JP2016001519A - Paint drying apparatus and paint drying method - Google Patents

Paint drying apparatus and paint drying method Download PDF

Info

Publication number
JP2016001519A
JP2016001519A JP2014120328A JP2014120328A JP2016001519A JP 2016001519 A JP2016001519 A JP 2016001519A JP 2014120328 A JP2014120328 A JP 2014120328A JP 2014120328 A JP2014120328 A JP 2014120328A JP 2016001519 A JP2016001519 A JP 2016001519A
Authority
JP
Japan
Prior art keywords
dimensional
temperature
proportional control
induction heating
control constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014120328A
Other languages
Japanese (ja)
Other versions
JP6330495B2 (en
Inventor
小松 正
Tadashi Komatsu
正 小松
慎弥 宇井
Shinya UI
慎弥 宇井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014120328A priority Critical patent/JP6330495B2/en
Publication of JP2016001519A publication Critical patent/JP2016001519A/en
Application granted granted Critical
Publication of JP6330495B2 publication Critical patent/JP6330495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Drying Of Solid Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the surface temperature even of a painted object, having a complicated shape, uniform with high accuracy.SOLUTION: A paint drying apparatus includes a position detector 1a for holding three-dimensional proportional control constant information D3 that is set based on the three-dimensional heat capacity information of a painted object 10, and detecting a three-dimensional position, i.e., the heating object position of the painted object 10 by an induction heating coil 3, a temperature detector 1b for detecting the temperature of the painted object 10 corresponding to the three-dimensional position detected by the position detector 1a, and a temperature control unit 1c performing proportional control of the energization power to the induction heating coil 3, by setting the proportional control constant P' so that the temperature of the painted object 10, detected by the temperature detector 1b at the three-dimensional position, based on the three-dimensional proportional control constant information D3 of the painted object 10 corresponding to the three-dimensional position detected by the position detector 1a, becomes the set temperature.

Description

この発明は、複雑な形状を有する被塗装物であっても被塗装物の表面温度を精度高く均一にすることができる塗装乾燥装置および塗装乾燥方法に関する。   The present invention relates to a coating drying apparatus and a coating drying method that can make the surface temperature of an object to be coated highly accurate and uniform even if the object has a complicated shape.

従来、自動車ボディなどの塗装乾燥を行う場合、熱風乾燥炉が用いられていた。この熱風乾燥炉では、熱容量の大きい箇所の焼付不良を防ぐために熱風温度は標準焼付温度以上に設定されていた。このため、熱容量の小さい箇所は過剰加熱になり、省エネルギー化を阻害していた。また、熱風乾燥炉では間接的な入熱によって被塗装物を加熱するため、被塗装物が所望温度に達するまでに長い時間がかかっていた。一方、塗料の性質上、決められた焼付温度以上の雰囲気中に被塗装物を置くと黄変や炭化が生じる。   Conventionally, a hot-air drying furnace has been used for painting and drying automobile bodies and the like. In this hot air drying furnace, the hot air temperature has been set to be equal to or higher than the standard baking temperature in order to prevent poor baking at locations with a large heat capacity. For this reason, the portion having a small heat capacity is excessively heated, which has prevented energy saving. Further, since the object to be coated is heated by indirect heat input in the hot air drying furnace, it took a long time for the object to reach the desired temperature. On the other hand, due to the nature of the paint, yellowing or carbonization occurs when an object to be coated is placed in an atmosphere at or above a predetermined baking temperature.

この省エネルギー化と塗膜品質の向上とを図るため、誘導加熱コイルを用いた誘導加熱方式によって塗装乾燥を行うものがある。誘導加熱方式は、誘導加熱コイルに高周波電流を流すことによって誘導加熱コイルの周囲に磁力線を発生させ、その近くにある導電性の被加熱体はこの磁力線の影響を受けて、被加熱物内に渦電流を生じさせる。そして、被加熱体は、この渦電流によってジュール熱を発生し、内部から直接加熱されるものである。   In order to save energy and improve the quality of the coating film, there are some which perform coating drying by an induction heating method using an induction heating coil. In the induction heating method, a magnetic line of force is generated around the induction heating coil by flowing a high-frequency current through the induction heating coil, and the conductive object to be heated nearby is affected by the magnetic field line and is heated inside the object to be heated. Causes eddy currents. And the to-be-heated body generates Joule heat by this eddy current, and is heated directly from the inside.

