JP2016004703A - Method for manufacturing positive electrode active material plate for lithium secondary battery - Google Patents

Method for manufacturing positive electrode active material plate for lithium secondary battery Download PDF

Info

Publication number
JP2016004703A
JP2016004703A JP2014125113A JP2014125113A JP2016004703A JP 2016004703 A JP2016004703 A JP 2016004703A JP 2014125113 A JP2014125113 A JP 2014125113A JP 2014125113 A JP2014125113 A JP 2014125113A JP 2016004703 A JP2016004703 A JP 2016004703A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
electrode active
active material
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014125113A
Other languages
Japanese (ja)
Other versions
JP6246079B2 (en
Inventor
直人 大平
Naoto Ohira
直人 大平
幸信 由良
Yukinobu Yura
幸信 由良
小林 伸行
Nobuyuki Kobayashi
伸行 小林
茂樹 岡田
Shigeki Okada
茂樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2014125113A priority Critical patent/JP6246079B2/en
Publication of JP2016004703A publication Critical patent/JP2016004703A/en
Application granted granted Critical
Publication of JP6246079B2 publication Critical patent/JP6246079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material plate excellent in compactness and flatness and also capable of exhibiting excellent battery characteristics in a lithium secondary battery.SOLUTION: In a method for manufacturing a positive electrode active material plate for a lithium secondary battery, hydroxide raw material powder is prepared, the hydroxide raw material powder comprising plate-like primary particles of nickel-cobalt-manganese composite hydroxide arranged substantially radially from the center of a secondary particle toward the outer direction, powder obtained by mixing a lithium compound to the hydroxide raw material powder is calcined to synthesize lithium transition metal composite oxide and/or a precursor thereof, the lithium transition metal composite oxide and/or the precursor thereof is molded in a sheet to prepare a molded body sheet, and then an excessive amount of lithium carbonate is placed on the molded body sheet and the molded body sheet is fired at a temperature of 850°C or above to form a positive electrode active material plate for a lithium secondary battery.

Description

本発明は、リチウム二次電池用正極活物質板の製造方法に関するものである。   The present invention relates to a method for producing a positive electrode active material plate for a lithium secondary battery.

リチウム二次電池(リチウムイオン二次電池と称されることもある)における正極活物質として、層状岩塩構造を有するリチウム複合酸化物(リチウム遷移金属酸化物)を用いたものが広く知られている(例えば、特許文献1(特開平5−226004号公報)及び特許文献2(特開2003−132887号公報)を参照)。   As a positive electrode active material in a lithium secondary battery (sometimes called a lithium ion secondary battery), a material using a lithium composite oxide (lithium transition metal oxide) having a layered rock salt structure is widely known. (For example, see Patent Document 1 (Japanese Patent Laid-Open No. 5-226004) and Patent Document 2 (Japanese Patent Laid-Open No. 2003-132877)).

この種の正極活物質においては、その内部でのリチウムイオン(Li)の拡散が(003)面の面内方向(すなわち(003)面と平行な平面内の任意の方向)で行われる一方、(003)面以外の結晶面(例えば(101)面や(104)面)でリチウムイオンの出入りが生じることが知られている。 In this type of positive electrode active material, the diffusion of lithium ions (Li + ) therein is performed in the in-plane direction of the (003) plane (that is, any direction in a plane parallel to the (003) plane). It is known that lithium ions enter and exit from crystal planes other than the (003) plane (for example, the (101) plane or the (104) plane).

そこで、この種の正極活物質において、リチウムイオンの出入りが良好に行われる結晶面((003)面以外の面、例えば(101)面や(104)面)をより多く電解質と接触する表面に露出させることで、リチウム二次電池の電池特性を向上させる試みがなされている。例えば、特許文献3(国際公開第2010/074313号参照)には、Li(Co,Ni,Mn)O(式中、0.97≦p≦1.07,0.1<x≦0.4,0.3<y≦0.5,0.1<z≦0.5,x+y+z=1)で表され、層状岩塩構造を有する、リチウム二次電池の正極活物質膜が開示されており、(003)面が膜面と交差するように配向していることが記載されている。 Therefore, in this type of positive electrode active material, the crystal plane (surface other than the (003) plane, for example, the (101) plane or the (104) plane) on which lithium ions can be satisfactorily entered and exited, is brought into contact with the electrolyte. Attempts have been made to improve the battery characteristics of lithium secondary batteries by exposing them. For example, Patent Document 3 (see WO 2010/074313), Li p (Co x , Ni y, Mn z) in O 2 (wherein, 0.97 ≦ p ≦ 1.07,0.1 < x ≦ 0.4, 0.3 <y ≦ 0.5, 0.1 <z ≦ 0.5, x + y + z = 1), and a positive electrode active material film of a lithium secondary battery having a layered rock salt structure. It is disclosed that the (003) plane is oriented so as to intersect the film plane.

また、特許文献4(国際公開第2014/061579号)及び特許文献5(国際公開第2014/061580号)には、一次粒子の少なくとも一部が二次粒子の中心から外方に向かって放射状に並んでなる水酸化物原料粉末を用いて、層状岩塩構造を有するリチウム二次電池用正極活物質を製造する方法が開示されている。これらの特許文献には、正極活物質を構成するリチウム複合酸化物として、LiNi1−z(式中、0.96≦x≦1.09、0<z≦0.5、MはCo、Al、Mg、Mn、Ti、Fe、Cr、Zn及びGaからなる群から選択される少なくとも1種以上の金属元素)で表されるものが好ましく、特に好ましい金属元素Mの組合せがCo及びAl、又はCo及びMnであることが記載されている。 In Patent Document 4 (International Publication No. 2014/061579) and Patent Document 5 (International Publication No. 2014/061580), at least a part of the primary particles is radially outward from the center of the secondary particles. A method for producing a positive electrode active material for a lithium secondary battery having a layered rock salt structure using a hydroxide raw material powder arranged side by side is disclosed. In these patent documents, Li x Ni 1-z M z O 2 (wherein 0.96 ≦ x ≦ 1.09, 0 <z ≦ 0.5) is used as a lithium composite oxide constituting the positive electrode active material. , M is preferably represented by Co, Al, Mg, Mn, Ti, Fe, Cr, Zn, and Ga), and particularly preferred combinations of metal elements M Is Co and Al, or Co and Mn.

特開平5−226004号公報JP-A-5-226004 特開2003−132887号公報JP 2003-132877 A 国際公開第2010/074313号International Publication No. 2010/074333 国際公開第2014/061579号International Publication No. 2014/061579 国際公開第2014/061580号International Publication No. 2014/061580

特許文献3〜5に開示されるようなリチウム・ニッケル・コバルト・マンガン複合酸化物(しばしばNCMと略称される)からなる正極活物質は、良好な電池特性(例えば容量、レート特性及び耐久性)をもたらすとともに、充放電時のリチウムの出入りに伴う膨張及び収縮が小さいとの利点がある。そこで、リチウム・ニッケル・コバルト・マンガン複合酸化物からなる正極活物質板を上手く作製することができれば、リチウム二次電池において極めて有用なものとなり、膨張及び収縮が小さい点で全固体電池にも適したものとなる。この点、特許文献3に記載の手法によれば、表面に(104)面が露出した配向板状粒子を作製することで、電池特性(例えば容量、レート特性及び耐久性)に優れた正極活物質自立膜を得ることは可能である。しかしながら、特許文献3に開示される手法により作製した正極板は、粒成長を促進させて得られたものであるため、正極板の表面の粒界部分で平坦度が劣化しやすく、また反りが発生しやすいという傾向がある。このため、特に反りが強調されやすい大面積(例えば10mm×10mm平方以上)の正極活物質板への適用を試みる場合、更なる改善が望まれる。   The positive electrode active material made of lithium-nickel-cobalt-manganese composite oxide (often abbreviated as NCM) as disclosed in Patent Documents 3 to 5 has good battery characteristics (for example, capacity, rate characteristics, and durability). In addition, there is an advantage that expansion and contraction associated with the entry and exit of lithium during charging and discharging are small. Therefore, if a positive electrode active material plate made of a lithium / nickel / cobalt / manganese composite oxide can be successfully produced, it will be extremely useful in a lithium secondary battery, and it is also suitable for an all solid state battery in terms of small expansion and contraction. It will be. In this regard, according to the method described in Patent Document 3, by producing oriented plate-like particles having a (104) plane exposed on the surface, a positive electrode active having excellent battery characteristics (for example, capacity, rate characteristics, and durability). It is possible to obtain a material free-standing film. However, since the positive electrode plate produced by the technique disclosed in Patent Document 3 is obtained by promoting grain growth, the flatness tends to deteriorate at the grain boundary portion on the surface of the positive electrode plate, and warpage is also caused. It tends to occur. For this reason, further improvement is desired when applying to a positive electrode active material plate having a large area (for example, 10 mm × 10 mm square or more) in which warpage is easily emphasized.

また、体積エネルギー密度を高くする観点からすれば、正極活物質板は緻密板であることが望まれる。一般に、正極活物質材料の粉末を高温で焼き固めることで緻密板は作製できるものの、分解やリチウム揮発に起因して正極活物質板における組成ズレが大きくなることがあり、その場合、電池としての所期の特性を十分に発揮できなくなる。したがって、電池特性を劣化させることなく正極活物質板を緻密化できる手法が望まれる。   From the viewpoint of increasing the volume energy density, the positive electrode active material plate is desirably a dense plate. In general, although a dense plate can be produced by baking and solidifying the powder of the positive electrode active material at a high temperature, the composition deviation in the positive electrode active material plate may increase due to decomposition or lithium volatilization. The desired characteristics cannot be fully exhibited. Therefore, a technique capable of densifying the positive electrode active material plate without deteriorating battery characteristics is desired.

本発明者らは、今般、放射状配向を有する水酸化物原料粉末を用いてリチウム遷移金属複合酸化物(NCM)を合成し、このリチウム遷移金属複合酸化物で形成されたNCMシートに過剰量の炭酸リチウムを載置して焼成を行うことにより、緻密性及び平坦性に優れ、かつ、リチウム二次電池において優れた電池特性を発揮することが可能な正極活物質板を製造できるとの知見を得た。   The present inventors recently synthesized lithium transition metal composite oxide (NCM) using a hydroxide raw material powder having a radial orientation, and an excessive amount of NCM sheet formed of this lithium transition metal composite oxide. The knowledge that a positive electrode active material plate that is excellent in denseness and flatness and that can exhibit excellent battery characteristics in a lithium secondary battery can be produced by placing and firing lithium carbonate. Obtained.

