JP2016010753A - Method for producing powder - Google Patents

Method for producing powder Download PDF

Info

Publication number
JP2016010753A
JP2016010753A JP2014133073A JP2014133073A JP2016010753A JP 2016010753 A JP2016010753 A JP 2016010753A JP 2014133073 A JP2014133073 A JP 2014133073A JP 2014133073 A JP2014133073 A JP 2014133073A JP 2016010753 A JP2016010753 A JP 2016010753A
Authority
JP
Japan
Prior art keywords
solvent
powder
substance
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014133073A
Other languages
Japanese (ja)
Inventor
真也 山中
Shinya Yamanaka
真也 山中
良壽 空閑
Yoshihisa Kuga
良壽 空閑
敏行 藤本
Toshiyuki Fujimoto
敏行 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Muroran Institute of Technology NUC
Original Assignee
Muroran Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Muroran Institute of Technology NUC filed Critical Muroran Institute of Technology NUC
Priority to JP2014133073A priority Critical patent/JP2016010753A/en
Publication of JP2016010753A publication Critical patent/JP2016010753A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily acquire particulates by treatment different from treatment using a grinding aid.SOLUTION: Dry grinding treatment is applied to a substance including a crystal of a metallic compound so that an easy-to-dissolve area and a hard-to-dissolve area, relatively different in easiness of dissolution into a solvent from each other, can be produced in each particle in a ground product after grinding (S1). The solvent is adjusted so that a specific surface area of finally obtained powder can become large (S2). The solvent after adjustment is added to the ground product after the dry grinding treatment (S3). The powder is acquired from the inside of the solvent (S4).

Description

本発明は、金属化合物の結晶を含む物質を乾式粉砕処理する粉体の製造方法である。   The present invention is a method for producing a powder by subjecting a substance containing a crystal of a metal compound to a dry pulverization treatment.

金属化合物を粉砕する方法として、乾式粉砕法が広範囲に用いられている。しかし、乾式粉砕法を用いると、通常、1マイクロメートル未満の大きさ、つまり、ナノメートルサイズの微粒子(以下、ナノ粒子ともいう)を得ることは極めて困難である。乾式粉砕処理を継続すると、粉砕され混ざり合った粒子同士が凝集することで粒子サイズが大きくなる、逆粉砕と呼ばれる現象が生じること等の理由からである。   A dry pulverization method is widely used as a method for pulverizing metal compounds. However, when the dry pulverization method is used, it is usually very difficult to obtain fine particles having a size of less than 1 micrometer, that is, nanometer size (hereinafter also referred to as nanoparticles). This is because, if the dry pulverization process is continued, the pulverized and mixed particles are aggregated to increase the particle size, and a phenomenon called reverse pulverization occurs.

このような乾式粉砕法の欠点を補うため、粉砕時に粉砕助剤を添加する手法が用いられている。特許文献1においては、粉砕助剤として、メタノール、エタノール等のアルコール類や、ヘキサン、トルエン、アセトン等の低温で揮発する液体が用いられている。添加時に液体である粉砕助剤は、添加時に気体である粉砕助剤と比べて取り扱い易いと考えられる。また、添加後に揮発するので固体や液体のままの助剤と比べて分散性に優れていると考えられる。   In order to compensate for the drawbacks of such dry pulverization methods, a technique of adding a pulverization aid during pulverization is used. In Patent Document 1, alcohols such as methanol and ethanol, and liquids that volatilize at low temperatures such as hexane, toluene, and acetone are used as grinding aids. It is considered that a grinding aid that is liquid at the time of addition is easier to handle than a grinding aid that is a gas at the time of addition. Moreover, since it volatilizes after addition, it is thought that it is excellent in the dispersibility compared with the solid or liquid auxiliary agent.

特開2003−305378号公報JP 2003-305378 A

しかし、揮発性の高い粉砕助剤を用いるとしても、添加時においては液状である。このため、気体の助剤を添加する場合と比較して分散性が低い。一方、液体や固体の粉砕助剤と比べて気体の助剤は取り扱いが困難である。このように、どのような形態の粉砕助剤を用いるとしても、分散性や扱い易さの点でそれぞれ問題がある。このことから、粉砕助剤を用いたとしても、微粒子(特に、ナノ粒子)を得る方法としては限界がある。   However, even if a highly volatile grinding aid is used, it is liquid when added. For this reason, dispersibility is low compared with the case where a gaseous auxiliary agent is added. On the other hand, gaseous auxiliaries are more difficult to handle than liquid or solid pulverization auxiliaries. Thus, no matter what form of grinding aid is used, there are problems in terms of dispersibility and ease of handling. For this reason, even if a grinding aid is used, there is a limit to a method for obtaining fine particles (particularly nanoparticles).

本発明の目的は、粉砕助剤を用いるのとは異なる処理によって微粒子を取得し易くした粉体の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a powder that makes it easy to obtain fine particles by a treatment different from that using a grinding aid.

本発明者は、乾式粉砕法によってナノ粒子を取得できない理由について鋭意研究した結果、以下のような知見に到達した。粉砕後の物質においては、互いに性質の異なる2つの領域からなる比較的大きな粒子が形成される。種々の実験結果から、かかる2つの領域の一方は結晶質部からなる領域であり、他方は非晶質部からなる領域であると考えられる。結晶質部は単結晶又は多結晶から主に構成される。これに対し、非晶質部は結晶構造を有しない領域から主に構成される。粉砕によって結晶質部がある程度微粒子になったとしても、かかる結晶質部同士が非晶質部からなる領域を介して互いに凝集していることで、全体として大きな粒子となっている。このため、乾式粉砕法では最終的にナノ粒子が取得されにくいのはこのような理由によると考えられる。   As a result of intensive studies on the reason why nanoparticles cannot be obtained by the dry pulverization method, the present inventors have reached the following findings. In the pulverized substance, relatively large particles composed of two regions having different properties are formed. From various experimental results, it is considered that one of the two regions is a region made of a crystalline part and the other is a region made of an amorphous part. The crystalline part is mainly composed of single crystal or polycrystal. On the other hand, the amorphous part is mainly composed of a region having no crystal structure. Even if the crystalline part becomes a fine particle to some extent by pulverization, the crystalline part aggregates with each other through a region composed of an amorphous part, so that a large particle is formed as a whole. For this reason, it is considered that the reason why it is difficult to finally obtain nanoparticles by the dry pulverization method is as follows.

一方、非晶質部は主に結晶構造を有しない領域からなることから、結晶質部より水などの溶媒に溶解し易い。このため、粉砕後に生じる粉砕物の各粒子中には、溶媒への溶解し易さが相対的に異なる2つの領域が含まれていることになる。   On the other hand, since the amorphous part is mainly composed of a region having no crystal structure, it is more easily dissolved in a solvent such as water than the crystalline part. For this reason, each particle | grain of the pulverized material which arises after a grinding | pulverization contains two area | regions where the easiness to melt | dissolve in a solvent differs relatively.

