JP2016003156A5 - - Google Patents

Download PDF

Info

Publication number
JP2016003156A5
JP2016003156A5 JP2014123288A JP2014123288A JP2016003156A5 JP 2016003156 A5 JP2016003156 A5 JP 2016003156A5 JP 2014123288 A JP2014123288 A JP 2014123288A JP 2014123288 A JP2014123288 A JP 2014123288A JP 2016003156 A5 JP2016003156 A5 JP 2016003156A5
Authority
JP
Japan
Prior art keywords
carbon dioxide
heating
sodium
temperature
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014123288A
Other languages
Japanese (ja)
Other versions
JP6383188B2 (en
JP2016003156A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2014123288A priority Critical patent/JP6383188B2/en
Priority claimed from JP2014123288A external-priority patent/JP6383188B2/en
Publication of JP2016003156A publication Critical patent/JP2016003156A/en
Publication of JP2016003156A5 publication Critical patent/JP2016003156A5/ja
Application granted granted Critical
Publication of JP6383188B2 publication Critical patent/JP6383188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、以下のとおりである。
[1]
γ- Fe2O3とNaNO3を混合して混合粉末MP1を得る工程(a1)、又は
γ- Fe2O3とNaNO3とLiNO3及び/又はKNO3を混合して混合粉末MP2を得る工程(a2)、但し、NaNO3に対するLiNO3及び/又はKNO3のモル比は0.85:0.15〜1未満:0超の範囲である、
得られた混合粉末MP1又はMP2を570℃〜750℃の温度に加熱してα-NaFeO2又は置換型-NaFeO2を生成させる工程(b1)、又は
得られた混合粉末MP1又はMP2を550〜600℃の温度T1に加熱し、次いで、570〜750℃の温度T2(但し、T1<T2)に昇温してさらに加熱してα-NaFeO2又は置換型-NaFeO2を生成させる工程(b2)、
但し、置換型-NaFeO2は、Naの一部がLi及び/又はKで置換された化合物である、
を含むα-ナトリウムフェライト類の製造方法。
[2]
工程(b1)における混合粉末MP1又はMP2の加熱時間は40時間以上である、[1]に記載の製造方法。
[3]
工程(b2)における温度T1における混合粉末MP1又はMP2の加熱時間は1〜50時間であり、温度T2における混合粉末MP1又はMP2の加熱時間は5〜30時間の範囲である、[1]に記載の製造方法。
[4]
炭酸ガスを含む気体に[1]〜[3]のいずれかに記載の製造方法で得られたα-ナトリウムフェライト類を含有する炭酸ガス吸収材を接触させて、前記炭酸ガスを含む気体中の前記炭酸ガスと選択的に反応させる炭酸ガス吸収方法。
[5]
[1]〜[3]のいずれかに記載の製造方法で得られたα-ナトリウムフェライト類を含有する炭酸ガス吸収材と、前記炭酸ガス吸収材を収納し、炭酸ガスを導入するための炭酸ガス導入口とを具備することを含む、炭酸ガス吸収装置。
[6]
[1]〜[3]のいずれかに記載の製造方法で得られたα-ナトリウムフェライト類を含有する炭酸ガス吸収材に炭酸ガスを反応させて生成した生成物と、前記生成物を加熱し炭酸ガスを放出させるための加熱装置と、前記生成物を収納し、前記炭酸ガスを排出する生成ガス排出口とを具備することを含む、炭酸ガス分離装置。
The present invention is as follows.
[1]
Step (a1) of obtaining γ-Fe 2 O 3 and NaNO 3 to obtain mixed powder MP1, or γ-Fe 2 O 3 , NaNO 3 and LiNO 3 and / or KNO 3 to obtain mixed powder MP2 step (a2), provided that the molar ratio of LiNO 3 and / or KNO 3 for NaNO 3 0.85: less than 0.15: 0 range greater than,
Step (b1) of heating the obtained mixed powder MP1 or MP2 to a temperature of 570 ° C. to 750 ° C. to produce α-NaFeO 2 or substituted-NaFeO 2 , or the obtained mixed powder MP1 or MP2 from 550 to 550 ° C. Heating to a temperature T1 of 600 ° C., then raising the temperature to a temperature T2 of 570 to 750 ° C. (where T1 <T2) and further heating to produce α-NaFeO 2 or substituted-NaFeO 2 (b2 ),
However, substituted-NaFeO 2 is a compound in which a part of Na is substituted with Li and / or K.
For producing α- sodium ferrites.
[2]
The manufacturing method according to [1], wherein the heating time of the mixed powder MP1 or MP2 in the step (b1) is 40 hours or more.
[3]
The heating time of the mixed powder MP1 or MP2 at the temperature T1 in the step (b2) is 1 to 50 hours, and the heating time of the mixed powder MP1 or MP2 at the temperature T2 is in the range of 5 to 30 hours. Manufacturing method.
[4]
A gas containing carbon dioxide is brought into contact with a carbon dioxide absorbent containing α- sodium ferrite obtained by the production method according to any one of [1] to [3], and the gas containing the carbon dioxide is contained in the gas. A carbon dioxide absorption method for selectively reacting with the carbon dioxide.
[5]
A carbon dioxide absorbent containing the α- sodium ferrite obtained by the production method according to any one of [1] to [3], and carbon dioxide for containing the carbon dioxide absorbent and introducing carbon dioxide. A carbon dioxide absorption device comprising: comprising a gas inlet.
[6]
A product produced by reacting carbon dioxide with a carbon dioxide absorbent containing the α- sodium ferrite obtained by the production method according to any one of [1] to [3], and heating the product. A carbon dioxide gas separation device comprising: a heating device for releasing carbon dioxide gas; and a product gas outlet for containing the product and discharging the carbon dioxide gas.

