JP2016006356A - Boiler - Google Patents

Boiler Download PDF

Info

Publication number
JP2016006356A
JP2016006356A JP2014126840A JP2014126840A JP2016006356A JP 2016006356 A JP2016006356 A JP 2016006356A JP 2014126840 A JP2014126840 A JP 2014126840A JP 2014126840 A JP2014126840 A JP 2014126840A JP 2016006356 A JP2016006356 A JP 2016006356A
Authority
JP
Japan
Prior art keywords
flow rate
valve
purge
set flow
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014126840A
Other languages
Japanese (ja)
Other versions
JP6369677B2 (en
Inventor
藤原 達也
Tatsuya Fujiwara
達也 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2014126840A priority Critical patent/JP6369677B2/en
Publication of JP2016006356A publication Critical patent/JP2016006356A/en
Application granted granted Critical
Publication of JP6369677B2 publication Critical patent/JP6369677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a boiler 1 capable of easily and rapidly detecting a valve-over leakage of a shutoff valve 14 for changing-over a presence or non-presence of gas supply for a burner 4 when the shutoff valve is closed, showing a superior load following characteristic while assuring its safety characteristic and reducing radiation loss as well.SOLUTION: A leakage detection means 16 determines presence or non-presence of a gas valve-over leakage exceeding a set flow rate during closed-state of a shutoff valve 14. While the burner 4 is stopped, when leakage exceeding the set flow rate is detected by the leakage detection means 16, operation transfer to an igniting operation is prohibited, and in turn when a leakage exceeding the set flow rate is not detected, an operation transfer to an igniting operation without any purge can be carried out if it is within a safe waiting time form completion of purging after closing of the shutoff valve 14. The safe waiting time is set within a time in which gas concentration within a furnace reaches an explosion lower limit concentration. Since the operation transfer to the igniting operation can be carried out without any pre-purge, it shows a superior load following characteristic and a heat radiation loss can also be reduced.

Description

本発明は、ガス焚きのボイラに関するものである。   The present invention relates to a gas-fired boiler.

ガス焚きのボイラでは、バーナへのガス供給路に、バーナへのガス供給の有無を切り替える遮断弁が設けられている。この遮断弁の閉鎖時の弁越し漏れ(閉鎖不良によるガス漏れ)の有無や量を監視してボイラを制御する方法として、たとえば下記特許文献1に開示される技術が知られている。   In a gas-fired boiler, a shut-off valve that switches whether gas is supplied to the burner is provided in a gas supply path to the burner. As a method for controlling the boiler by monitoring the presence and amount of over-leakage (gas leakage due to poor closing) when the shut-off valve is closed, for example, a technique disclosed in Patent Document 1 below is known.

この従来技術では、ポストパージ中、二重遮断弁間の圧力変化に基づき、各遮断弁の弁越し漏れの有無を判定し、この漏れがあると判定した場合、漏れ量を求めて、その漏れ量が許容値以下であるか否かを判定する。そして、漏れが検出されなかった場合、プレパージを省略して着火動作へ移行可能とする一方、漏れが検出された場合、漏れ量が許容値以下であればプレパージ後に着火動作へ移行可能とし、漏れ量が許容値よりも多ければポストパージを継続して着火動作への移行を阻止する。つまり、従来技術では、漏れの有無と量を求めて、漏れが全くない場合にのみプレパージを省略し、許容値以下の漏れがある場合はプレパージを行い、許容値を超える漏れがある場合はポストパージを継続する。   In this prior art, during post purge, based on the pressure change between the double shutoff valves, the presence or absence of leakage through each shutoff valve is determined. It is determined whether or not the amount is less than or equal to an allowable value. If no leak is detected, the pre-purge can be skipped and the ignition operation can be performed.On the other hand, if the leak is detected, if the leak amount is less than the allowable value, the pre-purge can be shifted to the ignition operation. If the amount is larger than the allowable value, the post purge is continued to prevent the shift to the ignition operation. In other words, in the prior art, the presence / absence and amount of leakage is determined, and pre-purge is omitted only when there is no leakage. If there is leakage below the allowable value, pre-purge is performed, and if there is leakage exceeding the allowable value, post-purging is performed. Continue purging.

特許第3931619号公報Japanese Patent No. 3931619

遮断弁閉鎖中の弁越し漏れの検出には、単に設定流量を超える漏れがあるか否かを確認するのが簡易で迅速に行える。但し、この場合、漏れがないと判定しても、最悪のケースとして、前記設定流量の漏れがあり得ることを考慮しなければならない。微量に漏れたガスが炉内に溜まるおそれがあり、その場合の安全対策が必要となる。   For detection of over-leakage when the shut-off valve is closed, it is simple and quick to check whether there is a leak exceeding the set flow rate. However, in this case, even if it is determined that there is no leakage, it must be considered that there is a possibility of leakage of the set flow rate as a worst case. There is a risk that a small amount of leaked gas may accumulate in the furnace, and safety measures in that case are required.

この点を考慮して、従来技術では、漏れ量が許容値以下であっても、着火動作への移行前、プレパージを行っているといえる。ところが、プレパージの実行分だけ着火が遅れ、負荷追従性(蒸気ボイラの場合は蒸気圧変動に対する応答性)に劣ることになる。また、プレパージにより炉内の熱が外部へ放出されるので、放熱損失が増すことになる。   Considering this point, it can be said that in the prior art, pre-purge is performed before the shift to the ignition operation even if the leakage amount is less than the allowable value. However, ignition is delayed by the amount of pre-purge execution, and load followability (responsiveness to fluctuations in steam pressure in the case of a steam boiler) is poor. Moreover, since the heat in the furnace is released to the outside by the pre-purge, the heat dissipation loss increases.

そこで、本発明が解決しようとする課題は、簡易で迅速に弁越し漏れを検出でき、安全性を確保しながら、負荷追従性に優れ、放熱損失も低減できるボイラを提供することにある。   Therefore, the problem to be solved by the present invention is to provide a boiler that can easily and quickly detect leakage through a valve and has excellent load followability and reduced heat dissipation loss while ensuring safety.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、バーナへのガス供給の有無を切り替える遮断弁と、この遮断弁の閉鎖中、設定流量を超えるガスの弁越し漏れの有無を判定する漏れ検出手段と、前記バーナの燃焼停止中、前記漏れ検出手段により、前記設定流量を超える漏れを検出した場合、着火動作へ移行不能とする一方、前記設定流量を超える漏れを検出しない場合、前記遮断弁閉鎖後のパージの終了から安全待機時間内であればプレパージなしで着火動作へ移行可能とする運転制御手段とを備えることを特徴とするボイラである。   The present invention has been made to solve the above-mentioned problems. The invention according to claim 1 is directed to a shutoff valve for switching the presence / absence of gas supply to a burner, and a gas exceeding a set flow rate while the shutoff valve is closed. The leakage detection means for determining the presence or absence of over-valve leakage, and when the leakage detection means detects leakage exceeding the set flow rate during combustion stop of the burner, it is impossible to shift to the ignition operation, while the set flow rate If the leakage exceeding the above is not detected, the boiler includes an operation control means capable of shifting to an ignition operation without pre-purge within a safety waiting time from the end of the purge after the shutoff valve is closed.

請求項1に記載の発明によれば、遮断弁の閉鎖中、設定流量を超えるガスの弁越し漏れの有無を判定することができる。そして、設定流量を超える漏れを検出した場合、着火動作へ移行不能とするので、安全性を確保することができる。一方、設定流量を超える漏れを検出しない場合、パージ後の所定の安全待機時間内であればプレパージなしで着火動作へ移行可能とするので、安全性を確保しながら、負荷追従性に優れ、放熱損失も低減することができる。   According to the first aspect of the present invention, it is possible to determine whether or not there is a gas leaking over the set flow rate while the shutoff valve is closed. And when the leak exceeding a setting flow volume is detected, since it cannot make transfer to ignition operation, safety | security can be ensured. On the other hand, if no leakage exceeding the set flow rate is detected, it is possible to shift to ignition operation without pre-purge within the specified safety standby time after purging. Loss can also be reduced.

請求項2に記載の発明は、前記設定流量を超える漏れを検出しない場合でも、最大、前記設定流量の漏れがあり得ると仮定して、炉内容積、ガスの爆発下限界濃度および前記設定流量に基づき、炉内のガス濃度が爆発下限界濃度に至るまでの時間内で、前記安全待機時間が設定されることを特徴とする請求項1に記載のボイラである。   The invention according to claim 2 assumes that there may be a leak of the set flow rate at the maximum, even if a leak exceeding the set flow rate is not detected, and the furnace volume, the gas lower explosive limit concentration, and the set flow rate. 2. The boiler according to claim 1, wherein the safety standby time is set within a time until the gas concentration in the furnace reaches the lower explosion limit concentration.