したがって、本発明の目的は、緻密性及び平坦性に優れ、かつ、リチウム二次電池において優れた電池特性を発揮することが可能な正極活物質板を提供することにある。   Accordingly, an object of the present invention is to provide a positive electrode active material plate that is excellent in denseness and flatness and that can exhibit excellent battery characteristics in a lithium secondary battery.

本発明の一態様によれば、リチウム二次電池用正極活物質板の製造方法であって、
(a)ニッケル・コバルト・マンガン複合水酸化物の板状一次粒子が凝集した二次粒子からなり、前記板状一次粒子が前記二次粒子の中心から外方向に向かって概ね放射状に並んでなる、水酸化物原料粉末を用意する工程と、
(b)前記水酸化物原料粉末に、所定量のリチウム化合物を混合して混合粉末とする工程であって、前記所定量が、前記水酸化物原料粉末に含まれるNi+Co+Nnの合計量に対する、前記リチウム化合物に含まれるLi含有量のモル比、すなわちLi/(Ni+Co+Mn)が1.00以上となる量である工程と、
(c)前記混合粉末を仮焼してリチウム遷移金属複合酸化物及び/又はその前駆体を合成する工程と、
(d)前記リチウム遷移金属複合酸化物及び/又はその前駆体をシート状に成形して成形体シートを作製する工程と、
(e)前記成形体シート上に、所定量の炭酸リチウムを載置する工程であって、前記所定量が、前記成形体シートに含まれるNi+Co+Mnの合計量に対する、前記載置される炭酸リチウムに含まれるLi含有量のモル比、すなわちLi/(Ni+Co+Mn)が0.7以上となる量である工程と、
(f)前記炭酸リチウムが載置された前記成形体シートを850℃以上の温度で焼成して、正極活物質板を形成させる工程と、
を含んでなる、方法が提供される。
According to one aspect of the present invention, there is provided a method for producing a positive electrode active material plate for a lithium secondary battery,
(A) It consists of secondary particles in which plate-like primary particles of nickel / cobalt / manganese composite hydroxide are agglomerated, and the plate-like primary particles are arranged almost radially outward from the center of the secondary particles. Preparing a hydroxide raw material powder;
(B) A step of mixing a predetermined amount of a lithium compound with the hydroxide raw material powder to obtain a mixed powder, wherein the predetermined amount is relative to the total amount of Ni + Co + Nn contained in the hydroxide raw material powder. A molar ratio of the Li content contained in the lithium compound, that is, a step in which Li / (Ni + Co + Mn) is an amount that is 1.00 or more;
(C) calcining the mixed powder to synthesize a lithium transition metal composite oxide and / or precursor thereof;
(D) forming the molded body sheet by molding the lithium transition metal composite oxide and / or its precursor into a sheet;
(E) A step of placing a predetermined amount of lithium carbonate on the molded body sheet, wherein the predetermined amount is a lithium carbonate placed as described above with respect to a total amount of Ni + Co + Mn contained in the molded body sheet A molar ratio of the Li content contained, that is, a step in which Li / (Ni + Co + Mn) is 0.7 or more,
(F) firing the molded sheet on which the lithium carbonate is placed at a temperature of 850 ° C. or higher to form a positive electrode active material plate;
A method is provided comprising.

本発明の方法に用いる放射状配向水酸化物原料粉末を示す模式断面図である。It is a schematic cross section which shows the radially oriented hydroxide raw material powder used for the method of this invention. 本発明の方法において、放射状配向水酸化物原料粉末が正極活物質板に加工されるまでの一連の工程を模式的に示す図である。In the method of this invention, it is a figure which shows typically a series of processes until radial alignment hydroxide raw material powder is processed into a positive electrode active material board. 例5で作製された正極活物質板を上から撮影した写真である。6 is a photograph of the positive electrode active material plate produced in Example 5 taken from above. 例5で作製された正極活物質板を横から撮影した写真である。7 is a photograph of the positive electrode active material plate produced in Example 5 taken from the side. 例5で作製された正極活物質板の断面のSEM画像である。6 is a SEM image of a cross section of the positive electrode active material plate produced in Example 5. 例10(比較)で作製された正極活物質板を上から撮影した写真である。It is the photograph which image | photographed the positive electrode active material board produced in Example 10 (comparison) from the top. 例10(比較)で作製された正極活物質板を横から撮影した写真である。It is the photograph which image | photographed the positive electrode active material board produced in Example 10 (comparison) from the side. 例10(比較)で作製された正極活物質板の断面のSEM写真である。It is a SEM photograph of the section of the cathode active material board produced in Example 10 (comparison).

リチウム二次電池用正極活物質板の製造方法
本発明はリチウム二次電池用正極活物質板の製造方法に関する。本発明により製造される正極活物質板は、正極活物質であるリチウム・ニッケル・コバルト・マンガン複合酸化物(以下、NCM)からなる。典型的なNCMは、Li(Ni,Co,Mn)O(式中、0.9≦p≦1.3、0<x<0.8、0<y<1、0≦z≦0.7、x+y+z=1であり、好ましくは0.95≦p≦1.1、0.1≦x<0.7、0.1≦y<0.9、0≦z≦0.6、x+y+z=1である)で表される組成を有する。もっとも、正極活物質板は、本発明の趣旨を逸脱しない範囲内において、Mg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba,Bi等の元素が1種以上更にドーピング又はそれに準ずる形態(例えば結晶粒子の表層への部分的な固溶、又は偏析)で微量添加されていてもよい。いずれにせよ、NCM組成の正極活物質は層状岩塩構造を有する。「層状岩塩構造」とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造(典型的にはα−NaFeO型構造:立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。この点、本発明による正極活物質板は、図1に示されるような板状一次粒子1aが二次粒子1の中心から外方向に向かって概ね放射状に並んでなる水酸化物原料粉末を用いて作製されるものであり、正極活物質板はその原料粉末の放射状配向に由来する配向性を有意に又はある程度引き継ぐことができる。特に、放射状に並んだ個々の板状一次粒子はその板面が(003)面(その面内方向にリチウムが移動する)となるため、それらの板状一次粒子が概ね放射状に並んで構成される二次粒子の表面、さらにはそのような二次粒子が焼結してなる正極活物質板の表面にはリチウム出入り面(すなわち(003)面以外の結晶面(例えば(101)面や(104)面))が露出して該表面でのリチウムイオンの出入りが容易となる。すなわち、正極活物質板の表面及びその内部(多数の二次粒子が焼結されてなる)にわたってリチウムイオンのスムーズな移動が可能になる結果、電池特性(例えば容量及びレート特性)を向上することができる。
TECHNICAL FIELD The present invention relates to a method for producing a positive electrode active material plate for a lithium secondary battery. The positive electrode active material plate produced according to the present invention is made of a lithium-nickel-cobalt-manganese composite oxide (hereinafter referred to as NCM) which is a positive electrode active material. A typical NCM is Li p (Ni x , Co y , Mn z ) O 2 (where 0.9 ≦ p ≦ 1.3, 0 <x <0.8, 0 <y <1, 0 ≦ z ≦ 0.7 and x + y + z = 1, preferably 0.95 ≦ p ≦ 1.1, 0.1 ≦ x <0.7, 0.1 ≦ y <0.9, 0 ≦ z ≦ 0. 6, x + y + z = 1). However, the positive electrode active material plate is within the scope of the present invention, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb. , Mo, Ag, Sn, Sb, Te, Ba, Bi, etc. are added in a trace amount in the form of doping or equivalent (for example, partial solid solution or segregation of crystal grains on the surface layer). Also good. In any case, the positive electrode active material having the NCM composition has a layered rock salt structure. “Layered rock salt structure” means a crystal structure in which lithium layers and transition metal layers other than lithium are alternately stacked with oxygen layers in between (typically α-NaFeO 2 type structure: cubic rock salt type structure) [111] A structure in which transition metals and lithium are regularly arranged in the axial direction. In this respect, the positive electrode active material plate according to the present invention uses a hydroxide raw material powder in which plate-like primary particles 1 a as shown in FIG. 1 are arranged radially outward from the center of the secondary particles 1. The positive electrode active material plate can take over the orientation derived from the radial orientation of the raw material powder significantly or to some extent. In particular, the individual plate-like primary particles arranged in a radial manner have a (003) plane (lithium moves in the in-plane direction), and therefore the plate-like primary particles are generally arranged in a radial manner. Further, the surface of the secondary particles and the surface of the positive electrode active material plate formed by sintering such secondary particles have a crystal plane (for example, (101) plane ( 104) surface)) is exposed, and lithium ions can easily enter and exit on the surface. That is, as a result of the smooth movement of lithium ions over the surface of the positive electrode active material plate and the inside thereof (a large number of secondary particles are sintered), battery characteristics (for example, capacity and rate characteristics) are improved. Can do.

