JP2016003901A - Nuclear reactor automatic depressurization system - Google Patents

Nuclear reactor automatic depressurization system Download PDF

Info

Publication number
JP2016003901A
JP2016003901A JP2014123097A JP2014123097A JP2016003901A JP 2016003901 A JP2016003901 A JP 2016003901A JP 2014123097 A JP2014123097 A JP 2014123097A JP 2014123097 A JP2014123097 A JP 2014123097A JP 2016003901 A JP2016003901 A JP 2016003901A
Authority
JP
Japan
Prior art keywords
valve
automatic
reactor
exhaust pipe
automatic depressurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014123097A
Other languages
Japanese (ja)
Inventor
雄真 長澤
Yuma Nagasawa
雄真 長澤
安田 賢一
Kenichi Yasuda
賢一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2014123097A priority Critical patent/JP2016003901A/en
Publication of JP2016003901A publication Critical patent/JP2016003901A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nuclear reactor automatic depressurization system that depressurizes a reactor pressure vessel even when a total loss of power in a nuclear power plant occurs, and reduces time and cost for the recovery operation.SOLUTION: An automatic depressurization system comprises: an exhaust pipe 4 that communicates with the inside of a reactor pressure vessel 2 through a main steam pipe 3; and an automatic depressurization valve 5 installed on the exhaust pipe 4. The automatic depressurization valve 5 includes a disk 9 located to close a seat 8, a stem 10 that has one end connected to the disk 9, and a fusible-material housing chamber 12 that houses a fusible material 11 for regulating the other end of the stem 10. Liquefaction of the fusible material 11 with a rise in temperature in the exhaust pipe 4 allows the stem 10 and the disk 9 to move, and pressure from the upstream side of the automatic depressurization valve 5 moves the disk 9 to open the seat 8.

Description

本発明は、沸騰水型又は加圧水型の原子炉に係わり、特に、原子炉圧力容器内を減圧する自動減圧装置に関する。   The present invention relates to a boiling water type or pressurized water type nuclear reactor, and more particularly, to an automatic pressure reducing device for reducing the pressure inside a reactor pressure vessel.

沸騰水型又は加圧水型の原子炉は、例えば冷却材喪失事故等の発生時に炉心を冷却するための非常用炉心冷却装置(ECCS:Emergency Core Cooling System)を備えている。沸騰水型原子炉の非常用炉心冷却装置は、高圧下の圧力容器内に注水可能な高圧炉心注水装置と、低圧下の圧力容器内に注水可能な低圧炉心注水装置と、圧力容器内の減圧を行う自動減圧装置とを有している。自動減圧装置による圧力容器内の減圧は、高圧炉心注水装置の注水を促進するともに、低圧炉心注水装置の作動時期を早める役割を果たしている。一方、加圧水型原子炉の非常用炉心冷却装置は、一般的に、高圧炉心注水装置と低圧炉心注水装置を有しているものの、自動減圧装置を有していない。しかし、自動減圧装置を設ければ、前述したメリットを享受することが可能である。   A boiling water type or pressurized water type nuclear reactor is provided with an emergency core cooling system (ECCS: Emergency Core Cooling System) for cooling the core in the event of a loss of coolant accident, for example. The emergency core cooling system for boiling water reactors consists of a high pressure core water injection device that can inject water into a pressure vessel under high pressure, a low pressure core water injection device that can inject water into a pressure vessel under low pressure, and a pressure reduction in the pressure vessel. And an automatic pressure reducing device. The pressure reduction in the pressure vessel by the automatic pressure reducing device promotes the water injection of the high pressure core water injection device and plays the role of accelerating the operation timing of the low pressure core water injection device. On the other hand, an emergency core cooling device for a pressurized water reactor generally has a high pressure core water injection device and a low pressure core water injection device, but does not have an automatic pressure reduction device. However, if the automatic decompression device is provided, it is possible to enjoy the above-described advantages.

自動減圧装置は、一般的に、電気的手段によって作動するようになっている。そのため、原子力発電所の所内電源の全喪失が発生すれば、圧力容器内の減圧を行えない。すなわち、高圧炉心注水装置の注水を促進できず、低圧炉心注水装置の作動時期を早めることができない。   Automatic depressurization devices are generally adapted to operate by electrical means. For this reason, if the in-house power supply of the nuclear power plant is completely lost, the pressure in the pressure vessel cannot be reduced. That is, water injection of the high pressure core water injection device cannot be promoted, and the operation timing of the low pressure core water injection device cannot be advanced.

そこで、補助用の自動減圧装置(減圧機構)として、例えば、一端側が原子炉圧力容器の内側(詳細には、炉心の上側)に位置し、他端側が原子炉圧力容器の外側に位置する配管と、この配管の一端側に設けられた可溶栓とを備えたものが提唱されている(特許文献1参照)。   Therefore, as an auxiliary automatic pressure reducing device (pressure reducing mechanism), for example, one end side is located inside the reactor pressure vessel (specifically, the upper side of the reactor core) and the other end side is located outside the reactor pressure vessel. And the thing provided with the fusible stopper provided in the one end side of this piping is proposed (refer patent document 1).

可溶栓は、配管端部の開口を覆うプレートと、このプレートを支持するボルト、ナット、及びカラー等を有している。カラーは、可溶金属(詳細には、例えば融点が300〜700℃である金属)で作られている。そして、冷却材喪失事故等の発生時に、何らかの理由で高圧炉心注水装置が作動せず、原子炉圧力容器内の蒸気の温度が上昇すれば、カラーが溶融して、プレートが配管端部の開口から離脱する(すなわち、開栓する)。これにより、配管を介して原子炉圧力容器内の蒸気を排出し、原子炉圧力容器内を減圧するようになっている。   The fusible plug includes a plate that covers the opening at the end of the pipe, and bolts, nuts, collars, and the like that support the plate. The collar is made of a soluble metal (specifically, a metal having a melting point of 300 to 700 ° C., for example). If the high-pressure core water injection device does not operate for some reason and the temperature of the steam in the reactor pressure vessel rises when a loss of coolant accident occurs, the collar melts and the plate opens at the end of the pipe. Detach from (ie, unplug). Thereby, the steam in the reactor pressure vessel is discharged through the piping, and the inside of the reactor pressure vessel is depressurized.

特開平7−5286号公報Japanese Patent Laid-Open No. 7-5286

しかしながら、上記従来技術には次のような課題が存在する。すなわち、特許文献1に記載の可溶栓のカラーは、溶融すれば、再利用することができない。そのため、カラーを再設置する復旧作業を行う必要があり、その手間やコストが生じる。   However, there are the following problems in the above prior art. That is, the color of the fusible plug described in Patent Document 1 cannot be reused if it is melted. For this reason, it is necessary to perform a restoration work for re-installing the collar, which causes labor and cost.

本発明の目的は、原子力発電所の所内電源の全喪失が発生した場合でも、原子炉圧力容器内を減圧でき、かつ、復旧作業の手間やコストを削減できる原子炉の自動減圧装置を提供することにある。   An object of the present invention is to provide an automatic depressurization device for a nuclear reactor that can depressurize the reactor pressure vessel and reduce the labor and cost of recovery work even when the in-house power supply of the nuclear power plant is completely lost. There is.

上記目的を達成するために、本発明は、原子炉圧力容器の内部と直接又は間接的に連通する排気管と、前記排気管に設けられた自動減圧弁とを備えた原子炉の自動減圧装置において、前記自動減圧弁は、弁座を閉じるように配置された弁体と、前記弁体に一端側が接続された弁棒と、前記弁棒の他端側を規制する可融物を収納した可融物収納室とを有し、前記排気管の温度上昇に伴って前記可融物が液化すれば、前記弁棒及び前記弁体が移動可能となり、前記自動減圧弁の上流側の圧力によって前記弁体が移動して前記弁座を開くように構成される。   To achieve the above object, the present invention provides an automatic reactor depressurization apparatus comprising an exhaust pipe that communicates directly or indirectly with the inside of a reactor pressure vessel, and an automatic decompression valve provided in the exhaust pipe. The automatic pressure reducing valve accommodates a valve body disposed so as to close a valve seat, a valve stem having one end connected to the valve body, and a fusible material that regulates the other end of the valve stem. A fusible material storage chamber, and if the fusible material is liquefied as the temperature of the exhaust pipe rises, the valve stem and the valve body can be moved by the pressure upstream of the automatic pressure reducing valve. The valve body is configured to move to open the valve seat.

このような本発明においては、冷却材喪失事故等の発生時に、何らかの理由で高圧炉心注水装置が作動せず、原子炉圧力容器の温度が上昇すれば、排気管の温度も上昇する。そして、熱伝導によって自動減圧弁の可融物が加熱されて液化すれば、弁棒及び弁体が移動可能な状態となる。そして、自動減圧弁の上流側の圧力によって弁体が移動して弁座を開く。これにより、排気管を介して原子炉圧力容器内の流体を放出し、原子炉圧力容器内を減圧する。したがって、原子力発電所の所内電源の全喪失が発生した場合でも、原子炉圧力容器内を減圧できる。   In the present invention, when a coolant loss accident or the like occurs, if the high pressure core water injection device does not operate for some reason and the temperature of the reactor pressure vessel rises, the temperature of the exhaust pipe also rises. When the fusible material of the automatic pressure reducing valve is heated and liquefied by heat conduction, the valve rod and the valve body are movable. Then, the valve body is moved by the pressure upstream of the automatic pressure reducing valve to open the valve seat. Thereby, the fluid in the reactor pressure vessel is discharged through the exhaust pipe, and the pressure in the reactor pressure vessel is reduced. Therefore, even if the total loss of the on-site power source of the nuclear power plant occurs, the pressure inside the reactor pressure vessel can be reduced.

また、自動減圧弁は、作動後も、再利用することができる。すなわち、自動減圧弁の上流側圧力が低い状態で、排気管の温度が低下すれば、弁体が弁座を閉じるように配置された状態で、可融物が固化する。したがって、部品を再設置する復旧作業を行う必要がなく、その手間やコストを削減することができる。   Further, the automatic pressure reducing valve can be reused even after the operation. That is, if the upstream side pressure of the automatic pressure reducing valve is low and the temperature of the exhaust pipe decreases, the fusible material solidifies in a state where the valve body is disposed so as to close the valve seat. Therefore, it is not necessary to perform a restoration work for re-installing the parts, and the labor and cost can be reduced.

本発明によれば、原子力発電所の所内電源の全喪失が発生した場合でも、原子炉圧力容器内を減圧できる。また、復旧作業の手間やコストを削減できる。   According to the present invention, the reactor pressure vessel can be depressurized even when the in-house power source of the nuclear power plant is completely lost. Also, it is possible to reduce the labor and cost of recovery work.

本発明の一実施形態における原子炉の自動減圧装置の構成を表す概略図である。It is the schematic showing the structure of the automatic pressure reduction apparatus of the reactor in one Embodiment of this invention. 本発明の一実施形態における自動減圧弁の構造を表す断面図である。It is sectional drawing showing the structure of the automatic pressure reducing valve in one Embodiment of this invention.

以下、本発明の一実施形態を、図面を参照しつつ説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態における原子炉の自動減圧装置の構成を表す概略図である。図2は、本実施形態における自動減圧弁の構造を表す断面図である。   FIG. 1 is a schematic diagram showing a configuration of an automatic depressurization device for a nuclear reactor in the present embodiment. FIG. 2 is a sectional view showing the structure of the automatic pressure reducing valve in the present embodiment.

本実施形態の原子炉の自動減圧装置1は、原子炉圧力容器2に接続された主蒸気管3から分岐された排気管4と、この排気管4に設けられた自動減圧弁5及び遠隔操作式(詳細には、機械式又は電動式)の開閉弁6とを備えている。なお、通常、自動減圧弁5は閉状態、開閉弁6は開状態である。また、本実施形態では、開閉弁6は、自動減圧弁5の上流側に設けられているが、自動減圧弁5の下流側に設けられてもよい。   The automatic pressure reducing device 1 for a nuclear reactor according to this embodiment includes an exhaust pipe 4 branched from a main steam pipe 3 connected to a reactor pressure vessel 2, an automatic pressure reducing valve 5 provided in the exhaust pipe 4, and a remote operation. And an on-off valve 6 of a type (specifically, mechanical type or electric type). Normally, the automatic pressure reducing valve 5 is closed and the on-off valve 6 is open. In this embodiment, the on-off valve 6 is provided on the upstream side of the automatic pressure reducing valve 5, but may be provided on the downstream side of the automatic pressure reducing valve 5.

自動減圧弁5は、流路を形成するボディ(弁箱)7と、流路中に形成されたシート(弁座)8と、このシート8を閉じるように配置されたディスク(弁体)9と、一端側(図2中下側)がディスク9に接続されたステム(弁棒)10と、ステム10の他端側(図2中上側)を規制する可融物11(本実施形態では、融点が比較的低い金属)を収納した可融物収納室12とを有している。可融物11の具体例の一つとして、鉛−ビスマス合金があり、その金属組成によって融点を120〜800℃の範囲内で変更可能である。本実施形態では、可融物11の融点が600℃程度に設定されている。   The automatic pressure reducing valve 5 includes a body (valve box) 7 that forms a flow path, a seat (valve seat) 8 that is formed in the flow path, and a disk (valve element) 9 that is disposed so as to close the seat 8. And a stem (valve rod) 10 whose one end side (lower side in FIG. 2) is connected to the disk 9, and a fusible material 11 (in this embodiment) that regulates the other end side (upper side in FIG. 2) of the stem 10 And a fusible material storage chamber 12 in which a metal having a relatively low melting point is stored. One specific example of the fusible substance 11 is a lead-bismuth alloy whose melting point can be changed within a range of 120 to 800 ° C. depending on its metal composition. In the present embodiment, the melting point of the fusible material 11 is set to about 600 ° C.

そして、原子炉圧力容器2が常温(例えば273℃程度)であって主蒸気管3及び排気管4も常温であれば、自動減圧弁5の可融物11が固体のままである。そのため、可融物11がステム10の移動(すなわち、ディスク9の移動)を規制するので、自動減圧弁5の上流側の蒸気圧にかかわらず、ディスク9がシート8を閉じた状態のままとなる。   And if the reactor pressure vessel 2 is normal temperature (for example, about 273 ° C.) and the main steam pipe 3 and the exhaust pipe 4 are also normal temperature, the fusible material 11 of the automatic pressure reducing valve 5 remains solid. Therefore, since the fusible material 11 restricts the movement of the stem 10 (that is, the movement of the disk 9), the disk 9 remains in the state where the seat 8 is closed regardless of the vapor pressure upstream of the automatic pressure reducing valve 5. Become.

一方、例えば冷却材喪失事故等の発生時に、何らかの理由で高圧炉心注水装置が作動せず、原子炉圧力容器2の温度が上昇すれば、主蒸気管3及び排気管4の温度も上昇する。そして、熱伝導によって可融物11が加熱されて液化すれば、ステム10及びディスク9が移動可能な状態となる。そして、自動減圧弁5の上流側の蒸気圧によってディスク9が持上げられ、シート8を開く。これにより、排気管4を介して原子炉圧力容器2内の蒸気をサプレッションチェンバ(圧力抑制室)13に放出し、原子炉圧力容器2内を減圧する。なお、原子炉圧力容器2内の圧力(すなわち、自動減圧弁5の上流側の蒸気圧)が十分に低下すれば、ディスク9がその自重によって落下し、シート8を閉じる(逆止弁機能)。   On the other hand, for example, when a coolant loss accident occurs, if the high pressure core water injection device does not operate for some reason and the temperature of the reactor pressure vessel 2 rises, the temperatures of the main steam pipe 3 and the exhaust pipe 4 also rise. When the fusible material 11 is heated and liquefied by heat conduction, the stem 10 and the disk 9 are movable. Then, the disk 9 is lifted by the vapor pressure upstream of the automatic pressure reducing valve 5 to open the seat 8. As a result, the steam in the reactor pressure vessel 2 is discharged to the suppression chamber (pressure suppression chamber) 13 through the exhaust pipe 4 to depressurize the reactor pressure vessel 2. If the pressure in the reactor pressure vessel 2 (that is, the steam pressure on the upstream side of the automatic pressure reducing valve 5) is sufficiently reduced, the disk 9 falls due to its own weight and closes the seat 8 (check valve function). .

以上のように本実施形態においては、原子力発電所の所内電源の全喪失が発生した場合でも、原子炉圧力容器2内を減圧できる。また、自動減圧弁5は、特許文献1に記載の可溶栓とは異なり、作動後も、再利用することができる。すなわち、自動減圧弁5の上流側の蒸気圧が低い状態で、排気管4の温度が低下すれば、ディスク9がシート8を閉じるように配置された状態で、可融物11が固化する。したがって、部品を再設置する復旧作業を行う必要がなく、その手間やコストを削減することができる。   As described above, in the present embodiment, the reactor pressure vessel 2 can be depressurized even when the on-site power supply of the nuclear power plant is completely lost. Further, unlike the fusible plug described in Patent Document 1, the automatic pressure reducing valve 5 can be reused even after operation. That is, if the temperature of the exhaust pipe 4 decreases while the vapor pressure on the upstream side of the automatic pressure reducing valve 5 is low, the fusible material 11 is solidified in a state where the disk 9 is disposed so as to close the seat 8. Therefore, it is not necessary to perform a restoration work for re-installing the parts, and the labor and cost can be reduced.