請求項2に記載の発明によれば、設定流量を超える漏れを検出しない場合、炉内のガス濃度が爆発下限界濃度に至るまでの時間内で、安全待機時間を設定し、その安全待機時間内であればプレパージなしで着火動作へ移行可能とするので、安全性を確保しながら、負荷追従性に優れ、放熱損失も低減することができる。   According to the second aspect of the present invention, when a leak exceeding the set flow rate is not detected, the safety standby time is set within the time until the gas concentration in the furnace reaches the lower explosion limit concentration, and the safety standby time is set. If it is within, it is possible to shift to the ignition operation without pre-purge, so that it is excellent in load followability and heat dissipation loss can be reduced while ensuring safety.

請求項3に記載の発明は、前記設定流量を超える漏れを検出しない場合、前記バーナの燃焼停止による待機中、前記安全待機時間ごとに炉内をパージすることを特徴とする請求項1または請求項2に記載のボイラである。   According to a third aspect of the present invention, when the leakage exceeding the set flow rate is not detected, the inside of the furnace is purged every safety waiting time during the standby due to the combustion stop of the burner. Item 3. The boiler according to Item 2.

請求項3に記載の発明によれば、設定流量を超える漏れを検出しない場合、ボイラの待機中、安全待機時間ごとに炉内をパージすることで、炉内のガス濃度が爆発下限界濃度を超えることがないので、安全性を確保することができる。   According to the third aspect of the present invention, when the leakage exceeding the set flow rate is not detected, the gas concentration in the furnace is reduced to the lower explosion limit concentration by purging the inside of the furnace every safety waiting time during the standby of the boiler. Since it does not exceed, safety can be ensured.

請求項4に記載の発明は、前記パージ間の待機中、負荷要求があれば、プレパージなしで着火動作へ移行することを特徴とする請求項3に記載のボイラである。   According to a fourth aspect of the present invention, in the boiler according to the third aspect, if there is a load request during standby between the purges, the operation shifts to an ignition operation without pre-purge.

請求項4に記載の発明によれば、設定流量を超える漏れを検出しない場合、ボイラの待機中、安全待機時間ごとに炉内をパージすることで、炉内のガス濃度が爆発下限界濃度を超えることがないので、プレパージなしで着火動作へ移行しても安全である。また、プレパージなしで着火動作へ移行可能とするので、負荷追従性に優れる。   According to the fourth aspect of the present invention, when the leakage exceeding the set flow rate is not detected, the gas concentration in the furnace is reduced to the lower explosion limit concentration by purging the inside of the furnace every safety waiting time during the standby of the boiler. Since it does not exceed, it is safe to shift to the ignition operation without pre-purge. Moreover, since it is possible to shift to the ignition operation without pre-purge, the load followability is excellent.

請求項5に記載の発明は、前記遮断弁の閉鎖直後、ポストパージを行い、前記遮断弁閉鎖後のパージの内、前記ポストパージ以外のパージ中、負荷要求があれば、実行中のパージを途中で中止して、着火動作へ移行することを特徴とする請求項3または請求項4に記載のボイラである。   According to a fifth aspect of the present invention, a post-purge is performed immediately after the shut-off valve is closed, and a purge that is being executed is performed during a purge other than the post-purge during the purge after the shut-off valve is closed. The boiler according to claim 3 or 4, wherein the boiler is stopped in the middle and shifted to an ignition operation.

請求項5に記載の発明によれば、設定流量を超える漏れを検出しない場合、ボイラの待機中、安全待機時間ごとに炉内をパージすることで、炉内のガス濃度が爆発下限界濃度を超えることがないので、パージ中、そのパージを中止して、プレパージなしで着火動作へ移行しても安全である。また、プレパージなしで着火動作へ移行可能とするので、負荷追従性に優れる。   According to the fifth aspect of the present invention, when the leakage exceeding the set flow rate is not detected, the gas concentration in the furnace is reduced to the lower explosion limit concentration by purging the inside of the furnace every safety waiting time during the standby of the boiler. Therefore, it is safe to stop the purge during the purge and shift to the ignition operation without pre-purge. Moreover, since it is possible to shift to the ignition operation without pre-purge, the load followability is excellent.

請求項6に記載の発明は、前記バーナへのガス供給路に、前記遮断弁が一対、直列に設けられており、前記遮断弁の閉鎖中、前記設定流量を超える漏れを検出しない場合でも、前記遮断弁間の圧力を開放した状態で閉鎖された前記遮断弁間の圧力が所定圧力を超えないことを常時監視することを特徴とする請求項1〜5のいずれか1項に記載のボイラである。   In the invention according to claim 6, even if a pair of the shutoff valves are provided in series in the gas supply path to the burner, and no leakage exceeding the set flow rate is detected while the shutoff valve is closed, The boiler according to any one of claims 1 to 5, wherein it is constantly monitored that the pressure between the shut-off valves closed with the pressure between the shut-off valves being open does not exceed a predetermined pressure. It is.

請求項6に記載の発明によれば、設定流量を超える漏れを検出しない場合でも、遮断弁間の圧力が所定圧力を超えないことを常時監視することで、比較的長時間に亘る微量のガス漏れの有無を監視することができる。   According to the sixth aspect of the present invention, even when no leakage exceeding the set flow rate is detected, a small amount of gas over a relatively long period of time can be monitored by constantly monitoring that the pressure between the shutoff valves does not exceed the predetermined pressure. The presence or absence of leakage can be monitored.

さらに、請求項7に記載の発明は、前記所定圧力をPin×αに設定して、前記遮断弁の閉鎖中の弁越し漏れ流量がQmax×√αを超えないことを監視する(但し、Qmaxは前記設定流量、Pinはガス供給圧、αは1未満の数値)ことを特徴とする請求項6に記載のボイラである。 Furthermore, the invention described in claim 7 sets the predetermined pressure to P in × α, and monitors whether the leakage flow rate through the valve during closing of the shutoff valve does not exceed Q max × √α (however, , Q max is the set flow rate, the P in a boiler according to claim 6, wherein the gas supply pressure, alpha numeric less than 1).

請求項7に記載の発明によれば、設定流量を超える漏れを検出しない場合でも、遮断弁間の圧力がPin×αを超えないことを常時監視することで、弁越し漏れ流量がQmax×√αを超えないことを保証することができる。 According to the seventh aspect of the present invention, even when a leak exceeding the set flow rate is not detected, by constantly monitoring that the pressure between the shutoff valves does not exceed P in × α, the leak rate through the valve is Q max. It can be ensured that x√α is not exceeded.

本発明のボイラによれば、簡易で迅速に弁越し漏れを検出でき、安全性を確保しながら、負荷追従性に優れ、放熱損失も低減できる。   According to the boiler of the present invention, leakage through a valve can be detected easily and quickly, and it is excellent in load followability and can reduce heat dissipation loss while ensuring safety.

本発明の一実施例のボイラを示す概略図であり、一部を断面にして示している。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows the boiler of one Example of this invention, and shows a part in cross section.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例のボイラ1を示す概略図であり、一部を断面にして示している。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing a boiler 1 according to an embodiment of the present invention, and a part thereof is shown in cross section.

本実施例のボイラ1は、ガス焚きの多管式貫流ボイラであり、多数の水管2を備えた缶体3と、この缶体3の水管2を加熱するバーナ4と、このバーナ4に燃焼用空気を供給する送風機5と、前記バーナ4に燃料ガスを供給するガス供給路6と、前記缶体3から排ガスを導出する排ガス路7とを備える。   The boiler 1 of this embodiment is a gas-fired multi-tube once-through boiler, a can body 3 provided with a large number of water pipes 2, a burner 4 for heating the water pipe 2 of the can body 3, and the burner 4 combusting. A blower 5 for supplying working air, a gas supply path 6 for supplying fuel gas to the burner 4, and an exhaust gas path 7 for discharging exhaust gas from the can 3 are provided.

缶体3は、上部管寄せ8と下部管寄せ9との間を多数の水管2で接続して構成され、缶体カバー(図示省略)で覆われる。缶体3の形状は、特に問わないが、本実施例では角形とされる。缶体3は、給水路10を介して下部管寄せ9から水管2内へ適宜給水され、水管2内の水位は所望に維持される。缶体3は、一端部にバーナ4が設けられ、他端部に排ガス路7が接続される。排ガス路7には、所望によりエコノマイザが設けられる。バーナ4からの燃焼ガス(当初は火炎を含む)は、各水管2内の水と熱交換した後、排ガスとして排ガス路7から導出される。バーナ4からの燃焼ガスにより、各水管2内の水は加熱され、蒸気として、上部管寄せ8から気水分離器(図示省略)を介して、蒸気路11へ導出される。その蒸気は、所望により蒸気ヘッダなどを介して、各種の蒸気使用設備へ送られる。   The can body 3 is configured by connecting the upper header 8 and the lower header 9 with a number of water pipes 2 and is covered with a can cover (not shown). The shape of the can 3 is not particularly limited, but is a square in this embodiment. The can body 3 is appropriately supplied with water from the lower header 9 into the water pipe 2 through the water supply passage 10, and the water level in the water pipe 2 is maintained as desired. The can 3 is provided with a burner 4 at one end and an exhaust gas path 7 at the other end. The exhaust gas path 7 is provided with an economizer as desired. The combustion gas from the burner 4 (including the flame at the beginning) is exchanged with the water in each water pipe 2 and then led out from the exhaust gas passage 7 as exhaust gas. The water in each water pipe 2 is heated by the combustion gas from the burner 4 and is led out as steam from the upper header 8 to the steam path 11 via a steam separator (not shown). The steam is sent to various steam-using facilities via a steam header or the like as desired.

