JP2016009583A - Method for manufacturing positive electrode active material - Google Patents

Method for manufacturing positive electrode active material Download PDF

Info

Publication number
JP2016009583A
JP2016009583A JP2014129313A JP2014129313A JP2016009583A JP 2016009583 A JP2016009583 A JP 2016009583A JP 2014129313 A JP2014129313 A JP 2014129313A JP 2014129313 A JP2014129313 A JP 2014129313A JP 2016009583 A JP2016009583 A JP 2016009583A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium ion
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014129313A
Other languages
Japanese (ja)
Inventor
文平 吉田
Bunpei Yoshida
文平 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2014129313A priority Critical patent/JP2016009583A/en
Publication of JP2016009583A publication Critical patent/JP2016009583A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a positive electrode active material purified by extracting impurities from a positive electrode active material for lithium ion secondary batteries.SOLUTION: A method for manufacturing a purified positive electrode active material (B) comprises the steps of: bringing a positive electrode active material (B0) for lithium ion secondary batteries into contact with a supercritical or subcritical fluid (A), thereby making a mixture (C); and removing, from the mixture, the supercritical or subcritical fluid (A). The supercritical or subcritical fluid (A) is a carbon dioxide. The mixture (C) is a mixture (C1) arranged by putting the positive electrode active material (B0) into contact with the supercritical or subcritical fluid (A) and an organic solvent (D). It is preferable that the positive electrode active material (B0) for lithium ion secondary batteries is a lithium-containing complex oxide which includes Li element, and at least one transition metal element selected from Ni, Co and Mn, and in which the mole quantity of the Li element is over 1.2 times the total mole quantity of the transition metal element.

Description

本発明は、リチウムイオン二次電池の正極活物質の製造方法に関するものである。   The present invention relates to a method for producing a positive electrode active material for a lithium ion secondary battery.

リチウムイオン二次電池は、既に携帯電話やノート型パソコン等の携帯型電子機器に広く用いられているが、近年、携帯型電子機器や車載用のリチウムイオン二次電池としてさらなる小型化・軽量化が求められ、単位質量あたりの放電容量、サイクル特性、電池としての安定性等の更なる性能向上が望まれている。 Lithium ion secondary batteries are already widely used in portable electronic devices such as mobile phones and notebook computers, but in recent years they have become smaller and lighter as portable electronic devices and in-vehicle lithium ion secondary batteries. Therefore, further improvement in performance such as discharge capacity per unit mass, cycle characteristics, and stability as a battery is desired.

該性能向上を目的としてLi元素に対する、Ni、Co、およびMn等の遷移金属元素の比率を高くした複合酸化物(以下、「Li−rich系正極材料」という場合がある。)が提案されている。Li−rich系正極材料の例として、LiMO(MはNi、Co、およびMnから選ばれる少なくとも一種の遷移金属元素。)とLiMnOとの固溶体が提案されている。該固溶体を正極活物質とするリチウムイオン二次電池を高容量で用いるには、初回充電時に4.5V以上の高電圧で充電する必要がある。 For the purpose of improving the performance, a composite oxide (hereinafter sometimes referred to as “Li-rich positive electrode material”) in which the ratio of transition metal elements such as Ni, Co, and Mn to the Li element is increased has been proposed. Yes. As an example of the Li-rich positive electrode material, a solid solution of LiMO 2 (M is at least one transition metal element selected from Ni, Co, and Mn) and Li 2 MnO 3 has been proposed. In order to use a lithium ion secondary battery having the solid solution as a positive electrode active material at a high capacity, it is necessary to charge at a high voltage of 4.5 V or more at the first charge.

しかし、Li−rich系正極材料は、過剰にLiを有することから、結晶内に取り込まれなかったLiが正極材表面に遊離Liとして残りやすい。遊離LiはLiOHやLiCOの形で存在すると考えられるが、遊離Liが多いと充放電の際に電解液が分解しやすくなる。分解した電解液は、正極材料中の遷移金属と接触して、正極材料中の遷移金属を徐々に電解液中に溶出させる。正極材料中の遷移金属が電解液中に溶出すると、正極材料の結晶構造が不安定になり、充放電容量が低下する。このため、Li−rich系正極材料を正極として用いたリチウムイオン二次電池においても、充分に高いサイクル特性が得られなかった。 However, since the Li-rich positive electrode material has excessive Li, Li that has not been taken into the crystal tends to remain as free Li on the surface of the positive electrode material. Free Li is considered to exist in the form of LiOH or Li 2 CO 3 , but if the amount of free Li is large, the electrolytic solution is likely to be decomposed during charge and discharge. The decomposed electrolytic solution comes into contact with the transition metal in the positive electrode material and gradually elutes the transition metal in the positive electrode material into the electrolytic solution. When the transition metal in the positive electrode material is eluted in the electrolyte solution, the crystal structure of the positive electrode material becomes unstable, and the charge / discharge capacity decreases. For this reason, even in a lithium ion secondary battery using a Li-rich positive electrode material as a positive electrode, sufficiently high cycle characteristics could not be obtained.