上記知見に基づき、本発明者は、乾式粉砕法を用いつつも微粒子の粉体を取得し易い以下の粉体の製造方法に到達した。すなわち、金属化合物の結晶を含む物質の粉体を取得する粉体の製造方法であって、溶媒への溶解し易さが相対的に異なる易溶解領域と難溶解領域が粉砕後の粉砕物中の各粒子に生じるように前記物質に乾式粉砕処理を施す粉砕工程と、溶媒を調整する調整工程と、前記乾式粉砕処理後の前記粉砕物に調整後の前記溶媒を添加する添加工程と、前記物質の前記粉体を前記溶媒中から取得する取得工程とを備えており、前記調整工程において、前記取得工程で取得される前記粉体の比表面積が大きくなるように前記溶媒を調整する。   Based on the above findings, the present inventor has reached the following powder production method that makes it easy to obtain fine particle powder while using the dry pulverization method. That is, a powder manufacturing method for obtaining a powder of a substance containing a crystal of a metal compound, wherein an easily soluble region and a hardly soluble region that are relatively different in solubility in a solvent are in a pulverized product after pulverization. A pulverizing step for subjecting the substance to a dry pulverization process so as to occur in each of the particles, an adjusting step for adjusting a solvent, an adding step for adding the adjusted solvent to the pulverized product after the dry pulverizing treatment, An acquisition step of acquiring the powder of the substance from the solvent. In the adjustment step, the solvent is adjusted so that a specific surface area of the powder acquired in the acquisition step is increased.

本発明によれば、まず、乾式粉砕によって粉砕後の粉砕物中の各粒子に、溶媒に溶解し易い易溶解領域と溶解しにくい難溶解領域を生じさせる。そして、粉砕後の粉砕物に溶媒を添加することで、易溶解領域を溶媒中に溶解させる。このとき、溶媒は、最終的に取得される粉体の比表面積が大きくなるように調整しておく。調整の方法としては、易溶解領域が溶解し易くなるように調整してもよい。この調整は、例えば温度やpHに関する。易溶解領域が溶媒に溶解していくと、各粒子中には主に難溶解領域が残る。このため、粉体中には、主に難溶解領域からなる微粒子が生じ易くなる。溶媒調整工程において、最終的に取得される粉体の比表面積が大きくなるように調整するため、比表面積が大きい粉体を取得できる。   According to the present invention, first, each particle in the pulverized product after pulverization is caused by dry pulverization to generate an easily soluble region that is easy to dissolve in a solvent and a hardly soluble region that is difficult to dissolve. And an easy-dissolution area | region is dissolved in a solvent by adding a solvent to the ground material after grinding. At this time, the solvent is adjusted so that the specific surface area of the finally obtained powder becomes large. As a method of adjustment, you may adjust so that an easily melt | dissolution area | region may become easy to melt | dissolve. This adjustment relates to temperature and pH, for example. As the easily soluble region dissolves in the solvent, the hardly soluble region mainly remains in each particle. For this reason, fine particles mainly consisting of a hardly soluble region are easily generated in the powder. In the solvent adjustment step, since the specific surface area of the finally obtained powder is adjusted to be large, a powder having a large specific surface area can be obtained.

このように、本発明によれば、粉砕助剤を用いるのとは異なる処理によって微粒子の粉体を取得し易くした粉体の製造方法が実現する。   Thus, according to the present invention, a method for producing a powder that makes it easy to obtain a fine particle powder by a process different from the use of a grinding aid is realized.

また、本発明においては、前記調整工程において、前記溶媒の温度及びpHの少なくともいずれかを調整することが好ましい。これによると、例えば、易溶解領域が溶媒の温度変化に応じて溶け易くなる場合には、易溶解領域が溶媒に溶解し易くなるように溶媒の温度を変化させる。また、金属化合物の酸性、塩基性の度合いに応じて、粉体の比表面積が大きくなるようなpHに溶媒を調整する。これらによって、微粒子の粉体を得ることができる。   In the present invention, it is preferable to adjust at least one of temperature and pH of the solvent in the adjustment step. According to this, for example, when the easy-dissolving region is easily dissolved according to the temperature change of the solvent, the temperature of the solvent is changed so that the easily-dissolving region is easily dissolved in the solvent. In addition, the solvent is adjusted to a pH that increases the specific surface area of the powder according to the acidity and basicity of the metal compound. By these, fine powder can be obtained.

また、本発明においては、前記調整工程において、前記物質が温度上昇に応じて前記溶媒への溶解度が高くなる物質である場合には前記溶媒を加熱し、前記物質が温度上昇に応じて前記溶媒への溶解度が低くなる物質である場合には前記溶媒を冷却することが好ましい。これによると、溶媒の温度変化に対する物質の溶解度の変化に応じて溶媒の温度を変化させることにより、易溶解領域を溶媒に溶け易くできる。温度変化に対して溶解度がどのように変化するかは多くの物質においてあらかじめ知られている。このため、温度変化に対する易溶解領域の溶け易さを実際に調べなくても、すでに存在する知識に基づいて易溶解領域が溶け易くなるように溶媒を調整できる。   In the present invention, in the adjustment step, when the substance is a substance whose solubility in the solvent increases as the temperature rises, the solvent is heated, and the substance responds as the temperature rises. It is preferable to cool the solvent when the substance has low solubility in water. According to this, the easily soluble region can be easily dissolved in the solvent by changing the temperature of the solvent in accordance with the change in the solubility of the substance with respect to the temperature change of the solvent. It is known in advance for many substances how the solubility changes with temperature. For this reason, it is possible to adjust the solvent so that the easily soluble region can be easily dissolved based on the existing knowledge without actually examining the solubility of the easily soluble region with respect to the temperature change.

また、本発明においては、前記金属化合物が、無機炭酸塩及び金属酸化物の少なくともいずれかを含んでいてもよい。   In the present invention, the metal compound may contain at least one of an inorganic carbonate and a metal oxide.

また、本発明においては、前記溶媒の主成分が水であってもよい。溶媒が水の場合に、比表面積の大きい微粒子の粉体が得られることが確認されている。   In the present invention, the main component of the solvent may be water. It has been confirmed that fine powder having a large specific surface area can be obtained when the solvent is water.

また、本発明においては、前記物質が貝殻である場合に、前記溶媒の温度が5℃〜60℃であることが好ましい。貝殻を粉砕する場合には、水の温度が5℃〜60℃の範囲で微粒子の粉体を多く取得できる。   Moreover, in this invention, when the said substance is a shell, it is preferable that the temperature of the said solvent is 5 to 60 degreeC. When the shell is pulverized, a large amount of fine powder can be obtained when the temperature of the water is in the range of 5 ° C to 60 ° C.

また、本発明においては、前記物質が貝殻である場合に、前記調整後の溶媒のpHが0.5〜7.0における値までの範囲であることが好ましい。貝殻を粉砕する場合、pHの条件としては、水のpHが0.5〜7.0における値の範囲で微粒子の粉体を多く取得できる。   Moreover, in this invention, when the said substance is a shell, it is preferable that the pH of the solvent after the said adjustment is the range to the value in 0.5-7.0. When the shell is crushed, as the pH condition, a large amount of fine particle powder can be obtained in the range of the pH value of water from 0.5 to 7.0.