バーナ4は、本実施例では予混合バーナとされるが、場合により先混合バーナとされてもよい。図示例では、平面状の燃焼面(予混合気噴出面)を有する完全予混合式のバーナとされる。このバーナ4は、燃焼の有無をオンオフで切り替えられてもよいし、燃焼量を段階的または連続的に調整されてもよい。たとえば、バーナ4は、高燃焼(100%燃焼)、低燃焼(たとえば50%燃焼)および停止の三位置で、燃焼量を切り替えられる。もしくは、バーナ4は、高燃焼、中燃焼、低燃焼および停止の四位置で、燃焼量を切り替えられる。または、バーナ4は、負荷要求の増減に比例して、連続的に燃焼量を調整される。いずれにしても、バーナ4には、燃焼量に応じた量の燃焼用空気とガスとが供給される。   The burner 4 is a premix burner in this embodiment, but may be a premix burner in some cases. In the illustrated example, the burner is a completely premixed burner having a flat combustion surface (premixed gas ejection surface). The burner 4 may be switched on or off for the presence or absence of combustion, and the amount of combustion may be adjusted stepwise or continuously. For example, the burner 4 can switch the combustion amount at three positions: high combustion (100% combustion), low combustion (for example, 50% combustion), and stop. Alternatively, the burner 4 can switch the combustion amount at four positions of high combustion, medium combustion, low combustion, and stop. Alternatively, the burner 4 is continuously adjusted in combustion amount in proportion to the increase / decrease in load demand. In any case, the burner 4 is supplied with combustion air and gas in an amount corresponding to the combustion amount.

バーナ4への燃焼用空気の供給は、送風機5からの空気を、燃焼用空気路12を介して送り込むことでなされる。燃焼用空気の流量の調整は、燃焼用空気路12にダンパ(傾斜角度を変更可能な板材)13を設けてこのダンパ13の位置を調整するが、これに代えてまたはこれに加えて、インバータを用いて送風機5のモータの回転速度を変えてもよい。   The combustion air is supplied to the burner 4 by feeding the air from the blower 5 through the combustion air passage 12. For adjusting the flow rate of the combustion air, a damper (a plate material whose inclination angle can be changed) 13 is provided in the combustion air passage 12 to adjust the position of the damper 13, but instead of or in addition to this, an inverter May be used to change the rotational speed of the motor of the blower 5.

バーナ4へのガスの供給は、本実施例では、ガス供給路6からのガスを、燃焼用空気路12を介して送り込むことでなされる。燃焼用空気路12にダンパ13が設けられる場合、燃焼用空気路12には、ダンパ13より下流において、ガス供給路6からガスが供給される。ガス供給路6からのガスは、燃焼用空気路12内において噴出され、送風機5からの空気に混合されて、バーナ4へ送られる。   In this embodiment, the gas is supplied to the burner 4 by feeding the gas from the gas supply path 6 through the combustion air path 12. When the damper 13 is provided in the combustion air passage 12, gas is supplied from the gas supply passage 6 to the combustion air passage 12 downstream from the damper 13. The gas from the gas supply path 6 is ejected in the combustion air path 12, mixed with the air from the blower 5, and sent to the burner 4.

ガス供給路6には、ガス供給の有無を切り替える遮断弁14が設けられる。本実施例では、ガス供給路6には、直列に配置された一対の遮断弁(上流側遮断弁14A,下流側遮断弁14B)と、オリフィス15とが順に設けられる。バーナ4へのガス供給を実行する際、各遮断弁14を開放し、バーナ4へのガス供給を停止する際、各遮断弁14を閉鎖する。本実施例では、下流側遮断弁14Bは、開放時、その出口側のガス圧力を所望圧力に維持する機能を備える。さらに、ガス供給路6には、各遮断弁14より下流に、流量調整弁(図示省略)が設けられてもよい。燃焼量に応じて、流量調整弁の開度を変更することで、燃焼量に応じた空気比に調整することができる。   The gas supply path 6 is provided with a shutoff valve 14 for switching the presence or absence of gas supply. In the present embodiment, the gas supply path 6 is provided with a pair of shut-off valves (upstream shut-off valve 14A and downstream shut-off valve 14B) arranged in series and an orifice 15 in this order. When the gas supply to the burner 4 is executed, each shut-off valve 14 is opened, and when the gas supply to the burner 4 is stopped, each shut-off valve 14 is closed. In this embodiment, the downstream shut-off valve 14B has a function of maintaining the gas pressure on the outlet side at a desired pressure when opened. Further, the gas supply path 6 may be provided with a flow rate adjustment valve (not shown) downstream from each shutoff valve 14. It is possible to adjust the air ratio according to the combustion amount by changing the opening degree of the flow rate adjusting valve according to the combustion amount.

バーナ4がパイロットバーナを用いて点火される点火方式の場合、ボイラ1は、前記バーナとしてのメインバーナ4の他、パイロットバーナ(図示省略)をさらに備える。パイロットバーナは、メインバーナ4に近接して設けられ、点火装置により点火される。パイロットバーナの燃焼時、パイロットバーナには、燃焼用空気とガスとが供給される。パイロットバーナに燃焼用空気を供給する送風機は、メインバーナ4に燃焼用空気を供給する送風機5と同一あるいは一体的に構成されてもよいし、メインバーナ4用の送風機5と別に備えられてもよい。いずれにしても、所望によりダンパも用いて、各バーナへの燃焼用空気の供給の有無や量を、個別に変更可能に構成するのがよい。   When the burner 4 is ignited using a pilot burner, the boiler 1 further includes a pilot burner (not shown) in addition to the main burner 4 as the burner. The pilot burner is provided close to the main burner 4 and is ignited by an ignition device. During the combustion of the pilot burner, combustion air and gas are supplied to the pilot burner. The blower for supplying combustion air to the pilot burner may be configured identically or integrally with the blower 5 for supplying combustion air to the main burner 4, or may be provided separately from the blower 5 for the main burner 4. Good. In any case, it is preferable that the presence / absence and amount of combustion air supplied to each burner can be individually changed by using a damper as desired.

本実施例のボイラ1は、さらに、各遮断弁14の閉鎖中、一方または双方の遮断弁14について、設定流量を超えるガスの弁越し漏れ(閉鎖すべき条件での閉鎖不良によるガス漏れ)の有無を判定する漏れ検出手段16を備える。漏れ検出手段16は、その具体的構成を特に問わないが、典型的には、遮断弁14間の圧力を監視して弁越し漏れの有無を判定する。この場合、漏れ検出手段16は、遮断弁14間に圧力検出手段(圧力スイッチまたは圧力センサ)を備える。そして、制御器が、必要に応じて各遮断弁14の開閉などを制御しつつ、圧力検出手段による検出信号に基づき、設定流量を超える弁越し漏れの有無を判定する。この制御器は、後述する運転制御手段(図示省略)の制御器と統一して構成されてもよい。あるいは、漏れ検出手段16の圧力検出手段と制御器などが、バルブプルービングシステム(VPS)16Aとしてユニット化されてもよい。その場合、後述する運転制御手段の制御器は、バルブプルービングシステム16Aによる遮断弁14の弁越し漏れの判定結果を取得して、ボイラ1を制御する。   In the boiler 1 of this embodiment, the gas leakage over the set flow rate (gas leakage due to poor closing under the condition to be closed) of one or both of the shut-off valves 14 during the shut-off of each shut-off valve 14 is further performed. Leak detection means 16 for determining presence or absence is provided. The specific configuration of the leak detection means 16 is not particularly limited, but typically, the pressure between the shutoff valves 14 is monitored to determine the presence or absence of leakage through the valve. In this case, the leak detection means 16 includes pressure detection means (pressure switch or pressure sensor) between the shutoff valves 14. Then, the controller determines whether or not there is a valve leakage exceeding the set flow rate, based on the detection signal from the pressure detection means, while controlling the opening and closing of each shut-off valve 14 as necessary. This controller may be configured integrally with a controller of operation control means (not shown) described later. Alternatively, the pressure detection means and the controller of the leak detection means 16 may be unitized as a valve probing system (VPS) 16A. In that case, the controller of the operation control means, which will be described later, controls the boiler 1 by acquiring a result of determining whether the valve 14 leaks through the valve probing system 16A.

本実施例の漏れ検出手段16は、以下のようにして、各遮断弁14の弁越し漏れの有無を判定するが、場合により一部の判定機能(たとえば下流側遮断弁14Bの判定機能)のみを有していてもよい。あるいは、両遮断弁14について弁越し漏れの判定を行う場合でも、後述する運転制御手段による制御では、両遮断弁14の弁越し漏れの判定結果の内、いずれか一方の判定結果のみを利用してもよい。   The leak detection means 16 of the present embodiment determines whether or not each shut-off valve 14 has leaked through the valve as follows, but only a part of the judgment functions (for example, the judgment function of the downstream-side shut-off valve 14B) depending on the case. You may have. Alternatively, even when determining the over-leakage for both shut-off valves 14, only one of the determination results of the over-leakage determination results for both shut-off valves 14 is used in the control by the operation control means described later. May be.