この問題を解決するために、リチウム含有複合酸化物とフッ素ガスとを接触させることを特徴とするリチウムイオン二次電池用正極活物質の製造方法(特許文献1)などが提案されているが十分なサイクル特性は得られていない。 In order to solve this problem, a method for producing a positive electrode active material for a lithium ion secondary battery (Patent Document 1) characterized by bringing a lithium-containing composite oxide into contact with a fluorine gas has been proposed. Cycle characteristics are not obtained.

特開2014−75177号公報JP 2014-75177 A

本発明の課題は、リチウムイオン二次電池用正極活物質から不純物を抽出する、精製された正極活物質の製造方法を提供することである。   The subject of this invention is providing the manufacturing method of the refined positive electrode active material which extracts an impurity from the positive electrode active material for lithium ion secondary batteries.

本発明者らは、上記の目的を達成すべく鋭意検討を行った結果、本発明に到達した。すなわち本発明は、リチウムイオン二次電池用正極活物質(B0)に超臨界流体または亜臨界流体(A)を接触させたもの(C)から、超臨界流体または亜臨界流体(A)を除去させる工程を含む精製された正極活物質(B)の製造方法である。 As a result of intensive studies to achieve the above object, the present inventors have reached the present invention. That is, the present invention removes the supercritical fluid or subcritical fluid (A) from the material (C) in which the supercritical fluid or subcritical fluid (A) is contacted with the positive electrode active material (B0) for the lithium ion secondary battery. It is a manufacturing method of the refined positive electrode active material (B) including the process to make.

本発明によれば、容量及びサイクル特性に優れるリチウムイオン二次電池用の精製された正極活物質(B)を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the refined | purified positive electrode active material (B) for lithium ion secondary batteries excellent in a capacity | capacitance and cycling characteristics can be obtained.

以下に本発明を詳述する。
本発明に用いられるリチウムイオン二次電池用正極活物質(B0)はLi元素と、Ni、Co、およびMnから選ばれる少なくとも一種の遷移金属元素とを含み、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超であるリチウム含有複合酸化物リチウム含有複合酸化物である。含まれる遷移金属元素は、Mnを必須とすることがより好ましく、Ni、Co、およびMnを含むことが特に好ましい。また、リチウム含有複合酸化物に含まれる遷移金属元素は、Ni、Co、およびMnのみからなっていてもよく、必要に応じてNi、Co、Mn、Li以外の金属元素(以下、他の金属元素という。)を含んでいてもよい。他の金属元素としては、Cr、Fe、Al、Ti、Zr、Mo、Nb、V、Mg等の元素が挙げられる。他の金属元素の割合は、遷移金属元素の総量(1モル)において0.001〜0.50モルが好ましく、0.005〜0.05モルがより好ましい。
The present invention is described in detail below.
The positive electrode active material (B0) for a lithium ion secondary battery used in the present invention contains Li element and at least one transition metal element selected from Ni, Co, and Mn, and the molar amount of Li element is the transition metal. The lithium-containing composite oxide is a lithium-containing composite oxide that is more than 1.2 times the total molar amount of elements. The transition metal element contained is more preferably made of Mn, and particularly preferably containing Ni, Co, and Mn. Further, the transition metal element contained in the lithium-containing composite oxide may consist of only Ni, Co, and Mn, and if necessary, a metal element other than Ni, Co, Mn, and Li (hereinafter, other metals) May be included). Examples of other metal elements include elements such as Cr, Fe, Al, Ti, Zr, Mo, Nb, V, and Mg. The proportion of the other metal element is preferably 0.001 to 0.50 mol, and more preferably 0.005 to 0.05 mol in the total amount (1 mol) of the transition metal element.

本発明に用いられる超臨界流体(A1)としては、気体と液体が共存できる限界(臨界点)を超えた温度・圧力領域において非凝集性高密度流体として存在し、圧縮しても凝集せず、臨界温度以上、かつ臨界圧力以上の状態にある流体である限り特に制限はなく、目的に応じて適宜選択することが出来るが、臨界温度が低いものが好ましい。この超臨界流体は、例えば、一酸化炭素、二酸化炭素、アンモニア、窒素、水、メタノール、エタノール、n−ブタノールなどのエルコール系溶媒、エタン、プロパン、2,3−ジメチルブタン、ベンゼン、トルエンなどの炭化水素系溶媒、塩化メチレン、クロロトリフロロメタンなどのハロゲン系溶媒、ジメチルエーテルなどのエーテル系溶媒が好適である。これらの中でも、二酸化炭素は、臨界圧力7.3MPa、臨界温度31℃であることから、容易に超臨界状態をつくり出せるとともに、不燃性で取扱いが容易であり、特に好ましい。また、これらの流体は、単独であっても二種以上の混合であっても構わない。 The supercritical fluid (A1) used in the present invention exists as a non-aggregating high-density fluid in a temperature / pressure region exceeding the limit (critical point) at which gas and liquid can coexist, and does not aggregate even when compressed. As long as the fluid is in a state of a critical temperature or higher and a critical pressure or higher, there is no particular limitation, and the fluid can be appropriately selected according to the purpose. This supercritical fluid includes, for example, carbon monoxide, carbon dioxide, ammonia, nitrogen, water, methanol, ethanol, ercol solvents such as n-butanol, ethane, propane, 2,3-dimethylbutane, benzene, toluene and the like. Hydrocarbon solvents, halogen solvents such as methylene chloride and chlorotrifluoromethane, and ether solvents such as dimethyl ether are preferred. Among these, carbon dioxide is particularly preferable because it has a critical pressure of 7.3 MPa and a critical temperature of 31 ° C., so that it can easily create a supercritical state and is nonflammable and easy to handle. These fluids may be used alone or in combination of two or more.