また、本発明においては、前記調整工程において、前記金属化合物が酸化アルミニウムである場合に、前記溶媒の温度を40℃以上まで加熱することが好ましい。酸化アルミニウムの結晶を含む物質を粉砕する場合には、前記水の温度を40℃以上まで加熱した際に微粒子の粉体を多く取得できる。   Moreover, in this invention, when the said metal compound is aluminum oxide in the said adjustment process, it is preferable to heat the temperature of the said solvent to 40 degreeC or more. When a substance containing aluminum oxide crystals is pulverized, a large amount of fine powder can be obtained when the temperature of the water is heated to 40 ° C. or higher.

図1は、本発明の粉体の製造方法のフロー図である。FIG. 1 is a flow diagram of the powder production method of the present invention. 図2は、金属化合物の結晶を含む物質の粒子状態に関するモデルを説明する模式図である。FIG. 2 is a schematic diagram illustrating a model relating to a particle state of a substance including a crystal of a metal compound. 図3は、実施例1及び比較例1において炭酸カルシウム粉体の比表面積を測定した結果を示すグラフである。FIG. 3 is a graph showing the results of measuring the specific surface area of the calcium carbonate powder in Example 1 and Comparative Example 1. 図4は、実施例2及び比較例2において炭酸ストロンチウム粉体の比表面積を測定した結果を示すグラフである。FIG. 4 is a graph showing the results of measuring the specific surface area of the strontium carbonate powder in Example 2 and Comparative Example 2. 図5は、実施例3及び比較例3において炭酸マグネシウム粉体の比表面積を測定した結果を示すグラフである。FIG. 5 is a graph showing the results of measuring the specific surface area of the magnesium carbonate powder in Example 3 and Comparative Example 3. 図6は、実施例4において酸化アルミニウム粉体の比表面積を測定した結果を示すグラフである。FIG. 6 is a graph showing the results of measuring the specific surface area of the aluminum oxide powder in Example 4. 図7は、実施例5において炭酸カルシウム粉体の比表面積を測定した結果を示すグラフである。FIG. 7 is a graph showing the results of measuring the specific surface area of the calcium carbonate powder in Example 5. 図8は、実施例6において炭酸カルシウム粉体の比表面積を測定した結果を示すグラフである。FIG. 8 is a graph showing the results of measuring the specific surface area of the calcium carbonate powder in Example 6.

以下、本発明の一実施形態に係る粉体の製造方法について、図1及び図2を参照しつつ説明する。本粉体の製造方法は、金属化合物の結晶を含む物質から粉体を取得する方法である。粉砕対象となる物質(以下、「対象物質」とする)としては、貝殻などの自然界に存在する物質も含む。金属化合物としては、炭酸カルシウム、炭酸マグネシウム又は炭酸ストロンチウムなどの無機炭酸塩や、酸化アルミニウム、酸化チタンなどの金属酸化物が考えられる。   Hereinafter, a method for producing a powder according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. The method for producing the powder is a method for obtaining powder from a substance containing metal compound crystals. Substances to be crushed (hereinafter referred to as “target substances”) include substances existing in nature such as shells. Examples of the metal compound include inorganic carbonates such as calcium carbonate, magnesium carbonate, and strontium carbonate, and metal oxides such as aluminum oxide and titanium oxide.

本粉体の製造方法は、図1に示すフローに従って実行される。まず、S1の乾式粉砕工程において、対象物質を乾式粉砕する。本発明の所望の効果を損なわない限り、必要に応じて適宜粉砕助剤を添加することができる。乾式粉砕は、ボールミル、ジェットミル、振動ミル等、従来公知の任意の方法を用いることができる。例えばボールミルを採用する場合、ボールミルに用いるボールの素材(ジルコニア、ステンレス等)、サイズ、及び直径、並びに、ボールミルの回転数及び粉砕時間は、粉砕によって得られる粉体の比表面積が大きくなるように適宜調整されることが望ましい。比表面積は、粉体に含まれる粒子の単位質量当たりの表面積のことである(m2/g)。粉体中の粒子が小さくなると単位質量当たりの粒子の表面積は大きくなる。このため、比表面積は粒子の大きさの指標となる。 The manufacturing method of this powder is performed according to the flow shown in FIG. First, in the dry pulverization step of S1, the target substance is dry pulverized. As long as the desired effect of the present invention is not impaired, a grinding aid can be appropriately added as necessary. For the dry pulverization, any conventionally known method such as a ball mill, a jet mill or a vibration mill can be used. For example, when adopting a ball mill, the material of the balls used in the ball mill (zirconia, stainless steel, etc.), size and diameter, and the rotation speed and grinding time of the ball mill are such that the specific surface area of the powder obtained by grinding is increased. It is desirable to adjust appropriately. The specific surface area is the surface area per unit mass of the particles contained in the powder (m 2 / g). As the particles in the powder become smaller, the surface area of the particles per unit mass increases. For this reason, the specific surface area is an index of particle size.

次に、S2の溶媒調整工程において、S1の工程後の粉砕物に添加する溶媒について、温度、pHなどを調整する。なお、本実施形態においては、水を使用しているが、対象物質の特性により、水を主成分とするものでなくともよい。温度を調整する場合、対象物質が温度上昇に応じて溶媒への溶解度が高くなる物質であるときには溶媒を加熱する。一方、対象物質が温度上昇に応じて前記溶媒への溶解度が低くなる物質であるときには溶媒を冷却する。pHの調整には、硝酸、酢酸、塩酸等の酸の添加や、水酸化ナトリウム、水酸化カリウム等の塩基の添加、又は脱塩精製により水を蒸留水に調製することで行う。蒸留水の場合、pHが7.0付近に調整されることになる。対象物質が貝殻である場合には、溶媒の温度は5℃〜60℃であることが好ましい。また、溶媒のpHが0.5〜7.0の範囲であることが好ましい。対象物質に含まれる金属化合物が酸化アルミニウムである場合には、溶媒の温度を40℃以上まで加熱することが好ましい。なお、S2の工程を行うタイミングはS1の後に限らない。この工程は、S3の工程より前であればいつ行ってもよく、例えば、S1と並列に行ってもよい。   Next, in the solvent adjustment step of S2, the temperature, pH, etc. of the solvent added to the pulverized product after the step of S1 are adjusted. In this embodiment, water is used. However, water may not be the main component depending on the characteristics of the target substance. When adjusting the temperature, the solvent is heated when the target substance is a substance whose solubility in the solvent increases as the temperature rises. On the other hand, when the target substance is a substance whose solubility in the solvent decreases with increasing temperature, the solvent is cooled. The pH is adjusted by adding water such as nitric acid, acetic acid or hydrochloric acid, adding a base such as sodium hydroxide or potassium hydroxide, or preparing water to distilled water by desalting and purification. In the case of distilled water, the pH will be adjusted to around 7.0. When the target substance is a shell, the temperature of the solvent is preferably 5 ° C to 60 ° C. Moreover, it is preferable that pH of a solvent is the range of 0.5-7.0. When the metal compound contained in the target substance is aluminum oxide, it is preferable to heat the solvent to 40 ° C. or higher. In addition, the timing which performs the process of S2 is not restricted after S1. This step may be performed any time before the step of S3, for example, may be performed in parallel with S1.