上流側遮断弁14Aの弁越し漏れの判定は、下記(A1)または(A2)によりなされる。   The determination of over-leakage of the upstream shut-off valve 14A is made by the following (A1) or (A2).

(A1)一対の遮断弁14を閉じた後、その遮断弁14間は、漏れ検出手段16の所定機構を介して(言い換えれば下流側遮断弁14Bを介さずに)、大気圧に開放される。そして、その開放部を閉じた状態で、遮断弁14間の圧力を監視する。遮断弁14間に所定の圧力上昇があれば(たとえば第一設定時間内に第一設定圧力を上回れば)、上流側遮断弁14Aに設定流量を超える漏れがあると判定する。一方、そのような圧力上昇がなければ、上流側遮断弁14Aに設定流量を超える漏れはないと判定する。   (A1) After closing the pair of shut-off valves 14, the space between the shut-off valves 14 is opened to atmospheric pressure via a predetermined mechanism of the leak detection means 16 (in other words, not via the downstream shut-off valve 14B). . And the pressure between the cutoff valves 14 is monitored in the state which closed the open part. If there is a predetermined pressure rise between the shutoff valves 14 (for example, if the first set pressure is exceeded within the first set time), it is determined that there is a leak exceeding the set flow rate in the upstream shutoff valve 14A. On the other hand, if there is no such pressure increase, it is determined that there is no leakage exceeding the set flow rate in the upstream shutoff valve 14A.

(A2)一対の遮断弁14を閉じた状態で、下流側遮断弁14Bを一旦開いた後、閉じる。あるいは、バーナ4の燃焼停止に際して遮断弁14を閉じる際、まずは上流側遮断弁14Aを閉じた後、遅れて下流側遮断弁14Bを閉じる。いずれの場合も、遮断弁14間の圧力を所定(本実施例では炉内圧)まで下げることができ、その後、遮断弁14間の圧力を監視する。遮断弁14間に所定の圧力上昇があれば(たとえば第二設定時間内に第二設定圧力を上回れば)、上流側遮断弁14Aに設定流量を超える漏れがあると判定する。一方、そのような圧力上昇がなければ、上流側遮断弁14Aに設定流量を超える漏れはないと判定する。   (A2) With the pair of shutoff valves 14 closed, the downstream shutoff valve 14B is once opened and then closed. Alternatively, when closing the shutoff valve 14 when the combustion of the burner 4 is stopped, the upstream shutoff valve 14A is first closed, and then the downstream shutoff valve 14B is closed with a delay. In any case, the pressure between the shutoff valves 14 can be reduced to a predetermined value (in-furnace pressure in this embodiment), and then the pressure between the shutoff valves 14 is monitored. If there is a predetermined pressure rise between the shutoff valves 14 (for example, if the second set pressure is exceeded within the second set time), it is determined that the upstream shutoff valve 14A has a leak exceeding the set flow rate. On the other hand, if there is no such pressure increase, it is determined that there is no leakage exceeding the set flow rate in the upstream shutoff valve 14A.

下流側遮断弁14Bの弁越し漏れの判定は、下記(B1)または(B2)によりなされる。   The determination of over-leakage of the downstream shut-off valve 14B is made by the following (B1) or (B2).

(B1)一対の遮断弁14を閉じた後、その遮断弁14間には、漏れ検出手段16の所定機構を介して(言い換えれば上流側遮断弁14Aを介さずに)、ガス供給源からのガスが供給可能とされる。たとえば、遮断弁14間の圧力を開放した後、その開放部を閉じた状態で、遮断弁14間にガス供給圧をかける。閉鎖された遮断弁14間を所定に昇圧(たとえば第三設定時間内に第三設定圧力まで昇圧)できなければ、下流側遮断弁14Bに設定流量を超える漏れがあると判定する。一方、所定に昇圧できれば、下流側遮断弁14Bに設定流量を超える漏れはないと判定する。   (B1) After closing the pair of shut-off valves 14, the gap between the shut-off valves 14 is supplied from the gas supply source via a predetermined mechanism of the leak detection means 16 (in other words, not via the upstream shut-off valve 14A). Gas can be supplied. For example, after the pressure between the shutoff valves 14 is released, the gas supply pressure is applied between the shutoff valves 14 in a state where the open portion is closed. If the pressure between the closed shut-off valves 14 cannot be increased to a predetermined level (for example, boosted to the third set pressure within the third set time), it is determined that the downstream shut-off valve 14B has a leak exceeding the set flow rate. On the other hand, if the pressure can be increased to a predetermined level, it is determined that there is no leakage exceeding the set flow rate in the downstream cutoff valve 14B.

(B2)一対の遮断弁14を閉じた状態で、上流側遮断弁14Aを一旦開いた後、閉じる。あるいは、バーナ4の燃焼停止に際して遮断弁14を閉じる際、まずは下流側遮断弁14Bを閉じた後、遅れて上流側遮断弁14Aを閉じる。いずれの場合も、遮断弁14間にガス供給圧をかけた状態とでき、その後、遮断弁14間の圧力を監視する。遮断弁14間に所定の圧力降下があれば(たとえば第四設定時間内に第四設定圧力を下回れば)、下流側遮断弁14Bに設定流量を超える漏れがあると判定する。一方、そのような圧力降下がなければ、下流側遮断弁14Bに設定流量を超える漏れはないと判定する。   (B2) With the pair of shutoff valves 14 closed, the upstream shutoff valve 14A is once opened and then closed. Alternatively, when closing the shutoff valve 14 when combustion of the burner 4 is stopped, the downstream shutoff valve 14B is first closed, and then the upstream shutoff valve 14A is closed with a delay. In either case, the gas supply pressure can be applied between the shutoff valves 14, and then the pressure between the shutoff valves 14 is monitored. If there is a predetermined pressure drop between the shutoff valves 14 (for example, if the pressure drops below the fourth set pressure within the fourth set time), it is determined that the downstream shutoff valve 14B has a leak exceeding the set flow rate. On the other hand, if there is no such pressure drop, it is determined that there is no leakage exceeding the set flow rate in the downstream shutoff valve 14B.

なお、ここでは、遮断弁14間の圧力が設定時間内に設定圧力を上回るか(あるいは下回るか)に基づき、設定流量を超える弁越し漏れの有無を判定したが、圧力センサで圧力上昇速度(あるいは圧力下降速度)を監視して、設定流量を超える弁越し漏れの有無を判定してもよい。   Here, based on whether the pressure between the shutoff valves 14 exceeds (or falls below) the set pressure within the set time, the presence / absence of leakage through the valve exceeding the set flow rate is determined. Alternatively, the pressure drop rate) may be monitored to determine whether there is leakage through the valve exceeding the set flow rate.

ボイラ1は、運転制御手段としての制御器(図示省略)より制御される。特に、制御器は、送風機5のモータ、ダンパ13の位置調整装置、各遮断弁14および漏れ検出手段16などに接続されており、負荷要求に基づきバーナ4の燃焼を制御する。   The boiler 1 is controlled by a controller (not shown) as operation control means. In particular, the controller is connected to the motor of the blower 5, the position adjusting device of the damper 13, each shut-off valve 14, the leak detection means 16, and the like, and controls the combustion of the burner 4 based on the load request.

蒸気ボイラの場合、負荷要求は、蒸気の使用負荷であり、蒸気圧(缶体3内またはそこから蒸気が供給される箇所の蒸気圧)に基づき監視できる。負荷要求が大きいと蒸気圧が下がる一方、負荷要求が少ないと蒸気圧が上がる。そこで、圧力検出器(圧力センサまたは圧力スイッチ)により、蒸気圧を監視する。制御器は、蒸気圧が上限圧力を上回ると、負荷要求がない判定する一方、蒸気圧が下限圧力を下回ると、負荷要求があると判定する。負荷要求がない場合、バーナ4の燃焼を停止する一方、負荷要求がある場合、バーナ4を燃焼させる。バーナ4の燃焼中、前述したように、負荷要求の増減に応じて、バーナ4の燃焼量を段階的にまたは連続的に調整してもよい。   In the case of a steam boiler, the load requirement is a load for use of steam, and can be monitored based on the steam pressure (steam pressure at or within the can 3 where steam is supplied). When the load requirement is large, the vapor pressure decreases, while when the load requirement is small, the vapor pressure increases. Therefore, the vapor pressure is monitored by a pressure detector (pressure sensor or pressure switch). The controller determines that there is no load request when the vapor pressure exceeds the upper limit pressure, and determines that there is a load request when the vapor pressure falls below the lower limit pressure. When there is no load request, combustion of the burner 4 is stopped, while when there is a load request, the burner 4 is burned. During the combustion of the burner 4, as described above, the combustion amount of the burner 4 may be adjusted stepwise or continuously in accordance with the increase or decrease of the load demand.