<α-ナトリウムフェライト類の製造方法>
工程(a1)
工程(a1)では、γ- Fe2O3とNaNO3を混合して混合粉末MP1を得る。γ- Fe2O3とNaNO3の混合比率は、モル比で1:1であることが適当である。前記モル比が1:1から外れても目的とするα-ナトリウムフェライト類を得ることはでき、実用的には、例えば、1:0.9〜1.2の範囲とすることが好ましく、1:0.95〜1.15の範囲とすることがより好ましい。原料として用いるγ- Fe2O3及びNaNO3には特に制限はなく、市販品をそのまま用いることができる。但し、市販品の純度によっては、公知の方法にて適宜精製した後に混合粉末とすることもできる。また、γ- Fe2O3は、NaNO3との反応性を考慮すると、粒子径が比較的小さい粉末であることが好ましい場合がある。
<Method for producing α- sodium ferrites>
Step (a1)
In step (a1), γ-Fe 2 O 3 and NaNO 3 are mixed to obtain a mixed powder MP1. The mixing ratio of γ-Fe 2 O 3 and NaNO 3 is suitably 1: 1 as a molar ratio. The target α- sodium ferrites can be obtained even when the molar ratio deviates from 1: 1, and practically, for example, preferably in the range of 1: 0.9 to 1.2, and 1: 0.95 to 1.15. It is more preferable to set the range. The .gamma. Fe 2 O 3 and NaNO 3 is used as a raw material is not particularly limited, can be used as a commercial product. However, depending on the purity of the commercially available product, it can be made into a mixed powder after being appropriately purified by a known method. In addition, considering the reactivity with NaNO 3 , γ-Fe 2 O 3 may be preferably a powder having a relatively small particle size.

工程(a2)
工程(a2)では、γ- Fe2O3とNaNO3とLiNO3及び/又はKNO3を混合して混合粉末MP2を得る。γ- Fe2O3とNaNO3、LiNO3及び/又はKNO3の混合比率(γ- Fe2O3: (NaNO3+LiNO3及び/又はKNO3))は、モル比で1:1である。前記モル比が1:1から外れても目的とするα-ナトリウムフェライト類を得ることはでき、実用的には、例えば、1:0.9〜1.2の範囲とすることが好ましく、1:0.95〜1.15の範囲とすることがより好ましい。また、NaNO3に対するLiNO3及び/又はKNO3のモル比は0.85:0.15〜1未満:0超、例えば、0.999:0.001の範囲である。NaNO3に対するLiNO3及び/又はKNO3のモル比は、Li及び/又はKによるNaの置換量に応じて変化するCO2吸収特性を考慮して決定される、Li及び/又はKによるNaの希望の置換量に基づいて適宜決定できる。但し、前記モル比が0.85:0.15を外れると、下記の加熱条件において置換型-NaFeO2の生成が困難になる傾向がある。置換型-NaFeO2の合成の容易さ及びCO2吸収特性及び置換の効果がより明らかになるという観点からは、NaNO3に対するLiNO3及び/又はKNO3のモル比は0.9:0.1〜0.99:0.01の範囲である。また、γ- Fe2O3は、NaNO3、LiNO3及び/又はKNO3との反応性を考慮すると、粒子径が比較的小さい粉末であることが好ましい場合がある。
Step (a2)
In the step (a2), γ-Fe 2 O 3 , NaNO 3 and LiNO 3 and / or KNO 3 are mixed to obtain a mixed powder MP2. The mixing ratio of γ-Fe 2 O 3 and NaNO 3 , LiNO 3 and / or KNO 3 (γ-Fe 2 O 3 : (NaNO 3 + LiNO 3 and / or KNO 3 )) is 1: 1 at a molar ratio. is there. The target α- sodium ferrites can be obtained even when the molar ratio deviates from 1: 1, and practically, for example, preferably in the range of 1: 0.9 to 1.2, and 1: 0.95 to 1.15. It is more preferable to set the range. The molar ratio of LiNO 3 and / or KNO 3 for NaNO 3 0.85: less than 0.15: 0, such as more than, 0.999: in the range of 0.001. The molar ratio of LiNO 3 and / or KNO 3 for NaNO 3 is determined in consideration of the CO 2 absorption properties that change depending on the substitution of Na by Li and / or K, of Na by Li and / or K This can be determined as appropriate based on the desired substitution amount. However, when the molar ratio is out of 0.85: 0.15, it tends to be difficult to produce substituted-NaFeO 2 under the following heating conditions. From the viewpoint of ease of synthesis of substituted-NaFeO 2 and the effect of the CO 2 absorption characteristics and substitution become more apparent, the molar ratio of LiNO 3 and / or KNO 3 to NaNO 3 is 0.9: 0.1 to 0.99: 0.01. Range. In addition, in consideration of reactivity with NaNO 3 , LiNO 3 and / or KNO 3 , γ-Fe 2 O 3 may be preferably a powder having a relatively small particle size.