この誘導加熱方式を用いたものとして、例えば、特許文献1では、誘導加熱コイルの形状の変形が可能であり、誘導加熱コイルから発する磁束密度の強さや領域を調整することができる塗装乾燥装置が記載されている。このため、特許文献1では、複雑形状の被塗装物であっても被塗装物の表面温度を均一にすることができる。なお、特許文献1では、被塗装物の表面温度を検出して誘導加熱コイルの出力、加熱位置、加熱時間を調整して被塗装物の表面温度を調整している。   As an apparatus using this induction heating method, for example, Patent Document 1 discloses a coating drying apparatus that can change the shape of the induction heating coil and adjust the strength and area of the magnetic flux density emitted from the induction heating coil. Have been described. For this reason, in patent document 1, even if it is a complicated-shaped to-be-coated object, the surface temperature of a to-be-coated object can be made uniform. In Patent Document 1, the surface temperature of the object to be coated is adjusted by detecting the surface temperature of the object to be coated and adjusting the output, heating position, and heating time of the induction heating coil.

特開2010−281490号公報JP 2010-281490 A

上述した誘導加熱方式では、一般にPID制御装置を用いて被塗装物の表面温度が均一になるように温度制御されている。しかしながら、誘導加熱コイルによる被塗装物の温度制御対象点は、刻々と移動するため、比例制御に加えた積分制御や微分制御を用いた精度の高い温度制御を行うことが難しい。一方、自動車ボディなどの被塗装物の各温度制御対象点は、被塗装物の形状が複雑であることから熱容量や放熱量が異なる場合が多く、一層、被塗装物の表面温度を精度高く均一にすることが難しい。   In the induction heating method described above, the temperature is generally controlled using a PID control device so that the surface temperature of the object to be coated is uniform. However, since the temperature control target point of the object to be coated by the induction heating coil moves every moment, it is difficult to perform highly accurate temperature control using integral control and differential control in addition to proportional control. On the other hand, the temperature control points of objects to be painted such as automobile bodies are often different in heat capacity and heat dissipation due to the complicated shape of the object to be coated, and the surface temperature of the object to be coated is more accurate and uniform. Difficult to make.

この発明は、上記に鑑みてなされたものであって、複雑な形状を有する被塗装物であっても被塗装物の表面温度を精度高く均一にすることができる塗装乾燥装置および塗装乾燥方法を提供することを目的とする。   The present invention has been made in view of the above, and provides a coating drying apparatus and a coating drying method capable of accurately and uniformly making the surface temperature of an object to be coated even if the object has a complicated shape. The purpose is to provide.

上述した課題を解決し、目的を達成するために、この発明にかかる塗装乾燥装置は、被塗装物の周囲に誘導加熱コイルを移動させ、該塗装物に塗布された塗料を乾燥する塗装乾燥装置であって、前記被塗装物の3次元熱容量情報をもとに設定される3次元比例制御定数情報を保持する3次元比例制御定数情報保持部と、前記誘導加熱コイルによる前記被塗装物の加熱対象位置である3次元位置を検出する位置検出部と、前記位置検出部が検出した3次元位置に対応する前記被塗装物の温度を検出する温度検出部と、前記位置検出部が検出した3次元位置に対応する前記被塗装物の3次元比例制御定数情報に基づき、3次元位置における前記温度検出部が検出した前記被塗装物の温度が設定温度となるように比例制御定数を設定して前記誘導加熱コイルへの通電電力の比例制御を行う温度制御部と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, a paint drying apparatus according to the present invention moves an induction heating coil around the object to be coated and dries the paint applied to the object to be coated. A three-dimensional proportional control constant information holding unit for holding three-dimensional proportional control constant information set based on the three-dimensional heat capacity information of the object to be coated, and heating the object by the induction heating coil. A position detection unit that detects a three-dimensional position that is a target position, a temperature detection unit that detects the temperature of the object to be coated corresponding to the three-dimensional position detected by the position detection unit, and 3 detected by the position detection unit Based on the three-dimensional proportional control constant information of the object corresponding to the three-dimensional position, a proportional control constant is set so that the temperature of the object detected by the temperature detection unit at the three-dimensional position becomes a set temperature. Induction Characterized by comprising a temperature control unit for proportional control of the energization power to the coil.

また、この発明にかかる塗装乾燥装置は、上記の発明において、前記誘導加熱コイルが繰り返して移動加熱する同一3次元位置における3次元温度偏差積分値を保持する3次元温度偏差積分値保持部を備え、前記温度制御部は、前記位置検出部が検出した3次元位置に対応する前記3次元温度偏差積分値に基づき、設定された前記比例制御定数を積分補償することを特徴とする。   The paint drying apparatus according to the present invention further includes a three-dimensional temperature deviation integrated value holding unit that holds a three-dimensional temperature deviation integrated value at the same three-dimensional position where the induction heating coil repeatedly moves and heats. The temperature control unit integrates and compensates the set proportional control constant based on the three-dimensional temperature deviation integral value corresponding to the three-dimensional position detected by the position detection unit.