バーナ4においてガスを燃焼させるには、送風機5を作動させると共に各遮断弁14を開放して、パイロットバーナ(または点火装置)により点火すればよい。一方、バーナ4における燃焼を停止するには、各遮断弁14を閉鎖すればよい。バーナ4の燃焼停止による待機中、送風機5を停止させるが、それに代えてまたはそれに加えて、送風機5の入口側もしくは出口側にダンパを設けてそのダンパを閉じるか、排ガス路にダンパを設けてそのダンパを閉じてもよい。   In order to burn the gas in the burner 4, the blower 5 is operated and each shut-off valve 14 is opened, and ignition is performed by a pilot burner (or an ignition device). On the other hand, in order to stop the combustion in the burner 4, each shut-off valve 14 may be closed. While waiting for the combustion of the burner 4 to stop, the blower 5 is stopped. Instead of or in addition to this, a damper is provided on the inlet side or the outlet side of the blower 5 and the damper is closed, or a damper is provided in the exhaust gas passage. The damper may be closed.

バーナ4の燃焼量の調整は、バーナ4へ供給される燃焼用空気とガスの流量を調整してなされる。燃焼用空気の流量の調整は、ダンパ13の位置を調整するか、これに代えてまたはこれに加えて、インバータを用いて送風機5のモータの回転速度を変えることでなされる。一方、ガスの流量の調整は、ガス供給路6に設けた流量調整弁(図示省略)の開度を変更すればよい。   The combustion amount of the burner 4 is adjusted by adjusting the flow rates of combustion air and gas supplied to the burner 4. The adjustment of the flow rate of the combustion air is performed by adjusting the position of the damper 13 or changing the rotational speed of the motor of the blower 5 using an inverter instead of or in addition to this. On the other hand, the gas flow rate may be adjusted by changing the opening of a flow rate adjusting valve (not shown) provided in the gas supply path 6.

各遮断弁14の閉鎖中(つまりバーナ4の燃焼停止中)、設定タイミングにおいて、漏れ検出手段16により、一方または双方の遮断弁14について、設定流量を超えるガスの弁越し漏れの有無を判定する。設定流量を超える弁越し漏れを検出した場合、制御器は、その後の着火を認めない。設定流量として、たとえば5[L/hr]が設定され、その判定に必要な圧力変化(たとえば下流側遮断弁14Bの検査時の圧力降下)は、たとえば150[Pa/s]程度であり、十分な安全性が確保される。   While each shut-off valve 14 is closed (that is, when combustion of the burner 4 is stopped), at the set timing, the leak detection means 16 determines whether one or both shut-off valves 14 have a gas exceeding the set flow rate through the valve. . If a leak through the valve exceeding the set flow rate is detected, the controller will not allow subsequent ignition. For example, 5 [L / hr] is set as the set flow rate, and the pressure change necessary for the determination (for example, the pressure drop during the inspection of the downstream side shutoff valve 14B) is, for example, about 150 [Pa / s], which is sufficient Safety is ensured.

制御器は、設定流量を超える弁越し漏れを検出しない場合、ポストパージ(また後述する待機中の間欠的な各パージ)後、所定の安全待機時間内であれば、負荷要求があると、プレパージなしに着火動作へ移行させる。ポストパージとは、バーナ4の燃焼停止直後に行う炉内換気であり、プレパージとは、バーナ4の燃焼開始直前に行う炉内換気である。ポストパージ後、ボイラ1は負荷要求待ちの待機状態となり、この待機中、負荷要求があれば、従来はプレパージ後に着火しているが、本実施例のボイラ1の場合、安全待機時間内であれば爆発の可能性はないので、プレパージを省略することができる。   If the controller does not detect over-valve leakage exceeding the set flow rate, it will pre-purge if there is a load request within a predetermined safe waiting time after post-purging (and intermittent intermittent purging, which will be described later). Shift to ignition operation without The post-purge is furnace ventilation performed immediately after the combustion of the burner 4 is stopped, and the pre-purge is furnace ventilation performed immediately before the combustion of the burner 4 is started. After the post-purge, the boiler 1 is in a standby state waiting for a load request. If there is a load request during this standby, the boiler 1 is conventionally ignited after the pre-purge. However, in the case of the boiler 1 of this embodiment, within the safe standby time. Since there is no possibility of explosion, pre-purge can be omitted.

安全待機時間とは、換気なしで安全に着火できる待機時間として、炉内が爆発下限界濃度に至るまでの時間内で設定される。つまり、漏れ検出手段16により設定流量を超える漏れを検出しない場合でも、最大、設定流量の漏れがあり得るので、これを考慮して、炉内容積、ガスの爆発下限界濃度および設定流量に基づき、炉内のガス濃度が爆発下限界濃度に至るまでの時間内で、安全待機時間が設定される。たとえば、缶体3内の炉内容積が181[L]、燃料ガスがプロパン(爆発下限界濃度2.2%)である場合に、前記設定流量として5[L/hr]の漏れが発生し、炉内容積に対してガスが均一に拡散したとすると、次式により爆発下限界濃度に至るまでの時間は約48分となる。   The safety standby time is set as the standby time that can be safely ignited without ventilation within the time until the inside of the furnace reaches the lower explosion limit concentration. In other words, even if the leak detection means 16 does not detect a leak exceeding the set flow rate, there may be a leak of the set flow rate at the maximum, and this is taken into consideration based on the furnace volume, the gas lower explosive limit concentration and the set flow rate. The safety standby time is set within the time until the gas concentration in the furnace reaches the lower explosion limit concentration. For example, when the furnace volume in the can 3 is 181 [L] and the fuel gas is propane (lower explosion limit concentration 2.2%), a leak of 5 [L / hr] occurs as the set flow rate. If the gas diffuses uniformly with respect to the furnace volume, the time to reach the lower explosion limit concentration is about 48 minutes according to the following equation.

爆発下限界濃度に至るまでの時間[min]={炉内容積[L]×(爆発下限界濃度[%]/100)}/{設定流量[L/hr]/60}   Time to reach the lower explosion limit concentration [min] = {furnace volume [L] × (lower explosion limit concentration [%] / 100)} / {set flow rate [L / hr] / 60}

そして、このようにして求めた爆発下限界濃度に至るまでの時間内で、安全待機時間が設定される。具体的には、爆発下限界濃度に至るまでの時間に、所定の安全率をとって、安全待機時間を設定すればよい。仮に、安全率を2とすれば、上記の例の場合、安全待機時間は、48分の半分の時間として、24分となる。   Then, the safety standby time is set within the time required to reach the lower explosion limit concentration. Specifically, the safety standby time may be set by taking a predetermined safety factor in the time until reaching the lower explosion limit concentration. If the safety factor is 2, in the case of the above example, the safety standby time is 24 minutes, which is half of 48 minutes.

本実施例のボイラ1の制御方法について、さらに具体的に説明すると、好ましくは、以下のとおりである。   More specifically, the control method of the boiler 1 of the present embodiment is as follows.

(a)バーナ4においてガスを燃焼中、負荷要求がなくなり、遮断弁14を閉じて燃焼を停止した際、漏れ検出手段16により、設定流量を超える弁越し漏れの有無を判定する。これと同時に、ポストパージとして、送風機5による送風で、炉内を換気する。たとえば、炉内容積の4倍の風量で、炉内に通風して、炉内を換気する。その後、送風機5を停止して、待機状態(次の負荷要求待ち状態)へ移行する。   (A) When the burner 4 burns the gas, when there is no load demand and the shutoff valve 14 is closed and the combustion is stopped, the leak detection means 16 determines whether or not there is a leak through the valve exceeding the set flow rate. At the same time, the inside of the furnace is ventilated by the air blower 5 as a post purge. For example, the inside of the furnace is ventilated by ventilating the inside of the furnace with an air volume four times the furnace volume. Thereafter, the blower 5 is stopped, and a transition is made to a standby state (waiting for the next load request).

(b)漏れ検出手段16により、設定流量を超える漏れを検出した場合、負荷要求があっても、着火動作へ移行させない。設定流量を超える漏れを検出した場合、その旨、ユーザに報知すると共に、炉内換気(ポストパージ)を継続するのが望ましい。設定流量を超える漏れを検出した場合、着火動作へ移行不能とするので、安全性を確保することができる。   (B) When a leak exceeding the set flow rate is detected by the leak detection means 16, even if there is a load request, the ignition operation is not shifted. When a leak exceeding the set flow rate is detected, it is desirable to notify the user and to continue the furnace ventilation (post-purge). When leakage exceeding the set flow rate is detected, it is impossible to shift to the ignition operation, so that safety can be ensured.

(c)漏れ検出手段16により、設定流量を超える漏れを検出しない場合、ポストパージの終了後、待機状態へ移行するが、この待機中、負荷要求があれば、待機時間(ポストパージ終了からの経過時間)が安全待機時間以内であれば、プレパージなしに即、着火動作へ移行する(つまりバーナの燃焼状態へ戻す)。たとえば、パイロット点火方式の場合、負荷要求があれば、直ちにパイロットバーナに点火し、そのパイロットバーナでメインバーナ4に点火して、パイロットバーナの燃焼を停止させればよい。その際、送風機5を作動させると共に、各遮断弁14を開放する。この場合、ポストパージを実質的にプレパージとみなすことができる。   (C) If the leak detection means 16 does not detect a leak that exceeds the set flow rate, it shifts to a standby state after the end of the post purge, but if there is a load request during this standby, the standby time (from the end of the post purge) If the (elapsed time) is within the safety standby time, the operation immediately shifts to the ignition operation without pre-purge (that is, returns to the burner combustion state). For example, in the case of the pilot ignition system, if there is a load request, the pilot burner may be immediately ignited, the main burner 4 may be ignited by the pilot burner, and the combustion of the pilot burner may be stopped. In that case, while operating the air blower 5, each cutoff valve 14 is open | released. In this case, the post-purge can be regarded as a substantially pre-purge.