本発明の方法によるリチウム二次電池用正極活物質板の製造は、図2に模式的に示されるように、(a)このような放射状配向を有するニッケル・コバルト・マンガン複合水酸化物原料粉末を用意し、(b)この原料粉末に所定量のリチウム化合物を混合し、(c)得られた混合粉末を仮焼してリチウム遷移金属複合酸化物及び/又はその前駆体を合成し、(d)これをシート状に成形し、(e)得られた成形体シート上に過剰量の炭酸リチウム(融点:730℃)を載置し、(f)850℃以上の温度で焼成して正極活物質板を形成させることにより行われる。そして、こうして製造される正極活物質板は、緻密性及び平坦性に優れ、かつ、リチウム二次電池において優れた電池特性を発揮することが可能なものである。この点、優れた電池特性については、前述したように、放射状配向を有する水酸化物原料粉末(NCM系水酸化物)を使用することで、正極活物質板内の板状一次粒子(結晶粒子)を放射状に配向させる(すなわち二次粒子及び正極活物質板の表面に(003)面が出ていない配向状態にする)ことで実現されるのではないかと考えられる。一方、緻密性及び平坦性にも優れる点は実に予想外なことであったが、優れた平坦性は、原料粉末を予めリチウム合成(仮焼)することで焼成時における不必要な反応を低減した結果、反りが抑制されたのではないかと推察される。また、優れた緻密性は、焼成時にシート外部からリチウムが過剰に供給されることで緻密化が促進されたためではないかと推察される。   Production of a positive electrode active material plate for a lithium secondary battery according to the method of the present invention is as follows. (A) Nickel / cobalt / manganese composite hydroxide raw material powder having such a radial orientation as shown in FIG. (B) A predetermined amount of a lithium compound is mixed with this raw material powder, (c) the obtained mixed powder is calcined to synthesize a lithium transition metal composite oxide and / or its precursor, d) This is formed into a sheet, (e) an excess amount of lithium carbonate (melting point: 730 ° C.) is placed on the resulting molded sheet, and (f) a positive electrode is fired at a temperature of 850 ° C. or higher. This is done by forming an active material plate. And the positive electrode active material board manufactured in this way is excellent in denseness and flatness, and can exhibit the outstanding battery characteristic in a lithium secondary battery. With regard to this point and excellent battery characteristics, as described above, by using a hydroxide raw material powder (NCM hydroxide) having a radial orientation, plate-like primary particles (crystal particles) in the positive electrode active material plate are used. ) In a radial direction (that is, an orientation state in which the (003) plane does not appear on the surfaces of the secondary particles and the positive electrode active material plate). On the other hand, the point that it is excellent in denseness and flatness was actually unexpected, but the excellent flatness reduces unnecessary reaction during firing by lithium synthesis (calcination) of raw material powder in advance. As a result, it is presumed that warpage was suppressed. Moreover, it is surmised that the excellent denseness is because the densification was promoted by excessive supply of lithium from the outside of the sheet during firing.

このような本発明によれば以下の利点をもたらすことができる。第一に、緻密かつ平坦な板形状の正極活物質板が得られるため、薄型電池等に好ましく適用することができる。また、粉末形態の正極活物質とは異なり、バインダーや導電助剤と混ぜる必要が無い上、気孔による空間も殆ど無い又は乏しいため、電池の正極活物質板として使用した場合に活物質密度を最大限に高めて電池容量を高くすることができる。その意味で、本発明による正極活物質板はバインダー及び導電助剤を含まないものであるのが好ましいといえる。第二に、放射状に配向している結晶粒子を焼結させることで、正極活物質板の表面にはリチウム出入り面(すなわち(003)面以外の結晶面(例えば(101)面や(104)面))が露出させた構造を作ることができる。その結果、表面でのリチウムイオンの移動を効率よく行うことができる正極活物質板(すなわち、電池とした時の充放電レートが高い正極活物質板)を製造することができる。第三に、充放電時の正極活物質板の膨張収縮に異方性が無いため、繰り返し使用による劣化(例えば内部割れ)が少ない(すなわち、充放電を繰り返しても劣化が小さい)正極活物質板を製造することができる。   According to the present invention, the following advantages can be brought about. First, since a dense and flat plate-shaped positive electrode active material plate is obtained, it can be preferably applied to a thin battery or the like. In addition, unlike the positive electrode active material in powder form, it does not need to be mixed with a binder or conductive additive, and there is almost no or little space due to pores, so that the active material density is maximized when used as a positive electrode active material plate for a battery. The battery capacity can be increased by increasing the limit. In that sense, it can be said that the positive electrode active material plate according to the present invention preferably does not contain a binder and a conductive additive. Second, by radially sintering the crystal grains that are radially oriented, the surface of the positive electrode active material plate has a crystal plane other than the lithium in / out plane (that is, a (003) plane (for example, (101) plane or (104) Surface)) exposed structure can be made. As a result, it is possible to manufacture a positive electrode active material plate (that is, a positive electrode active material plate having a high charge / discharge rate when used as a battery) that can efficiently move lithium ions on the surface. Third, since there is no anisotropy in the expansion and contraction of the positive electrode active material plate during charge / discharge, there is little deterioration (for example, internal cracks) due to repeated use (that is, deterioration is small even after repeated charge / discharge). A board can be manufactured.

以下、本発明の製造方法の各工程の詳細について説明する。   Hereinafter, the detail of each process of the manufacturing method of this invention is demonstrated.

(a)水酸化物原料粉末の用意
この工程(a)では、図1に模式的に示されるように、ニッケル・コバルト・マンガン複合水酸化物の板状一次粒子1aが凝集した二次粒子1からなり、板状一次粒子1aが二次粒子1の中心から外方向に向かって概ね放射状に並んでなる、水酸化物原料粉末を用意する。このような放射状配向を有する水酸化物粉末はその製造方法とともに公知である。ニッケル・コバルト・マンガン複合水酸化物は、典型的には(Ni,Co,Mn)(OH)(式中、0<x<0.8、0<y<1、0≦z≦0.7、x+y+z=1)で表される組成を有し、好ましくは0.95≦p≦1.1、0.1≦x<0.7、0.1≦y<0.9、0≦z≦0.6、x+y+z=1である。この水酸化物原料粉末は本発明の趣旨を逸脱しない範囲内で他の微量添加元素(例えばAl、Mg、Ti、Fe、Cr、Zn、Ga等)を含んでいてもよく、また、そのような微量添加元素を後続の工程で適宜添加してもよい。
(A) Preparation of hydroxide raw material powder In this step (a), as schematically shown in FIG. 1, secondary particles 1 in which plate-like primary particles 1a of nickel / cobalt / manganese composite hydroxide are aggregated are aggregated. A hydroxide raw material powder is prepared, in which the plate-like primary particles 1a are arranged in a generally radial manner from the center of the secondary particles 1 outward. Such hydroxide powders having a radial orientation are known together with their production methods. The nickel-cobalt-manganese composite hydroxide is typically (Ni x , Co y , Mn z ) (OH) 2 (where 0 <x <0.8, 0 <y <1, 0 ≦ z ≦ 0.7, x + y + z = 1), preferably 0.95 ≦ p ≦ 1.1, 0.1 ≦ x <0.7, 0.1 ≦ y <0.9, 0 ≦ z ≦ 0.6 and x + y + z = 1. This hydroxide raw material powder may contain other trace additive elements (for example, Al, Mg, Ti, Fe, Cr, Zn, Ga, etc.) without departing from the spirit of the present invention. A small amount of an additive element may be appropriately added in the subsequent step.

水酸化物原料粉末は、二次粒子径として、2〜10μmの体積基準メジアン径D50を有するのが好ましく、より好ましくは2〜7μm、さらに好ましくは3〜5μmである。通常はこのような範囲内の粒径の水酸化物原料粉末であると孔が残りやすく正極活物質板の緻密化が難しかったが、本発明の方法によれば緻密化を促進させることができる。   The hydroxide raw material powder preferably has a volume-based median diameter D50 of 2 to 10 μm as a secondary particle diameter, more preferably 2 to 7 μm, and further preferably 3 to 5 μm. Usually, when the hydroxide raw material powder has a particle diameter in such a range, pores are likely to remain, and it is difficult to densify the positive electrode active material plate. However, according to the method of the present invention, densification can be promoted. .

このような放射状配向を有する水酸化物原料粉末は公知の技術に従って作製することができる(例えば特許文献4及び5を参照)。例えば、pH及び温度を適宜調整した槽内に、ニッケル塩水溶液(例えば硫酸ニッケル水溶液)、コバルト塩水溶液(例えば硫酸コバルト水溶液)、マンガン塩水溶液(例えば硫酸マンガン水溶液)、苛性アルカリ水溶液(例えば水酸化ナトリウム水溶液)、及びアンモニウムイオン供給体(例えば硫酸アンモニウム水溶液)を、その濃度及び流量を制御しながら連続的に供給して採取する方法が挙げられる。このとき、槽内のpHを10.0〜13.0とし、温度を40〜80℃とするのが好ましい。こうして作製されたニッケル・コバルト・マンガン複合水酸化物には、水洗、脱水、及び乾燥処理を施すのが好ましい。なお、反応槽への上記各化合物の投入から水酸化物の取り出しに至るまでの一連の工程(すなわち水洗、脱水及び乾燥処理を除く一連の工程)はいずれも不活性雰囲気中で行うのが好ましい。   The hydroxide raw material powder having such a radial orientation can be produced according to a known technique (see, for example, Patent Documents 4 and 5). For example, in a tank whose pH and temperature are appropriately adjusted, a nickel salt aqueous solution (for example, nickel sulfate aqueous solution), a cobalt salt aqueous solution (for example, cobalt sulfate aqueous solution), a manganese salt aqueous solution (for example, manganese sulfate aqueous solution), or a caustic alkaline aqueous solution (for example, hydroxylated) Sodium aqueous solution), and an ammonium ion supplier (for example, ammonium sulfate aqueous solution) are continuously supplied and collected while controlling the concentration and flow rate. At this time, it is preferable that pH in a tank shall be 10.0-13.0, and temperature shall be 40-80 degreeC. The nickel-cobalt-manganese composite hydroxide thus produced is preferably subjected to water washing, dehydration, and drying treatment. In addition, it is preferable that all of a series of steps (that is, a series of steps excluding water washing, dehydration, and drying treatment) from the introduction of each compound into the reaction vessel to the removal of the hydroxide are performed in an inert atmosphere. .