本発明に用いられる亜臨界流体(A2)としては、臨界点近傍の温度及び圧力領域において、高圧液体として存在する限り特に制限はなく、目的に応じて適宜選択することができる。上述した超臨界流体(A1)として挙げられる化合物は、亜臨界流体としても好適に使用することができる。 The subcritical fluid (A2) used in the present invention is not particularly limited as long as it exists as a high-pressure liquid in the temperature and pressure regions near the critical point, and can be appropriately selected according to the purpose. The compound mentioned as the supercritical fluid (A1) described above can be suitably used as a subcritical fluid.

超臨界流体の臨界温度及び臨界圧力は特に制限はなく、目的に応じて適宜選択することができるが、臨界温度としては、−273℃以上300℃以下が好ましく、0℃以上200℃以下が特に好ましい。   The critical temperature and critical pressure of the supercritical fluid are not particularly limited and can be appropriately selected according to the purpose. However, the critical temperature is preferably −273 ° C. or more and 300 ° C. or less, particularly 0 ° C. or more and 200 ° C. or less. preferable.

さらに、上述の超臨界流体(A1)及び亜臨界流体(A2)に加え、有機溶媒(D)を添加することもできる。有機溶媒(D)の添加により、超臨界流体中での溶解度の調整をより容易に行うことができる。このような有機溶媒(D)としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アセトン、メチルエチルケトン、あるいはメチルイソブチルケトン等のケトン系溶媒、ギ酸エチル、酢酸エチル、あるいは酢酸n−ブチル等のエステル系溶媒、ジイソプロピルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、あるいはジオキサン等のエーテル系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、あるいはN−メチル−2−ピロリドン等のアミド系溶媒、ジクロロメタン、クロロホルム、ブロモホルム、ヨウ化メチル、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、o−ジクロロベンゼン、フルオロベンゼン、ブロモベンゼン、ヨードベンゼン、あるいは1−クロロナフタレン等のハロゲン化炭化水素系溶媒、n−ペンタン、n−ヘキサン、n−オクタン、1,5−ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、あるいはクメン等の炭化水素系溶媒などが挙げられる。   Furthermore, in addition to the supercritical fluid (A1) and subcritical fluid (A2) described above, an organic solvent (D) can also be added. By adding the organic solvent (D), the solubility in the supercritical fluid can be adjusted more easily. Such an organic solvent (D) is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ethyl formate, ethyl acetate, Alternatively, ester solvents such as n-butyl acetate, ether solvents such as diisopropyl ether, dimethoxyethane, tetrahydrofuran, dioxolane, or dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, or N-methyl-2- Amide solvents such as pyrrolidone, dichloromethane, chloroform, bromoform, methyl iodide, dichloroethane, trichloroethane, trichloroethylene, chlorobenzene, o-dichlorobenzene, fluorobenzene, bromobenzene, iodobenzene Alternatively, halogenated hydrocarbon solvents such as 1-chloronaphthalene, n-pentane, n-hexane, n-octane, 1,5-hexadiene, cyclohexane, methylcyclohexane, cyclohexadiene, benzene, toluene, o-xylene, m- Examples thereof include hydrocarbon solvents such as xylene, p-xylene, ethylbenzene, and cumene.

本発明における不純物(E)としてはLi塩、Na塩などが上げられる。Li塩としては、水酸化物リチウム、炭酸リチウム、硫酸リチウムなどが挙げられる。Na塩としては、水酸化物ナトリウム、炭酸ナトリウム、硫酸ナトリウムなどが挙げられる。 Examples of the impurity (E) in the present invention include Li salt and Na salt. Examples of the Li salt include lithium hydroxide, lithium carbonate, and lithium sulfate. Examples of the Na salt include sodium hydroxide, sodium carbonate, sodium sulfate and the like.