設定流量を超える漏れを検出しない場合、炉内のガス濃度が爆発下限界濃度に至るまでの時間内で、安全待機時間が予め設定されており、その安全待機時間内であればプレパージなしで着火動作へ移行可能とするので、安全性を確保しながら、負荷追従性に優れ、放熱損失も低減することができる。   If no leakage exceeding the set flow rate is detected, the safety standby time is set in advance until the gas concentration in the furnace reaches the lower explosion limit concentration, and if it is within the safety standby time, ignition is performed without pre-purge. Since it is possible to shift to the operation, the load followability is excellent and the heat dissipation loss can be reduced while ensuring the safety.

(d)漏れ検出手段16により、設定流量を超える漏れを検出しないが、ポストパージの終了後、安全待機時間を経過後に負荷要求があれば、プレパージ後に着火動作へ移行してもよいが、プレパージの実施による負荷追従性が劣るのを防止するために、待機中、安全待機時間ごとに前記ポストパージと同様のパージを行うのが好ましい。つまり、待機中、安全待機時間経過ごとに炉内をパージして、待機状態を維持するのがよい。   (D) Although leakage exceeding the set flow rate is not detected by the leakage detection means 16, if there is a load request after elapse of the safety standby time after the end of the post purge, the pre-purge may be shifted to the ignition operation. In order to prevent inferior load followability due to the implementation of the above, it is preferable to perform the same purge as the post-purge during the standby time during standby. In other words, during standby, it is preferable to purge the inside of the furnace every time the safety standby time elapses and maintain the standby state.

(e)前記(d)において、各パージ間の待機中、負荷要求があれば、前記(c)と同様に、プレパージなしに即、着火動作へ移行する。この場合、直近のパージを実質的にプレパージとみなすことができる。   (E) In (d), if there is a load request during standby between purges, the process immediately proceeds to the ignition operation without pre-purge as in (c). In this case, the latest purge can be substantially regarded as a pre-purge.

ボイラ1の待機中、安全待機時間ごとに炉内をパージすることで、炉内のガス濃度が爆発下限界濃度を超えることがないので、プレパージなしで着火動作へ移行しても安全である。また、プレパージなしで着火動作へ移行可能とするので、負荷追従性に優れる。   By purging the inside of the furnace every safety waiting time during standby of the boiler 1, the gas concentration in the furnace does not exceed the lower explosion limit concentration, so it is safe to shift to the ignition operation without pre-purge. Moreover, since it is possible to shift to the ignition operation without pre-purge, the load followability is excellent.

(f)前記(d)において、ポストパージ以外のパージ中、負荷要求があれば、実行中のパージを途中で中止して、前記(e)と同様に、プレパージなしに即、着火動作へ移行するのがよい。具体的には、パージ中、負荷要求があれば、送風機5の回転数を下げるか、および/または、ダンパ13の位置を調整して、着火に適した送風量に下げ次第、着火動作へ移行する。この場合、一つ前のパージを実質的にプレパージとみなすことができる。   (F) In (d), if there is a load request during a purge other than post-purge, the purge being executed is stopped halfway, and immediately, as in (e), the operation proceeds to the ignition operation without pre-purge. It is good to do. Specifically, if there is a load request during the purge, the rotational speed of the blower 5 is reduced and / or the position of the damper 13 is adjusted to move to the ignition operation as soon as the air flow is reduced to a level suitable for ignition. To do. In this case, the previous purge can be substantially regarded as a pre-purge.

設定流量を超える漏れを検出しない場合、ボイラ1の待機中、安全待機時間ごとに炉内をパージすることで、炉内のガス濃度が爆発下限界濃度を超えることがないので、パージ中、そのパージを中止して、プレパージなしで着火動作へ移行しても安全である。また、プレパージなしで着火動作へ移行可能とするので、負荷追従性に優れる。   If a leak exceeding the set flow rate is not detected, the gas concentration in the furnace does not exceed the lower explosive limit concentration by purging the inside of the furnace at the safety standby time while the boiler 1 is on standby. It is safe to stop the purge and shift to the ignition operation without pre-purge. Moreover, since it is possible to shift to the ignition operation without pre-purge, the load followability is excellent.

従来、パイロットバーナを連続燃焼させておくことで、プレパージを省略して負荷追従性を向上する連続パイロット制御が知られているが、ガス供給圧が比較的低圧の場合は、メインバーナ燃焼中の炉内圧との関係で使えないことがある。また、弁越し漏れ検出装置を用いて、弁越し漏れが検出されない限り、プレパージを省略することも考えられるが、万一、微量の弁越し漏れがある場合、待機時間が長くなると、炉内にガスが溜まり、プレパージなしに着火すると危険である。ところが、本実施例のボイラ1によれば、漏れ検出手段16により検出可能な漏れ流量と、漏れが継続する待機時間とを考慮して、パージタイミングを設定するので、負荷要求があった際にはパージを再度行うことなく、安全に着火動作へ移行することができる。これにより、負荷追従性に優れる上、通風による放熱損失を伴う連続パイロット制御を継続するよりも、大幅に損失を抑えた運転が可能となる。   Conventionally, there is known a continuous pilot control that improves the load followability by omitting pre-purge by continuously burning the pilot burner. However, if the gas supply pressure is relatively low, It may not be used due to the pressure inside the furnace. In addition, it is possible to omit the pre-purge unless a valve leakage is detected using a valve leakage detector, but if there is a small amount of valve leakage, if the standby time becomes long, Gas accumulates and it is dangerous to ignite without pre-purge. However, according to the boiler 1 of this embodiment, the purge timing is set in consideration of the leakage flow rate that can be detected by the leakage detection means 16 and the standby time during which leakage continues, so that when a load request is made Can safely shift to the ignition operation without purging again. As a result, the load followability is excellent, and an operation with significantly reduced loss can be achieved as compared with continuous pilot control involving heat dissipation loss due to ventilation.

ところで、本実施例のボイラ1には、さらに以下のような微量漏れ判定機能を付加してもよい。なお、この微量漏れ判定機能は、上述した設定流量を超える漏れの判定結果に基づく燃焼制御(安全待機時間を用いた制御)とは独立して、各種のガス焚きの燃焼装置に用いることもできる。すなわち、遮断弁14の閉鎖中、遮断弁14間の圧力変化の確認により各遮断弁14の弁越し漏れが設定流量以下であることを監視(典型的には前記A1またはA2と、B1またはB2の監視)でき、これにより遮断弁14にガス供給圧がかかった状態で設定流量を超える漏れが発生しないことを確認できるシステムに、広く適用できる。そして、弁越し漏れを検出した場合、着火動作へ移行不能とする一方、弁越し漏れを検出しない場合でも、その判定後の遮断弁閉鎖中(特に待機中)、以下に述べるような監視を行えばよい。   By the way, you may add the following trace leak determination functions to the boiler 1 of a present Example further. This minute leak determination function can be used for various gas-fired combustion apparatuses independently of the combustion control based on the determination result of leakage exceeding the set flow rate described above (control using the safety standby time). . That is, while the shut-off valves 14 are closed, it is monitored by checking the pressure change between the shut-off valves 14 that the over-leakage of each shut-off valve 14 is less than or equal to the set flow rate (typically A1 or A2 and B1 or B2). Therefore, the present invention can be widely applied to systems that can confirm that no leakage exceeding the set flow rate occurs when the gas supply pressure is applied to the shutoff valve 14. If a leak through the valve is detected, it is impossible to shift to the ignition operation. On the other hand, even if a leak through the valve is not detected, the following monitoring is performed while the shut-off valve is closed (especially during standby). Just do it.

つまり、遮断弁14の閉鎖中、漏れ検出手段16により設定流量を超える漏れを検出しない場合でも、遮断弁14間の圧力を漏れ検出手段(圧力検出手段)により監視するのがよい。具体的には、漏れ検出手段16により設定流量を超える漏れを検出しない場合でも、遮断弁14の閉鎖中、遮断弁14間の圧力を開放した状態で閉鎖された遮断弁14間の圧力が所定圧力を超えないことを常時監視する。   That is, while the shutoff valve 14 is closed, even if the leak detection means 16 does not detect a leak exceeding the set flow rate, the pressure between the shutoff valves 14 may be monitored by the leak detection means (pressure detection means). Specifically, even when the leak detection means 16 does not detect a leak exceeding the set flow rate, the pressure between the shut-off valves 14 closed with the pressure between the shut-off valves 14 open while the shut-off valve 14 is closed is predetermined. Monitor constantly that pressure is not exceeded.