(b)リチウム化合物との混合
この工程(b)では、水酸化物原料粉末に所定量のリチウム化合物を混合して混合粉末とする。このとき、リチウム化合物の量は、水酸化物原料粉末に含まれるNi+Co+Nnの合計量に対する、リチウム化合物に含まれるLi含有量のモル比、すなわちLi/(Ni+Co+Mn)が1.00以上、好ましくは1.00〜1.20、より好ましくは1.02〜1.10となる量とする。このようにNCMの組成(すなわちLi(Ni,Co,Mn)O)に対して同等ないしそれ以上のリチウム化合物量とすることで、後続の仮焼工程(c)の際の揮発によるリチウム損失を補填しながらリチウムとの合成反応を促進することができる。リチウム化合物は正極活物質板の組成(すなわちLi(Ni,Co,Mn)O)を最終的に与えることが可能なあらゆるリチウム含有化合物が使用可能であり、好ましい例としては炭酸リチウム、水酸化リチウム、及びそれらの水和物、並びにそれらの任意の組合せが挙げられる。反応に先立ち、水酸化物原料粉末はリチウム化合物と、乾式混合、湿式混合等の手法により混合されるのが好ましい。リチウム化合物の平均粒子径は特に限定されないが、0.1〜5μmであることが吸湿性の観点からの取扱い容易性及び反応性の観点から好ましい。また、前述したとおり、本発明の趣旨を逸脱しない範囲内で微量添加元素(例えばAl、Mg、Ti、Fe、Cr、Zn、Ga等)がこの工程(b)で添加されてもよい。
(B) Mixing with lithium compound In this step (b), a predetermined amount of lithium compound is mixed with the hydroxide raw material powder to obtain a mixed powder. At this time, the amount of the lithium compound is such that the molar ratio of the Li content contained in the lithium compound to the total amount of Ni + Co + Nn contained in the hydroxide raw material powder, that is, Li / (Ni + Co + Mn) is 1.00 or more, preferably 1 .0000 to 1.20, more preferably 1.02 to 1.10. Thus NCM composition (i.e. Li p (Ni x, Co y , Mn z) O 2) by equal or more lithium compound amount relative to a subsequent calcining step at the time of (c) The synthesis reaction with lithium can be promoted while compensating for lithium loss due to volatilization. Lithium compound composition of the positive electrode active material plate (i.e. Li p (Ni x, Co y , Mn z) O 2) to be any lithium-containing compound capable of providing ultimately be used, carbonate Preferred examples Lithium, lithium hydroxide, and hydrates thereof, and any combination thereof may be mentioned. Prior to the reaction, the hydroxide raw material powder is preferably mixed with the lithium compound by a method such as dry mixing or wet mixing. The average particle size of the lithium compound is not particularly limited, but is preferably 0.1 to 5 μm from the viewpoint of ease of handling and reactivity from the viewpoint of hygroscopicity. Further, as described above, a trace amount of added elements (for example, Al, Mg, Ti, Fe, Cr, Zn, Ga, etc.) may be added in this step (b) within the range not departing from the gist of the present invention.

(c)仮焼(リチウム合成)
この工程(c)では、混合粉末を仮焼してリチウム遷移金属複合酸化物及び/又はその前駆体(以下、リチウム遷移金属複合酸化物等と総称する)を合成する。このときリチウム遷移金属複合酸化物が合成されるのが望ましいが、最終的な焼成工程(f)においてリチウム遷移金属複合酸化物を合成できれば足りるため、リチウム遷移金属複合酸化物の前駆体(例えば、完全にはリチウムと合成されていないものや、完全には酸化物となっていないもの)を含む形態で合成されてもよい。本工程における仮焼は500〜900℃の温度で行われるのが好ましく、より好ましくは600〜800℃であり、さらに好ましくは700〜800℃である。この範囲内であると、粒成長が十分となり、リチウム遷移金属複合酸化物等の分解やリチウムの揮発を抑制して所望の組成が実現しやすくなる。仮焼時間は特に限定されないが、好ましくは1〜50時間であり、より好ましくは5〜30時間である。この仮焼は混合粉末をサヤ(好ましくはアルミナ製)に入れて、大気雰囲気等の酸化性雰囲気で行うのが好ましい。
(C) Calcination (lithium synthesis)
In this step (c), the mixed powder is calcined to synthesize a lithium transition metal composite oxide and / or a precursor thereof (hereinafter collectively referred to as a lithium transition metal composite oxide or the like). At this time, it is desirable that the lithium transition metal composite oxide is synthesized. However, since it is sufficient that the lithium transition metal composite oxide can be synthesized in the final firing step (f), a precursor of the lithium transition metal composite oxide (for example, It may be synthesized in a form including those that are not completely synthesized with lithium and those that are not completely oxides. The calcination in this step is preferably performed at a temperature of 500 to 900 ° C, more preferably 600 to 800 ° C, and still more preferably 700 to 800 ° C. Within this range, grain growth is sufficient, and it becomes easy to achieve a desired composition by suppressing decomposition of lithium transition metal composite oxide and the like and volatilization of lithium. The calcining time is not particularly limited, but is preferably 1 to 50 hours, and more preferably 5 to 30 hours. This calcination is preferably performed in an oxidizing atmosphere such as an air atmosphere by putting the mixed powder in a sheath (preferably made of alumina).

仮焼雰囲気は、仮焼中に分解が進まないように適宜設定することが望ましい。リチウムの揮発が進むような場合は、炭酸リチウム等を同じサヤ内に配置してリチウム雰囲気とすることが好ましい。仮焼中に酸素の放出や、さらには還元が進むような場合、酸素分圧の高い雰囲気で焼成することが好ましい。なお、仮焼後に、正極活物質粒子同士の癒着や凝集を解したり、リチウム遷移金属複合酸化物等の平均粒子径を調整したりする目的で、適宜、解砕や分級が行われてもよい。   The calcination atmosphere is desirably set as appropriate so that decomposition does not proceed during calcination. When the volatilization of lithium proceeds, it is preferable to arrange lithium carbonate or the like in the same sheath to create a lithium atmosphere. When oxygen release or further reduction proceeds during calcination, firing is preferably performed in an atmosphere having a high oxygen partial pressure. In addition, after calcination, for the purpose of releasing the adhesion and aggregation between the positive electrode active material particles or adjusting the average particle diameter of the lithium transition metal composite oxide, etc., it may be appropriately crushed or classified. Good.

(d)成形体シートの作製
この工程(d)では、リチウム遷移金属複合酸化物等をシート状に成形して成形体シートを作製する。シート状への成形手法は公知の手法に従って行えばよく特に限定されないが、リチウム遷移金属複合酸化物等をスラリー化してテープ成形に付することにより行われるのが好ましい。テープ成形法の典型的な例としてはドクターブレード法が挙げられる。ドクターブレード法等のテープ成形法を用いる場合、可撓性を有する板(例えばPETフィルムなどの有機ポリマー板など)にスラリーを塗布し、塗布したスラリーを乾燥固化して成形体シートとし、この成形体シートを板から剥離して、自立した成形体シートとすればよい。成形前にスラリーや坏土を調製するときには、リチウム遷移金属複合酸化物等を分散媒に分散させ、バインダーや可塑剤などを適宜加えてもよい。また、スラリーは、粘度が500〜4000cPとなるように調製するのが好ましく、減圧により脱泡するのが好ましい。成形体シートの好ましい厚さは5〜80μmであり、より好ましくは10〜60μmであり、さらに好ましくは20〜50μm、特に好ましくは20〜40μmである。この範囲内の厚さであると、比較的厚い板であるにもかかわらず、緻密性及び平坦性に優れた正極活物質板を得ることができる。
(D) Production of molded body sheet In this step (d), a lithium transition metal composite oxide or the like is molded into a sheet shape to produce a molded body sheet. The method for forming the sheet is not particularly limited as long as it is performed according to a known method, but it is preferably performed by slurrying a lithium transition metal composite oxide or the like and subjecting it to tape forming. A typical example of the tape forming method is a doctor blade method. When using a tape molding method such as the doctor blade method, the slurry is applied to a flexible plate (for example, an organic polymer plate such as a PET film), and the applied slurry is dried and solidified to form a molded body sheet. The body sheet may be peeled from the plate to form a self-supporting molded body sheet. When preparing a slurry or clay before molding, a lithium transition metal composite oxide or the like may be dispersed in a dispersion medium, and a binder, a plasticizer, or the like may be appropriately added. Moreover, it is preferable to prepare the slurry so that the viscosity is 500 to 4000 cP, and it is preferable to defoam by decompression. The thickness of the molded sheet is preferably 5 to 80 μm, more preferably 10 to 60 μm, still more preferably 20 to 50 μm, and particularly preferably 20 to 40 μm. When the thickness is within this range, a positive electrode active material plate excellent in denseness and flatness can be obtained even though the plate is relatively thick.

また、シート状に成形する他の手法としては、ドラムドライヤーを用いた手法(例えば熱したドラム上へリチウム遷移金属複合酸化物等を含むスラリーを塗布し、乾燥させたものをスクレイパーで掻きとる)、ディスクドライヤーを用いた手法(例えば熱した円板面へリチウム遷移金属複合酸化物等を含むスラリーを塗布し、これを乾燥させてスクレイパーで掻きとる)、及び押出成形法(例えばリチウム遷移金属複合酸化物等を含む坏土をシート状に押出す)が挙げられる。   In addition, as another method for forming a sheet, a method using a drum dryer (for example, a slurry containing a lithium transition metal composite oxide or the like is applied onto a heated drum and the dried one is scraped with a scraper) , A technique using a disk dryer (for example, applying a slurry containing lithium transition metal composite oxide etc. to a heated disk surface, drying it and scraping it with a scraper), and an extrusion method (for example, lithium transition metal composite And extruding clay containing oxides and the like into a sheet).

本工程(d)で得られる成形体シートは、典型的には、それ単体でシート状の成形体の形状を保つことができる「自立した成形体」である。なお、それ単体ではシート状の成形体の形状を保つことができないものであっても、何らかの基板上に貼り付け又は成膜して焼成前又は焼成後に基板から剥離したものも、「自立した成形体」に含まれる。後続の工程に先立ち、成形体シートは所望のサイズに適宜切断されてもよい。もっとも、成形されたままのシート形態で後続の工程に付されてよいことはいうまでもない。   The molded body sheet obtained in this step (d) is typically a “self-supported molded body” that can maintain the shape of the sheet-shaped molded body by itself. In addition, even if it cannot maintain the shape of the sheet-like molded body by itself, it can be attached to a substrate or formed into a film and peeled off from the substrate before or after firing. Included in "body". Prior to the subsequent step, the molded body sheet may be appropriately cut to a desired size. However, it goes without saying that it may be subjected to subsequent steps in the form of a sheet as it is formed.