以下、工程を詳細に説明する。
この超臨界二酸化炭素処理工程には、必要により低沸点溶媒を併用する場合がある。
本発明は、(A)正極活物質中に残る不純物を、超臨界状態の二酸化炭素で除去する超臨界二酸化炭素(CO) 処理工程を含む。
低沸点溶媒を併用する場合は、(B)正極活物質を低沸点溶媒中に分散させ、この分散液を超臨界状態の二酸化炭素で除去する超臨界二酸化炭素(CO) 処理工程、(C)正極活物質中に残る不純物を除去するために、塗膜に低沸点溶媒を付着させた状態で超臨界状態の二酸化炭素で処理する溶媒付着− 超臨界二酸化炭素(CO)処理工程あるいは、(D)正極活物質中に残る不純物を除去するために、塗膜を低沸点溶媒中に浸漬させた状態で、超臨界状態の二酸化炭素で処理する溶媒浸漬−超臨界二酸化炭素(CO)処理工程が挙げられる。
これらのうち不純物の除去効率の観点から(A)または(B)の方法が好ましく用いられる。
Hereinafter, the process will be described in detail.
In this supercritical carbon dioxide treatment step, a low boiling point solvent may be used in combination as necessary.
The present invention includes (A) a supercritical carbon dioxide (CO 2 ) treatment step for removing impurities remaining in the positive electrode active material with carbon dioxide in a supercritical state.
When a low-boiling solvent is used in combination, (B) a supercritical carbon dioxide (CO 2 ) treatment step in which the positive electrode active material is dispersed in the low-boiling solvent and the dispersion is removed with carbon dioxide in a supercritical state, (C ) In order to remove impurities remaining in the positive electrode active material, in the state where the low boiling point solvent is attached to the coating film, the solvent is attached to the supercritical carbon dioxide-supercritical carbon dioxide (CO 2 ) treatment step, or (D) Solvent immersion-supercritical carbon dioxide (CO 2 ) in which the coating film is immersed in a low-boiling solvent in order to remove impurities remaining in the positive electrode active material, and is treated with supercritical carbon dioxide. A processing process is mentioned.
Among these, the method (A) or (B) is preferably used from the viewpoint of impurity removal efficiency.

以下実施例により本発明をさらに説明するが、本発明はこれに限定されるものではない。以下の記載において「部」は重量部を示す。   EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited thereto. In the following description, “parts” indicates parts by weight.

<製造例1>
<リチウム含有複合酸化物(Ni−Co−Mn三元系の合成>
硫酸ニッケル(II)六水和物(140.6部)、硫酸コバルト(II)七水和物(131.4部)、硫酸マンガン(II)五水和物(482.2部)に蒸留水(1245.9部)を加えて均一に溶解させて原料溶液とした。硫酸アンモニウム(79.2部)に蒸留水(320.8部)を加えて均一に溶解させてアンモニア源溶液とした。硫酸アンモニウム(79.2部)に蒸留水(1920.8部)を加えて均一に溶解させて母液とした。水酸化ナトリウム(400部)に蒸留水(600部)を加えて均一に溶解させてpH調整液とした。
2Lのバッフル付きガラス製反応槽に母液を入れてマントルヒーターで50℃に加熱し、pHが11.0となるようにpH調整液を加えた。反応槽内の溶液をアンカー型の撹拌翼で撹拌しながら原料溶液を5.0部/分、アンモニア源溶液を1.0部/分の速度で添加し、ニッケル、コバルト、マンガンの複合水酸化物を析出させた。原料溶液を添加している間、反応槽内のpHを11.0に保つようにpH調整溶液を添加した。また、析出した水酸化物が酸化しないように反応槽内に窒素ガスを流量0.5L/分で流した。また、反応槽内の液量が2Lを超えないように連続的に液の抜き出しを行った。
得られたニッケル、コバルト、マンガンの複合水酸化物から不純物イオンを取り除くため、加圧ろ過と蒸留水への分散を繰返して洗浄した。ろ液の電気伝導度が25μS/cmとなった時点で洗浄を終了し、120℃で15時間乾燥させて未処理正極活物質(B0−1)をえた。ICP(高周波誘導結合プラズマ)で前駆体のニッケル、コバルト、マンガンの含有量を測定したところ、それぞれ11.6質量%、10.5質量%、42.3質量%であった
<Production Example 1>
<Lithium-containing composite oxide (synthesis of Ni-Co-Mn ternary system>
Nickel sulfate (II) hexahydrate (140.6 parts), cobalt sulfate (II) heptahydrate (131.4 parts), manganese sulfate (II) pentahydrate (482.2 parts) and distilled water (1245.9 parts) was added and uniformly dissolved to obtain a raw material solution. Distilled water (320.8 parts) was added to ammonium sulfate (79.2 parts) and dissolved uniformly to obtain an ammonia source solution. Distilled water (1920.8 parts) was added to ammonium sulfate (79.2 parts) and dissolved uniformly to obtain a mother liquor. Distilled water (600 parts) was added to sodium hydroxide (400 parts) and dissolved uniformly to obtain a pH adjusting solution.
The mother liquor was placed in a 2 L baffled glass reaction vessel, heated to 50 ° C. with a mantle heater, and a pH adjusting solution was added so that the pH was 11.0. While stirring the solution in the reaction vessel with an anchor-type stirring blade, the raw material solution was added at a rate of 5.0 parts / minute, and the ammonia source solution was added at a rate of 1.0 part / minute, resulting in composite hydroxylation of nickel, cobalt, and manganese. The product was precipitated. During the addition of the raw material solution, the pH adjusting solution was added so as to keep the pH in the reaction vessel at 11.0. Moreover, nitrogen gas was flowed at a flow rate of 0.5 L / min in the reaction tank so that the precipitated hydroxide was not oxidized. Further, the liquid was continuously extracted so that the amount of the liquid in the reaction tank did not exceed 2 L.
In order to remove impurity ions from the obtained composite hydroxide of nickel, cobalt, and manganese, washing was repeated by pressure filtration and dispersion in distilled water. When the electrical conductivity of the filtrate reached 25 μS / cm, the washing was finished and dried at 120 ° C. for 15 hours to obtain an untreated positive electrode active material (B0-1). When the contents of the precursors nickel, cobalt, and manganese were measured by ICP (high frequency inductively coupled plasma), they were 11.6 mass%, 10.5 mass%, and 42.3 mass%, respectively.