たとえば、一対の遮断弁14を閉じた状態で、下流側遮断弁14Bを一旦開いた後、閉じることで、遮断弁14間の圧力を炉内圧(略大気圧)まで下げる。あるいは、遮断弁14間は、漏れ検出手段16の所定機構を介して、一時的に大気圧に開放される。このようにして、遮断弁14間の圧力を開放した状態で閉鎖された遮断弁14間の圧力が所定圧力を超えないことを常時監視する。なお、遮断弁14間の圧力開放のための操作は、前述した設定流量を超える漏れを判定する際に行った操作でも足り、改めて行う必要はない。   For example, with the pair of shutoff valves 14 closed, the downstream shutoff valve 14B is once opened and then closed to lower the pressure between the shutoff valves 14 to the furnace pressure (substantially atmospheric pressure). Alternatively, the space between the shutoff valves 14 is temporarily opened to atmospheric pressure via a predetermined mechanism of the leak detection means 16. In this way, it is constantly monitored that the pressure between the shut-off valves 14 closed with the pressure between the shut-off valves 14 open does not exceed a predetermined pressure. Note that the operation for releasing the pressure between the shutoff valves 14 may be the operation performed when determining the leakage exceeding the set flow rate described above, and need not be performed again.

前記設定流量(遮断弁14の弁越し漏れ判定の基準流量)をQmax、ガス供給圧(上流側遮断弁14Aの上流側圧力)をPin、αを1未満の数値とする。また、一般に、弁を通過する流量は、圧力の平方根に比例する。従って、前記所定圧力をPin×αとすれば、その所定圧力を上回らない限り、遮断弁14から漏れる可能性のあるガス流量は、Qmax×√αを超えないことになる。 The set flow rate (standard flow past the valve leak determination of the cutoff valve 14) Q max, the gas supply pressure (the pressure upstream of the upstream-side shut-off valve 14A) and P in, value of less than 1 alpha. In general, the flow rate through the valve is proportional to the square root of the pressure. Therefore, if the predetermined pressure is P in × α, the gas flow rate that may leak from the shutoff valve 14 does not exceed Q max × √α unless the predetermined pressure is exceeded.

たとえば、漏れ検出手段16による漏れ判定の基準としての前記設定流量を、各種制約から50[L/hr]とした場合でも、待機中の圧力監視にて、遮断弁14間の圧力がガス供給圧のたとえばα=1/25以下であることを常時監視することで、10[L/hr]を超えるガス漏れがないことを保証できる。   For example, even when the set flow rate as a reference for leak determination by the leak detection means 16 is set to 50 [L / hr] due to various restrictions, the pressure between the shutoff valves 14 in the standby pressure monitoring is the gas supply pressure. For example, by constantly monitoring that α = 1/25 or less, it can be ensured that there is no gas leakage exceeding 10 [L / hr].

このように、漏れ検出手段16により設定流量を超える漏れを検出しない場合でも、その漏れ判定後も引き続き(遮断弁14の閉鎖中)、遮断弁14間の圧力が所定圧力を超えないことを常時監視することで、比較的長時間に亘る微量のガス漏れの有無を監視することができる。そして、制御器は、万一、漏れを判定した場合、その旨ユーザに報知したり、パージを開始または継続したりするのがよい。   As described above, even when the leak detection unit 16 does not detect a leak exceeding the set flow rate, the pressure between the shut-off valves 14 does not always exceed a predetermined pressure even after the leak determination (while the shut-off valve 14 is closed). By monitoring, it is possible to monitor the presence or absence of a small amount of gas leakage over a relatively long time. If the controller determines a leak, the controller should notify the user and start or continue the purge.

本発明のボイラ1は、前記実施例の構成に限らず適宜変更可能である。特に、遮断弁14の閉鎖中、設定流量を超えるガスの弁越し漏れの有無を判定し、設定流量を超える漏れを検出した場合、着火動作へ移行不能とする一方、設定流量を超える漏れを検出しない場合、遮断弁14閉鎖後のパージの終了から安全待機時間内であればプレパージなしで着火動作へ移行可能とするのであれば、その他の構成は適宜に変更可能である。   The boiler 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. In particular, when the shut-off valve 14 is closed, it is judged whether there is a gas leaking over the set flow rate, and if a leak exceeding the set flow rate is detected, it is impossible to shift to the ignition operation, but a leak exceeding the set flow rate is detected. If not, if the transition to the ignition operation can be performed without pre-purge within the safe waiting time after the end of the purge after closing the shutoff valve 14, the other configuration can be changed as appropriate.

たとえば、ボイラ1の缶体3は、角形に限らず円筒型としてもよく、その場合、バーナ4は缶体3の上部に、下方へ向けて設置するのがよい。また、それに応じて、バーナ4の構成は適宜変更される。本発明のガス漏れ検出方法は、任意のガスバーナに対して適用可能である。また、バーナ4は、パイロットバーナによる点火ではなく、点火装置により点火されてもよい。さらに、ボイラ1は、前記実施例では蒸気ボイラとしたが、場合により温水ボイラなどでもよい。   For example, the can body 3 of the boiler 1 is not limited to a rectangular shape, and may be a cylindrical shape. In that case, the burner 4 is preferably installed on the upper portion of the can body 3 so as to face downward. Further, the configuration of the burner 4 is appropriately changed accordingly. The gas leak detection method of the present invention can be applied to any gas burner. The burner 4 may be ignited by an ignition device instead of ignition by a pilot burner. Further, although the boiler 1 is a steam boiler in the above-described embodiment, a hot water boiler or the like may be used in some cases.

さらに、前記実施例では、バーナ4に供給される燃焼用空気へのガスの混合は、送風機5より下流側で行ったが、場合により送風機5より上流側で行ってもよい。その場合、送風機5の吸込口に、吸込口への空気の吸込みに伴いガスを吸引して空気と共に吸込口へ送り込むガス吸引機構を設ければよい。ガス吸引機構は、典型的にはベンチュリ管を備え、そのスロート部にガス供給路6が接続される。ガス供給路6の遮断弁14を開けた状態で、送風機5を作動させると、送風機5への空気にガス供給路6からのガスが混入される。なお、ベンチュリ管でガスを吸引する場合、下流側遮断弁14Bは、開放時、ゼロガバナとして機能し、出口側の圧力を大気圧に調整するのがよい。下流側遮断弁14Bの出口側を大気圧とする場合、ベンチュリ管に空気が流れない限りガスが流れないので、送風機5の停止時のガス漏れを確実に防止することができる。   Furthermore, in the said Example, although mixing of the gas to the combustion air supplied to the burner 4 was performed in the downstream from the air blower 5, you may carry out in the upstream from the air blower 5 depending on the case. In that case, the suction port of the blower 5 may be provided with a gas suction mechanism that sucks gas as air is sucked into the suction port and sends the gas together with air to the suction port. The gas suction mechanism typically includes a venturi tube, and a gas supply path 6 is connected to the throat portion thereof. When the blower 5 is operated with the shutoff valve 14 of the gas supply path 6 opened, the gas from the gas supply path 6 is mixed into the air to the blower 5. When the gas is sucked through the venturi pipe, the downstream shut-off valve 14B functions as a zero governor when opened, and the outlet pressure is preferably adjusted to atmospheric pressure. When the outlet side of the downstream shut-off valve 14B is set to atmospheric pressure, gas does not flow unless air flows through the venturi, so that gas leakage when the blower 5 is stopped can be reliably prevented.

1 ボイラ
2 水管
3 缶体
4 バーナ
5 送風機
6 ガス供給路
7 排ガス路
8 上部管寄せ
9 下部管寄せ
10 給水路
11 蒸気路
12 燃焼用空気路
13 ダンパ
14 遮断弁(14A:上流側遮断弁、14B:下流側遮断弁)
15 オリフィス
16 漏れ検出手段(16A:バルブプルービングシステム(VPS))
DESCRIPTION OF SYMBOLS 1 Boiler 2 Water pipe 3 Can body 4 Burner 5 Blower 6 Gas supply path 7 Exhaust gas path 8 Upper header 9 Lower header 10 Water supply path 11 Steam path 12 Combustion air path 13 Damper 14 Shut-off valve (14A: upstream side shut-off valve, 14B: downstream shut-off valve)
15 Orifice 16 Leakage detection means (16A: Valve Probing System (VPS))

Claims (7)