S3の溶媒添加工程において、S1の工程で取得した粉砕物にS2の工程で調整した溶媒を添加する。添加した後、対象物の種類によっては、粉砕物を溶解するために、適切な時間、静置、あるいは撹拌などを行ってもよい。S4の粉体取得工程において、S3の工程で得られた粉砕物と溶媒の混合物から粉体を取得する。S4の工程としては、混合物に遠心分離、濾過、フィルタープレスなどの固液分離を施した後に乾燥機で乾燥させてもよいし、混合物をそのまま乾燥機で乾燥又は自然乾燥させてもよい。このように、S4の工程にはさまざまな方法を用いることができる。例えば固液分離として遠心分離を行う場合には、遠心分離後、混合物から溶媒の上澄みを除去し溶媒中の沈殿物を取り出す。遠心分離の回転数及び回転時間は、粉砕物と溶媒の混合物から沈殿物を取得できるものであればよい。遠心分離後、溶媒から取り出した沈殿物質を乾燥する場合には、乾燥時間、乾燥温度について、対象物質により適宜変更できる。また、遠心分離後、溶媒から取り出した沈殿物を自然乾燥させてもよい。混合物を遠心分離すると混合物から溶媒の多くをあらかじめ除去できる。このため、固液分離を行う場合には、その後の乾燥に必要な時間を短縮できたり、乾燥に投入するエネルギーを削減できる場合がある。   In the solvent addition step of S3, the solvent adjusted in the step S2 is added to the pulverized product obtained in the step S1. After the addition, depending on the type of the object, in order to dissolve the pulverized material, an appropriate time, standing or stirring may be performed. In the powder acquisition step of S4, powder is acquired from the mixture of the pulverized product and the solvent obtained in step S3. In step S4, the mixture may be subjected to solid-liquid separation such as centrifugation, filtration, and filter press, and then dried in a dryer, or the mixture may be directly dried in a dryer or naturally dried. Thus, various methods can be used for the process of S4. For example, when centrifugation is performed as solid-liquid separation, after centrifugation, the supernatant of the solvent is removed from the mixture, and the precipitate in the solvent is taken out. The number of rotations and the rotation time of the centrifugal separation are not particularly limited as long as the precipitate can be obtained from the mixture of the pulverized material and the solvent. When the precipitated substance taken out from the solvent is dried after centrifugation, the drying time and drying temperature can be appropriately changed depending on the target substance. Further, after centrifugation, the precipitate taken out from the solvent may be naturally dried. Centrifugation of the mixture can previously remove much of the solvent from the mixture. For this reason, when performing solid-liquid separation, the time required for subsequent drying may be shortened, and the energy input to drying may be reduced.

次に、S1、S3及びS4の工程における対象物質の粒子状態に関するモデルについて説明する。後述の実施例と矛盾しないモデルとして、図2に示すようなモデルが推定される。対象物質1から、S1の乾式粉砕工程によりある程度微小な結晶質部2が生成される。結晶質部2は単結晶又は多結晶から主に構成される。しかし、かかる微粒子の結晶質部2が生成されたとしても、かかる微粒子同士が非晶質部3からなる領域を介して互いに凝集することで、粉砕の結果物としての粉砕物には全体として大きな粒子が形成されてしまう。非晶質部3は、主に、結晶構造を有しない領域からなる。乾式粉砕法で最終的にナノ粒子の粉体が取得されにくいのはこのような理由によると考えられる。   Next, a model related to the particle state of the target substance in the steps S1, S3, and S4 will be described. A model as shown in FIG. 2 is estimated as a model that is consistent with the examples described later. From the target substance 1, a crystalline part 2 that is minute to some extent is generated by the dry pulverization step of S1. The crystalline part 2 is mainly composed of single crystal or polycrystal. However, even if the crystalline part 2 of the fine particles is generated, the fine particles are aggregated with each other through the region composed of the amorphous part 3, so that the pulverized product as a result of the pulverization is large as a whole. Particles are formed. The amorphous part 3 is mainly composed of a region having no crystal structure. This is the reason why it is difficult to finally obtain nanoparticle powder by the dry pulverization method.

ところで、非晶質部3は結晶質部2と比べて溶媒に溶け易い。つまり、S1の乾式粉砕工程後には、溶媒への溶解し易さが相対的に異なる易溶解領域と難溶解領域の2つの領域が対象物1中に生じることになる。非晶質部3が易溶解領域に相当し、結晶質部2が難溶解領域に相当する。なお、本実施形態において易溶解領域及び難溶解領域とは、粉砕直後の粉砕物中の各粒子に生じる領域であって、溶媒への溶解し易さが粉砕直後の粒子中において相対的に異なる領域をいう。   By the way, the amorphous part 3 is more soluble in the solvent than the crystalline part 2. That is, after the dry pulverization step of S1, two regions of an easily soluble region and a hardly soluble region that are relatively different in solubility in a solvent are generated in the object 1. The amorphous part 3 corresponds to a readily soluble region, and the crystalline part 2 corresponds to a hardly soluble region. In the present embodiment, the easily soluble region and the hardly soluble region are regions generated in each particle in the pulverized product immediately after pulverization, and the easiness of dissolution in a solvent is relatively different in the particles immediately after pulverization. An area.

そこで、本実施形態では、乾式粉砕法でナノ粒子の粉体が形成されにくい理由であると考えられる結晶質部2が非晶質部3を介して凝集した状態になるまで、S1の乾式粉砕工程において対象物1を粉砕する。さらに、S2の溶媒調整工程で、最終的に取得される粉体5の比表面積が大きくなるように溶媒を調整する。例えば、易溶解領域である非晶質部3が調整前に比べて溶解し易くなるように溶媒の温度を調整する。これによって、物質中に含まれる金属化合物が炭酸カルシウムなどの難溶性の物質であっても、S3の溶媒添加工程で非晶質部3が溶媒に溶解し、もって、凝集していた難溶解領域である結晶質部2が粒子4として分散する。なお、場合によっては、易溶解領域である非晶質部3が調整前に比べて溶解しにくくなるように溶媒のpH等を調整してもよい。最終的に取得される粉体5の比表面積が大きくなるように溶媒を調整すればよい。   Therefore, in the present embodiment, the dry pulverization of S1 is performed until the crystalline part 2 considered to be the reason why it is difficult to form the nanoparticle powder by the dry pulverization method through the amorphous part 3. The object 1 is pulverized in the process. Furthermore, the solvent is adjusted so that the specific surface area of the finally obtained powder 5 is increased in the solvent adjustment step of S2. For example, the temperature of the solvent is adjusted so that the amorphous portion 3 that is an easily soluble region is easier to dissolve than before the adjustment. As a result, even if the metal compound contained in the substance is a hardly soluble substance such as calcium carbonate, the amorphous part 3 is dissolved in the solvent in the solvent addition step of S3, so that the hardly soluble region aggregated. The crystalline part 2 is dispersed as particles 4. In some cases, the pH and the like of the solvent may be adjusted so that the amorphous part 3 that is an easily soluble region is less soluble than before the adjustment. What is necessary is just to adjust a solvent so that the specific surface area of the powder 5 finally acquired may become large.