<製造例2>
<リチウム含有複合酸化物(LiCoO)の合成>
硫酸ニッケル(II)六水和物(140.6部)、硫酸コバルト(II)七水和物(131.4部)、硫酸マンガン(II)五水和物(482.2部)のかわりに硫酸コバルト(II)七水和物(843部)を使用した以外は製造例1と同様にして行い未処理正極活物質(B0−2)を得た。
<Production Example 2>
<Synthesis of lithium-containing composite oxide (LiCoO 2 )>
Instead of nickel (II) sulfate hexahydrate (140.6 parts), cobalt (II) sulfate heptahydrate (131.4 parts), manganese sulfate (II) pentahydrate (482.2 parts) An untreated positive electrode active material (B0-2) was obtained in the same manner as in Production Example 1 except that cobalt (II) sulfate heptahydrate (843 parts) was used.

<製造例3>
<リチウム含有複合酸化物(LiNiO)の合成>
硫酸ニッケル(II)六水和物(140.6部)、硫酸コバルト(II)七水和物(131.4部)、硫酸マンガン(II)五水和物(482.2部)のかわりに硫酸ニッケル(II)六水和物(780部)を使用した以外は製造例1と同様にして行い未処理正極活物質(B0−3)を得た。
<Production Example 3>
<Synthesis of lithium-containing composite oxide (LiNiO 2 )>
Instead of nickel (II) sulfate hexahydrate (140.6 parts), cobalt (II) sulfate heptahydrate (131.4 parts), manganese sulfate (II) pentahydrate (482.2 parts) An untreated positive electrode active material (B0-3) was obtained in the same manner as in Production Example 1 except that nickel (II) sulfate hexahydrate (780 parts) was used.

<製造例4>
<リチウム含有複合酸化物(LiMnO)の合成>
硫酸ニッケル(II)六水和物(140.6部)、硫酸コバルト(II)七水和物(131.4部)、硫酸マンガン(II)五水和物(482.2部)のかわりに硫酸マンガン(II)五水和物(724部)を使用した以外は製造例1と同様にして行い未処理正極活物質(B0−4)を得た。
<Production Example 4>
<Synthesis of lithium-containing composite oxide (LiMnO 2 )>
Instead of nickel (II) sulfate hexahydrate (140.6 parts), cobalt (II) sulfate heptahydrate (131.4 parts), manganese sulfate (II) pentahydrate (482.2 parts) An untreated positive electrode active material (B0-4) was obtained in the same manner as in Production Example 1 except that manganese (II) sulfate pentahydrate (724 parts) was used.

<実施例1>
製造例1で製造した未処理正極活物質(B0−1)100部をアセトン中に分散させ、耐圧容器中に仕込んだ。釜内温度を40℃まで昇温した。昇温後二酸化炭素を供給し10MPaにして10分間攪拌した後、取り出しノズルより内容物を取り出すことで常圧に戻すことで二酸化炭素を除き、濾過によりアセトンを除いた。さらに減圧乾燥(50℃、0.5kPa)条件化で乾燥させることで正極活物質(B−1)をえた。
<Example 1>
100 parts of the untreated positive electrode active material (B0-1) produced in Production Example 1 was dispersed in acetone and charged into a pressure vessel. The temperature in the kettle was raised to 40 ° C. After raising the temperature, carbon dioxide was supplied to 10 MPa and stirred for 10 minutes. Then, the content was taken out from the take-out nozzle to return to normal pressure to remove carbon dioxide, and acetone was removed by filtration. Furthermore, the positive electrode active material (B-1) was obtained by drying under reduced pressure drying (50 ° C., 0.5 kPa) conditions.

<実施例2>
未処理正極活物質として(B0−1)のかわりに(B0−2)を用いた以外は実施例1と同様にしておこない正極活物質(B−2)をえた。
<Example 2>
A positive electrode active material (B-2) was obtained in the same manner as in Example 1 except that (B0-2) was used instead of (B0-1) as an untreated positive electrode active material.

<実施例3>
未処理正極活物質として(B0−1)のかわりに(B0−3)を用いた以外は実施例1と同様にしておこない正極活物質(B−3)をえた。
<Example 3>
A positive electrode active material (B-3) was obtained in the same manner as in Example 1 except that (B0-3) was used instead of (B0-1) as an untreated positive electrode active material.

<実施例4>
未処理正極活物質として(B0−1)のかわりに(B0−4)を用いた以外は実施例1と同様にしておこない正極活物質(B−4)をえた。
<Example 4>
A positive electrode active material (B-4) was obtained in the same manner as in Example 1 except that (B0-4) was used instead of (B0-1) as the untreated positive electrode active material.