(e)炭酸リチウムの載置
この工程(e)では、成形体シート上に所定量の炭酸リチウムを載置する。このとき、炭酸リチウムの量を、成形体シートに含まれるNi+Co+Mnの合計量に対する、載置される炭酸リチウムに含まれるLi含有量のモル比、すなわちLi/(Ni+Co+Mn)が0.7以上、好ましくは0.7〜2.0、より好ましくは1.0〜1.8、さらに好ましくは1.1〜1.5となる量とする。すなわち、成形体シートはリチウム遷移金属複合酸化物等を含んでなるためリチウムを含むものであるところ、本工程(e)ではさらにその上に過剰量のリチウム化合物として炭酸リチウムを載置する。この過剰量のリチウム化合物の殆どないし全てが後続の焼成工程(f)で消失することになるが、その焼成時に成形体シート上に過剰量の炭酸リチウムが存在させることで、予想外なことに、緻密性及び平坦性に優れる正極活物質板が得られる。
(E) Placement of lithium carbonate In this step (e), a predetermined amount of lithium carbonate is placed on the compact sheet. At this time, the molar ratio of the Li content contained in the lithium carbonate to be placed with respect to the total amount of Ni + Co + Mn contained in the molded body sheet, that is, Li / (Ni + Co + Mn) is 0.7 or more, preferably Is 0.7 to 2.0, more preferably 1.0 to 1.8, and still more preferably 1.1 to 1.5. That is, since the molded body sheet contains lithium transition metal composite oxide and the like, in this step (e), lithium carbonate is further placed thereon as an excessive amount of lithium compound. Most or all of the excess amount of the lithium compound disappears in the subsequent firing step (f), but it is unexpected because the excess amount of lithium carbonate is present on the molded body sheet during the firing. Thus, a positive electrode active material plate excellent in denseness and flatness can be obtained.

炭酸リチウムの載置は、炭酸リチウムを含んでなるリチウム含有シートの形態で成形体シート上に載置することにより行われるのが特に好ましい。リチウム含有シートは、炭酸リチウムをスラリー化してテープ成形に付することにより得られたものであるのが好ましく、テープ成形の手法については前述した工程(d)で述べた手法と同様にして行えばよい。リチウム含有シートの厚さは上記Li/(Ni+Co+Mn)比が所望の値となるような量の炭酸リチウムを与えるように適宜決定すればよく、例えば20〜60μmである。   The placement of lithium carbonate is particularly preferably carried out by placing it on a molded body sheet in the form of a lithium-containing sheet comprising lithium carbonate. The lithium-containing sheet is preferably obtained by slurrying lithium carbonate and subjecting it to tape molding, and the tape molding method is the same as the method described in the step (d) described above. Good. The thickness of the lithium-containing sheet may be appropriately determined so as to give an amount of lithium carbonate such that the Li / (Ni + Co + Mn) ratio is a desired value, and is, for example, 20 to 60 μm.

また、成形体シートが、正極活物質板の組成に概ね対応した組成、典型的にはLi(Ni,Co,Mn)O(式中、0.9≦p≦1.3、0<x<0.8、0<y<1、0≦z≦0.7、x+y+z=1)の組成を有する粉末で敷き詰められた下地層の上に載置されるのが好ましい。この粉末は上記組成さえ有していれば公知のいかなる方法により製造されたものであってもよい。いずれにしても、この下地層(敷き粉)を介在させることで、組成がより均一な高品位の正極活物質板を製造することができる。この下地層(敷き粉)はセッター(好ましくはアルミナ製)上に形成されるのが好ましい。 Moreover, the molded sheet is, compositions generally corresponding to the composition of the positive electrode active material plate, typically Li p (Ni x, Co y , Mn z) in O 2 (wherein, 0.9 ≦ p ≦ 1.3 , 0 <x <0.8, 0 <y <1, 0 ≦ z ≦ 0.7, x + y + z = 1) is preferably placed on the base layer laid down with a powder. This powder may be produced by any known method as long as it has the above composition. In any case, a high-quality positive electrode active material plate having a more uniform composition can be produced by interposing this base layer (laying powder). This underlayer (laying powder) is preferably formed on a setter (preferably made of alumina).

(f)焼成
この工程(f)では、炭酸リチウムが載置された成形体シートを焼成して正極活物質板を形成させる。焼成温度は850℃以上であり、好ましくは850〜960℃、より好ましくは880〜940℃、さらに好ましくは880〜920℃である。焼成時間は特に限定されないが、好ましくは1〜50時間であり、より好ましくは10〜30時間である。この焼成は炭酸リチウムが載置された成形体シートを載置したセッター(好ましくはアルミナ製)をサヤ(好ましくはアルミナ製)に入れて、大気雰囲気等の酸化性雰囲気で行うのが好ましい。成形体シート上に載置された炭酸リチウムは、正極活物質板に吸収される他、揮発したり、セッターに吸収される等により、焼成後にほとんど残留しないが、残留していた場合は、再熱処理や水洗処理等により除去してもよい。
(F) Firing In this step (f), the formed body sheet on which lithium carbonate is placed is fired to form a positive electrode active material plate. A calcination temperature is 850 degreeC or more, Preferably it is 850-960 degreeC, More preferably, it is 880-940 degreeC, More preferably, it is 880-920 degreeC. Although baking time is not specifically limited, Preferably it is 1 to 50 hours, More preferably, it is 10 to 30 hours. This firing is preferably performed in an oxidizing atmosphere such as an air atmosphere by placing a setter (preferably made of alumina) on which a molded body sheet on which lithium carbonate is placed is placed in a sheath (preferably made of alumina). Lithium carbonate placed on the molded sheet is not absorbed by the positive electrode active material plate, but is volatilized or absorbed by the setter. You may remove by heat processing, a water washing process, etc.

こうして得られる正極活物質板はリチウム・ニッケル・コバルト・マンガン複合酸化物(NCM)で構成され、典型的にはLi(Ni,Co,Mn)O(式中、0.9≦p≦1.3、0<x<0.8、0<y<1、0≦z≦0.7、x+y+z=1であり、好ましくは0.95≦p≦1.1、0.1≦x<0.7、0.1≦y<0.9、0≦z≦0.6、x+y+z=1である)で表される組成を有する。また、正極活物質板は、前述したとおり原料粉末の放射状配向に由来する配向性を正極活物質板は有意に又はある程度引き継ぐことができるため、無配向の正極活物質板よりも厚くするのに適している。これは配向性があることでリチウムイオンが厚さ方向によりスムーズに移動可能となるためである。正極活物質板の厚さは、好ましくは5〜75μmであり、より好ましくは10〜60μmであり、さらに好ましくは20〜50μm、特に好ましくは20〜40μmである。また、正極活物質板のサイズは、好ましくは5mm×5mm平方以上、より好ましくは10mm×10mm〜100mm×100mm平方であり、さらに好ましくは10mm×10mm〜50mm×50mm平方であり、別の表現をすれば、好ましくは25mm以上、より好ましくは100〜10000mmであり、さらに好ましくは100〜2500mmである。 Thus obtained positive electrode active material plate is composed of a lithium-nickel-cobalt-manganese composite oxide (NCM), typically Li p (Ni x, Co y , Mn z) in O 2 (wherein, 0.9 ≦ p ≦ 1.3, 0 <x <0.8, 0 <y <1, 0 ≦ z ≦ 0.7, x + y + z = 1, preferably 0.95 ≦ p ≦ 1.1, 0.1 ≦ x <0.7, 0.1 ≦ y <0.9, 0 ≦ z ≦ 0.6, and x + y + z = 1). Further, as described above, the positive electrode active material plate can inherit the orientation derived from the radial orientation of the raw material powder significantly or to some extent, so that the positive electrode active material plate is made thicker than the non-oriented positive electrode active material plate. Is suitable. This is because the lithium ions can move more smoothly in the thickness direction due to the orientation. The thickness of the positive electrode active material plate is preferably 5 to 75 μm, more preferably 10 to 60 μm, still more preferably 20 to 50 μm, and particularly preferably 20 to 40 μm. Further, the size of the positive electrode active material plate is preferably 5 mm × 5 mm square or more, more preferably 10 mm × 10 mm to 100 mm × 100 mm square, and further preferably 10 mm × 10 mm to 50 mm × 50 mm square. if, preferably 25 mm 2 or more, more preferably 100~10000Mm 2, more preferably from 100~2500mm 2.

本発明を以下の例によってさらに具体的に説明する。   The present invention is more specifically described by the following examples.

なお、以下の例における正極活物質板及びそれを備えた電池に関する各種特性の評価方法は以下のとおりとした。   In addition, the evaluation method of various characteristics regarding the positive electrode active material plate and the battery including the same in the following examples was as follows.

<緻密度>
正極活物質板をCP研磨機(IB−09010CP、日本電子株式会社製)にて断面研磨した。研磨した断面をSEM観察して空隙及び気孔の有無を確認した。得られたSEM画像を画像処理して気孔割合を算出した。気孔割合が5%以下であった試料を「A」(すなわち良品)と、5%未満であった試料を「B」と評価した。
<Dense>
The positive electrode active material plate was subjected to cross-sectional polishing with a CP polishing machine (IB-09010CP, manufactured by JEOL Ltd.). The polished cross section was observed with an SEM to confirm the presence or absence of voids and pores. The obtained SEM image was subjected to image processing to calculate the pore ratio. A sample having a porosity ratio of 5% or less was evaluated as “A” (that is, a non-defective product), and a sample having a porosity of less than 5% was evaluated as “B”.

<平坦度>
正極活物質板について、レーザー3次元表面形状測定器(LEXT OLS4100、オリンパス社製)にて試料中央付近の輪郭曲線(具体的にはうねり曲線(waviness profile))を1ライン計測し、最大高さうねりWzを測定した。得られた最大高さうねりWzが10μm以下であった試料を「A」、Wzが10μmを超え20μm以下であった試料を「B」、Wzが20μmを超えた試料を「C」とし、「A」および「B」を良品として評価した。なお、最大高さうねりWzはJIS B0601−2001に定義される輪郭曲線の最大高さであり、基準長さにおける輪郭曲線(具体的にはうねり曲線)の山高さZpの最大値と谷深さのZvの最大値の和に相当する。したがって、この値が低いほど平坦であることを意味する。
<Flatness>
For the positive electrode active material plate, one line of the contour curve (specifically waviness profile) near the center of the sample is measured with a laser three-dimensional surface shape measuring instrument (LEXT OLS4100, manufactured by Olympus), and the maximum height is measured. Swell Wz was measured. The obtained sample with the maximum height waviness Wz of 10 μm or less was designated as “A”, the sample with Wz exceeding 10 μm and 20 μm or less was designated as “B”, and the sample with Wz exceeding 20 μm was designated as “C”. “A” and “B” were evaluated as good. The maximum height waviness Wz is the maximum height of the contour curve defined in JIS B0601-2001, and the maximum value and valley depth of the peak height Zp of the contour curve (specifically the waviness curve) at the reference length. This corresponds to the sum of the maximum values of Zv. Therefore, it means that it is so flat that this value is low.