バーナへのガス供給の有無を切り替える遮断弁と、
この遮断弁の閉鎖中、設定流量を超えるガスの弁越し漏れの有無を判定する漏れ検出手段と、
前記バーナの燃焼停止中、前記漏れ検出手段により、前記設定流量を超える漏れを検出した場合、着火動作へ移行不能とする一方、前記設定流量を超える漏れを検出しない場合、前記遮断弁閉鎖後のパージの終了から安全待機時間内であればプレパージなしで着火動作へ移行可能とする運転制御手段と
を備えることを特徴とするボイラ。
A shut-off valve for switching the presence or absence of gas supply to the burner;
Leak detection means for determining the presence or absence of leaking gas exceeding the set flow rate during closing of the shutoff valve,
When leakage exceeding the set flow rate is detected by the leak detection means while combustion of the burner is stopped, it is impossible to shift to ignition operation, while when leakage exceeding the set flow rate is not detected, after the shutoff valve is closed A boiler comprising: an operation control unit that enables a transition to an ignition operation without pre-purge if the purge is within a safety standby time.
前記設定流量を超える漏れを検出しない場合でも、最大、前記設定流量の漏れがあり得ると仮定して、炉内容積、ガスの爆発下限界濃度および前記設定流量に基づき、炉内のガス濃度が爆発下限界濃度に至るまでの時間内で、前記安全待機時間が設定される
ことを特徴とする請求項1に記載のボイラ。
Even if a leak exceeding the set flow rate is not detected, assuming that there may be a leak of the set flow rate at the maximum, the gas concentration in the furnace is based on the furnace volume, the lower gas explosion limit concentration, and the set flow rate. The boiler according to claim 1, wherein the safety standby time is set within a time until reaching a lower explosion limit concentration.
前記設定流量を超える漏れを検出しない場合、前記バーナの燃焼停止による待機中、前記安全待機時間ごとに炉内をパージする
ことを特徴とする請求項1または請求項2に記載のボイラ。
3. The boiler according to claim 1, wherein when no leakage exceeding the set flow rate is detected, the inside of the furnace is purged every safety waiting time during standby due to the combustion stop of the burner.
前記パージ間の待機中、負荷要求があれば、プレパージなしで着火動作へ移行する
ことを特徴とする請求項3に記載のボイラ。
4. The boiler according to claim 3, wherein if there is a load request during standby between the purges, the boiler shifts to an ignition operation without pre-purge.
前記遮断弁の閉鎖直後、ポストパージを行い、
前記遮断弁閉鎖後のパージの内、前記ポストパージ以外のパージ中、負荷要求があれば、実行中のパージを途中で中止して、着火動作へ移行する
ことを特徴とする請求項3または請求項4に記載のボイラ。
Immediately after closing the shutoff valve, perform a post purge,
4. The purge after the shut-off valve is closed, and if there is a load request during a purge other than the post-purge, the purge that is being executed is stopped halfway and the operation proceeds to the ignition operation. Item 4. The boiler according to item 4.
前記バーナへのガス供給路に、前記遮断弁が一対、直列に設けられており、
前記遮断弁の閉鎖中、前記設定流量を超える漏れを検出しない場合でも、前記遮断弁間の圧力を開放した状態で閉鎖された前記遮断弁間の圧力が所定圧力を超えないことを常時監視する
ことを特徴とする請求項1〜5のいずれか1項に記載のボイラ。
A pair of the shutoff valves are provided in series in the gas supply path to the burner,
Even when the leakage exceeding the set flow rate is not detected during closing of the shutoff valve, it is constantly monitored that the pressure between the shutoff valves closed with the pressure between the shutoff valves open does not exceed a predetermined pressure. The boiler of any one of Claims 1-5 characterized by the above-mentioned.
前記所定圧力をPin×αに設定して、前記遮断弁の閉鎖中の弁越し漏れ流量がQmax×√αを超えないことを監視する(但し、Qmaxは前記設定流量、Pinはガス供給圧、αは1未満の数値)
ことを特徴とする請求項6に記載のボイラ。
The predetermined pressure is set to P in × α, and it is monitored that the leakage flow rate through the valve during closing of the shut-off valve does not exceed Q max × √α (where Q max is the set flow rate and P in is Gas supply pressure, α is a value less than 1)
The boiler according to claim 6.
JP2014126840A 2014-06-20 2014-06-20 boiler Active JP6369677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014126840A JP6369677B2 (en) 2014-06-20 2014-06-20 boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014126840A JP6369677B2 (en) 2014-06-20 2014-06-20 boiler

Publications (2)

Publication Number Publication Date
JP2016006356A true JP2016006356A (en) 2016-01-14
JP6369677B2 JP6369677B2 (en) 2018-08-08

Family

ID=55224879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014126840A Active JP6369677B2 (en) 2014-06-20 2014-06-20 boiler

Country Status (1)

Country Link
JP (1) JP6369677B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019086281A (en) * 2017-11-07 2019-06-06 三浦工業株式会社 boiler
CN114151974A (en) * 2021-11-23 2022-03-08 广东万和新电气股份有限公司 Gas water heater control method and device and gas water heater
EP4390225A1 (en) * 2022-12-21 2024-06-26 BDR Thermea Group B.V. Gas burning appliance and method for starting up a gas burning appliance

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147215A (en) * 1987-12-04 1989-06-08 Tokyo Gas Co Ltd Leak inspection for double isolation valve in gas combustion equipment
US4915613A (en) * 1989-01-25 1990-04-10 Honeywell Inc. Method and apparatus for monitoring pressure sensors
JPH0425958U (en) * 1990-06-26 1992-03-02
JPH0719465A (en) * 1991-10-21 1995-01-20 Landis Gear Inter Syst Kk Cutoff valve mechanism in gas combustion equipment
JPH10149872A (en) * 1996-11-19 1998-06-02 Toho Gas Co Ltd Gas combustion furnace
JPH10220754A (en) * 1997-02-04 1998-08-21 Yamatake Honeywell Co Ltd Combustion controller
JPH11118147A (en) * 1997-10-13 1999-04-30 Toho Gas Co Ltd Gas combustion furnace
JP2001324140A (en) * 2000-05-16 2001-11-22 Tokyo Gas Co Ltd Gas water-heating appliance
JP2003130347A (en) * 2001-10-25 2003-05-08 Miura Co Ltd Control method for combustion device
US20140150532A1 (en) * 2012-11-30 2014-06-05 Azbil Corporation Valve leak detecting method and combustion equipment

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147215A (en) * 1987-12-04 1989-06-08 Tokyo Gas Co Ltd Leak inspection for double isolation valve in gas combustion equipment
US4915613A (en) * 1989-01-25 1990-04-10 Honeywell Inc. Method and apparatus for monitoring pressure sensors
JPH0425958U (en) * 1990-06-26 1992-03-02
JPH0719465A (en) * 1991-10-21 1995-01-20 Landis Gear Inter Syst Kk Cutoff valve mechanism in gas combustion equipment
JPH10149872A (en) * 1996-11-19 1998-06-02 Toho Gas Co Ltd Gas combustion furnace
JPH10220754A (en) * 1997-02-04 1998-08-21 Yamatake Honeywell Co Ltd Combustion controller
JPH11118147A (en) * 1997-10-13 1999-04-30 Toho Gas Co Ltd Gas combustion furnace
JP2001324140A (en) * 2000-05-16 2001-11-22 Tokyo Gas Co Ltd Gas water-heating appliance
JP2003130347A (en) * 2001-10-25 2003-05-08 Miura Co Ltd Control method for combustion device
JP3931619B2 (en) * 2001-10-25 2007-06-20 三浦工業株式会社 Combustion device control method
US20140150532A1 (en) * 2012-11-30 2014-06-05 Azbil Corporation Valve leak detecting method and combustion equipment
JP2014109399A (en) * 2012-11-30 2014-06-12 Azbil Corp Method for detecting leakage of valve and combustion facility

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019086281A (en) * 2017-11-07 2019-06-06 三浦工業株式会社 boiler
CN114151974A (en) * 2021-11-23 2022-03-08 广东万和新电气股份有限公司 Gas water heater control method and device and gas water heater
EP4390225A1 (en) * 2022-12-21 2024-06-26 BDR Thermea Group B.V. Gas burning appliance and method for starting up a gas burning appliance
WO2024132576A1 (en) * 2022-12-21 2024-06-27 Bdr Thermea Group B.V. Gas burning appliance and method for starting up a gas burning appliance

Also Published As

Publication number Publication date
JP6369677B2 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
US20220390104A1 (en) Surface stabilized fully premixed gas premix burner for burning hydrogen gas, and method for starting such burner
WO2018216331A1 (en) Hydrogen combustion boiler
JP6311874B2 (en) boiler
KR102494767B1 (en) Industrial furnace and industrial furnace ignition method
JP6369677B2 (en) boiler
CN105910129B (en) Boiler
JP5454914B2 (en) Water heater
JP2015210042A (en) Boiler
JP7099261B2 (en) boiler
JP6394104B2 (en) boiler
JP2016011808A (en) Boiler device and boiler system
JP4059100B2 (en) Boiler monitoring method and apparatus
JP4191359B2 (en) Boiler with continuous combustion
JP6803257B2 (en) Combustion device
JP2010014336A (en) Gas cooking stove
JP6277873B2 (en) boiler
JP6488550B2 (en) boiler
JP4176686B2 (en) Combustion device with pilot burner
JP2021085640A (en) Water heater
KR102425365B1 (en) Method of detecting a blocking of air supplying and exhausting pipes of combustion facilities
KR102622111B1 (en) Drain suppression control method of combustion facilities
US20210364192A1 (en) Combustion device
RU129602U1 (en) GAS-USING DEVICE SAFETY AUTOMATION
JP4231458B2 (en) Combustion equipment
JP2010145060A (en) Incomplete combustion detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180626

R150 Certificate of patent or registration of utility model

Ref document number: 6369677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250