<比較例1>
製造例1で製造した未処理正極活物質(B0−1)20部を、内径φ2.15cmの管状炉に静置した状態で入れ、管状炉にFガスを20mol%含むNガスを流量0.1L/分で3分間連続的に供給することにより、リチウム含有複合酸化物とフッ素ガスとを接触させ(フッ素処理)、比較例2の正極活物質(B’−1)を得た。
<Comparative Example 1>
20 parts of the untreated positive electrode active material (B0-1) produced in Production Example 1 was placed in a state where it was allowed to stand in a tubular furnace having an inner diameter of 2.15 cm, and a flow rate of N 2 gas containing 20 mol% of F 2 gas in the tubular furnace. By continuously supplying at 0.1 L / min for 3 minutes, the lithium-containing composite oxide and the fluorine gas were brought into contact with each other (fluorine treatment) to obtain a positive electrode active material (B′-1) of Comparative Example 2.

<比較例2>
未処理正極活物質として(B0−1)のかわりに(B0−2)を用いた以外は比較例1と同様にしておこない正極活物質(B’−2)をえた。
<Comparative Example 2>
A positive electrode active material (B′-2) was obtained in the same manner as in Comparative Example 1 except that (B0-2) was used instead of (B0-1) as the untreated positive electrode active material.

<比較例3>
未処理正極活物質として(B0−1)のかわりに(B0−3)を用いた以外は比較例1と同様にしておこない正極活物質(B’−3)をえた。
<Comparative Example 3>
A positive electrode active material (B′-3) was obtained in the same manner as in Comparative Example 1 except that (B0-3) was used instead of (B0-1) as the untreated positive electrode active material.

<比較例4>
未処理正極活物質として(B0−1)のかわりに(B0−4)を用いた以外は比較例1と同様にしておこない正極活物質(B’−4)をえた。
<Comparative Example 4>
A positive electrode active material (B′-4) was obtained in the same manner as in Comparative Example 1 except that (B0-4) was used instead of (B0-1) as the untreated positive electrode active material.

[正極活物質の評価]
上記の実施例1〜4および比較例1〜4でえた正極活物質についてリチウムイオン二次電池を作製することで評価を行った。
[Evaluation of positive electrode active material]
The positive electrode active materials obtained in Examples 1 to 4 and Comparative Examples 1 to 4 were evaluated by producing lithium ion secondary batteries.

[リチウムイオン電池の製造]
<実施例5〜8、比較例5〜12>
以下の方法でリチウムイオン電池を製造した。得られたリチウムイオン電池につき充放電サイクル特性および低温充放電サイクル特性を評価した結果を表2に示した。
[Manufacture of lithium-ion batteries]
<Examples 5-8, Comparative Examples 5-12>
A lithium ion battery was produced by the following method. Table 2 shows the results of evaluating the charge / discharge cycle characteristics and low-temperature charge / discharge cycle characteristics of the obtained lithium ion battery.

Figure 2016009583
Figure 2016009583

Figure 2016009583
Figure 2016009583

[リチウムイオン電池用正極の作製]
上記実施例1〜4、比較例1〜4および製造例1〜4で製造した正極活物質について以下の方法で正極を作製した。
正極活物質90.0部、ケチェンブラック[シグマアルドリッチ(株)製]5部およびポリフッ化ビニリデン[シグマアルドリッチ(株)製]5部を乳鉢で充分に混合した後、1−メチル−2−ピロリドン[東京化成工業(株)製]70.0部を添加し、更に乳鉢で充分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、15.95mmφに打ち抜き、リチウムイオン電池用正極を作製した。
[Production of positive electrode for lithium ion battery]
About the positive electrode active material manufactured in the said Examples 1-4, Comparative Examples 1-4, and Manufacturing Examples 1-4, the positive electrode was produced with the following method.
After 90.0 parts of the positive electrode active material, 5 parts of Ketjen black [Sigma-Aldrich Co., Ltd.] and 5 parts of polyvinylidene fluoride [Sigma-Aldrich Co., Ltd.] were thoroughly mixed in a mortar, 1-methyl-2- 70.0 parts of pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] was added and further mixed well in a mortar to obtain slurry. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the air, dried at 80 ° C. for 1 hour, and further under reduced pressure (1.3 kPa) at 80 ° C. It was dried for 2 hours and punched out to 15.95 mmφ to produce a positive electrode for a lithium ion battery.

[リチウムイオン電池用負極の作製]
平均粒子径約8〜12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部、1−メチル−2−ピロリドン[東京化成工業(株)製]200部を乳鉢で充分に混合しスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmの銅箔の片面に塗布し、80℃で1時間乾燥させた後、更に減圧下(1.3kPa)、80℃で2時間乾燥して、16.15mmφに打ち抜き、プレス機で厚さ30μmにしてリチウムイオン電池用負極をえた。
[Production of negative electrode for lithium ion battery]
92.5 parts of graphite powder having an average particle diameter of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride, and 200 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] are thoroughly mixed in a mortar to obtain a slurry. Obtained. The obtained slurry was applied to one side of a 20 μm-thick copper foil in the air using a wire bar, dried at 80 ° C. for 1 hour, and further under reduced pressure (1.3 kPa) at 80 ° C. for 2 hours. It was dried, punched out to 16.15 mmφ, and made into a thickness of 30 μm with a press machine to obtain a negative electrode for a lithium ion battery.

