when the height of the convex portion is in the range of 0.2 μm to 4.0 μm. It was also confirmed that the light extraction efficiency was the highest when the spacing between the convex portions was 1.0 μm or less, particularly 0.2 μm.

上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。例えば、上記実施例では、凸部の形状を円錐形としたが、この形状は角錐状や、円錐や角錐の上部を切り取って平坦化した形状等としてもよい。また、上記のシミュレーションは、サファイア基板上に、均一な形状の凸部を周期的に配置したモデル構造により行ったが、凸部の形状を不均一にしたり、凸部をランダムに配置したりすることもできる。   The above-described embodiment is an example, and can be appropriately changed in accordance with the gist of the present invention. For example, in the above embodiment, the shape of the convex portion is a conical shape, but this shape may be a pyramid shape, a shape obtained by cutting and flattening the upper portion of the cone or the pyramid, and the like. Moreover, although said simulation was performed by the model structure which arrange | positioned the convex part of a uniform shape periodically on a sapphire substrate, the shape of a convex part is made nonuniform or a convex part is arrange | positioned at random. You can also.

10…サファイア基板
20…凸部
10 ... Sapphire substrate 20 ... Projection

Claims (5)

a) サファイア基板と、
b) 前記サファイア基板の表面上において0.2μm〜4.0μm離間して配置された、屈折率が1.70〜2.25の物質からなる複数の凸部であって、底部の径が1.0μm〜4.0μm、高さが1.0μm〜4.0μmであり、前記表面に平行な断面の面積が該表面から遠ざかるにつれて小さくなる形状を有する凸部と、
を備えることを特徴とするGaN系発光素子用基板。
a) a sapphire substrate;
b) A plurality of convex portions made of a material having a refractive index of 1.70 to 2.25, spaced apart by 0.2 μm to 4.0 μm on the surface of the sapphire substrate, and having a bottom diameter of 1.0 μm to 4.0 μm, high A convex portion having a shape that is 1.0 μm to 4.0 μm, and the area of the cross section parallel to the surface decreases as the distance from the surface increases.
A substrate for a GaN-based light emitting device, comprising:
前記複数の凸部が一般式SiOxNy(0≦x≦2、0<y≦1)で表される物質からなることを特徴とする請求項1に記載のGaN系発光素子用基板。   2. The substrate for a GaN-based light emitting device according to claim 1, wherein the plurality of convex portions are made of a material represented by a general formula SiOxNy (0 ≦ x ≦ 2, 0 <y ≦ 1). 前記凸部の高さが1.25μm〜2.00μmであることを特徴とする請求項1または2に記載のGaN系発光素子用基板。   The GaN-based light emitting device substrate according to claim 1 or 2, wherein the height of the convex portion is 1.25 µm to 2.00 µm. 前記凸部の離間間隔が0.2μm〜1.0μmであることを特徴とする請求項1〜3のいずれかに記載のGaN系発光素子用基板。   The GaN-based light emitting device substrate according to any one of claims 1 to 3, wherein a spacing between the convex portions is 0.2 µm to 1.0 µm. 前記凸部がSiNからなることを特徴とする請求項1〜4のいずれかに記載のGaN系発光素子用基板。   The GaN-based light emitting device substrate according to claim 1, wherein the convex portion is made of SiN.
JP2014133265A 2014-06-27 2014-06-27 Substrate for gallium nitride-based light-emitting devices Pending JP2016012648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014133265A JP2016012648A (en) 2014-06-27 2014-06-27 Substrate for gallium nitride-based light-emitting devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014133265A JP2016012648A (en) 2014-06-27 2014-06-27 Substrate for gallium nitride-based light-emitting devices

Publications (1)

Publication Number Publication Date
JP2016012648A true JP2016012648A (en) 2016-01-21

Family

ID=55229179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014133265A Pending JP2016012648A (en) 2014-06-27 2014-06-27 Substrate for gallium nitride-based light-emitting devices

Country Status (1)

Country Link
JP (1) JP2016012648A (en)

Similar Documents

Publication Publication Date Title
US8877526B2 (en) Semiconductor light emitting device and method for manufacturing the same
KR102141815B1 (en) Ultraviolet light emitting diode and method for producing same
CN101017869B (en) Nitride-based semiconductor light emitting device and method of manufacturing the same
CN102244172B (en) Semiconductor light emitting device and method for fabricating the same
US8704227B2 (en) Light emitting diode and fabrication method thereof
JP2007294972A (en) Light emitting element and method of manufacturing same
KR20110139250A (en) Method for manufacturing sapphire substrate, and semiconductor device
JP5707978B2 (en) Semiconductor light emitting device substrate, method of manufacturing the same, and semiconductor light emitting device using the substrate
JP2011228628A (en) Light-emitting devices with vertical light-extraction mechanism and the method for fabricating the same
EP2495773A1 (en) Light-emitting diode and method for manufacturing same
CN104603959A (en) Nitride semiconductor light-emitting element
CN102244168A (en) LED (light emitting diode) and manufacturing method thereof
JP2012216753A (en) Group iii nitride semiconductor light-emitting element
JP2012216603A (en) Nitride semiconductor light-emitting element and method of manufacturing the same
TWI689109B (en) Vertical ultraviolet light emitting device and method for manufacturing the same
JP2017228695A (en) Method for manufacturing group iii nitride semiconductor light-emitting device
JP2016072388A (en) Method for manufacturing group iii nitride semiconductor light-emitting element
KR20060107568A (en) Semiconductor light emitting element
CN207651512U (en) A kind of compound substrate and semiconductor device structure
CN107768494B (en) LED epitaxial structure and preparation method thereof
KR100794121B1 (en) Light emitting diode
JP5642842B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2016012648A (en) Substrate for gallium nitride-based light-emitting devices
KR101680852B1 (en) Semiconductor Light Emitting Device and Manufacturing Method Thereof
JP2012033537A (en) Light-emitting element