そして、S4の粉体取得工程で、結晶質部2から主に構成される比表面積の大きい微粒子からなる粉体5を取得することができる。この方法によれば、例えば炭酸カルシウムに係る後述の実施例では、比表面積が12.4〜26.4m2/gの微粒子の粉体が得られた。比表面積が12.4〜26.4m2/gであることは、平均粒子径(比表面積球相当径)が82〜175nmであることに相当する。したがって、本実施形態によればナノ粒子が得られることが分かる。 And the powder 5 which consists of microparticles | fine-particles with a large specific surface area mainly comprised from the crystalline part 2 can be acquired by the powder acquisition process of S4. According to this method, fine powder having a specific surface area of 12.4 to 26.4 m 2 / g was obtained, for example, in Examples described later relating to calcium carbonate. A specific surface area of 12.4 to 26.4 m 2 / g corresponds to an average particle diameter (specific surface area sphere equivalent diameter) of 82 to 175 nm. Therefore, according to this embodiment, it turns out that a nanoparticle is obtained.

[実施例1](炭酸カルシウムを乾式粉砕した後に水を添加した場合の比表面積)
炭酸カルシウム(比表面積0.55m2/g)とジルコニアボール(直径3mm)をあらかじめ、60℃で12時間乾燥させた。次に乾燥させた炭酸カルシウム10.0gとジルコニアボール100.0gをステンレス製のミルポット(80cm3)に投入し、遊星ボールミル装置(FRITSCH製 Premium line P−7)を用いて乾式粉砕処理した(S1)。回転数は900rpmで、15分間〜240分間(15分間、30分間、60分間、120分間及び240分間)粉砕処理した。
[Example 1] (Specific surface area when water is added after dry grinding of calcium carbonate)
Calcium carbonate (specific surface area 0.55 m 2 / g) and zirconia balls (diameter 3 mm) were previously dried at 60 ° C. for 12 hours. Next, 10.0 g of dried calcium carbonate and 100.0 g of zirconia balls were put into a stainless steel mill pot (80 cm 3 ), and dry pulverized using a planetary ball mill device (Premium line P-7 manufactured by FRITSCH) (S1). ). The number of rotations was 900 rpm, and pulverization was performed for 15 minutes to 240 minutes (15 minutes, 30 minutes, 60 minutes, 120 minutes, and 240 minutes).

次に、蒸留による脱塩精製(ヤマト科学製、WG250)を水に施し、蒸留水を調製して、溶媒を調整した(S2)。粉砕後の粉砕物に蒸留水40mLを添加した(S3)。採取した混合物に3500rpmの回転速度で15分間遠心分離(久保田商事製、ユニバーサル冷却遠心機5800)を施した。遠心分離を施した混合物から上澄みを除去し、沈殿物をすぐに取り出し、60℃で一晩乾燥させ炭酸カルシウム粉体を取得した(S4)。その後、炭酸カルシウム粉体の比表面積を、窒素吸着量測定装置(日機装製、Adsotrac−DN−04)で測定した。   Next, desalting and purification by distillation (manufactured by Yamato Kagaku, WG250) was applied to water, distilled water was prepared, and the solvent was adjusted (S2). 40 mL of distilled water was added to the pulverized product after pulverization (S3). The collected mixture was centrifuged at a rotational speed of 3500 rpm for 15 minutes (Kubota Corp., universal cooling centrifuge 5800). The supernatant was removed from the centrifuged mixture, and the precipitate was immediately taken out and dried at 60 ° C. overnight to obtain calcium carbonate powder (S4). Thereafter, the specific surface area of the calcium carbonate powder was measured with a nitrogen adsorption amount measuring apparatus (Nisso, Adsotrac-DN-04).

[比較例1](炭酸カルシウムを乾式粉砕した後に水を添加しない場合の比表面積)
実施例1に記載した乾式粉砕処理までを同様に行い、その後、実施例1と同様に比表面積を測定した。
[Comparative Example 1] (Specific surface area when water is not added after dry grinding of calcium carbonate)
The process up to the dry pulverization described in Example 1 was similarly performed, and then the specific surface area was measured in the same manner as in Example 1.

実施例1と比較例1を比較したところ、すべての粉砕時間において、実施例1の方が比表面積の大きい粉体を取得できた(図3)。なお、図3において黒く塗りつぶされた四角は、原料の炭酸カルシウムの比表面積を示す。   When Example 1 and Comparative Example 1 were compared, Example 1 was able to obtain a powder having a larger specific surface area at all grinding times (FIG. 3). In FIG. 3, the black squares indicate the specific surface area of the raw material calcium carbonate.

[実施例2](炭酸ストロンチウムを乾式粉砕した後に水を添加した場合の比表面積)
実施例1の炭酸カルシウムを炭酸ストロンチウム(比表面積5.9m2/g)に変えて、他は実施例1と同様に処理を行った。
[Example 2] (Specific surface area when water is added after dry pulverization of strontium carbonate)
The treatment was performed in the same manner as in Example 1 except that the calcium carbonate of Example 1 was changed to strontium carbonate (specific surface area of 5.9 m 2 / g).

[比較例2](炭酸ストロンチウムを乾式粉砕した後に水を添加しない場合の比表面積)
実施例2に記載した乾式粉砕処理までを同様に行い、その後、実施例2と同様に比表面積を測定した。
[Comparative Example 2] (Specific surface area when water is not added after dry pulverization of strontium carbonate)
The process up to the dry pulverization described in Example 2 was similarly performed, and then the specific surface area was measured in the same manner as in Example 2.

実施例2と比較例2を比較したところ、すべての粉砕時間において、実施例2の方が比表面積の大きい粉体を取得できた(図4)。なお、図4において黒く塗りつぶされた四角は、原料の炭酸ストロンチウムの比表面積を示す。   When Example 2 and Comparative Example 2 were compared, Example 2 was able to obtain a powder having a larger specific surface area at all grinding times (FIG. 4). In FIG. 4, the black squares represent the specific surface area of the raw material strontium carbonate.

[実施例3](炭酸マグネシウムを乾式粉砕した後に水を添加した場合の比表面積)
実施例1の炭酸カルシウムを炭酸マグネシウム(比表面積1.4m2/g)に変えて、他は実施例1と同様に処理を行った。
[Example 3] (Specific surface area when water is added after magnesium carbonate is dry-pulverized)
The treatment was performed in the same manner as in Example 1 except that the calcium carbonate of Example 1 was changed to magnesium carbonate (specific surface area of 1.4 m 2 / g).

[比較例3](炭酸マグネシウムを乾式粉砕した後に水を添加しない場合の比表面積)
実施例3に記載した乾式粉砕処理までを同様に行い、その後、実施例3と同様に比表面積を測定した。
[Comparative Example 3] (Specific surface area when water is not added after dry pulverization of magnesium carbonate)
The process up to the dry pulverization described in Example 3 was similarly performed, and then the specific surface area was measured in the same manner as in Example 3.

実施例3と比較例3を比較したところ、すべての粉砕時間において、実施例3の方が比表面積の大きい粉体を取得できた(図5)。なお、図5において黒く塗りつぶされた四角は、原料の炭酸マグネシウムの比表面積を示す。   When Example 3 and Comparative Example 3 were compared, Example 3 was able to obtain a powder having a larger specific surface area at all grinding times (FIG. 5). In FIG. 5, the black squares indicate the specific surface area of the raw material magnesium carbonate.