2032型コインセル内の両端に、上記方法で作製した正極および負極をそれぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、リチウムイオン電池用セルを作製した。エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比率1:1)に、LiPFを12重量%の割合で溶解させた電解液を作製したセルに注液密封した。以下の方法で充放電サイクル特性および出力特性を評価した。 The positive electrode and the negative electrode prepared by the above method were arranged at both ends in the 2032 type coin cell so that the coated surfaces face each other, and a separator (polypropylene nonwoven fabric) was inserted between the electrodes to prepare a cell for a lithium ion battery. . The solution was poured and sealed in a cell in which an electrolytic solution was prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) at a ratio of 12 wt%. The charge / discharge cycle characteristics and output characteristics were evaluated by the following methods.

<充放電サイクル特性の評価>
室温のもと、充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、0.1Cの電流で電圧4.3Vまで充電し、10分間の休止後、0.1Cの電流で電池電圧を3.0Vまで放電し、この充放電を繰り返した。この時の初回充電時の電池容量と50サイクル目充電時の電池容量を測定し、下記式から充放電サイクル特性を算出した。数値が大きい程、充放電サイクル特性が良好であることを示す。
充放電サイクル特性(%)=(50サイクル目充電時の電池容量/初回充電時の電池容量)×100
<Evaluation of charge / discharge cycle characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.] at room temperature, the battery was charged to a voltage of 4.3 V with a current of 0.1 C, and after a pause of 10 minutes, 0.1 C The battery voltage was discharged to 3.0 V with the current of and this charge / discharge was repeated. At this time, the battery capacity at the first charge and the battery capacity at the 50th cycle charge were measured, and the charge / discharge cycle characteristics were calculated from the following formula. It shows that charging / discharging cycling characteristics are so favorable that a numerical value is large.
Charging / discharging cycle characteristics (%) = (battery capacity at the 50th cycle charge / battery capacity at the first charge) × 100

<出力特性の評価>
室温のもと、充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、0.1Cの電流で電圧4.3Vまで充電し、10分間の休止後、0.1Cの電流で電圧を3.0Vまで放電し、放電容量(以下0.1C放電容量と記載)を測定した。次に0.1Cの電流で電圧4.3Vまで充電し、10分間の休止後、1Cの電流で電圧を3.0Vまで放電し容量(以下1C放電容量と記載)を測定し、下記式から1C放電時の容量維持率を算出する。数値が大きい程、出力特性が良好であることを示す。
1C放電時の容量維持率(%)=(1C放電容量/0.1C放電容量)×100
<Evaluation of output characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.] at room temperature, the battery was charged to a voltage of 4.3 V with a current of 0.1 C, and after a pause of 10 minutes, 0.1 C The voltage was discharged to 3.0 V at a current of, and the discharge capacity (hereinafter referred to as 0.1 C discharge capacity) was measured. Next, the battery is charged to a voltage of 4.3 V with a current of 0.1 C, and after a pause of 10 minutes, the voltage is discharged to 3.0 V with a current of 1 C, and the capacity (hereinafter referred to as 1 C discharge capacity) is measured. The capacity maintenance rate at the time of 1C discharge is calculated. The larger the value, the better the output characteristics.
Capacity maintenance rate during 1 C discharge (%) = (1 C discharge capacity / 0.1 C discharge capacity) × 100

上記実施例5〜8および比較例5〜12に示すとおり、本願発明の製造方法による正極活物質からなるリチウムイオン電池は優れた充放電サイクル特性および出力特性を示した。これは超臨界流体で正極活物質を処理することにより正極中に残った水酸化リチウムなどの不純物を除去できたためと考えられる。フッ素ガスのような危険なガスを用いて精製した比較例5〜8に比べても電池特性に大きく優れている点は特筆に値する。   As shown in Examples 5-8 and Comparative Examples 5-12, the lithium ion batteries made of the positive electrode active material according to the production method of the present invention showed excellent charge / discharge cycle characteristics and output characteristics. This is probably because impurities such as lithium hydroxide remaining in the positive electrode could be removed by treating the positive electrode active material with a supercritical fluid. It is worthy of special mention that the battery characteristics are greatly superior to those of Comparative Examples 5 to 8 purified using a dangerous gas such as fluorine gas.

本発明の製造方法は安価で安全な超臨界流体または亜臨界流体を用いるため、安価で高性能な正極活物質の提供に資する。また、このようにして製造した正極活物質を用いたリチウムイオン電池は充放電サイクル特性および出力特性に優れるため、全固体リチウムイオン電池や車載用リチウムイオン電池として好適に用いることが出来る。
Since the production method of the present invention uses a cheap and safe supercritical fluid or subcritical fluid, it contributes to the provision of an inexpensive and high-performance positive electrode active material. Moreover, since the lithium ion battery using the positive electrode active material manufactured in this way is excellent in charge / discharge cycle characteristics and output characteristics, it can be suitably used as an all-solid-state lithium ion battery or a vehicle-mounted lithium ion battery.