<電池特性>
正極活物質板を5mm角程度の試料片に分割した。この試料片の片面に厚さ1000ÅのAu膜を集電層としてスパッタリング成膜して正極板を得た。正極板、リチウム金属からなる負極、ステンレス集電板、及びセパレータを、集電板−正極板−セパレータ−負極−集電板の順に配置し、この集積体を電解液で満たすことで、コインセルを作製した。電解液としては、エチレンカーボネートおよびジエチルカーボネートを等体積比で混合した有機溶媒に、LiPFを1mol/Lの濃度となるように溶解したものを使用した。このコインセルに対して電池容量(放電容量)の評価を実施した。0.1Cレートの電流値で電池電圧が4.2Vとなるまで定電流充電し、その後電池電圧を4.2Vに維持する電流条件で、その電流値が1/20に低下するまで定電圧充電した。10分間休止し、続いて0.1Cレートの電流値で電池電圧が3.0Vとなるまで定電流放電し、その後10分間休止する、という操作を1サイクルとし、25℃での2サイクル目の放電容量を測定した。理論容量(NCM:160mAh/g)の95%以上の放電容量の試料を「A」(すなわち良品)と、95%未満の放電容量の試料を「B」と評価した。
<Battery characteristics>
The positive electrode active material plate was divided into sample pieces of about 5 mm square. A positive electrode plate was obtained by sputtering an Au film having a thickness of 1000 mm on one side of the sample piece as a current collecting layer. A positive electrode plate, a negative electrode made of lithium metal, a stainless steel current collector plate, and a separator are arranged in the order of current collector plate-positive electrode plate-separator-negative electrode-current collector plate, and this integrated body is filled with an electrolyte solution, whereby a coin cell is formed. Produced. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in an organic solvent in which ethylene carbonate and diethyl carbonate were mixed at an equal volume ratio to a concentration of 1 mol / L was used. The battery capacity (discharge capacity) was evaluated for the coin cell. Charge at constant current until the battery voltage reaches 4.2 V at a current value of 0.1 C rate, and then charge at constant voltage until the current value drops to 1/20 under the current condition of maintaining the battery voltage at 4.2 V. did. The operation of resting for 10 minutes, then discharging at constant current until the battery voltage reaches 3.0 V at a current value of 0.1 C rate, and then resting for 10 minutes is defined as one cycle, and the second cycle at 25 ° C. The discharge capacity was measured. A sample having a discharge capacity of 95% or more of the theoretical capacity (NCM: 160 mAh / g) was evaluated as “A” (that is, a non-defective product), and a sample having a discharge capacity of less than 95% was evaluated as “B”.

例1〜9
(a)水酸化物原料粉末の用意
水酸化物原料粉末として、組成が(Ni0.5Co0.2Mn0.3)(OH)であり、二次粒子がほぼ球状且つ一次粒子が二次粒子の中心から外方向へ放射状に並んだ、体積基準メジアン径D50が4μmのニッケル・コバルト・マンガン複合水酸化物粉末を用意した。このニッケル・コバルト・マンガン複合水酸化物粉末は溶液法等の公知の手法に従って作製可能なものであり、具体的には以下のようにして作製した。すなわち、純水20Lを入れた反応槽へ、モル比でNi:Co:Mn=50:20:30である濃度1mol/Lの硫酸ニッケルと硫酸コバルト及び硫酸マンガンの混合水溶液を投入速度50mL/minで、また濃度3mol/Lの硫酸アンモニウムを投入速度2ml/minで同時に連続投入した。一方、濃度10mol/Lの水酸化ナトリウム水溶液を、反応槽内のpHが自動的に12.5に維持されるように投入した。反応槽内の温度は70℃に維持し、攪拌機により常に攪拌した。生成したニッケル・コバルト・マンガン複合水酸化物は、オーバーフロー管からオーバーフローさせて取り出し、水洗、脱水、乾燥処理した。なお、反応槽への上記各化合物の投入から水酸化物の取り出しに至るまでの一連の工程(すなわち水洗、脱水及び乾燥処理を除く一連の工程)はいずれも不活性雰囲気中で行った。
Examples 1-9
(A) Preparation of hydroxide raw material powder As the hydroxide raw material powder, the composition is (Ni 0.5 Co 0.2 Mn 0.3 ) (OH) 2 , the secondary particles are almost spherical and the primary particles are A nickel-cobalt-manganese composite hydroxide powder having a volume-based median diameter D50 of 4 μm and arranged radially outward from the center of the secondary particles was prepared. This nickel / cobalt / manganese composite hydroxide powder can be produced according to a known method such as a solution method, and specifically, produced as follows. That is, a mixed aqueous solution of nickel sulfate, cobalt sulfate and manganese sulfate having a concentration of 1 mol / L in a molar ratio of Ni: Co: Mn = 50: 20: 30 is charged into a reaction tank containing 20 L of pure water at a rate of 50 mL / min. In addition, ammonium sulfate having a concentration of 3 mol / L was continuously charged simultaneously at a charging rate of 2 ml / min. On the other hand, an aqueous sodium hydroxide solution having a concentration of 10 mol / L was added so that the pH in the reaction vessel was automatically maintained at 12.5. The temperature in the reaction vessel was maintained at 70 ° C., and was always stirred with a stirrer. The produced nickel-cobalt-manganese composite hydroxide was taken out by overflowing from the overflow tube, washed with water, dehydrated and dried. In addition, all of a series of steps (i.e., a series of steps excluding water washing, dehydration and drying treatment) from the introduction of each compound into the reaction vessel to the removal of the hydroxide was performed in an inert atmosphere.

(b)リチウム化合物との混合
得られた水酸化物原料粉末と、水酸化物原料粉末に対して45wt%の量のLiCO粉末とをハイブリッドミキサーにて混合して、混合粉末を得た。なお、水酸化物原料粉末に含まれるNi+Co+Nnの合計量に対する、上記混合量のLiCO粉末に含まれるLi含有量のモル比、すなわちLi/(Ni+Co+Mn)は1.06であった。
(B) Mixing with Lithium Compound The obtained hydroxide raw material powder and Li 2 CO 3 powder in an amount of 45 wt% with respect to the hydroxide raw material powder are mixed in a hybrid mixer to obtain a mixed powder. It was. The molar ratio of the Li content contained in the mixed amount of Li 2 CO 3 powder to the total amount of Ni + Co + Nn contained in the hydroxide raw material powder, that is, Li / (Ni + Co + Mn) was 1.06.

(c)仮焼(リチウム合成)
上記混合粉末をアルミナ製サヤに詰め、大気雰囲気にて700℃で20時間熱処理(仮焼)を行った。得られた仮焼物を乳鉢にて解砕して、リチウム合成されたNCM粉末を得た。
(C) Calcination (lithium synthesis)
The mixed powder was packed in an alumina sheath and heat-treated (calcined) at 700 ° C. for 20 hours in an air atmosphere. The obtained calcined material was crushed in a mortar to obtain lithium-synthesized NCM powder.

(d)成形体シートの作製
上記リチウム合成したNCM粉末100重量部に対して、分散媒(トルエン:イソプロパノール=1:1)100重量部、バインダー(ポリビニルブチラール:積水化学工業株式会社製BM−2)10重量部、可塑剤(DOP:黒金化成株式会社製)4重量部、及び分散剤(花王株式会社製レオドールSP−O30)2重量部を混合した。得られた混合物を減圧下で攪拌して脱泡するとともに、3000〜4000cPの粘度に調整した。得られたスラリーを、テープ成型機を用いてPETフィルム上に、乾燥後膜厚が28μmとなるようにシート状に成型してNCMシートを得た。
(D) Production of molded body sheet 100 parts by weight of a lithium-synthesized NCM powder, 100 parts by weight of a dispersion medium (toluene: isopropanol = 1: 1), binder (polyvinyl butyral: BM-2 manufactured by Sekisui Chemical Co., Ltd.) ) 10 parts by weight, 4 parts by weight of a plasticizer (DOP: manufactured by Kurokin Kasei Co., Ltd.), and 2 parts by weight of a dispersant (Reodol SP-O30 manufactured by Kao Corporation) were mixed. While stirring the obtained mixture under reduced pressure, it deaerated and adjusted to the viscosity of 3000-4000 cP. The obtained slurry was molded into a sheet shape on a PET film using a tape molding machine so that the film thickness after drying was 28 μm, and an NCM sheet was obtained.

(e)炭酸リチウムの載置
上記NCMシートをPETフィルムから剥がして10mm角に切り出した。アルミナ製セッター上に、別途予め合成したNCM粉末を敷き粉(下地層)として配置し、この敷き粉(下地層)上に10mm角に切り出した上記NCMシートを載置した。なお、別途予め合成したNCM粉末は、モル比でNi:Co:Mn=50:20:30の組成を有するNCM原料粉末(市販品)にLiCOを45wt%混合して850℃で20時間熱処理することにより作製した。例2〜9においては、上記NCMシートの上に上記同様にテープ成型し10mm角に切り出した所定の厚さのLiCOシートを載置した。このLiCOシートの厚さは、NCMシートに含まれるNi+Co+Mnの合計量に対する、LiCOシートに含まれるLi含有量のモル比、すなわちLi/(Ni+Co+Mn)が表1に示される値となる厚さ(すなわち、例2では14μm、例3では16μm、例4〜8では28μm、例9では42μm)とした。なお、例1においては比較のためLiCOシートを載置しなかった。
(E) Placement of lithium carbonate The NCM sheet was peeled off from the PET film and cut into 10 mm squares. On the setter made of alumina, NCM powder synthesized separately in advance was placed as a spread powder (underlayer), and the NCM sheet cut into 10 mm square was placed on the spread powder (underlayer). The NCM powder separately synthesized in advance was mixed with 45 wt% of Li 2 CO 3 in NCM raw material powder (commercially available) having a composition of Ni: Co: Mn = 50: 20: 30 in molar ratio, and 20% at 850 ° C. It was produced by heat treatment for a period of time. In Examples 2 to 9, a Li 2 CO 3 sheet having a predetermined thickness obtained by tape molding in the same manner as described above and cut into a 10 mm square was placed on the NCM sheet. The thickness of this Li 2 CO 3 sheet is the value that the molar ratio of the Li content contained in the Li 2 CO 3 sheet to the total amount of Ni + Co + Mn contained in the NCM sheet, that is, Li / (Ni + Co + Mn) is shown in Table 1. (That is, 14 μm in Example 2, 16 μm in Example 3, 28 μm in Examples 4 to 8, and 42 μm in Example 9). In Example 1, a Li 2 CO 3 sheet was not placed for comparison.

(f)焼成
こうしNCM粉末、NCMシート及びLiCOシートがこの順に載置されたセッターをアルミナサヤ中に設置し、蓋を閉めた状態で大気雰囲気にて表1に示される温度で20時間熱処理(焼成)を行った。こうして正極活物質板(厚さ:23μm、大きさ:8mm×8mm)を得た。正極活物質板の表面を観察したところ、正極活物質板に載置したLiCOシートは焼成により完全に消失していた。
(F) Firing A setter on which the NCM powder, NCM sheet and Li 2 CO 3 sheet are placed in this order is placed in an alumina sheath, and the lid is closed. Temporal heat treatment (firing) was performed. In this way, a positive electrode active material plate (thickness: 23 μm, size: 8 mm × 8 mm) was obtained. When the surface of the positive electrode active material plate was observed, the Li 2 CO 3 sheet placed on the positive electrode active material plate was completely lost by firing.

(g)各種評価
得られた正極活物質板に対して前述した手順により緻密度、平坦度及び電池特性の評価を行った。その結果は表1に示されるとおりであった。また、例5で作製された正極活物質板の写真及び断面SEM画像を図3A〜3Cに示す。これらの図から明らかなように本発明により作製された正極活物質板は反りが殆ど発生しない非常に平坦なものであり、かつ、緻密性も高いことが分かる。
(G) Various evaluations With respect to the obtained positive electrode active material plate, the density, flatness, and battery characteristics were evaluated by the procedure described above. The results were as shown in Table 1. Moreover, the photograph and cross-sectional SEM image of the positive electrode active material board produced in Example 5 are shown to FIG. As is clear from these drawings, it can be seen that the positive electrode active material plate produced according to the present invention is very flat with little warpage and has high density.

例10及び11(比較)
水酸化物原料粉末の代わりに以下の製法により作製した微粒を用いて表1に記載の条件を採用したこと以外は、例1と同様の手順により正極活物質板の作製及び評価を行った。なお、微粒の作製は、モル比でNi:Co:Mn=50:20:30となるように、NiO(正同化学工業製)、Co(正同化学工業製)、MnCO(東ソー製)を混合し、ポットミルにてエタノールを溶媒として10時間湿式粉砕し、粉砕物をポットミルから取り出して乾燥処理することにより行った。結果は表1に示されるとおりであった。また、例10で作製された正極活物質板の写真及び断面SEM画像を図4A〜4Cに示す。これらの図から明らかなように本発明によらない手法により作製された正極活物質板は反りが発生してしまい、平坦性に劣るものであることが分かる。
Examples 10 and 11 (Comparison)
A positive electrode active material plate was prepared and evaluated in the same manner as in Example 1 except that the conditions described in Table 1 were used instead of the hydroxide raw material powder using the fine particles produced by the following production method. Incidentally, the production of fine grain, Ni molar ratio: Co: Mn = 50: 20 : so that 30, NiO (manufactured by Seido Chemical Industry), Co 3 O 4 (manufactured by Seido Chemical Industry), MnCO 3 ( Manufactured by Tosoh Corporation), wet pulverized for 10 hours using ethanol as a solvent in a pot mill, and the pulverized product was taken out of the pot mill and dried. The results were as shown in Table 1. Moreover, the photograph and cross-sectional SEM image of the positive electrode active material board produced in Example 10 are shown to FIG. As can be seen from these figures, the positive electrode active material plate produced by a technique not according to the present invention is warped and inferior in flatness.

1a 板状一次粒子
1 水酸化物原料粉末(二次粒子)
1a Plate-like primary particles 1 Hydroxide raw material powder (secondary particles)

Claims (13)

リチウム二次電池用正極活物質板の製造方法であって、
(a)ニッケル・コバルト・マンガン複合水酸化物の板状一次粒子が凝集した二次粒子からなり、前記板状一次粒子が前記二次粒子の中心から外方向に向かって概ね放射状に並んでなる、水酸化物原料粉末を用意する工程と、
(b)前記水酸化物原料粉末に、所定量のリチウム化合物を混合して混合粉末とする工程であって、前記所定量が、前記水酸化物原料粉末に含まれるNi+Co+Nnの合計量に対する、前記リチウム化合物に含まれるLi含有量のモル比、すなわちLi/(Ni+Co+Mn)が1.00以上となる量である工程と、
(c)前記混合粉末を仮焼してリチウム遷移金属複合酸化物及び/又はその前駆体を合成する工程と、
(d)前記リチウム遷移金属複合酸化物及び/又はその前駆体をシート状に成形して成形体シートを作製する工程と、
(e)前記成形体シート上に、所定量の炭酸リチウムを載置する工程であって、前記所定量が、前記成形体シートに含まれるNi+Co+Mnの合計量に対する、前記載置される炭酸リチウムに含まれるLi含有量のモル比、すなわちLi/(Ni+Co+Mn)が0.7以上となる量である工程と、
(f)前記炭酸リチウムが載置された前記成形体シートを850℃以上の温度で焼成して、正極活物質板を形成させる工程と、
を含んでなる、方法。
A method for producing a positive electrode active material plate for a lithium secondary battery, comprising:
(A) It consists of secondary particles in which plate-like primary particles of nickel / cobalt / manganese composite hydroxide are agglomerated, and the plate-like primary particles are arranged almost radially outward from the center of the secondary particles. Preparing a hydroxide raw material powder;
(B) A step of mixing a predetermined amount of a lithium compound with the hydroxide raw material powder to obtain a mixed powder, wherein the predetermined amount is relative to the total amount of Ni + Co + Nn contained in the hydroxide raw material powder. A molar ratio of the Li content contained in the lithium compound, that is, a step in which Li / (Ni + Co + Mn) is an amount that is 1.00 or more;
(C) calcining the mixed powder to synthesize a lithium transition metal composite oxide and / or precursor thereof;
(D) forming the molded body sheet by molding the lithium transition metal composite oxide and / or its precursor into a sheet;
(E) A step of placing a predetermined amount of lithium carbonate on the molded body sheet, wherein the predetermined amount is a lithium carbonate placed as described above with respect to a total amount of Ni + Co + Mn contained in the molded body sheet A molar ratio of the Li content contained, that is, a step in which Li / (Ni + Co + Mn) is 0.7 or more,
(F) firing the molded sheet on which the lithium carbonate is placed at a temperature of 850 ° C. or higher to form a positive electrode active material plate;
Comprising a method.
前記ニッケル・コバルト・マンガン複合水酸化物が、(Ni,Co,Mn)(OH)(式中、0<x<0.8、0<y<1、0≦z≦0.7、x+y+z=1)で表される組成を有する、請求項1に記載の方法。 The nickel-cobalt-manganese composite hydroxide is (Ni x , Co y , Mn z ) (OH) 2 (where 0 <x <0.8, 0 <y <1, 0 ≦ z ≦ 0. 7. The method according to claim 1, wherein the method has a composition represented by x + y + z = 1). 前記正極活物質板が、Li(Ni,Co,Mn)O(式中、0.9≦p≦1.3、0<x<0.8、0<y<1、0≦z≦0.7、x+y+z=1)の組成を有する、請求項1又は2に記載の方法。 The positive electrode active material plate is Li p (Ni x , Co y , Mn z ) O 2 (where 0.9 ≦ p ≦ 1.3, 0 <x <0.8, 0 <y <1, 0 The method according to claim 1, wherein the composition has a composition of ≦ z ≦ 0.7 and x + y + z = 1). 前記(e)工程における前記モル比Li/(Ni+Co+Mn)が1.0〜1.8である、請求項1〜3のいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein the molar ratio Li / (Ni + Co + Mn) in the step (e) is 1.0 to 1.8. 前記(d)工程におけるシート状への成形が、前記リチウム遷移金属複合酸化物及び/又はその前駆体をスラリー化してテープ成形に付することにより行われる、請求項1〜4のいずれか一項に記載の方法。   The sheet-shaped forming in the step (d) is performed by slurrying the lithium transition metal composite oxide and / or its precursor and subjecting it to tape forming. The method described in 1. 前記(d)工程における前記成形体シートが10〜60μmの厚さを有する、請求項1〜5のいずれか一項に記載の方法。   The method as described in any one of Claims 1-5 in which the said molded object sheet in the said (d) process has a thickness of 10-60 micrometers. 前記(e)工程において炭酸リチウムが、該リチウム化合物を含んでなるリチウム含有シートの形態で前記成形体シート上に載置される、請求項1〜6のいずれか一項に記載の方法。   The method according to any one of claims 1 to 6, wherein in the step (e), lithium carbonate is placed on the molded sheet in the form of a lithium-containing sheet comprising the lithium compound. 前記(e)工程における前記リチウム含有シートが、炭酸リチウムをスラリー化してテープ成形に付することにより得られたものである、請求項7に記載の方法。   The method according to claim 7, wherein the lithium-containing sheet in the step (e) is obtained by slurrying lithium carbonate and subjecting it to tape molding. 前記(e)工程において前記成形体シートが、前記正極活物質板の組成に概ね対応したLi(Ni,Co,Mn)O(式中、0.9≦p≦1.3、0<x<0.8、0<y<1、0≦z≦0.7、x+y+z=1)の組成を有する粉末で敷き詰められた下地層の上に載置される、請求項1〜8のいずれか一項に記載の方法。 Wherein said molded sheet in step (e) is, the positive active generally to the composition of matter plate the corresponding Li p (Ni x, Co y , Mn z) in O 2 (wherein, 0.9 ≦ p ≦ 1.3 , 0 <x <0.8, 0 <y <1, 0 ≦ z ≦ 0.7, x + y + z = 1). 9. The method according to any one of items 8. 前記(a)工程において前記水酸化物原料粉末が2〜10μmの体積基準メジアン径D50を有する、請求項1〜9のいずれか一項記載の方法。   The method according to any one of claims 1 to 9, wherein in the step (a), the hydroxide raw material powder has a volume-based median diameter D50 of 2 to 10 µm. 前記(b)工程で用いられる前記リチウム化合物が、炭酸リチウム、水酸化リチウム、及びそれらの水和物からなる群から選択される少なくとも1種である、請求項1〜10のいずれか一項に記載の方法。   The lithium compound used in the step (b) is at least one selected from the group consisting of lithium carbonate, lithium hydroxide, and hydrates thereof. The method described. 前記(c)工程における仮焼が、500〜900℃の温度で行われる、請求項1〜11のいずれか一項に記載の方法。   The method according to any one of claims 1 to 11, wherein the calcination in the step (c) is performed at a temperature of 500 to 900 ° C. 前記(f)工程における焼成が、850〜960℃の温度で行われる、請求項1〜12のいずれか一項に記載の方法。   The method according to any one of claims 1 to 12, wherein the firing in the step (f) is performed at a temperature of 850 to 960 ° C.
JP2014125113A 2014-06-18 2014-06-18 Method for producing positive electrode active material plate for lithium secondary battery Active JP6246079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014125113A JP6246079B2 (en) 2014-06-18 2014-06-18 Method for producing positive electrode active material plate for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014125113A JP6246079B2 (en) 2014-06-18 2014-06-18 Method for producing positive electrode active material plate for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2016004703A true JP2016004703A (en) 2016-01-12
JP6246079B2 JP6246079B2 (en) 2017-12-13