[実施例4](乾式粉砕した酸化アルミニウムに異なる温度の水を添加した場合の比表面積)
酸化アルミニウム(比表面積0.8m2/g)と、ジルコニアボール(直径3mm)をあらかじめ、60℃で12時間乾燥させた。ジルコニアボール100.0gをステンレス製のミルポット(80cm3)に投入し、遊星ボールミル装置(FRITSCH製 Premium line P−7)を用いて、回転数は1000rpmで、30分間乾式粉砕処理を行った(S1)。蒸留による脱塩精製(ヤマト科学製、WG250)を水に施し、蒸留水を調製した。そして、蒸留水の温度が5℃〜70℃(5℃、20℃、40℃、50℃、60℃又は70℃)になるよう、蒸留水を冷却又は加熱することで、温度が異なる複数種類の蒸留水を用意した(S2)。
[Example 4] (Specific surface area when water of different temperature is added to dry-milled aluminum oxide)
Aluminum oxide (specific surface area 0.8 m 2 / g) and zirconia balls (diameter 3 mm) were previously dried at 60 ° C. for 12 hours. 100.0 g of zirconia balls were put into a stainless steel mill pot (80 cm 3 ), and dry pulverization treatment was performed for 30 minutes at a rotation speed of 1000 rpm using a planetary ball mill device (Premium line P-7 manufactured by FRITSCH) (S1 ). Demineralization purification by distillation (manufactured by Yamato Kagaku, WG250) was applied to water to prepare distilled water. And several types from which temperature differs by cooling or heating distilled water so that the temperature of distilled water may be 5 degreeC-70 degreeC (5 degreeC, 20 degreeC, 40 degreeC, 50 degreeC, 60 degreeC or 70 degreeC). Of distilled water was prepared (S2).

次に、粉砕処理を行った酸化アルミニウム1.0gに、S2の工程で調整した溶媒10mLを添加し、添加した溶媒と同じ温度に設定した恒温槽中に酸化アルミニウムを30分間静置した(S3)。3500rpmの回転速度で15分間、酸化アルミニウムの粉砕物と溶媒の混合物に遠心分離を施した。遠心分離を施した混合物から上澄みを除去し、沈殿物をすぐに取り出し、60℃で一晩乾燥させ、酸化アルミニウム粉体を取得した(S4)。その後、酸化アルミニウム粉体の比表面積を、窒素吸着量測定装置(日機装製、Adsotrac−DN−04)で測定した。   Next, 10 mL of the solvent adjusted in the step S2 was added to 1.0 g of the aluminum oxide that had been pulverized, and the aluminum oxide was allowed to stand for 30 minutes in a thermostat set to the same temperature as the added solvent (S3). ). The mixture of pulverized aluminum oxide and solvent was centrifuged at a rotational speed of 3500 rpm for 15 minutes. The supernatant was removed from the centrifuged mixture, and the precipitate was immediately taken out and dried at 60 ° C. overnight to obtain an aluminum oxide powder (S4). Thereafter, the specific surface area of the aluminum oxide powder was measured with a nitrogen adsorption amount measuring apparatus (Nisso, Adsotrac-DN-04).

[比較例4](乾式粉砕せずに酸化アルミニウムに異なる温度の水を添加した場合の比表面積)
乾式粉砕処理を行っていない酸化アルミニウム(比表面積0.8m2/g)1.0gに5℃〜70℃(5℃、20℃、40℃、50℃、60℃又は70℃)に調整した蒸留水10mLを添加し、添加した蒸留水と同じ温度に設定した恒温槽中に30分間静置した。3500rpmの回転速度で15分間、酸化アルミニウムの粉砕物と溶媒の混合物に遠心分離を施した。混合物から上澄みを除去し、沈殿物をすぐに取りし、60℃で一晩乾燥させ、酸化アルミニウム粉体を取得した。
[Comparative Example 4] (Specific surface area when water of different temperature was added to aluminum oxide without dry pulverization)
It adjusted to 5 to 70 degreeC (5 degreeC, 20 degreeC, 40 degreeC, 50 degreeC, 60 degreeC or 70 degreeC) to 1.0g of aluminum oxide (specific surface area 0.8m < 2 > / g) which has not performed the dry-type grinding | pulverization process. Distilled water 10mL was added and it left still for 30 minutes in the thermostat set to the same temperature as the added distilled water. The mixture of pulverized aluminum oxide and solvent was centrifuged at a rotational speed of 3500 rpm for 15 minutes. The supernatant was removed from the mixture, and the precipitate was immediately taken and dried at 60 ° C. overnight to obtain an aluminum oxide powder.

実施例4と比較例4を比較すると、40℃以上の蒸留水で、実施例4の酸化アルミニウム粉体の方が、比表面積が飛躍的に大きくなっている。つまり、乾式粉砕処理を行わずに40℃以上の蒸留水を添加した酸化アルミニウム粉体に比べて、乾式粉砕処理を行って40℃以上の蒸留水を添加した酸化アルミニウム粉体の方が、比表面積が大きいということになる。酸化アルミニウムは温度が高いほど溶解度も高くなる物質であることと上記の比較結果とに基づくと、温度を上昇させたことによって粉砕処理後の粉砕物において、易溶解領域である非晶質部が溶媒に溶解したものと捉えられる。これに対し、乾式粉砕処理を経ておらず易溶解領域が形成されていない比較例4の酸化アルミニウム粉体は、実施例4に比較して、比表面積がかなり小さい結果となったものと捉えられる(図6)。なお、図6において黒く塗りつぶされた四角は、原料の酸化アルミニウムの比表面積を示す。   When Example 4 and Comparative Example 4 are compared, the specific surface area of the aluminum oxide powder of Example 4 is greatly increased with distilled water of 40 ° C. or higher. That is, compared with the aluminum oxide powder added with distilled water of 40 ° C. or higher without performing the dry pulverization treatment, the aluminum oxide powder added with distilled water of 40 ° C. or higher after the dry pulverization processing is more specific. This means that the surface area is large. Based on the above comparison results and the fact that the higher the temperature, the higher the solubility of aluminum oxide, and the higher the temperature, the higher the temperature, the pulverized material after the pulverization treatment has an amorphous part that is an easily soluble region. Perceived to be dissolved in a solvent. On the other hand, the aluminum oxide powder of Comparative Example 4 that has not undergone the dry pulverization treatment and in which the easy dissolution region is not formed is considered to have a considerably smaller specific surface area than that of Example 4. (FIG. 6). In FIG. 6, the black squares indicate the specific surface area of the raw material aluminum oxide.

[実施例5](乾式粉砕後のホタテ貝殻にpHを変化させた水を添加した場合の比表面積)
炭酸カルシウムと少量の有機化合物を主成分とするホタテ貝殻粗粉(常呂町産業振興公社製、比表面積1.5m2/g、平均粒子径20μm)とジルコニアボール(3mm)をあらかじめ80℃で8時間以上乾燥させた。ジルコニアボール60.0gとホタテ貝殻粗粉5.00gをステンレス製のミルポット(45cc)に投入し、遊星ボールミル装置(FRITSCH製 Premium line P−7)を用いて、400rpmで、24時間乾式粉砕処理を行った(S1)。
[Example 5] (Specific surface area when water with changed pH is added to scallop shell after dry pulverization)
Scallop shell coarse powder (manufactured by Tokoro Town Industrial Promotion Corporation, specific surface area 1.5 m 2 / g, average particle size 20 μm) and zirconia balls (3 mm) at 80 ° C. 8 in advance with calcium carbonate and a small amount of organic compound as main components Dry for more than an hour. 60.0 g of zirconia balls and 5.00 g of coarse scallop shells are put into a stainless steel mill pot (45 cc), and dry pulverization treatment is performed at 400 rpm for 24 hours using a planetary ball mill device (Premium line P-7 manufactured by FRITSCH). Went (S1).