また、この発明にかかる塗装乾燥方法は、被塗装物の周囲に誘導加熱コイルを移動させ、該塗装物に塗布された塗料を乾燥する塗装乾燥方法であって、前記誘導加熱コイルの3次元位置に対応する前記被塗装物の設定温度と、該3次元位置において検出された検出温度との偏差をもとに比例制御定数を算出し、前記算出された比例制御定数に対し、前記被塗装物の3次元熱容量情報をもとに設定された3次元比例制御定数情報をもとに該3次元位置に対応する比例制御定数を設定し、前記設定された比例制御定数を用いて前記3次元位置における温度が設定温度となるように前記誘導加熱コイルへの通電電力の比例制御を行うことを特徴とする。   The paint drying method according to the present invention is a paint drying method in which an induction heating coil is moved around the object to be coated, and the paint applied to the paint is dried. The three-dimensional position of the induction heating coil The proportional control constant is calculated based on the deviation between the set temperature of the object to be coated and the detected temperature detected at the three-dimensional position, and the object to be coated is calculated with respect to the calculated proportional control constant. A proportional control constant corresponding to the three-dimensional position is set based on the three-dimensional proportional control constant information set based on the three-dimensional heat capacity information, and the three-dimensional position is determined using the set proportional control constant. Proportional control of the energization power to the induction heating coil is performed so that the temperature at is a set temperature.

また、この発明にかかる塗装乾燥方法は、上記の発明において、前記誘導加熱コイルが繰り返して移動加熱する同一3次元位置における3次元温度偏差積分値を更新可能に保持し、前記3次元位置における現在の3次元温度偏差積分値を用いて、前記設定された比例制御定数を積分補償することを特徴とする。   Further, the paint drying method according to the present invention, in the above-described invention, holds the three-dimensional temperature deviation integral value at the same three-dimensional position where the induction heating coil repeatedly moves and heats updatable, and updates the current value at the three-dimensional position. The set proportional control constant is integrated and compensated using the three-dimensional temperature deviation integral value.

この発明によれば、3次元比例制御定数情報保持部が、被塗装物の3次元熱容量情報をもとに設定される3次元比例制御定数情報を保持し、位置検出部が、誘導加熱コイルによる前記被塗装物の加熱対象位置である3次元位置を検出し、温度制御部が、前記位置検出部が検出した3次元位置に対応する前記被塗装物の温度を検出し、温度制御部が、前記位置検出部が検出した3次元位置に対応する前記被塗装物の3次元比例制御定数情報に基づき、3次元位置における前記温度検出部が検出した前記被塗装物の温度が設定温度となるように比例制御定数を設定して前記誘導加熱コイルへの通電電力の比例制御を行うようにしている。この結果、複雑な形状を有する被塗装物であっても被塗装物の表面温度を精度高く均一にすることができる。   According to this invention, the three-dimensional proportional control constant information holding unit holds the three-dimensional proportional control constant information set based on the three-dimensional heat capacity information of the object to be coated, and the position detecting unit is based on the induction heating coil. A three-dimensional position that is a heating target position of the object to be coated is detected, a temperature control unit detects a temperature of the object to be coated corresponding to the three-dimensional position detected by the position detection unit, and a temperature control unit, Based on the three-dimensional proportional control constant information of the object corresponding to the three-dimensional position detected by the position detector, the temperature of the object detected by the temperature detector at the three-dimensional position becomes a set temperature. A proportional control constant is set in the control unit to perform proportional control of the electric power supplied to the induction heating coil. As a result, even if the object has a complicated shape, the surface temperature of the object can be made uniform with high accuracy.

図1は、この発明の実施の形態1である塗装乾燥装置の全体構成を示す模式図である。FIG. 1 is a schematic diagram showing the overall configuration of a paint drying apparatus according to Embodiment 1 of the present invention. 図2は、図1に示した温度制御部の構成を示す詳細ブロック図である。FIG. 2 is a detailed block diagram showing the configuration of the temperature control unit shown in FIG. 図3は、3次元比例制御定数情報の一例を示す図である。FIG. 3 is a diagram illustrating an example of three-dimensional proportional control constant information. 図4は、この発明の実施の形態2である塗装乾燥装置の全体構成を示す模式図である。FIG. 4 is a schematic diagram showing an overall configuration of a paint drying apparatus according to Embodiment 2 of the present invention. 図5は、3次元温度偏差積分値の一例を示す図である。FIG. 5 is a diagram illustrating an example of a three-dimensional temperature deviation integrated value. 図6は、図4に示した温度制御部の構成を示す詳細ブロック図である。FIG. 6 is a detailed block diagram showing the configuration of the temperature control unit shown in FIG.