また、本実施形態では、原子炉圧力容器2の温度が高いまま(すなわち、自動減圧弁5が開状態のまま)、原子炉圧力容器2内を再び加圧したい場合は、遠隔操作式の開閉弁6を閉じればよい。これにより、原子炉圧力容器2内の再加圧を行うことができる。   Further, in this embodiment, when the temperature of the reactor pressure vessel 2 remains high (that is, the automatic pressure reducing valve 5 remains open) and the inside of the reactor pressure vessel 2 is desired to be pressurized again, it can be remotely operated. The valve 6 may be closed. Thereby, repressurization in the reactor pressure vessel 2 can be performed.

なお、上記一実施形態においては、可融物11として、融点が比較的低い金属を採用した場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、例えばロウ等を採用してもよい。この場合も、上記同様の効果を得ることができる。   In the above-described embodiment, the case where a metal having a relatively low melting point is used as the fusible material 11 has been described as an example. However, the present invention is not limited to this, and the scope and spirit of the present invention are not deviated. Deformation is possible. That is, for example, a wax or the like may be employed. In this case, the same effect as described above can be obtained.

また、上記一実施形態においては、沸騰水型原子炉に適用し、原子炉圧力容器2に接続された主蒸気管3から分岐するように排気管4を設けた場合(すなわち、原子炉圧力容器2の内部と間接的に連通するように排気管4を設けた場合)を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、例えば、加圧水型原子炉に適用し、原子炉圧力容器に接続された主冷却材管から分岐するように排気管を設けてもよい。また、例えば、一端側が原子炉圧力容器2の内部に位置し、他端側が原子炉圧力容器2の外部に位置するように排気管を設けてもよい(すなわち、原子炉圧力容器2の内部と直接連通するように排気管を設けてもよい)。これらの場合も、上記同様の効果を得ることができる。   In the above embodiment, when the exhaust pipe 4 is provided so as to branch from the main steam pipe 3 connected to the reactor pressure vessel 2 when applied to the boiling water reactor (that is, the reactor pressure vessel). The case where the exhaust pipe 4 is provided so as to indirectly communicate with the inside of the second example) has been described as an example. However, the present invention is not limited to this, and modifications can be made without departing from the spirit and technical idea of the present invention. That is, for example, an exhaust pipe may be provided so as to branch from a main coolant pipe connected to a pressurized water reactor and connected to a reactor pressure vessel. Further, for example, an exhaust pipe may be provided so that one end side is located inside the reactor pressure vessel 2 and the other end side is located outside the reactor pressure vessel 2 (that is, the inside of the reactor pressure vessel 2 and An exhaust pipe may be provided so as to communicate directly). In these cases, the same effect as described above can be obtained.

1 自動減圧装置
2 原子炉圧力容器
4 排気管
5 自動減圧弁
6 遠隔操作式の開閉弁
9 弁体
10 弁棒
11 可融物
12 可融物収納室
DESCRIPTION OF SYMBOLS 1 Automatic pressure-reduction apparatus 2 Reactor pressure vessel 4 Exhaust pipe 5 Automatic pressure-reduction valve 6 Remote operation type on-off valve 9 Valve body 10 Valve rod 11 Fusible material 12 Fusible material storage chamber

Claims (3)