次に、蒸留による脱塩精製(ヤマト科学製、WG250)を水に施して蒸留水を調製し、得られた蒸留水のpHを、硝酸(純度60〜61%、関東化学製)を使用して、pH0.5〜pH7.0(pH0.5、pH1.0、pH3.0、pH5.0又はpH7.0)に調整することで、pHが異なる複数種類の溶媒を用意した(S2)。乾式粉砕処理を行ったホタテ貝殻粗粉1.00gに、S2の工程にて調整した各溶媒10mLを添加し、30分間静置した(S3)。その後、微量高速冷却遠心機(トミー精工製 MX−301)を使用して、20℃、3500rpmの回転速度で1分間、ホタテ貝殻粗粉の粉砕物と溶媒の混合物に遠心分離を施した。遠心分離後の混合物から上澄みを除去し、12時間以上真空乾燥させ、炭酸カルシウム粉体を取得した(S4)。   Next, desalting purification by distillation (manufactured by Yamato Kagaku, WG250) is applied to water to prepare distilled water, and the pH of the obtained distilled water is adjusted to nitric acid (purity 60 to 61%, manufactured by Kanto Chemical). Then, by adjusting the pH to 0.5 to 7.0 (pH 0.5, pH 1.0, pH 3.0, pH 5.0 or pH 7.0), a plurality of types of solvents having different pHs were prepared (S2). 10 mL of each solvent adjusted in the step S2 was added to 1.00 g of scallop shell coarse powder subjected to the dry pulverization treatment, and the mixture was allowed to stand for 30 minutes (S3). Thereafter, using a micro high speed cooling centrifuge (MX-301 manufactured by Tommy Seiko Co., Ltd.), the mixture of the scallop shell coarse powder and the solvent was centrifuged at 20 ° C. and a rotational speed of 3500 rpm for 1 minute. The supernatant was removed from the mixture after centrifugation and vacuum dried for 12 hours or more to obtain calcium carbonate powder (S4).

実施例5の結果によると、pH7.0の溶媒を添加した時の炭酸カルシウム粉体の比表面積が最大となっており、添加した溶媒の酸性が強くなるほど比表面積が小さくなっている(図7)。溶出した炭酸カルシウムが析出する際に微粒子同士が結合することで比表面積が減少したものと考えられる。なお、炭酸カルシウムは酸性が強い溶媒に溶けやすい。このため、pHの低い水からpH7.0の蒸留水を調製する場合、易溶解領域が溶けにくくなると考えられる。一方、実施例5からは、pHを7.0に調整することにより、最終的に取得される粉体の比表面積が大きくなることが導かれる。このように、易溶解領域が溶けにくくなるような調整であっても、最終的に取得される粉体の比表面積が大きくなるように溶媒を調整することが好ましい。   According to the results of Example 5, the specific surface area of the calcium carbonate powder is maximized when the solvent having pH 7.0 is added, and the specific surface area decreases as the acidity of the added solvent increases (FIG. 7). ). It is considered that the specific surface area was reduced by the bonding of the fine particles when the eluted calcium carbonate precipitated. Calcium carbonate is easily dissolved in a highly acidic solvent. For this reason, when preparing distilled water of pH 7.0 from water with low pH, it is thought that an easily soluble area | region becomes difficult to melt | dissolve. On the other hand, Example 5 leads to an increase in the specific surface area of the finally obtained powder by adjusting the pH to 7.0. Thus, it is preferable to adjust a solvent so that the specific surface area of the powder finally acquired may become large even if it is adjustment which becomes easy to melt | dissolve an easily melt | dissolving area | region.

[実施例6](乾式粉砕後のホタテ貝殻に温度を変化させた蒸留水を添加した場合の比表面積)
水に蒸留による脱塩精製(ヤマト科学製、WG250)を施し、蒸留水を調製した。そして、蒸留水の温度が5℃〜90℃(5℃、20℃、40℃、60℃、70℃又は90℃)になるよう、蒸留水を冷却又は加熱し、溶媒を調整した(S2)。その後、実施例5の方法で乾式粉砕処理した粉砕物に調整した溶媒を添加して、溶媒と同じ温度に設定した恒温槽(AS ONE製 LTB−125)中でホタテ貝殻粗粉の粉砕物と溶媒の混合物を30分間静置した(S3)。その他の処理は、実施例5と同様である。
[Example 6] (Specific surface area when distilled water whose temperature has been changed is added to scallop shells after dry grinding)
The water was subjected to desalting purification by distillation (manufactured by Yamato Kagaku, WG250) to prepare distilled water. And distilled water was cooled or heated so that the temperature of distilled water might be 5 to 90 degreeC (5 degreeC, 20 degreeC, 40 degreeC, 60 degreeC, 70 degreeC or 90 degreeC), and the solvent was adjusted (S2). . Then, the adjusted solvent was added to the pulverized product dry-pulverized by the method of Example 5, and the scallop shell coarse powder pulverized product in a thermostatic bath (LTB-125 manufactured by AS ONE) set to the same temperature as the solvent. The solvent mixture was allowed to stand for 30 minutes (S3). Other processes are the same as those in the fifth embodiment.

実施例6の結果によると、70℃以上の高温の溶媒になると、炭酸カルシウム粉体の非表面積が小さくなっている(図8)。これは、炭酸カルシウムは、温度が高くなると溶けにくくなることから、炭酸カルシウムの溶解度が低くなるにつれて、炭酸カルシウム粉砕物中の各粒子の易溶解領域の溶解量が減少してしまい、比表面積が増加しなかったものと考えられる。   According to the result of Example 6, the non-surface area of the calcium carbonate powder is reduced when the solvent is at a high temperature of 70 ° C. or higher (FIG. 8). This is because calcium carbonate becomes difficult to dissolve when the temperature rises, so as the solubility of calcium carbonate decreases, the amount of dissolution in the easy-dissolving region of each particle in the calcium carbonate pulverized product decreases, and the specific surface area increases. It is thought that it did not increase.

以上は、本発明の好適な実施形態についての説明であるが、本発明は上述の実施形態に
限られるものではなく、課題を解決するための手段に記載された範囲の限りにおいて様々
な変更が可能なものである。
The above is a description of a preferred embodiment of the present invention, but the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope described in the means for solving the problem. It is possible.

本発明よれば、ナノ粒子に粉砕したホタテ貝殻粉体を利用し、ホルムアルデヒドを吸着するような吸着剤を開発することができる。また、紫外線遮蔽効果等の優れた化粧料等、ナノ粒子を応用可能なさまざまな分野に利用できる。   According to the present invention, an adsorbent capable of adsorbing formaldehyde can be developed using scallop shell powder pulverized into nanoparticles. In addition, it can be used in various fields to which nanoparticles can be applied, such as cosmetics having an excellent ultraviolet shielding effect.