以下、添付図面を参照してこの発明を実施するための形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

(実施の形態1)
[全体構成]
図1は、この発明の実施の形態1である塗装乾燥装置の全体構成を示す模式図である。図1に示すように、塗装乾燥装置は、制御部1に、温度分布取得部2、先端に誘導加熱コイル3が結合されたロボットアームで実現される誘導加熱部4、記憶部5、表示部6、および操作部7が接続される。
(Embodiment 1)
[overall structure]
FIG. 1 is a schematic diagram showing the overall configuration of a paint drying apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the paint drying apparatus includes a control unit 1, a temperature distribution acquisition unit 2, an induction heating unit 4 realized by a robot arm in which an induction heating coil 3 is coupled to the tip, a storage unit 5, and a display unit. 6 and the operation unit 7 are connected.

温度分布取得部2は、搬入された被塗装物10の温度分布情報を取得する。具体的に、温度分布取得部2は、3次元赤外線サーモグラフィであり、被塗装物10の温度分布情報を取得する。この温度分布情報は、制御部1を介して記憶部5に温度分布情報D2として記憶される。この実施の形態1では、温度分布取得部2は、天井13に設置される。   The temperature distribution acquisition unit 2 acquires temperature distribution information of the object 10 that has been loaded. Specifically, the temperature distribution acquisition unit 2 is a three-dimensional infrared thermography, and acquires temperature distribution information of the object to be coated 10. This temperature distribution information is stored as temperature distribution information D2 in the storage unit 5 via the control unit 1. In the first embodiment, the temperature distribution acquisition unit 2 is installed on the ceiling 13.

誘導加熱コイル3は、例えば、円状に巻かれたコイルである。誘導加熱コイル3は、制御部1による制御のもと、天井13に取り付けられたロボットアームが駆動されて、位置および姿勢を変えることができる。誘導加熱コイル3は、図示しない電源から供給される高周波電流によって磁界を発生する。被塗装物10は金属であり、誘導加熱コイル3からの磁界を受けて渦電流を発生することによって加熱される。   The induction heating coil 3 is, for example, a coil wound in a circular shape. The induction heating coil 3 can be changed in position and posture under the control of the control unit 1 by driving a robot arm attached to the ceiling 13. The induction heating coil 3 generates a magnetic field by a high frequency current supplied from a power source (not shown). The object to be coated 10 is a metal, and is heated by receiving an electric field from the induction heating coil 3 and generating an eddy current.

記憶部5は、被塗装物10の3次元形状情報D1を保持する。3次元形状情報D1は、例えば、3次元CADデータである。記憶部5は、上述した温度分布情報D2のほかに、後述するように、被塗装物10をメッシュに分割し、各メッシュ毎の3次元熱容量情報に対応して、各メッシュ毎の3次元比例制御定数情報D3を保持する。   The storage unit 5 holds the three-dimensional shape information D1 of the article 10 to be coated. The three-dimensional shape information D1 is, for example, three-dimensional CAD data. In addition to the above-described temperature distribution information D2, the storage unit 5 divides the object to be coated 10 into meshes, as will be described later, and corresponds to the three-dimensional heat capacity information for each mesh, and is proportional to the three-dimensional for each mesh. Control constant information D3 is held.

表示部6は、3次元形状情報D1、温度分布情報D2、3次元比例制御定数情報D3、誘導加熱コイル3の3次元移動経路RTなどの各種情報を表示出力する。なお、3次元形状情報D1、温度分布情報D2、3次元比例制御定数情報D3、誘導加熱コイル3の3次元移動経路RTは、少なくとも制御部1の制御のもとに、各情報を重ね合せ出力することができる。   The display unit 6 displays and outputs various information such as the three-dimensional shape information D1, the temperature distribution information D2, the three-dimensional proportional control constant information D3, and the three-dimensional movement path RT of the induction heating coil 3. The three-dimensional shape information D1, the temperature distribution information D2, the three-dimensional proportional control constant information D3, and the three-dimensional movement path RT of the induction heating coil 3 are superposed and output at least under the control of the control unit 1. can do.

操作部7は、制御部1に対する制御指示を行う。操作部7は、キーボードやポインティングデバイスによって実現される。   The operation unit 7 issues a control instruction to the control unit 1. The operation unit 7 is realized by a keyboard or a pointing device.

床11の上部には、被塗装物10を搬送するコンベア12が配置される。被塗装物10は、たとえば自動車ボディであり、水性塗料が塗布された状態でコンベア12によって所定位置まで搬入される。被塗装物10が搬入されると、制御部1は、被塗装物10に塗布された塗料を焼き付けるために、誘導加熱部4を駆動制御し、誘導加熱コイル3の3次元位置および姿勢を制御しながら、被塗装物10を誘導加熱する。   A conveyor 12 that conveys the article to be coated 10 is disposed on the floor 11. The object to be coated 10 is, for example, an automobile body, and is carried to a predetermined position by the conveyor 12 in a state where a water-based paint is applied. When the object to be coated 10 is carried in, the control unit 1 drives and controls the induction heating unit 4 and controls the three-dimensional position and posture of the induction heating coil 3 in order to burn the paint applied to the object to be coated 10. Meanwhile, the object to be coated 10 is induction-heated.

制御部1は、位置検出部1a、温度検出部1b、及び温度制御部1cを有する。位置検出部1aは、ロボットアームの駆動状態をもとに、誘導加熱コイル3による被塗装物10の加熱対象位置である3次元位置を検出する。温度検出部1bは、温度分布取得部2が取得した温度分布情報D2をもとに、位置検出部1aが検出した3次元位置に対応する温度を検出する。温度制御部1cは、位置検出部1aが検出した3次元位置に対応する被塗装物10の3次元比例制御定数情報D3に基づき、3次元位置における温度検出部1bが検出した被塗装物10の温度が設定温度となるように比例制御定数を設定して誘導加熱コイル3への通電電力の比例制御を行う。これによって、誘導加熱コイル3が3次元移動経路RTを移動して被塗装物10を加熱する際、被塗装物10の各部の熱容量に対応した適切な比例制御定数に刻々と設定され、熱容量が異なる複雑な被塗装物10であっても温度分布を精度高く均一にすることができる。   The control unit 1 includes a position detection unit 1a, a temperature detection unit 1b, and a temperature control unit 1c. The position detection unit 1a detects a three-dimensional position that is a heating target position of the object to be coated 10 by the induction heating coil 3 based on the driving state of the robot arm. The temperature detection unit 1b detects a temperature corresponding to the three-dimensional position detected by the position detection unit 1a based on the temperature distribution information D2 acquired by the temperature distribution acquisition unit 2. Based on the three-dimensional proportional control constant information D3 of the workpiece 10 corresponding to the three-dimensional position detected by the position detection unit 1a, the temperature control unit 1c detects the object 10 detected by the temperature detection unit 1b at the three-dimensional position. A proportional control constant is set so that the temperature becomes the set temperature, and proportional control of the electric power supplied to the induction heating coil 3 is performed. As a result, when the induction heating coil 3 moves along the three-dimensional movement path RT to heat the object 10 to be coated, an appropriate proportional control constant corresponding to the heat capacity of each part of the object 10 is set every moment, and the heat capacity is set. Even with different complicated objects 10 to be coated, the temperature distribution can be made uniform with high accuracy.

なお、制御部1は、誘導加熱コイル3のコイル形成面を被塗装物10の表面に対して平行に維持し、被塗装物10とのギャップを一定にしつつ、移動する。また、誘導加熱コイル3の3次元移動経路RTは、熱容量の大きい領域から熱容量の小さい領域に向けた順序に設定される。例えば、図1に示した領域E1はロッカー部であり、コンベア12に接触し、かつ厚いために熱容量が大きいので、優先して誘導加熱する。領域E2は、複雑形状を有して誘導加熱困難な部分が存在するため、領域E1の誘導加熱後に誘導加熱を行う。また、領域E3は、板厚が薄く熱容量が小さいため、誘導加熱順序の優先順位を最後にしている。このように、誘導加熱コイル3の移動経路を熱容量の大きい領域から小さい領域に向けて設定することによって、1回の誘導加熱が終わった時点における誘導加熱領域全体の温度差を小さくすることができる。   The control unit 1 moves while maintaining the coil forming surface of the induction heating coil 3 parallel to the surface of the object to be coated 10 and keeping the gap with the object to be coated 10 constant. In addition, the three-dimensional movement path RT of the induction heating coil 3 is set in an order from a region having a large heat capacity to a region having a small heat capacity. For example, the region E1 shown in FIG. 1 is a rocker portion, and is in contact with the conveyor 12 and has a large heat capacity because of being thick, and therefore preferentially performs induction heating. Since the region E2 has a complicated shape and is difficult to induction heat, induction heating is performed after the induction heating of the region E1. In addition, since the region E3 has a small plate thickness and a small heat capacity, the priority of the induction heating order is last. In this way, by setting the moving path of the induction heating coil 3 from the region having a large heat capacity toward the region having a small heat capacity, the temperature difference of the entire induction heating region at the time when one induction heating is completed can be reduced. .

[温度制御部の詳細構成]
つぎに、図2に示した温度制御部1cの構成を示す詳細ブロック図をもとに、温度制御部1cの温度制御について説明する。図2に示すように、被塗装物10の平均温度として設定される設定温度は、演算部31に入力される。また、演算部31には、現在の3次元位置において温度検出部1bが検出した検出温度が入力される。演算部31は、設定温度と検出温度との偏差Δtを比例制御定数算出部32に出力する。比例制御定数算出部32は、偏差Δtの値に対応する比例制御定数Pの関係を保持し、入力された偏差Δtに対応する比例制御定数Pを算出し、比例制御定数設定部33に出力する。
[Detailed configuration of temperature controller]
Next, the temperature control of the temperature control unit 1c will be described based on the detailed block diagram showing the configuration of the temperature control unit 1c shown in FIG. As shown in FIG. 2, the set temperature set as the average temperature of the article 10 is input to the calculation unit 31. Further, the detected temperature detected by the temperature detection unit 1b at the current three-dimensional position is input to the calculation unit 31. The calculation unit 31 outputs a deviation Δt between the set temperature and the detected temperature to the proportional control constant calculation unit 32. The proportional control constant calculation unit 32 holds the relationship of the proportional control constant P corresponding to the value of the deviation Δt, calculates the proportional control constant P corresponding to the input deviation Δt, and outputs it to the proportional control constant setting unit 33. .

比例制御定数設定部33には、位置検出部1aによって検出された現在の3次元位置が入力される。比例制御定数設定部33は、入力された現在の3次元位置に対応する3次元比例制御定数情報D3を取得し、比例制御定数Pを比例制御定数P´に修正し、この修正した比例制御定数P´を誘導加熱コイル電源34に出力する。誘導加熱コイル電源34は、入力された比例制御定数P´をもとに誘導加熱コイル3への通電電力を制御する。この通電電力の制御は、例えば、誘導加熱コイル3に流れる高周波電流値の増減制御である。   The current three-dimensional position detected by the position detection unit 1a is input to the proportional control constant setting unit 33. The proportional control constant setting unit 33 acquires the three-dimensional proportional control constant information D3 corresponding to the input current three-dimensional position, corrects the proportional control constant P to the proportional control constant P ′, and this corrected proportional control constant. P ′ is output to the induction heating coil power supply 34. The induction heating coil power supply 34 controls the energization power to the induction heating coil 3 based on the input proportional control constant P ′. The control of the energization power is, for example, increase / decrease control of the high-frequency current value flowing through the induction heating coil 3.

なお、図3に示すように、3次元比例制御定数情報D3は、3次元形状情報D1をもとに予めメッシュに分割された分割領域毎に、被塗装物10の厚さなどの構造や材質などに起因する3次元熱容量情報を求め、この3次元熱容量情報をもとに各分割領域毎に予め設定されるものである。例えば、3次元比例制御定数情報D3は、熱容量が平均熱容量に比して大きい分割領域では、比例制御定数P´が1を超える値に設定され、熱容量が平均熱容量に比して小さい分割領域では、比例制御定数P´が1未満の値に設定される。なお、誘導加熱コイル3の3次元位置が、ある分割領域に入ったか否かの判断は、例えば、誘導加熱コイル3の加熱温度プロファイルの中心位置が、ある分割領域に入った場合としている。なお、3次元比例制御定数D3は、熱容量のみならず、被塗装物10の構造や材質に基づく放熱量を加味してもよい。   As shown in FIG. 3, the three-dimensional proportional control constant information D3 is a structure or material such as the thickness of the object to be coated 10 for each divided region divided in advance into a mesh based on the three-dimensional shape information D1. The three-dimensional heat capacity information resulting from the above is obtained and preset for each divided region based on the three-dimensional heat capacity information. For example, the three-dimensional proportional control constant information D3 is set such that the proportional control constant P ′ is set to a value exceeding 1 in a divided region where the heat capacity is large compared to the average heat capacity, and the heat capacity is small in the divided region compared to the average heat capacity. The proportional control constant P ′ is set to a value less than 1. The determination as to whether or not the three-dimensional position of the induction heating coil 3 has entered a certain divided area is, for example, the case where the center position of the heating temperature profile of the induction heating coil 3 has entered a certain divided area. Note that the three-dimensional proportional control constant D3 may take into account not only the heat capacity but also the amount of heat released based on the structure and material of the object 10 to be coated.