工程(b2)
工程(b2)においては、得られた混合粉末MP1又はMP2を550〜600℃の温度T1に加熱し、次いで、570〜750℃の温度T2(但し、T1<T2)に昇温してさらに加熱してα-NaFeO2又は置換型-NaFeO2を生成させる。
混合粉末MP1を550℃〜600℃の温度T1に加熱しても、加熱時間が比較的短い場合にはα-NaFeO2は生成しにくいか、または生成しない。しかし、温度T1に加熱した試料を570〜750℃の温度T2(但し、T1<T2)に昇温してさらに加熱すると、比較的容易にα-NaFeO2を生成させることができる。粉末を加熱する時間は、α-NaFeO2の生成状況に基づいて適宜決定することができ、温度T1での加熱は、例えば、1〜50時間の範囲であり、温度T2での加熱は、例えば、5〜30時間の範囲とすることでα-NaFeO2を生成させることができる。より具体的には、温度T1が、550℃〜570℃未満の範囲における加熱時間は好ましくは10〜50時間の範囲であり、温度T1が、570℃以上、600℃未満の範囲における加熱時間は好ましくは1〜40時間未満である。尚、工程(b2)の温度T2における加熱においては、加熱の途中で、1回又は2回以上加熱温度を上下させることもできる。
Process (b2)
In step (b2), the obtained mixed powder MP1 or MP2 is heated to a temperature T1 of 550 to 600 ° C., and then heated to a temperature T2 of 570 to 750 ° C. (where T1 <T2). Thus, α-NaFeO 2 or substituted-NaFeO 2 is produced.
Even when the mixed powder MP1 is heated to a temperature T1 of 550 ° C. to 600 ° C., α-NaFeO 2 is hardly generated or not generated when the heating time is relatively short. However, if the sample heated to the temperature T1 is heated to a temperature T2 (where T1 <T2) of 570 to 750 ° C. and further heated, α-NaFeO 2 can be generated relatively easily. The time for heating the powder can be appropriately determined based on the production state of α-NaFeO 2 , the heating at the temperature T1 is, for example, in the range of 1 to 50 hours, and the heating at the temperature T2 is, for example, The α-NaFeO 2 can be generated by setting the time in the range of 5 to 30 hours. More specifically, the heating time in the range where the temperature T1 is 550 ° C. to less than 570 ° C. is preferably in the range of 10 to 50 hours, and the heating time in the range where the temperature T1 is 570 ° C. or more and less than 600 ° C. is Preferably it is 1 to less than 40 hours. In the heating at the temperature T2 in the step (b2), the heating temperature can be raised or lowered once or twice or more during the heating.

成形には、粒子を結合させるためのバインダ材料(結合材)を用いることができる。バインダには、無機質の材料、有機質の材料のどちらも用いることができる。例えば無機質材料としては粘土、鉱物、石灰乳などが挙げられる。また有機材料としては、澱粉、メチルセルロース、ポリビニルアルコール、パラフィンなどが挙げられる。バインダの添加量は、炭酸ガス吸収材成分(岩塩型ナトリウムフェライト)に対して0.1〜20wt%とするのが好ましい。 For molding, a binder material (binding material) for binding particles can be used. For the binder, either an inorganic material or an organic material can be used. For example, examples of the inorganic material include clay, mineral, and lime milk. Examples of the organic material include starch, methylcellulose, polyvinyl alcohol, and paraffin. The added amount of the binder is preferably 0.1 to 20 wt% with respect to the carbon dioxide absorbent component (rock salt type sodium ferrite).