Claims (4)

リチウムイオン二次電池用正極活物質(B0)に超臨界流体または亜臨界流体(A)を接触させたもの(C)から、超臨界流体または亜臨界流体(A)を除去させる工程を含む精製された正極活物質(B)の製造方法。 Purification including a step of removing the supercritical fluid or subcritical fluid (A) from the contact (C) of the positive electrode active material (B0) for the lithium ion secondary battery with the supercritical fluid or subcritical fluid (A). For producing the positive electrode active material (B). 超臨界流体または亜臨界流体(A)が二酸化炭素である請求項1に記載の製造方法。 The production method according to claim 1, wherein the supercritical fluid or subcritical fluid (A) is carbon dioxide. 接触させたもの(C)が、リチウムイオン二次電池用正極活物質(B0)に超臨界流体または亜臨界流体(A)と有機溶媒(D)を接触させたもの(C1)である請求項1または2に記載の製造方法。 The contact (C) is a contact (C1) obtained by bringing a supercritical fluid or subcritical fluid (A) and an organic solvent (D) into contact with a positive electrode active material (B0) for a lithium ion secondary battery. 3. The production method according to 1 or 2. リチウムイオン二次電池用正極活物質(B0)が、Li元素と、Ni、Co、およびMnから選ばれる少なくとも一種の遷移金属元素とを含み、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超であるリチウム含有複合酸化物である請求項1〜3のいずれか1項に記載の製造方法。

The positive electrode active material (B0) for a lithium ion secondary battery contains Li element and at least one transition metal element selected from Ni, Co, and Mn, and the molar amount of Li element is the total mole of the transition metal element The method according to any one of claims 1 to 3, wherein the lithium-containing composite oxide is more than 1.2 times the amount.

JP2014129313A 2014-06-24 2014-06-24 Method for manufacturing positive electrode active material Pending JP2016009583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014129313A JP2016009583A (en) 2014-06-24 2014-06-24 Method for manufacturing positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014129313A JP2016009583A (en) 2014-06-24 2014-06-24 Method for manufacturing positive electrode active material

Publications (1)

Publication Number Publication Date
JP2016009583A true JP2016009583A (en) 2016-01-18

Family

ID=55227012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014129313A Pending JP2016009583A (en) 2014-06-24 2014-06-24 Method for manufacturing positive electrode active material

Country Status (1)

Country Link
JP (1) JP2016009583A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101815998B1 (en) 2016-07-27 2018-01-08 충남대학교산학협력단 Preparation method of functional cathode active material
WO2020259436A1 (en) * 2019-06-25 2020-12-30 浙江工业大学 Method for improving stability and processability of ternary positive electrode material
WO2024085192A1 (en) * 2022-10-18 2024-04-25 株式会社ルネシス Method for producing electrode member, system for producing electrode member, method for producing positive electrode active material, positive electrode active material, positive electrode mixture and secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101815998B1 (en) 2016-07-27 2018-01-08 충남대학교산학협력단 Preparation method of functional cathode active material
WO2020259436A1 (en) * 2019-06-25 2020-12-30 浙江工业大学 Method for improving stability and processability of ternary positive electrode material
WO2024085192A1 (en) * 2022-10-18 2024-04-25 株式会社ルネシス Method for producing electrode member, system for producing electrode member, method for producing positive electrode active material, positive electrode active material, positive electrode mixture and secondary battery
JP7485439B1 (en) 2022-10-18 2024-05-16 株式会社ルネシス Electrode member manufacturing method and electrode member manufacturing system, positive electrode active material manufacturing method, positive electrode active material, positive electrode mixture, and secondary battery

Similar Documents

Publication Publication Date Title
JP2019108264A (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP6367313B2 (en) Spherical particles, their production and methods of using them
CN106252613B (en) Lithium-containing composite oxide, positive electrode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN113277570A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and precursor thereof
JP2016162601A (en) Method of manufacturing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6493082B2 (en) Process for producing transition metal hydroxide
Chen et al. Co-precipitation preparation of Ni-Co-Mn ternary cathode materials by using the sources extracting directly from spent lithium-ion batteries
KR102556588B1 (en) Manufacturing method of positive electrode active material, positive electrode active material, positive electrode and lithium ion secondary battery
CN107922212B (en) Manganese-nickel composite hydroxide and method for producing same, lithium-manganese-nickel composite oxide and method for producing same, and nonaqueous electrolyte secondary battery
KR101701331B1 (en) Negative electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
WO2019132381A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
JP2015162322A (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP2012033389A (en) Cathode active material and manufacturing method thereof, and lithium ion secondary battery
JP4878861B2 (en) Non-aqueous electrolyte battery
JP2015162323A (en) Precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP2019503571A (en) Separation membrane for lithium secondary battery and lithium secondary battery including the same
JP2016153347A (en) Transition metal-containing carbonate compound, method for producing the same, method for producing cathode active material, cathode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2015064478A1 (en) Method for producing lithium-containing composite oxide, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2016009583A (en) Method for manufacturing positive electrode active material
CN111052458A (en) Method for preparing lithium ion cathode particles and cathode active material formed thereby
JP6259771B2 (en) Method for producing positive electrode active material
JP2023137856A (en) METHOD OF PRODUCING FeOHSO4 PARTICLE, CATHODE ACTIVE MATERIAL FOR LITHIUM ION SECONDARY BATTERY, AND LITHIUM ION SECONDARY BATTERY
JP5894337B2 (en) Titanium oxide compound, electrode using the same, and lithium ion secondary battery
JP2014222583A (en) Method of producing cathode active material
JP5831234B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery