JP2016004691A - Method for producing carbon material for negative electrode active material - Google Patents

Method for producing carbon material for negative electrode active material Download PDF

Info

Publication number
JP2016004691A
JP2016004691A JP2014124579A JP2014124579A JP2016004691A JP 2016004691 A JP2016004691 A JP 2016004691A JP 2014124579 A JP2014124579 A JP 2014124579A JP 2014124579 A JP2014124579 A JP 2014124579A JP 2016004691 A JP2016004691 A JP 2016004691A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode active
active material
carbon material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014124579A
Other languages
Japanese (ja)
Inventor
稲垣 伸二
Shinji Inagaki
伸二 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2014124579A priority Critical patent/JP2016004691A/en
Publication of JP2016004691A publication Critical patent/JP2016004691A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a carbon material for a negative electrode active material, in which particles hardly adhere with each other during a manufacturing process and fine particles can be obtained.SOLUTION: A method for producing a carbon material for a negative electrode active material includes: a coating step of mixing graphite powder and a solid novolac resin and then softening the novolac resin and applying a shear force to coat the novolac resin on the graphite powder, thereby forming granulated powder; a heat treatment step of subjecting the granulated powder to heat treatment in an oxygen-containing atmosphere to obtain heat-treated powder; and a firing step of firing the heat-treated powder in an inert gas atmosphere and obtaining a carbon material for a negative electrode active material.

Description

本発明は、負極活物質用炭素材料の製造方法に関する。 The present invention relates to a method for producing a carbon material for a negative electrode active material.

近年、省資源や環境問題の意識の高まりとともに、蓄電デバイスの開発が急速に進められている。蓄電デバイスの中でも、リチウムイオン電池(LiB)や炭素のリチウムイオン吸蔵能力を利用したリチウムイオンキャパシタ(LiC)の開発が進められている。 In recent years, with the growing awareness of resource saving and environmental issues, the development of power storage devices has been promoted rapidly. Among power storage devices, development of lithium ion batteries (LiB) and lithium ion capacitors (LiC) utilizing the lithium ion storage ability of carbon is being promoted.

リチウムイオン電池の負極活物質としては、炭素材料が多く用いられている。特許文献1には、このような用途に使用される炭素材料の製造方法が記載されている。具体的には、黒鉛核粒子が炭素微粒子で覆われている易黒鉛化性樹脂又は炭素材料粉末の表面を難黒鉛化性樹脂でコーティングすることによって、表面近傍を非晶質炭素材料とし、内部を結晶質の黒鉛とした負極活物質が記載されている。
表面材となる原料をコーティングする方法としては、表面材となる原料を有機溶媒に溶解し、この有機溶媒を霧状にして母材の原料へ吹き付ける方法、この有機溶媒に母材の原料を浸漬させる浸漬法が記載されている。
Carbon materials are often used as negative electrode active materials for lithium ion batteries. Patent Document 1 describes a method for producing a carbon material used for such applications. Specifically, by coating the surface of a graphitizable resin or carbon material powder in which graphite core particles are covered with carbon fine particles with a non-graphitizable resin, the surface vicinity is made an amorphous carbon material, and the inside Describes a negative electrode active material using crystalline graphite.
As a method of coating the raw material to be the surface material, the raw material to be the surface material is dissolved in an organic solvent, and this organic solvent is sprayed onto the raw material of the base material. The raw material of the base material is immersed in this organic solvent. A dipping method is described.

国際公開第2003/034518号パンフレットInternational Publication No. 2003/034518 Pamphlet

しかしながら、特許文献1に記載された方法では、表面材となる原料を有機溶媒に溶解したのち、母材に有機溶媒とともに被覆し、有機溶媒を揮散させている。このため、有機溶媒が輝散していく過程で溶質の濃度が高くなり、高粘度になるため、互いに粒子が付着しやすく、粒子径の小さな負極活物質用炭素材料が得られにくいという課題がある。
本発明は、上記課題を鑑み、製造過程で粒子どうしが付着しにくく、細かな粒子の得られる負極活物質用炭素材料の製造方法を提供することを目的とする。
However, in the method described in Patent Document 1, after the raw material to be the surface material is dissolved in an organic solvent, the base material is coated with the organic solvent to volatilize the organic solvent. For this reason, the concentration of the solute is increased and the viscosity becomes high in the process of diffusing the organic solvent, so that the particles are likely to adhere to each other, and it is difficult to obtain a carbon material for a negative electrode active material having a small particle diameter. is there.
In view of the above problems, an object of the present invention is to provide a method for producing a carbon material for a negative electrode active material in which fine particles are difficult to adhere to each other during the production process.

本発明の負極活物質用炭素材料の製造方法は、黒鉛粉末と、固体のノボラック樹脂とを混合したのち、上記ノボラック樹脂を軟化させるとともに、剪断力を加え上記黒鉛粉末に上記ノボラック樹脂を被覆し造粒粉を形成する被覆工程と、上記造粒粉を酸素含有雰囲気下で熱処理し熱処理粉を得る熱処理工程と、上記熱処理粉を、不活性ガス雰囲気下で焼成し、負極活物質用炭素材料を得る焼成工程と、からなることを特徴とする。 In the method for producing a carbon material for a negative electrode active material according to the present invention, after mixing graphite powder and a solid novolac resin, the novolac resin is softened and a shearing force is applied to the graphite powder to coat the novolac resin. A coating step for forming granulated powder; a heat treatment step for heat-treating the granulated powder in an oxygen-containing atmosphere to obtain a heat-treated powder; and firing the heat-treated powder in an inert gas atmosphere to form a carbon material for a negative electrode active material And a firing step to obtain

本発明の負極活物質用炭素材料の製造方法は、固体のノボラック樹脂を用い、ノボラック樹脂を軟化させるとともに剪断力を加えている。剪断力を加えることにより、ノボラック樹脂が黒鉛表面に薄く引き伸ばされてコートされる。このように黒鉛粉末にノボラック樹脂を被覆しているので、プロセス中に溶媒が関与せず、ノボラック樹脂が冷却されれば速やかに粘着力を失う。このため、造粒粉を構成する粒子どうしが互いに付着しにくく、細かな粒子で構成される造粒粉を容易に得ることができる。
また、酸素含有雰囲気下で熱処理することにより、造粒粉の被膜を溶融させることなく熱分解を促進させることができる。このため、酸素の作用により架橋反応が促進され、分子量が大きくなると共に、分子の主鎖分解が起こりにくくなり、後の焼成工程での炭化収率を高めることができる。
さらに造粒粉を不活性ガス雰囲気下で焼成し、熱分解したノボラック樹脂を炭化させることによって、細かな粒子の負極活物質用炭素材料を容易に得ることができる。
The method for producing a carbon material for a negative electrode active material of the present invention uses a solid novolac resin, softens the novolac resin and applies a shearing force. By applying a shearing force, the novolac resin is thinly stretched and coated on the graphite surface. Thus, since novolac resin is coat | covered with graphite powder, a solvent does not participate in a process, and if a novolak resin is cooled, adhesive force will be lost rapidly. For this reason, it is difficult for the particles constituting the granulated powder to adhere to each other, and the granulated powder composed of fine particles can be easily obtained.
Further, by performing heat treatment in an oxygen-containing atmosphere, thermal decomposition can be promoted without melting the granulated powder film. For this reason, a crosslinking reaction is accelerated | stimulated by the effect | action of oxygen, while molecular weight becomes large, and the principal chain decomposition | disassembly of a molecule | numerator becomes difficult to occur, and the carbonization yield in a subsequent baking process can be raised.
Further, the granulated powder is fired in an inert gas atmosphere, and the pyrolyzed novolak resin is carbonized, whereby a fine particle carbon material for a negative electrode active material can be easily obtained.

本発明の負極活物質用炭素材料の製造方法において、上記熱処理工程は、硬化剤の存在下で行われることが望ましい。
硬化剤の存在下で熱処理することによって、ノボラック樹脂の被膜を速やかに硬化させることができ、より造粒粉どうしが付着しにくくすることができる。
In the method for producing a carbon material for a negative electrode active material according to the present invention, the heat treatment step is desirably performed in the presence of a curing agent.
By heat-treating in the presence of a curing agent, the novolac resin film can be quickly cured, and the granulated powders can be more difficult to adhere to each other.

本発明の負極活物質用炭素材料の製造方法において、上記硬化剤は、アミン系硬化剤であることが望ましい。
アミン系硬化剤は、ノボラック樹脂と反応し、被膜を容易に硬化させることができ、炭化収率の高いノボラック型フェノール樹脂を得ることができる。このため、細かな粒子の負極活物質用炭素材料を容易に得ることができる。
In the method for producing a carbon material for a negative electrode active material according to the present invention, the curing agent is preferably an amine-based curing agent.
The amine-based curing agent can react with the novolak resin to easily cure the coating, and a novolak-type phenol resin with a high carbonization yield can be obtained. For this reason, the carbon material for negative electrode active materials of a fine particle can be obtained easily.

本発明の負極活物質用炭素材料の製造方法において、上記被覆工程は、上記ノボラック樹脂の軟化温度〜上記軟化温度+30℃の範囲内で行われることが望ましい。
被覆工程をノボラック樹脂の軟化温度〜軟化温度+30℃の範囲内で行うことにより、ノボラック樹脂を黒鉛粉末に効率良く被覆することができる。ノボラック樹脂の軟化温度を下回ると、黒鉛粉末へのノボラック樹脂の付着力が低下し、造粒能力が低下する。ノボラック樹脂の軟化温度+30℃を超えると、ノボラック樹脂自体が被覆工程中に変質しやすくなり、造粒能力が低下する。
ノボラック樹脂の軟化温度は、JIS K 6910(フェノール樹脂試験方法)が準用するJIS K 5601−2−2(塗料成分試験方法〜第2節軟化点(環球法))により測定された温度とする。
In the method for producing a carbon material for a negative electrode active material according to the present invention, the coating step is preferably performed within a range of the softening temperature of the novolac resin to the softening temperature + 30 ° C.
By performing the coating step within the range of the softening temperature of the novolak resin to the softening temperature + 30 ° C., the novolac resin can be efficiently coated on the graphite powder. Below the softening temperature of the novolak resin, the adhesion of the novolak resin to the graphite powder is reduced, and the granulation ability is reduced. When the softening temperature of the novolak resin exceeds + 30 ° C., the novolak resin itself is easily deteriorated during the coating process, and the granulating ability is lowered.
The softening temperature of the novolak resin is a temperature measured according to JIS K 5601-2-2 (paint component test method to second softening point (ring ball method)) mutatis mutandis by JIS K 6910 (phenol resin test method).

(発明の詳細な説明)
以下、本発明について具体的に説明する。しかしながら、本発明は、以下の記載に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
(Detailed description of the invention)
Hereinafter, the present invention will be specifically described. However, the present invention is not limited to the following description, and can be appropriately modified and applied without departing from the scope of the present invention. Note that the present invention also includes a combination of two or more desirable configurations of the present invention described below.

本発明の負極活物質用炭素材料の製造方法は、黒鉛粉末と、固体のノボラック樹脂とを混合したのち、上記ノボラック樹脂を軟化させるとともに、剪断力を加え上記黒鉛粉末に上記ノボラック樹脂を被覆し造粒粉を形成する被覆工程と、上記造粒粉を酸素含有雰囲気下で熱処理し熱処理粉を得る熱処理工程と、上記熱処理粉を、不活性ガス雰囲気下で焼成し、負極活物質用炭素材料を得る焼成工程と、からなることを特徴とする。
以下、本発明の負極活物質用炭素材料の製造方法の各工程について説明する。
In the method for producing a carbon material for a negative electrode active material according to the present invention, after mixing graphite powder and a solid novolac resin, the novolac resin is softened and a shearing force is applied to the graphite powder to coat the novolac resin. A coating step for forming granulated powder; a heat treatment step for heat-treating the granulated powder in an oxygen-containing atmosphere to obtain a heat-treated powder; and firing the heat-treated powder in an inert gas atmosphere to form a carbon material for a negative electrode active material And a firing step to obtain
Hereinafter, each process of the manufacturing method of the carbon material for negative electrode active materials of this invention is demonstrated.

(1)被覆工程
被覆工程では、黒鉛粉末と、固体のノボラック樹脂とを混合したのち、上記ノボラック樹脂を軟化させるとともに、剪断力を加え上記黒鉛粉末に上記ノボラック樹脂を被覆し造粒粉を形成する。
(1) Coating process In the coating process, after mixing graphite powder and solid novolac resin, the novolak resin is softened and sheared to apply the novolac resin to form the granulated powder. To do.

黒鉛粉末としては、特に限定はないが、高結晶性炭素である炭素粒子であることが望ましく、天然黒鉛、人造黒鉛等が挙げられる。また、天然黒鉛としては、鱗片状黒鉛、鱗状黒鉛等が望ましい。
また、黒鉛粉末は、粉砕装置により粉砕され、さらに分級処理されているものであってもよい。
粉砕装置としては、インペラーミル、ハンマーミル、ジェットミル、ボールミル、超微粉砕機等の任意の装置を用いることができる。また、分級処理には、乾式の分級機、湿式の分級機を任意に用いることができ、例えば乾式又は湿式の重力式分級機、慣性力式分級機、遠心力式分級機等を用いることができる。
黒鉛粉末の粒子径は、D50=0.5〜2.5μmに調整されていることが望ましく、D50=1.4〜1.6μmに調整されていることがより望ましい。
なお、本明細書において、D50は、粒度分布におけるメジアン径である。粒度分布は、レーザー回折式粒度分布測定によって測定することができる。
The graphite powder is not particularly limited, but is preferably carbon particles that are highly crystalline carbon, and examples thereof include natural graphite and artificial graphite. Moreover, as natural graphite, scaly graphite, scaly graphite, etc. are desirable.
The graphite powder may be pulverized by a pulverizer and further classified.
As the pulverizer, any device such as an impeller mill, a hammer mill, a jet mill, a ball mill, and an ultrafine pulverizer can be used. In the classification process, a dry classifier or a wet classifier can be arbitrarily used. For example, a dry or wet gravity classifier, an inertial force classifier, a centrifugal classifier, or the like can be used. it can.
The particle diameter of the graphite powder is desirably adjusted to D50 = 0.5 to 2.5 μm, and more desirably adjusted to D50 = 1.4 to 1.6 μm.
In the present specification, D50 is the median diameter in the particle size distribution. The particle size distribution can be measured by laser diffraction particle size distribution measurement.

ノボラック樹脂は、フェノール類(フェノール、クレゾール等)とホルムアルデヒドが酸触媒下で縮合重合されて得られる樹脂である。
固体のノボラック樹脂としては、メチレン基結合位置がオルソ位であるかパラであるかが制御されていないランダムノボラックタイプ(オルソ位の割合80%未満、望ましくは50%以下)とオルソ位でのメチレン基結合が多いハイオルソノボラックタイプ(オルソ位の割合80%以上)が知られている。
どちらのノボラック樹脂も好適に使用することができるが、これらのうちではランダムノボラックタイプであることがより望ましい。
ランダムノボラックタイプであると、被覆工程において樹脂の硬化が起こりにくいため、軟化したノボラック樹脂による黒鉛粉末の被覆がより好適に行われる。
The novolak resin is a resin obtained by condensation polymerization of phenols (phenol, cresol, etc.) and formaldehyde under an acid catalyst.
Solid novolac resins include random novolak type (molar group position is less than 80%, preferably 50% or less) and methylene group in ortho position where the position of methylene group bonding is not controlled to be ortho or para. A high ortho novolak type having a large number of group bonds (ratio of ortho position of 80% or more) is known.
Either novolak resin can be preferably used, but among these, a random novolak resin is more preferable.
In the random novolac type, the resin is hard to be cured in the coating step, and thus the graphite powder is more suitably coated with the softened novolak resin.

ノボラック樹脂の軟化は、ノボラック樹脂を加熱することによって行う。ノボラック樹脂の加熱は、ノボラック樹脂の軟化温度〜軟化温度+30℃の範囲で行うことが望ましく、この範囲とすることでノボラック樹脂がちょうどよい程度に軟化して黒鉛粉末に付着しやすくなるので、効率良く被覆することができる。ノボラック樹脂の軟化温度を下回ると、黒鉛粉末へのノボラック樹脂の付着力が低下し、造粒能力が低下する。ノボラック樹脂の軟化温度+30℃を超えると、ノボラック樹脂自体が被覆工程中に変質しやすくなり、造粒能力が低下する。
また、一般的に、被覆工程における加熱温度は80〜100℃であることが望ましい。
The novolac resin is softened by heating the novolac resin. It is desirable to heat the novolak resin in the range of the softening temperature of the novolak resin to the softening temperature + 30 ° C. By setting the temperature within this range, the novolac resin is softened to a suitable degree and easily adheres to the graphite powder. It can coat well. Below the softening temperature of the novolak resin, the adhesion of the novolak resin to the graphite powder is reduced, and the granulation ability is reduced. When the softening temperature of the novolak resin exceeds + 30 ° C., the novolak resin itself is easily deteriorated during the coating process, and the granulating ability is lowered.
In general, the heating temperature in the coating step is desirably 80 to 100 ° C.

被覆工程において、黒鉛粉末と固体のノボラック樹脂の混合比は、黒鉛粉末100重量部に対して固体のノボラック樹脂=10〜50重量部であることが望ましい。
軟化したノボラック樹脂と黒鉛粉末が混合され、それに剪断力が加わるようにすると、黒鉛粉末の表面がノボラック樹脂で被覆され、造粒粉が形成される。
ノボラック樹脂と黒鉛粉末の混合物に剪断力を加える装置としては、混捏を行うことのできる装置が好適に用いられ、種々の市販の混合機、混練機、日本コークス工業社製、ヘンシェルミキサー、ホソカワミクロン製、循環型メカノフュージョンシステム(登録商標)等を用いることができる。
In the coating step, the mixing ratio of the graphite powder and the solid novolak resin is preferably 10 to 50 parts by weight of the solid novolak resin with respect to 100 parts by weight of the graphite powder.
When the softened novolak resin and graphite powder are mixed and a shearing force is applied thereto, the surface of the graphite powder is coated with the novolak resin, and granulated powder is formed.
As a device for applying a shearing force to a mixture of novolak resin and graphite powder, a device capable of kneading is suitably used. Various commercially available mixers, kneaders, manufactured by Nippon Coke Industries, Henschel mixer, manufactured by Hosokawa Micron Circulating mechano-fusion system (registered trademark) or the like can be used.

被覆工程で形成される造粒粉は、溶媒を介することなく、黒鉛粒子がノボラック樹脂で被覆されたものであり、ノボラック樹脂が冷却されれば速やかに粘着力を失う。
そのため、造粒粉を構成する粒子どうしは互いに付着しにくく、細かな粒子で構成される造粒粉が得られる。被覆工程を経て得られる造粒粉のメジアン径(D50)は0.6〜15μmであることが望ましく、1〜4μmであることがより望ましい。
The granulated powder formed in the coating step is one in which graphite particles are coated with a novolac resin without passing through a solvent, and when the novolak resin is cooled, the adhesive force is quickly lost.
Therefore, the particles constituting the granulated powder are difficult to adhere to each other, and a granulated powder composed of fine particles is obtained. The median diameter (D50) of the granulated powder obtained through the coating process is preferably 0.6 to 15 μm, and more preferably 1 to 4 μm.

(2)熱処理工程
熱処理工程では、造粒粉を酸素含有雰囲気下で熱処理し熱処理粉を得る。酸素含有雰囲気下とは、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下ではなく、酸素を含む雰囲気下であることを意味し、空気雰囲気であることが望ましい。
酸素濃度調整を特に行わずに空気雰囲気下での処理にすると、工程管理が容易である。
また、酸素含有雰囲気での熱処理を行うことにより、造粒粉の被膜のノボラック樹脂を溶融させることなく熱分解を促進させることができる。
熱処理温度は200〜500℃であることが望ましく、300〜450℃であることがより望ましい。
熱処理温度までの昇温速度は2.0〜5.0℃/分であることが望ましい。
熱処理工程における、熱処理温度での処理時間は、特に限定されないが、0.5〜3時間であることが望ましく、1〜2時間であることがより望ましい。
また、熱処理工程は、被覆工程から連続して、ノボラック樹脂と黒鉛粉末を混合して剪断力を加えた状態(混捏等を行っている状態)においてさらに温度を上げることによって行ってもよい。
また、被覆工程を行う装置とは異なる熱処理炉等の装置に移した後に熱処理工程を行ってもよい。
(2) Heat treatment step In the heat treatment step, the granulated powder is heat treated in an oxygen-containing atmosphere to obtain heat treated powder. The oxygen-containing atmosphere means not an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, but an atmosphere containing oxygen, and is preferably an air atmosphere.
If the treatment is performed in an air atmosphere without particularly adjusting the oxygen concentration, process management is easy.
Moreover, by performing the heat treatment in an oxygen-containing atmosphere, thermal decomposition can be promoted without melting the novolak resin of the granulated powder coating.
The heat treatment temperature is desirably 200 to 500 ° C, and more desirably 300 to 450 ° C.
The heating rate up to the heat treatment temperature is desirably 2.0 to 5.0 ° C./min.
The treatment time at the heat treatment temperature in the heat treatment step is not particularly limited, but is preferably 0.5 to 3 hours, and more preferably 1 to 2 hours.
Moreover, you may perform a heat processing process by raising temperature further in the state (state which is kneading etc.) which mixed the novolak resin and graphite powder and applied the shear force continuously from the coating | coated process.
Moreover, you may perform a heat treatment process, after moving to apparatuses, such as a heat treatment furnace different from the apparatus which performs a coating process.

熱処理工程は、硬化剤の存在下で行われることが望ましい。
硬化剤の存在下で熱処理することによって、ノボラック樹脂の被膜を速やかに硬化させることができ、より造粒粉どうしが付着しにくくすることができる。
硬化剤としては、アミン系硬化剤を使用することが好ましく、アミン系硬化剤としては、第1級アミン、第2級アミン又は第3級アミンを使用することができる。例えば、脂肪族アミン(エチレンジアミン、プロピレンジアミン、1,4−ブタンジアミンなどのC2−10アルキレンポリアミン)、脂環状ポリアミン[メンセンジアミン、イソホロンジアミン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、メタキシリレンジアミンの水素添加物、1,3,5−トリス(アミノメチル)ベンゼンの水添物など]、芳香族ポリアミン[メタキシリレンジアミン、メタフェニレンジアミン、4,4’−ジアミノフェニルメタン、ジアミノジフェニルスルホン、1,3,5−トリス(アミノメチル)ベンゼンなど]、環状ポリアミン(ヘキサメチレンテトラミン、トリエチレンジアミン、DABCO、N−エチルアミノピペラジンなど)、その他のアミン系硬化剤(4,4’,4’’,4’’’−フタロシアニンテトラミンとその銅、コバルト、ニッケル付加体など)などが挙げられる。これらの硬化剤は、単独で又は二種組み合わせて使用できる。好ましいアミン系硬化剤は、ヘキサメチレンテトラミンなどの環状ポリアミンである。
硬化剤の添加は、被覆工程の後、熱処理工程の前に行うことが望ましい。
被覆工程においては黒鉛粉末に対して軟化したノボラック樹脂を均一に被覆することが望ましいので硬化剤は存在しないことが望ましい。そして、ノボラック樹脂による被覆がされた後であれば硬化剤を加えることによってノボラック樹脂の皮膜が速やかに硬化され、造粒粉同士の付着を防止できるためである。
The heat treatment step is preferably performed in the presence of a curing agent.
By heat-treating in the presence of a curing agent, the novolac resin film can be quickly cured, and the granulated powders can be more difficult to adhere to each other.
As the curing agent, an amine-based curing agent is preferably used, and as the amine-based curing agent, a primary amine, a secondary amine, or a tertiary amine can be used. For example, aliphatic amine (C2-10 alkylenepolyamine such as ethylenediamine, propylenediamine, 1,4-butanediamine), alicyclic polyamine [mensendiamine, isophoronediamine, bis (4-amino-3-methylcyclohexyl) methane, Metaxylylenediamine hydrogenated product, hydrogenated 1,3,5-tris (aminomethyl) benzene], aromatic polyamine [metaxylylenediamine, metaphenylenediamine, 4,4′-diaminophenylmethane, Diaminodiphenylsulfone, 1,3,5-tris (aminomethyl) benzene, etc.], cyclic polyamines (hexamethylenetetramine, triethylenediamine, DABCO, N-ethylaminopiperazine, etc.), other amine curing agents (4,4 ' , 4 '', 4 '''-Phthalocyani And its adducts such as copper, cobalt, and nickel adducts. These curing agents can be used alone or in combination. A preferred amine-based curing agent is a cyclic polyamine such as hexamethylenetetramine.
The addition of the curing agent is desirably performed after the coating step and before the heat treatment step.
In the coating process, it is desirable to uniformly coat the novolak resin softened against the graphite powder, so that it is desirable that no curing agent is present. And if it is after coat | covering with novolak resin, it is because the film | membrane of novolak resin will be hardened rapidly by adding a hardening | curing agent, and adhesion of granulated powder can be prevented.

(3)焼成工程
焼成工程では、熱処理粉を、不活性ガス雰囲気下で焼成し、負極活物質用炭素材料を得る。
不活性ガス雰囲気としては、窒素雰囲気、アルゴン雰囲気等が挙げられる。
焼成温度は800〜1200℃であることが望ましく、900〜1100℃であることがより望ましい。
焼成温度までの昇温速度は2.0〜5.0℃/分であることが望ましい。
焼成工程における圧力は、特に限定されないが、通常、常圧程度であることが望ましい。
焼成工程における、焼成温度での処理時間は、特に限定されないが、0.5〜3時間であることが望ましく、1〜2時間であることがより望ましい。
焼成工程には、一般的に使用される焼成炉を用いることができる。
(3) Firing step In the firing step, the heat-treated powder is fired in an inert gas atmosphere to obtain a carbon material for a negative electrode active material.
Examples of the inert gas atmosphere include a nitrogen atmosphere and an argon atmosphere.
The firing temperature is desirably 800 to 1200 ° C, and more desirably 900 to 1100 ° C.
The heating rate up to the firing temperature is desirably 2.0 to 5.0 ° C./min.
Although the pressure in a baking process is not specifically limited, Usually, it is desirable that it is about a normal pressure.
The treatment time at the firing temperature in the firing step is not particularly limited, but is preferably 0.5 to 3 hours, and more preferably 1 to 2 hours.
In the firing step, a commonly used firing furnace can be used.

上記工程により、黒鉛粉末の周囲がノボラック樹脂が炭化されてなる被覆層で被覆されてなる、負極活物質用炭素材料が得られる。固体のノボラック樹脂のうち、焼成工程後に炭化して残った残留物が被覆層である。
負極活物質用炭素材料の製造に用いたノボラック樹脂の重量と、残った被覆層の重量がわかれば、
[被覆層の重量/ノボラック樹脂の重量]×100=残炭率(%)
の式により残炭率を求めることができる。
上記工程により得られる残炭率は20%以上であることが望ましく、40〜60%であることがより望ましい。
また、被覆層の重量は、得られた負極活物質用炭素材料の重量から黒鉛粉末の重量を引くことによって算出された重量である。
また、得られる負極活物質用炭素材料において黒鉛粉末の重量と被覆層の重量比は、黒鉛粉末100重量部に対して、被覆層5〜25重量部であることが望ましい。
また、ノボラック樹脂が炭化されてなる被覆層は、非晶性である。
黒鉛粉末の表面に非晶性の被覆層を設けることによって、ガス発生量の少ない負極活物質用炭素材料とすることができる。結晶性の黒鉛粉末は光学的異方性組織であるのに対し、非晶性の被覆層は光学的等方性組織であるので、偏光顕微鏡で容易に識別することが可能である。
By the above process, a carbon material for a negative electrode active material is obtained in which the graphite powder is coated with a coating layer obtained by carbonizing a novolac resin. Of the solid novolac resin, the residue remaining after carbonization after the firing step is the coating layer.
If you know the weight of the novolak resin used in the production of the carbon material for the negative electrode active material and the weight of the remaining coating layer,
[Weight of coating layer / weight of novolac resin] × 100 = remaining carbon ratio (%)
The remaining charcoal rate can be obtained from
The residual carbon ratio obtained by the above process is desirably 20% or more, and more desirably 40 to 60%.
Further, the weight of the coating layer is a weight calculated by subtracting the weight of the graphite powder from the weight of the obtained carbon material for negative electrode active material.
In the obtained carbon material for negative electrode active material, the weight ratio of the graphite powder to the coating layer is preferably 5 to 25 parts by weight with respect to 100 parts by weight of the graphite powder.
Moreover, the coating layer formed by carbonizing the novolak resin is amorphous.
By providing an amorphous coating layer on the surface of the graphite powder, a carbon material for a negative electrode active material with a small amount of gas generation can be obtained. The crystalline graphite powder has an optically anisotropic structure, whereas the amorphous coating layer has an optically isotropic structure, and therefore can be easily identified with a polarizing microscope.

得られた負極活物質用炭素材料のメジアン径(D50)は0.8〜15μmであることが望ましく、1〜4μmであることがより望ましい。
本発明の負極活物質用炭素材料の製造方法によると、上記のようなメジアン径を有する、細かな粒子の負極活物質用炭素材料が得られる。細かな粒子の負極活物質用炭素材料は、リチウムイオン電池の負極活物質として使用した際に高充放電容量が実現可能なことを意味する。高充放電容量とは充放電時の電流が大きいことを示す。
The median diameter (D50) of the obtained carbon material for negative electrode active material is desirably 0.8 to 15 μm, and more desirably 1 to 4 μm.
According to the method for producing a carbon material for a negative electrode active material of the present invention, a fine particle carbon material for a negative electrode active material having a median diameter as described above can be obtained. A fine particle carbon material for a negative electrode active material means that a high charge / discharge capacity can be realized when used as a negative electrode active material for a lithium ion battery. The high charge / discharge capacity indicates that the current during charge / discharge is large.

以下に、本発明の負極活物質用炭素材料の製造方法の作用効果について列挙する。 Below, it enumerates about the effect of the manufacturing method of the carbon material for negative electrode active materials of this invention.

(1)本発明の負極活物質用炭素材料の製造方法は、固体のノボラック樹脂を用い、ノボラック樹脂を軟化させるとともに剪断力を加え、黒鉛粉末にノボラック樹脂を被覆しているので、プロセス中に溶媒が関与せず、ノボラック樹脂が冷却されれば速やかに粘着力を失う。このため、造粒粉を構成する粒子どうしが互いに付着しにくく、細かな粒子で構成される造粒粉を容易に得ることができる。 (1) The method for producing a carbon material for a negative electrode active material of the present invention uses a solid novolac resin, softens the novolac resin and applies a shearing force, and coats the novolac resin on the graphite powder. If the solvent is not involved and the novolac resin is cooled, the adhesive strength is quickly lost. For this reason, it is difficult for the particles constituting the granulated powder to adhere to each other, and the granulated powder composed of fine particles can be easily obtained.

(2)本発明の負極活物質用炭素材料の製造方法では、酸素含有雰囲気下で熱処理することにより、造粒粉の被膜を溶融させることなく熱分解を促進させることができる。このため、酸素の作用により架橋反応が促進され、分子量が大きくなると共に、分子の主鎖分解が起こりにくくなり、後の焼成工程での炭化収率を高めることができる。 (2) In the method for producing a carbon material for a negative electrode active material according to the present invention, thermal decomposition can be promoted without melting the granulated powder film by heat treatment in an oxygen-containing atmosphere. For this reason, a crosslinking reaction is accelerated | stimulated by the effect | action of oxygen, while molecular weight becomes large, and the principal chain decomposition | disassembly of a molecule | numerator becomes difficult to occur, and the carbonization yield in a subsequent baking process can be raised.

(3)本発明の負極活物質用炭素材料の製造方法では、熱処理粉を不活性ガス雰囲気下で焼成し、熱分解したノボラック樹脂を炭化させることによって、細かな粒子の負極活物質用炭素材料を容易に得ることができる。 (3) In the method for producing a carbon material for negative electrode active material according to the present invention, fine particles of the carbon material for negative electrode active material are obtained by firing the heat-treated powder in an inert gas atmosphere and carbonizing the pyrolyzed novolac resin. Can be easily obtained.

(4)本発明の負極活物質用炭素材料の製造方法において、熱処理工程が硬化剤の存在下で行われると、ノボラック樹脂の被膜を速やかに硬化させることができ、より造粒粉どうしが付着しにくくすることができる。 (4) In the method for producing a carbon material for a negative electrode active material according to the present invention, when the heat treatment step is performed in the presence of a curing agent, the novolac resin film can be quickly cured, and the granulated powder adheres more. Can be difficult.

(5)本発明の負極活物質用炭素材料の製造方法において、硬化剤がアミン系硬化剤であると、アミン系硬化剤は、ノボラック樹脂と反応し、被膜を容易に硬化させることができ、炭化収率の高いノボラック型フェノール樹脂を得ることができる。このため、細かな粒子の負極活物質用炭素材料を容易に得ることができる。 (5) In the method for producing a carbon material for a negative electrode active material according to the present invention, when the curing agent is an amine curing agent, the amine curing agent can react with the novolac resin to easily cure the coating, A novolac-type phenol resin with a high carbonization yield can be obtained. For this reason, the carbon material for negative electrode active materials of a fine particle can be obtained easily.

(6)本発明の負極活物質用炭素材料の製造方法において、被覆工程が、上記ノボラック樹脂の軟化温度〜軟化温度+30℃の範囲内で行われると、ノボラック樹脂を黒鉛粉末に効率良く被覆することができる。 (6) In the method for producing a carbon material for a negative electrode active material of the present invention, when the coating step is performed within the range of the softening temperature of the novolak resin to the softening temperature + 30 ° C., the novolac resin is efficiently coated on the graphite powder. be able to.

(実施例)
以下に、本発明の実施形態をより具体的に開示した実施例を示すが、本発明の実施形態はこれらの実施例のみに限定されるものではない。
(Example)
Examples in which the embodiments of the present invention are disclosed more specifically are shown below, but the embodiments of the present invention are not limited to these examples.

(実施例1)
鱗片状黒鉛を、インペラーミル(セイシン企業社製)にてD50=20μm程度に粗粉砕し、ジェットミル(アーステクニカ社製)にてD50=1.5μmに微粉砕した黒鉛粉末を準備した。黒鉛粉末100重量部に対して固体のノボラック樹脂(ランダムノボラックタイプ:品番BRG−557:軟化温度82〜88℃:昭和電工社製)40重量部を加え、ニーダー(パウレック社製)を用いて90〜100℃に加熱し、ノボラック樹脂を軟化させて剪断力を加えながら混捏して黒鉛粒子をノボラック樹脂で被覆し、造粒粉を得た。
続けて、造粒粉に硬化剤としてヘキサメチレンテトラミンを5〜20重量部加え、混合物の撹拌を続けながら大気中、熱処理温度までの昇温速度=2.5℃/分で昇温し、500℃の熱処理温度により2時間熱処理を行い、熱処理粉を得た。
次に、焼成炉を用いて、不活性ガス(窒素)雰囲気中、焼成温度までの昇温速度=4.2℃/分、1000℃の焼成温度により2時間焼成を行い、ノボラック樹脂を炭化して被覆層を形成して負極活物質用炭素材料を得た。
上記工程により、黒鉛粉末100重量部に対し16重量部の被覆層が被覆された負極活物質用炭素材料を、熱処理工程における酸素濃度調整を実施せずに得た。
残炭率は40%であり、負極活物質用炭素材料のメジアン径(D50)をマイクロトラック(日機装社製)により測定したところ、7μmであった。
(Example 1)
The scaly graphite was coarsely pulverized to about D50 = 20 μm with an impeller mill (manufactured by Seishin Enterprise Co., Ltd.), and a graphite powder was prepared by finely pulverizing to D50 = 1.5 μm with a jet mill (earth technica company). A solid novolak resin (random novolak type: product number BRG-557: softening temperature 82 to 88 ° C .: Showa Denko KK) 40 parts by weight is added to 100 parts by weight of graphite powder, and 90% using a kneader (Powrec). The mixture was heated to -100 ° C., softened the novolak resin and kneaded while applying a shearing force, and the graphite particles were coated with the novolak resin to obtain granulated powder.
Subsequently, 5 to 20 parts by weight of hexamethylenetetramine as a curing agent is added to the granulated powder, and the temperature is raised at a heating rate of 2.5 ° C./minute up to the heat treatment temperature in the air while continuing to stir the mixture. Heat treatment was performed at a heat treatment temperature of 0 ° C. for 2 hours to obtain heat treated powder.
Next, using a firing furnace, firing was performed in an inert gas (nitrogen) atmosphere at a rate of temperature rise up to the firing temperature = 4.2 ° C./min at a firing temperature of 1000 ° C. for 2 hours, and the novolak resin was carbonized. Thus, a coating layer was formed to obtain a carbon material for a negative electrode active material.
By the above process, a carbon material for a negative electrode active material coated with 16 parts by weight of a coating layer with respect to 100 parts by weight of graphite powder was obtained without adjusting the oxygen concentration in the heat treatment process.
The residual carbon ratio was 40%, and the median diameter (D50) of the carbon material for the negative electrode active material was measured by Microtrac (manufactured by Nikkiso Co., Ltd.) and found to be 7 μm.

(比較例1)
フェノール系樹脂40gをトルエン4000mLに溶解させて、このトルエン溶液に、実施例1で用いたものと同じ黒鉛粉末100gを5分間浸漬させて、黒鉛粉末の表面をフェノール系樹脂で被覆した。このとき、有機溶媒を用いて被覆を行ったので、乾燥及び硬化の過程において、フェノール系樹脂が高粘度の液体となり、互いに粒子が接着しやすい状態が長時間持続し、黒鉛粉末から得られる負極活物質用炭素材料は粒子が粗大化していた。
その後、熱処理工程及び焼成工程を実施例1と同様にして行い、負極活物質用炭素材料を得た。
残炭率は18%であり、負極活物質用炭素材料のメジアン径(D50)をマイクロトラック(日機装社製)により測定したところ、17μmであった。
(Comparative Example 1)
40 g of phenolic resin was dissolved in 4000 mL of toluene, and 100 g of the same graphite powder used in Example 1 was immersed in this toluene solution for 5 minutes to coat the surface of the graphite powder with phenolic resin. At this time, since the coating was performed using the organic solvent, the phenolic resin became a high-viscosity liquid in the drying and curing process, and the state in which the particles were easily adhered to each other lasted for a long time. The active material carbon material had coarse particles.
Thereafter, the heat treatment step and the firing step were performed in the same manner as in Example 1 to obtain a carbon material for a negative electrode active material.
The residual carbon ratio was 18%, and the median diameter (D50) of the carbon material for the negative electrode active material was measured with a microtrack (manufactured by Nikkiso Co., Ltd.).

Claims (4)

黒鉛粉末と、固体のノボラック樹脂とを混合したのち、前記ノボラック樹脂を軟化させるとともに、剪断力を加え前記黒鉛粉末に前記ノボラック樹脂を被覆し造粒粉を形成する被覆工程と、
前記造粒粉を酸素含有雰囲気下で熱処理し熱処理粉を得る熱処理工程と、
前記熱処理粉を、不活性ガス雰囲気下で焼成し、負極活物質用炭素材料を得る焼成工程と、
からなることを特徴とする負極活物質用炭素材料の製造方法。
A coating step of softening the novolak resin after mixing the graphite powder and a solid novolak resin, and applying a shearing force to coat the graphite powder with the novolac resin to form a granulated powder;
A heat treatment step in which the granulated powder is heat-treated in an oxygen-containing atmosphere to obtain a heat-treated powder;
Firing the heat-treated powder in an inert gas atmosphere to obtain a carbon material for a negative electrode active material; and
A method for producing a carbon material for a negative electrode active material, comprising:
前記熱処理工程は、硬化剤の存在下で行われることを特徴とする請求項1に記載の負極活物質用炭素材料の製造方法。 The method for producing a carbon material for a negative electrode active material according to claim 1, wherein the heat treatment step is performed in the presence of a curing agent. 前記硬化剤は、アミン系硬化剤であることを特徴とする請求項2に記載の負極活物質用炭素材料の製造方法。 The method for producing a carbon material for a negative electrode active material according to claim 2, wherein the curing agent is an amine-based curing agent. 前記被覆工程は、前記ノボラック樹脂の軟化温度〜前記軟化温度+30℃の範囲内で行われることを特徴とする請求項1〜3のいずれか一項に記載の負極活物質用炭素材料の製造方法。 The method for producing a carbon material for a negative electrode active material according to any one of claims 1 to 3, wherein the covering step is performed within a range of a softening temperature of the novolac resin to a softening temperature of + 30 ° C. .
JP2014124579A 2014-06-17 2014-06-17 Method for producing carbon material for negative electrode active material Pending JP2016004691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014124579A JP2016004691A (en) 2014-06-17 2014-06-17 Method for producing carbon material for negative electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014124579A JP2016004691A (en) 2014-06-17 2014-06-17 Method for producing carbon material for negative electrode active material

Publications (1)

Publication Number Publication Date
JP2016004691A true JP2016004691A (en) 2016-01-12

Family

ID=55223838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014124579A Pending JP2016004691A (en) 2014-06-17 2014-06-17 Method for producing carbon material for negative electrode active material

Country Status (1)

Country Link
JP (1) JP2016004691A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020087916A (en) * 2018-11-20 2020-06-04 Jfeケミカル株式会社 Production method of carbonaceous coated graphite particle
JP6946597B1 (en) * 2020-06-26 2021-10-06 Jfeケミカル株式会社 Method for producing carbonaceous-coated graphite particles
WO2021260964A1 (en) 2020-06-26 2021-12-30 Jfeケミカル株式会社 Method for producing graphite particles coated with carbonaceous film
WO2023021957A1 (en) 2021-08-17 2023-02-23 Jfeケミカル株式会社 Carbon-coated graphite particles, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2023021959A1 (en) 2021-08-17 2023-02-23 Jfeケミカル株式会社 Carbonaceous material-coated graphite particles, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR20230050483A (en) 2021-08-17 2023-04-14 제이에프이 케미칼 가부시키가이샤 Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR20230059841A (en) 2021-08-17 2023-05-03 제이에프이 케미칼 가부시키가이샤 Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2023133662A1 (en) * 2022-01-11 2023-07-20 宁德时代新能源科技股份有限公司 Modified graphite and preparation method therefor, carbon-coated negative electrode active material and preparation method therefor, negative electrode piece, secondary battery, battery module, battery pack, and electric device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515349A (en) * 2009-12-21 2013-05-02 エー123 システムズ, インコーポレイテッド Anode material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515349A (en) * 2009-12-21 2013-05-02 エー123 システムズ, インコーポレイテッド Anode material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7189109B2 (en) 2018-11-20 2022-12-13 Jfeケミカル株式会社 Method for producing carbonaceous-coated graphite particles
JP2020087916A (en) * 2018-11-20 2020-06-04 Jfeケミカル株式会社 Production method of carbonaceous coated graphite particle
US11942641B2 (en) 2020-06-26 2024-03-26 Jfe Chemical Corporation Method for producing carbonaceous substance-coated graphite particles
JP6946597B1 (en) * 2020-06-26 2021-10-06 Jfeケミカル株式会社 Method for producing carbonaceous-coated graphite particles
KR102319096B1 (en) 2020-06-26 2021-10-28 제이에프이 케미칼 가부시키가이샤 Method for producing carbonaceous coated graphite particles
WO2021260964A1 (en) 2020-06-26 2021-12-30 Jfeケミカル株式会社 Method for producing graphite particles coated with carbonaceous film
KR20220001014A (en) 2020-06-26 2022-01-04 제이에프이 케미칼 가부시키가이샤 Carbonaceous coated graphite particles, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP2022008116A (en) * 2020-06-26 2022-01-13 Jfeケミカル株式会社 Carbonaceous coated graphite particle, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP3954653A1 (en) 2020-06-26 2022-02-16 JFE Chemical Corporation Carbonaceous substance-coated graphite particles
WO2023021957A1 (en) 2021-08-17 2023-02-23 Jfeケミカル株式会社 Carbon-coated graphite particles, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
KR20230050483A (en) 2021-08-17 2023-04-14 제이에프이 케미칼 가부시키가이샤 Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR20230059841A (en) 2021-08-17 2023-05-03 제이에프이 케미칼 가부시키가이샤 Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery
US11804593B2 (en) 2021-08-17 2023-10-31 Jfe Chemical Corporation Carbonaceous substance-coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery
US11804594B2 (en) 2021-08-17 2023-10-31 Jfe Chemical Corporation Carbonaceous substance-coated graphite particles, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2023021959A1 (en) 2021-08-17 2023-02-23 Jfeケミカル株式会社 Carbonaceous material-coated graphite particles, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2023133662A1 (en) * 2022-01-11 2023-07-20 宁德时代新能源科技股份有限公司 Modified graphite and preparation method therefor, carbon-coated negative electrode active material and preparation method therefor, negative electrode piece, secondary battery, battery module, battery pack, and electric device

Similar Documents

Publication Publication Date Title
JP2016004691A (en) Method for producing carbon material for negative electrode active material
US10400151B2 (en) Agglomerated boron nitride particles, composition containing said particles, and three- dimensional integrated circuit having layer comprising said composition
KR101620675B1 (en) Polyimide precursor solution, polyimide precursor, polyimide resin, mixture slurry, electrode, mixture slurry production method, and electrode formation method
TWI423925B (en) SiCO-Li-based composite, a method for producing the same, and a negative electrode material for a non-electrolyte battery
TWI411576B (en) A non-thermofusible granular phenol resin and a method for producing the same, and a thermosetting resin composition, a filler for semiconductor and a bonding agent for a semiconductor (2)
EP2554568B1 (en) Polyimide nanocomposite and method for preparing same
JP2007519182A5 (en) Carbon-coated silicon particle powder as positive electrode material for lithium ion battery and method for producing the same
JP2006264993A (en) Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell
KR20100027245A (en) Electrode for secondary battery and method for producing the same
JP2018537588A (en) Method for depositing a metal-adhesive and hydrophobic conductive coating
KR20070034224A (en) Method of coating graphite on hard carbon and hard carbon coated graphite
TWI525038B (en) High specific surface area active toner manufacturing method
CN104600305A (en) Modification method of carbon material used for lithium ion batteries
JP2006264991A (en) Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell
KR100349179B1 (en) Fabrication method of glassy carbon
JP2016009578A (en) Method for manufacturing composite lithium titanate powder
JP6655352B2 (en) Method for producing carbon material for negative electrode of power storage device and carbon material for negative electrode of power storage device
JP4402184B2 (en) Carbon material for secondary battery negative electrode material and method for producing the same
JP2006089348A (en) Method for producing carbon material, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
TW202323183A (en) Anode material for secondary battery and preparing method of the same
JP2006131452A (en) Method for producing glass-like carbon powder
JP2007134102A (en) Conductive resin composition, separator for fuel cell, and manufacturing method of separator for fuel cell
TWI620713B (en) Covalently bonded silicon particle-polymer hybrid and cathode material thereof
JP2022092718A (en) Method for producing carbon material, resin material for producing carbon material, and carbon material
JPS63265881A (en) Preparation of porous carbon stock

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180821