この実施の形態1では、温度制御部1cが設定温度と検出温度との偏差Δtによる比例制御定数Pの算出に加え、誘導加熱コイル3の移動に伴う被塗装物10の3次元位置における熱容量や放熱量の変化を加味した3次元比例制御定数情報D3を用いて比例制御定数Pを比例制御定数P´に修正する温度制御を移動とともに刻々と行っているので、被塗装物10の各部における熱容量や放熱量の違いに伴う温度不均一を解消し、被塗装物10の表面温度を精度高く均一にすることができる。特に、被塗装物10の3次元位置間の温度差を小さくすることができるので、塗料が許容する高い温度での制御が可能となり、塗装乾燥時間の短縮を図ることができる。また、この塗装乾燥時間の短縮は、誘導加熱コイル3への通電時間が短縮されるため、塗装乾燥装置全体の省エネルギー化も図ることができる。   In the first embodiment, in addition to the calculation of the proportional control constant P by the deviation Δt between the set temperature and the detected temperature, the temperature control unit 1c performs the heat capacity at the three-dimensional position of the object 10 to be coated as the induction heating coil 3 moves. Since the temperature control for correcting the proportional control constant P to the proportional control constant P ′ using the three-dimensional proportional control constant information D3 that takes into account the change in the amount of heat release is performed with movement, the heat capacity in each part of the object 10 to be coated In addition, the temperature non-uniformity associated with the difference in the heat radiation amount can be eliminated, and the surface temperature of the object 10 can be made uniform with high accuracy. In particular, since the temperature difference between the three-dimensional positions of the object to be coated 10 can be reduced, it is possible to control at a high temperature allowed by the paint, and shorten the coating drying time. In addition, the shortening of the coating drying time shortens the energization time to the induction heating coil 3, and therefore energy saving of the entire coating drying apparatus can be achieved.

(実施の形態2)
[全体構成]
図4は、この発明の実施の形態2である塗装乾燥装置の全体構成を示す模式図である。この実施の形態2では、温度制御部1dが実施の形態1の温度制御部1cに対応するが、この温度制御部1dでは、さらに分割領域毎の3次元温度偏差積分を行い、この3次元温度偏差積分値を加味して比例制御定数P´を積分補償するようにしている。なお、記憶部5には、同一3次元位置における偏差Δtの積分値である3次元温度偏差積分値D4が更新可能に保持される。すなわち、図5に示すように、3次元温度偏差積分値D4は、誘導加熱コイル3が3次元移動経路RTを移動する毎に、各分割領域の積分値が更新される。この3次元温度偏差積分値D4は、前回の移動までの所定回数の偏差Δtの積分値である。塗装乾燥装置のその他の構成は、実施の形態1と同じである。
(Embodiment 2)
[overall structure]
FIG. 4 is a schematic diagram showing an overall configuration of a paint drying apparatus according to Embodiment 2 of the present invention. In the second embodiment, the temperature control unit 1d corresponds to the temperature control unit 1c of the first embodiment, but this temperature control unit 1d further performs three-dimensional temperature deviation integration for each divided region, and this three-dimensional temperature The proportional control constant P ′ is integrated and compensated in consideration of the deviation integral value. The storage unit 5 holds a three-dimensional temperature deviation integral value D4 that is an integral value of the deviation Δt at the same three-dimensional position in an updatable manner. That is, as shown in FIG. 5, the integrated value of each divided region is updated as the three-dimensional temperature deviation integrated value D4 moves each time the induction heating coil 3 moves along the three-dimensional movement path RT. The three-dimensional temperature deviation integral value D4 is an integral value of the deviation Δt a predetermined number of times until the previous movement. Other configurations of the paint drying apparatus are the same as those in the first embodiment.

[温度制御部の詳細構成]
つぎに、図6に示した温度制御部1dの構成を示す詳細ブロック図をもとに、温度制御部1dの温度制御について説明する。図6に示すように、被塗装物10の平均温度として設定される設定温度は、演算部31に入力される。また、演算部31には、現在の3次元位置において温度検出部1bが検出した検出温度が入力される。演算部31は、設定温度と検出温度との偏差Δtを比例制御定数算出部32及び比例制御定数補償設定部35に出力する。
[Detailed configuration of temperature controller]
Next, the temperature control of the temperature control unit 1d will be described based on the detailed block diagram showing the configuration of the temperature control unit 1d shown in FIG. As shown in FIG. 6, the set temperature set as the average temperature of the article 10 is input to the calculation unit 31. Further, the detected temperature detected by the temperature detection unit 1b at the current three-dimensional position is input to the calculation unit 31. The calculation unit 31 outputs the deviation Δt between the set temperature and the detected temperature to the proportional control constant calculation unit 32 and the proportional control constant compensation setting unit 35.