Family

ID=55223846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014125113A Active JP6246079B2 (en) 2014-06-18 2014-06-18 Method for producing positive electrode active material plate for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6246079B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021555A1 (en) * 2016-07-29 2018-02-01 住友金属鉱山株式会社 Nickel manganese composite hydrhydroxide, production method for nickel manganese composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, production method for positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN108183233A (en) * 2016-12-08 2018-06-19 三星Sdi株式会社 For the active material based on nickel, preparation method and the lithium secondary battery for including the anode containing it of lithium secondary battery
JP2018536972A (en) * 2016-03-04 2018-12-13 エルジー・ケム・リミテッド Precursor of positive electrode active material for secondary battery and positive electrode active material produced using the same
KR20190035718A (en) * 2016-07-29 2019-04-03 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel manganese complex hydroxide and its preparation method, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
CN112038611A (en) * 2020-09-15 2020-12-04 天津市捷威动力工业有限公司 Method for improving compacted density of high-nickel ternary positive plate
CN113764655A (en) * 2020-06-03 2021-12-07 湖南杉杉能源科技股份有限公司 Nickel-cobalt-manganese-aluminum quaternary precursor and preparation method thereof
US11302919B2 (en) 2016-07-20 2022-04-12 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11456458B2 (en) 2016-12-08 2022-09-27 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
US11569503B2 (en) 2016-07-20 2023-01-31 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11742483B2 (en) 2016-07-29 2023-08-29 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
US12009517B2 (en) 2016-07-29 2024-06-11 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074304A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method and lithium secondary batteries
JP2012003879A (en) * 2010-06-15 2012-01-05 Ngk Insulators Ltd Platy particle for positive electrode active material of lithium secondary battery and film of the positive electrode active material, and lithium secondary battery
JP2014049301A (en) * 2012-08-31 2014-03-17 Toyota Motor Corp Manufacturing method for sintered type electrode, and battery including sintered type electrode manufactured by the manufacturing method
WO2014050572A1 (en) * 2012-09-26 2014-04-03 日本碍子株式会社 Method for manufacturing all-solid-state lithium ion secondary battery
WO2014061580A1 (en) * 2012-10-15 2014-04-24 日本碍子株式会社 Process for manufacturing positive electrode active material for lithium secondary battery, and active material precursor powder to be used therein
US20140158932A1 (en) * 2012-06-08 2014-06-12 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Positive electrode active material precursor for lithium secondary battery, positive electrode active material manufactured by using thereof, and lithium secondary battery including same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074304A1 (en) * 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method and lithium secondary batteries
JP2012003879A (en) * 2010-06-15 2012-01-05 Ngk Insulators Ltd Platy particle for positive electrode active material of lithium secondary battery and film of the positive electrode active material, and lithium secondary battery
US20140158932A1 (en) * 2012-06-08 2014-06-12 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Positive electrode active material precursor for lithium secondary battery, positive electrode active material manufactured by using thereof, and lithium secondary battery including same
JP2014049301A (en) * 2012-08-31 2014-03-17 Toyota Motor Corp Manufacturing method for sintered type electrode, and battery including sintered type electrode manufactured by the manufacturing method
WO2014050572A1 (en) * 2012-09-26 2014-04-03 日本碍子株式会社 Method for manufacturing all-solid-state lithium ion secondary battery
WO2014061580A1 (en) * 2012-10-15 2014-04-24 日本碍子株式会社 Process for manufacturing positive electrode active material for lithium secondary battery, and active material precursor powder to be used therein

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700352B2 (en) 2016-03-04 2020-06-30 Lg Chem, Ltd. Precursor of positive electrode active material for secondary battery and positive electrode active material prepared using the same
JP2018536972A (en) * 2016-03-04 2018-12-13 エルジー・ケム・リミテッド Precursor of positive electrode active material for secondary battery and positive electrode active material produced using the same
US11302919B2 (en) 2016-07-20 2022-04-12 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11742482B2 (en) 2016-07-20 2023-08-29 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11569503B2 (en) 2016-07-20 2023-01-31 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
CN109803928A (en) * 2016-07-29 2019-05-24 住友金属矿山株式会社 Nickel-manganese composite hydroxide and its manufacturing method, non-aqueous electrolyte secondary battery positive active material and its manufacturing method and non-aqueous electrolyte secondary battery
WO2018021555A1 (en) * 2016-07-29 2018-02-01 住友金属鉱山株式会社 Nickel manganese composite hydrhydroxide, production method for nickel manganese composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, production method for positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2018021555A1 (en) * 2016-07-29 2019-05-23 住友金属鉱山株式会社 Nickel-manganese composite hydroxide and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
US11742483B2 (en) 2016-07-29 2023-08-29 Sumitomo Metal Mining Co., Ltd. Nickel manganese composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
US11658297B2 (en) 2016-07-29 2023-05-23 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
KR20190035718A (en) * 2016-07-29 2019-04-03 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel manganese complex hydroxide and its preparation method, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
US11296316B2 (en) 2016-07-29 2022-04-05 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US12009517B2 (en) 2016-07-29 2024-06-11 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide, method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP7215169B2 (en) 2016-07-29 2023-01-31 住友金属鉱山株式会社 Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
KR102446223B1 (en) 2016-07-29 2022-09-22 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel-manganese composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
US11456458B2 (en) 2016-12-08 2022-09-27 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
US11309542B2 (en) 2016-12-08 2022-04-19 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery including positive electrode including the same
CN108183233B (en) * 2016-12-08 2021-09-03 三星Sdi株式会社 Nickel-based active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising positive electrode comprising same
JP2018098205A (en) * 2016-12-08 2018-06-21 三星エスディアイ株式会社Samsung SDI Co., Ltd. Nickel-based active material for lithium secondary battery, production method of the same, and lithium secondary battery including the positive electrode containing the same
CN108183233A (en) * 2016-12-08 2018-06-19 三星Sdi株式会社 For the active material based on nickel, preparation method and the lithium secondary battery for including the anode containing it of lithium secondary battery
CN113764655B (en) * 2020-06-03 2023-01-20 巴斯夫杉杉电池材料有限公司 Nickel-cobalt-manganese-aluminum quaternary precursor and preparation method thereof
CN113764655A (en) * 2020-06-03 2021-12-07 湖南杉杉能源科技股份有限公司 Nickel-cobalt-manganese-aluminum quaternary precursor and preparation method thereof
CN112038611A (en) * 2020-09-15 2020-12-04 天津市捷威动力工业有限公司 Method for improving compacted density of high-nickel ternary positive plate

Also Published As

Publication number Publication date
JP6246079B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6246079B2 (en) Method for producing positive electrode active material plate for lithium secondary battery
JP6374634B1 (en) Lithium composite oxide sintered plate
US20170317334A1 (en) Cathode plate for all-solid battery, and all-solid battery
JP5701378B2 (en) Lithium secondary battery and positive electrode active material thereof
WO2018155155A1 (en) Lithium complex oxide sintered body plate
JPWO2019150559A1 (en) Positive electrode for solid-state battery, solid-state battery, and method for manufacturing solid-state battery
KR20210037753A (en) Electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery provided with same
JPWO2019093221A1 (en) Rechargeable battery
KR102511257B1 (en) Lithium titanate sintered plate
JP6019269B2 (en) Method for producing lithium cobaltate oriented sintered plate
CN110313087B (en) Lithium composite oxide sintered plate
JPWO2019221139A1 (en) Coin-type lithium secondary battery and IoT device
JP2016072241A (en) Lithium cobaltate orientated sintered plate and manufacturing method thereof, and method for forming solid electrolyte layer on lithium cobaltate orientated sintered plate
CN110612623B (en) Lithium titanate sintered body plate
JP2016115681A (en) Negative electrode layer for lithium battery, lithium battery
JP6823597B2 (en) Oriented positive electrode plate for lithium secondary batteries
JPWO2018147248A1 (en) Lithium composite oxide sintered plate and lithium secondary battery
KR20210015707A (en) Cathode active material, and method of fabricating of the same
WO2021100282A1 (en) Lithium titanate sintered body plate
JP6947813B2 (en) Lithium composite oxide sintered body plate
JP2016069269A (en) Method for production of lithium cobaltate-oriented sintered plate
JP2017024952A (en) Manufacturing method of lithium cobaltate oriented sintered sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171114

R150 Certificate of patent or registration of utility model

Ref document number: 6246079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150