原子炉圧力容器の内部と直接又は間接的に連通する排気管と、前記排気管に設けられた自動減圧弁とを備えた原子炉の自動減圧装置において、
前記自動減圧弁は、
弁座を閉じるように配置された弁体と、前記弁体に一端側が接続された弁棒と、前記弁棒の他端側を規制する可融物を収納した可融物収納室とを有し、
前記排気管の温度上昇に伴って前記可融物が液化すれば、前記弁棒及び前記弁体が移動可能となり、前記自動減圧弁の上流側の圧力によって前記弁体が移動して前記弁座を開くように構成されたことを特徴とする原子炉の自動減圧装置。
In an automatic depressurization device for a reactor, comprising an exhaust pipe communicating directly or indirectly with the inside of a reactor pressure vessel, and an automatic depressurization valve provided in the exhaust pipe,
The automatic pressure reducing valve is
A valve body disposed so as to close the valve seat; a valve rod having one end connected to the valve body; and a fusible material storage chamber containing a fusible material that restricts the other end of the valve rod. And
If the fusible material is liquefied as the temperature of the exhaust pipe rises, the valve rod and the valve body can be moved, and the valve body is moved by the pressure on the upstream side of the automatic pressure reducing valve, so that the valve seat An automatic depressurization device for a nuclear reactor characterized in that it is configured to open the reactor.
請求項1記載の原子炉の自動減圧装置において、
前記可融物は、鉛−ビスマス合金であることを特徴とする原子炉の自動減圧装置。
The automatic depressurization device for a nuclear reactor according to claim 1,
The automatic decompression device for a nuclear reactor, wherein the fusible material is a lead-bismuth alloy.
請求項1記載の原子炉の自動減圧装置において、
前記排気管に設けられた遠隔操作式の開閉弁を備えたことを特徴とする原子炉の自動減圧装置。
The automatic depressurization device for a nuclear reactor according to claim 1,
An automatic depressurization device for a nuclear reactor, comprising a remotely operated on-off valve provided in the exhaust pipe.
JP2014123097A 2014-06-16 2014-06-16 Nuclear reactor automatic depressurization system Pending JP2016003901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014123097A JP2016003901A (en) 2014-06-16 2014-06-16 Nuclear reactor automatic depressurization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014123097A JP2016003901A (en) 2014-06-16 2014-06-16 Nuclear reactor automatic depressurization system

Publications (1)

Publication Number Publication Date
JP2016003901A true JP2016003901A (en) 2016-01-12

Family

ID=55223279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014123097A Pending JP2016003901A (en) 2014-06-16 2014-06-16 Nuclear reactor automatic depressurization system

Country Status (1)

Country Link
JP (1) JP2016003901A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299417A (en) * 2021-05-25 2021-08-24 中国核动力研究设计院 Safety injection triggering method, device and system for nuclear power plant under shutdown condition during operation of main pump
US11521758B2 (en) 2018-12-13 2022-12-06 Rolls-Royce Smr Limited Depressurization valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11521758B2 (en) 2018-12-13 2022-12-06 Rolls-Royce Smr Limited Depressurization valve
US11742100B2 (en) 2018-12-13 2023-08-29 Rolls-Royce Smr Limited Depressurisation valve
CN113299417A (en) * 2021-05-25 2021-08-24 中国核动力研究设计院 Safety injection triggering method, device and system for nuclear power plant under shutdown condition during operation of main pump

Similar Documents

Publication Publication Date Title
EP3667678B1 (en) Depressurisation valve
JP7461733B2 (en) Pressure reducing valve
JP2016003901A (en) Nuclear reactor automatic depressurization system
US10366796B2 (en) Passive depressurization system for pressurized containers
JOP20190310A1 (en) Cooling Method For Reactor Molten Core Melt And Cooling Control System For Reactor Molten Core
KR20170107910A (en) System and method for heating components of a heat recovery steam generator
CN101127251A (en) Temperature induction type safe syringe system of nuclear power plant
JP5373213B1 (en) Gas supply device and air or nitrogen supply device of nuclear power plant
JP5665644B2 (en) Reactor containment decompression device and decompression method
JP5781575B2 (en) Remote control device and remote control device of nuclear power plant
CN201600931U (en) Temperature sensitive safety injection device for nuclear power plants
CN107221361B (en) Early depressurization system for containment accident of nuclear power plant
JP2015078847A (en) Static decay heat removal system and nuclear power plant
JP2018501488A (en) Reactor core annealing method and reactors using this method
Yang et al. OPR1000 CEA Withdrawal at Power Accident Analysis using the SPACE code
KR102670232B1 (en) Supply system for supplying cooling water to molten core in severe accident of nuclear power plant and supply method using the same
JP3182530U (en) Safety devices and equipment
KR101658911B1 (en) Protective device of pressure reducing for Fire suppression valve
CN202992295U (en) Steam safety valve for power station pressure vessel
CN203272907U (en) Internally-arranged safety valve of slag cooler
Park et al. An integral effect test of complete loss of RCS flowrate for SMART with the VISTA-ITL
CN104560219A (en) Quenching ring protection device
KR20240042526A (en) pressure reducing valve
CN102588636A (en) Heat load regulating device for boiler safety valve and regulating method thereof
KR20240045306A (en) pressure reducing valve