吸収反応及び放出反応のどちらの場合においても、反応容器は接触効率を考慮すると流動床式反応容器を利用することもできる。
In both the absorption reaction and the release reaction, a fluidized bed reaction vessel can be used as the reaction vessel in consideration of contact efficiency.

Claims (6)

α-ナトリウムフェライト又はα-ナトリウムフェライト中のナトリウムの一部がリチウム及び/若しくはカリウムで置換された置換型α-ナトリウムフェライトを含有する炭酸ガス吸収材 Carbon dioxide absorbing material containing α-sodium ferrite or substituted α-sodium ferrite in which a part of sodium in α-sodium ferrite is substituted with lithium and / or potassium . 前記置換型α-ナトリウムフェライトのナトリウムに対するリチウム及び/又はカリウムのモル比は、0.85:0.15〜1未満:0超の範囲であることを特徴とする、請求項1に記載の炭酸ガス吸収材 2. The carbon dioxide gas absorbent according to claim 1, wherein a molar ratio of lithium and / or potassium to sodium in the substitutional α-sodium ferrite is in a range of 0.85: 0.15 to less than 1: 0 . 気孔率が30%〜50%の多孔質体であることを特徴とする、請求項1又は2に記載の炭酸ガス吸収材 The carbon dioxide absorbent according to claim 1 or 2, wherein the porous material has a porosity of 30% to 50% . 請求項1〜3のいずれかに記載の炭酸ガス吸収材と、前記炭酸ガス吸収材を収納し、炭酸ガスを導入するための炭酸ガス導入口とを具備することを特徴とする、炭酸ガス吸収装置。 A carbonated gas absorbent according to any one of claims 1 to 3, and housing the carbon dioxide gas absorbent, characterized by comprising a carbon dioxide inlet for introducing carbon dioxide gas, carbon dioxide gas Absorber. 請求項1〜3のいずれかに記載の炭酸ガス吸収材に炭酸ガスを反応させて生成した生成物と、前記生成物を加熱し炭酸ガスを放出させるための加熱装置と、前記生成物を収納し、前記炭酸ガスを排出する生成ガス排出口とを具備することを特徴とする、炭酸ガス分離装置。 The carbonated gas absorbent according to any one of claims 1 to 3, a product produced by reacting carbon dioxide gas, a heating device for emitting carbon dioxide gas by heating said product, said product accommodated, characterized by comprising a product gas discharge port for discharging the carbon dioxide gas, carbon dioxide gas separation unit. γ- Fe2O3及びNaNO3を混合して混合粉末MP1を得る工程(a1)、又はγ- Fe2O3 NaNO3 並びにLiNO3及び/又はKNO3を混合して混合粉末MP2を得る工程(a2)
得られた混合粉末MP1又はMP2を570℃〜750℃の温度に加熱してα-ナトリウムフェライト又は置換型α-ナトリウムフェライトを生成させる工程(b1)、又は得られた混合粉末MP1又はMP2を550〜600℃の温度T1に加熱し、次いで、570〜750℃の温度T2(但し、T1<T2)に昇温してさらに加熱してα-ナトリウムフェライト又は置換型α-ナトリウムフェライトを生成させる工程(b2)、
を含むことを特徴とする請求項1〜3のいずれかに記載の炭酸ガス吸収材の製造方法。
.gamma. Fe 2 O 3 and NaNO 3 to obtain a mixed powder MP1 and mixing step (a1), or to obtain a γ- Fe 2 O 3, NaNO 3 and LiNO 3 and / or KNO 3 were mixed mixed powder MP2 as in step (a2),
Step (b1) of heating the obtained mixed powder MP1 or MP2 to a temperature of 570 ° C. to 750 ° C. to produce α-sodium ferrite or substituted α-sodium ferrite , or 550 of the obtained mixed powder MP1 or MP2 Heating to a temperature T1 of ~ 600 ° C, then raising the temperature to a temperature T2 of 570 to 750 ° C (where T1 <T2) and further heating to produce α-sodium ferrite or substituted α-sodium ferrite (b2),
The method for producing a carbon dioxide absorbent according to any one of claims 1 to 3, wherein:
JP2014123288A 2014-06-16 2014-06-16 Method for producing α-sodium ferrites Active JP6383188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014123288A JP6383188B2 (en) 2014-06-16 2014-06-16 Method for producing α-sodium ferrites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014123288A JP6383188B2 (en) 2014-06-16 2014-06-16 Method for producing α-sodium ferrites