Claims (8)

金属化合物の結晶を含む物質の粉体を取得する粉体の製造方法であって、
溶媒への溶解し易さが相対的に異なる易溶解領域と難溶解領域が粉砕後の粉砕物中の各粒子に生じるように前記物質に乾式粉砕処理を施す粉砕工程と、
溶媒を調整する調整工程と、
前記乾式粉砕処理後の前記粉砕物に調整後の前記溶媒を添加する添加工程と、
前記物質の前記粉体を前記溶媒中から取得する取得工程とを備えており、
前記調整工程において、前記取得工程で取得される前記粉体の比表面積が大きくなるように前記溶媒を調整することを特徴とする粉体の製造方法。
A method for producing a powder for obtaining a powder of a substance containing a crystal of a metal compound,
A pulverization step of subjecting the substance to a dry pulverization treatment such that an easily soluble region and a hardly soluble region that are relatively easily dissolved in a solvent are generated in each particle in the pulverized product after pulverization;
An adjustment step of adjusting the solvent;
An addition step of adding the adjusted solvent to the pulverized product after the dry pulverization treatment;
An acquisition step of acquiring the powder of the substance from the solvent,
The said adjustment process WHEREIN: The said solvent is adjusted so that the specific surface area of the said powder acquired at the said acquisition process may become large, The manufacturing method of the powder characterized by the above-mentioned.
前記調整工程において、前記溶媒の温度及びpHの少なくともいずれかを調整することを特徴とする請求項1に記載の粉体の製造方法。   The method for producing a powder according to claim 1, wherein in the adjusting step, at least one of a temperature and a pH of the solvent is adjusted. 前記調整工程において、前記物質が温度上昇に応じて前記溶媒への溶解度が高くなる物質である場合には前記溶媒を加熱し、前記物質が温度上昇に応じて前記溶媒への溶解度が低くなる物質である場合には前記溶媒を冷却することを特徴とする請求項2に記載の粉体の製造方法。   In the adjusting step, when the substance is a substance whose solubility in the solvent increases with an increase in temperature, the solvent is heated, and the substance becomes less soluble in the solvent with an increase in temperature. The method for producing a powder according to claim 2, wherein the solvent is cooled in the case of. 前記金属化合物が、無機炭酸塩及び金属酸化物の少なくともいずれかを含んでいることを特徴とする請求項1〜3のいずれか1項に記載の粉体の製造方法。   The said metal compound contains at least any one of inorganic carbonate and a metal oxide, The manufacturing method of the powder of any one of Claims 1-3 characterized by the above-mentioned. 前記溶媒の主成分が水であることを特徴とする請求項1〜4のいずれか1項に記載の粉体の製造方法。   The method for producing a powder according to any one of claims 1 to 4, wherein a main component of the solvent is water. 前記物質が貝殻である場合に、前記溶媒の温度が5℃〜60℃であることを特徴とする請求項5に記載の粉体の製造方法。   The method for producing a powder according to claim 5, wherein the temperature of the solvent is 5 ° C. to 60 ° C. when the substance is a shell. 前記物質が貝殻である場合に、前記調整後の溶媒のpHが0.5〜7.0の範囲であることを特徴とする請求項5に記載の粉体の製造方法。   The method for producing a powder according to claim 5, wherein when the substance is a shell, the pH of the solvent after the adjustment is in the range of 0.5 to 7.0. 前記調整工程において、前記金属化合物が酸化アルミニウムである場合に、前記溶媒の温度を40℃以上まで加熱することを特徴とする請求項5に記載の粉体の製造方法。   In the said adjustment process, when the said metal compound is aluminum oxide, the temperature of the said solvent is heated to 40 degreeC or more, The manufacturing method of the powder of Claim 5 characterized by the above-mentioned.
JP2014133073A 2014-06-27 2014-06-27 Method for producing powder Pending JP2016010753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014133073A JP2016010753A (en) 2014-06-27 2014-06-27 Method for producing powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014133073A JP2016010753A (en) 2014-06-27 2014-06-27 Method for producing powder

Publications (1)

Publication Number Publication Date
JP2016010753A true JP2016010753A (en) 2016-01-21

Family

ID=55227831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014133073A Pending JP2016010753A (en) 2014-06-27 2014-06-27 Method for producing powder

Country Status (1)

Country Link
JP (1) JP2016010753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021000034A (en) * 2019-06-21 2021-01-07 株式会社ナックス Functional oral composition and its production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504311A (en) * 1995-04-29 1999-04-20 インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Method for producing weakly agglomerated nanoscalar particles
JP2003305378A (en) * 2002-04-15 2003-10-28 Kcm Corp Manufacturing method for magnesium hydroxide fire retardant
JP2004182556A (en) * 2002-12-05 2004-07-02 Showa Denko Kk Aluminum hydroxide, its preparation method and composition containing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504311A (en) * 1995-04-29 1999-04-20 インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Method for producing weakly agglomerated nanoscalar particles
JP2003305378A (en) * 2002-04-15 2003-10-28 Kcm Corp Manufacturing method for magnesium hydroxide fire retardant
JP2004182556A (en) * 2002-12-05 2004-07-02 Showa Denko Kk Aluminum hydroxide, its preparation method and composition containing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021000034A (en) * 2019-06-21 2021-01-07 株式会社ナックス Functional oral composition and its production method
JP7123404B2 (en) 2019-06-21 2022-08-23 株式会社ナックス Functional oral composition and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5820556B2 (en) Method for producing copper nanowires
JP2018506034A5 (en)
JP6976597B2 (en) Copper particle mixture and its production method, copper particle mixture dispersion, copper particle mixture-containing ink, copper particle mixture storage method and copper particle mixture sintering method
JP6267042B2 (en) Arsenic treatment method
TW593651B (en) Description method for producing cerium-based abrasive and cerium-based abrasive produced thereby
JP6517607B2 (en) Method of producing activated carbon, activated carbon and electrode material for electric double layer capacitor
KR20170038466A (en) The manufacturing method of silver powder
JP2016010753A (en) Method for producing powder
JP2018149520A5 (en)
CN110655905A (en) Multifunctional synergistic negative ion release material and preparation method thereof
JPH036170B2 (en)
WO2017168906A1 (en) Sputtering target material, manufacturing method therefor, and sputtering target
TWI615359B (en) Adsorption material dispersion and adsorption method
KR100622106B1 (en) A manufacturing method of ito powder by a used ito target
KR101599602B1 (en) Preparation method of tungsten trioxide fine particle
WO2019087278A1 (en) Bisacurone extraction method
JP2012162432A (en) Gallium oxide powder, method for producing the same, oxide sintered compact sputtering target, and method for producing the same
CN111051241A (en) Hydrophobic silica powder
FR2681850A1 (en) PROCESS FOR PREPARING METAL OXIDE PARTICLES.
TW201436948A (en) Method for recycling scraped polishing powder
JP2002356328A (en) Niobium oxide slurry, niobium oxide powders and their producing method
JP7126922B2 (en) Method for producing gallium oxide powder
JP2560235B2 (en) Novel method for producing fine particle natural polymer
JP2015209401A (en) Caffeoylquinic acid extraction method, and caffeoylquinic acid production method
JP2004175602A (en) Tantalum oxide slurry, tantalum oxide powder and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180911