Publications (3)

Publication Number Publication Date
JP2016003156A JP2016003156A (en) 2016-01-12
JP2016003156A5 true JP2016003156A5 (en) 2018-01-11
JP6383188B2 JP6383188B2 (en) 2018-08-29

Family

ID=55222713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014123288A Active JP6383188B2 (en) 2014-06-16 2014-06-16 Method for producing α-sodium ferrites

Country Status (1)

Country Link
JP (1) JP6383188B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220112802A (en) 2019-12-10 2022-08-11 도다 고교 가부시끼가이샤 Sodium ferrite particle powder and its manufacturing method
WO2022030338A1 (en) 2020-08-04 2022-02-10 戸田工業株式会社 Solid recovery material for carbon dioxide and method for producing same
EP4353353A1 (en) * 2021-06-07 2024-04-17 Toda Kogyo Corp. Solid material for recovering carbon dioxide, and method for producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3418023B2 (en) * 1994-12-16 2003-06-16 松下電器産業株式会社 Non-aqueous electrolyte lithium secondary battery
JP3053362B2 (en) * 1995-08-01 2000-06-19 株式会社東芝 Separation method of carbon dioxide gas Foam carbon dioxide gas absorbent and carbon dioxide gas separation device
JP2931961B2 (en) * 1996-08-27 1999-08-09 工業技術院長 Method for producing layered rock-salt type lithium ferrite by solvothermal ion exchange method
JP3420036B2 (en) * 1997-09-16 2003-06-23 株式会社東芝 Carbon dioxide absorbing material and carbon dioxide absorbing method
JP3930331B2 (en) * 2002-01-25 2007-06-13 東芝三菱電機産業システム株式会社 Fuel reforming method and system
JP3857667B2 (en) * 2003-07-01 2006-12-13 株式会社東芝 Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, carbon dioxide separating method and carbon dioxide separating device
JP5031192B2 (en) * 2004-03-31 2012-09-19 準一 山木 Method for producing positive electrode active material for non-aqueous electrolyte sodium secondary battery
JP4621887B2 (en) * 2005-01-21 2011-01-26 独立行政法人物質・材料研究機構 Carbon dioxide absorbing material
JP2007090207A (en) * 2005-09-28 2007-04-12 Toshiba Corp Carbon dioxide absorber and its manufacturing method

Similar Documents

Publication Publication Date Title
AU2016223349B2 (en) Particulate compositions for the formation of geopolymers, their use and methods for forming geopolymers therewith, and geopolymers obtained therefrom
JP2014521497A5 (en)
US7887770B2 (en) Amorphous aluminum silicate and adsorbent each having excellent moisture adsorption/desorption characteristics in medium-humidity range
JP5083762B2 (en) Porous metal complex, method for producing the same, and gas storage material containing porous metal complex
CA2740937A1 (en) Carbon dioxide separation via partial pressure swing cyclic chemical reaction
JP2016003156A5 (en)
KR102028777B1 (en) Strontium-exchanged clinoptilolite
WO2016065950A1 (en) Method for preparing basic zinc chloride
RU2012125013A (en) AGROMERATE OF SMALL ORE USED IN THE PROCESS OF AGROMERATION AND METHOD FOR PRODUCING AGRINOMET OF ORE FINE
JP2015020090A5 (en)
Pridobivanje et al. Utilization of geopolymerization for obtaining construction materials based on red mud
CN104177608A (en) Method for refining polyether
JP2009515697A5 (en)
CN105060923B (en) It is a kind of for light non-fired haydite of wastewater treatment and preparation method thereof
JP6383188B2 (en) Method for producing α-sodium ferrites
JP2007084360A5 (en)
JP2017002220A (en) Chemical heat storage material
JP6689671B2 (en) Ion exchange material, ion exchanger, ion adsorption device, water treatment system, method for producing ion exchange material, and method for producing ion exchanger
CN108083788A (en) A kind of preparation method of multi-functional haydite
CA2962911A1 (en) Method for producing crystalline silicotitanate
US1854899A (en) Process of making refractory insulating material
CN107159060A (en) A kind of method of diamond synthesis and the dolomite bushing pipe of diamond synthesis
KR101619584B1 (en) Manufacturing method of geopolymer having high strength by using slag from waste spent catalyst
JP2016078017A (en) Gas adsorbent, gas adsorption molded body and method for producing the gas adsorbent
US9108884B2 (en) Metakaolin production and enhancement of industrial minerals