比例制御定数算出部32は、偏差Δtの値に対応する比例制御定数Pの関係を保持し、入力された偏差Δtに対応する比例制御定数Pを算出し、比例制御定数設定部33に出力する。比例制御定数設定部33には、位置検出部1aによって検出された現在の3次元位置が入力される。比例制御定数設定部33は、入力された現在の3次元位置に対応する3次元比例制御定数情報D3を取得し、比例制御定数Pを比例制御定数P´に修正し、この修正した比例制御定数P´を演算部36に出力する。   The proportional control constant calculation unit 32 holds the relationship of the proportional control constant P corresponding to the value of the deviation Δt, calculates the proportional control constant P corresponding to the input deviation Δt, and outputs it to the proportional control constant setting unit 33. . The current three-dimensional position detected by the position detection unit 1a is input to the proportional control constant setting unit 33. The proportional control constant setting unit 33 acquires the three-dimensional proportional control constant information D3 corresponding to the input current three-dimensional position, corrects the proportional control constant P to the proportional control constant P ′, and this corrected proportional control constant. P ′ is output to the calculation unit 36.

一方、比例制御定数補償設定部35には、位置検出部1aによって検出された現在の3次元位置が入力される。比例制御定数補償設定部35は、今回までの偏差Δtの積分値である3次元温度偏差積分値D4を取得し、この取得した3次元温度偏差積分値D4に今回入力された偏差Δtを加えた積分処理を行い、積分処理された新たな積分値を3次元温度偏差積分値D4として更新するとともに、この更新された3次元温度偏差積分値D4に基づいて比例制御定数の補償値Pαを演算部36に出力する。この3次元温度偏差積分値D4とは、比例制御定数算出部32及び比例制御定数設定部33によって設定された比例制御定数P´を用いた温度制御を行っても、依然として検出温度と設定温度との偏差Δtが生じているか否かを示す指標である。   On the other hand, the current three-dimensional position detected by the position detection unit 1a is input to the proportional control constant compensation setting unit 35. The proportional control constant compensation setting unit 35 acquires a three-dimensional temperature deviation integrated value D4 that is an integrated value of the deviation Δt so far, and adds the deviation Δt input this time to the acquired three-dimensional temperature deviation integrated value D4. Integration processing is performed, and the new integration value after the integration processing is updated as a three-dimensional temperature deviation integration value D4, and the compensation value Pα of the proportional control constant is calculated based on the updated three-dimensional temperature deviation integration value D4. To 36. This three-dimensional temperature deviation integrated value D4 is still the detected temperature and the set temperature even when the temperature control using the proportional control constant P ′ set by the proportional control constant calculating unit 32 and the proportional control constant setting unit 33 is performed. This is an index indicating whether or not a deviation Δt occurs.

演算部36は、比例制御定数P´に対して補償値Pα分を増減し、この積分補償された比例制御定数P´´を誘導加熱コイル電源34に出力する。誘導加熱コイル電源34は、入力された比例制御定数P´´をもとに誘導加熱コイル3への通電電力を制御する。   The calculation unit 36 increases or decreases the compensation value Pα by the proportional control constant P ′, and outputs the integral compensated proportional control constant P ″ to the induction heating coil power supply 34. The induction heating coil power supply 34 controls the energization power to the induction heating coil 3 based on the input proportional control constant P ″.

この実施の形態2では、実施の形態1に加えて、比例制御のみでは解消できない温度偏差を比例制御定数補償設定部35による3次元位置ごとの積分補償を行うようにしているので、さらに被塗装物10の各部における熱容量や放熱量の違いに伴う温度不均一を解消し、被塗装物10の表面温度を精度高く均一にすることができる。特に、被塗装物10の3次元位置間の温度差を小さくすることができるので、塗料が許容する高い温度での制御が可能となり、塗装乾燥時間の短縮を図ることができる。また、この塗装乾燥時間の短縮は、誘導加熱コイル3への通電時間が短縮されるため、塗装乾燥装置全体の省エネルギー化も図ることができる。   In the second embodiment, in addition to the first embodiment, the temperature deviation that cannot be eliminated only by proportional control is subjected to integral compensation for each three-dimensional position by the proportional control constant compensation setting unit 35. The temperature non-uniformity accompanying the difference in the heat capacity and the heat radiation amount in each part of the object 10 can be eliminated, and the surface temperature of the object 10 can be made uniform with high accuracy. In particular, since the temperature difference between the three-dimensional positions of the object to be coated 10 can be reduced, it is possible to control at a high temperature allowed by the paint, and shorten the coating drying time. In addition, the shortening of the coating drying time shortens the energization time to the induction heating coil 3, and therefore energy saving of the entire coating drying apparatus can be achieved.

なお、上述した実施の形態1,2では、1つの誘導加熱コイル3を用いていたが、これに限らず、複数の誘導加熱コイル3を設けてもよい。また、温度分布情報D2を取得するために、複数の温度分布取得部2を設けるようにしてもよい。この場合、各誘導加熱コイル3と各温度分布取得部2とを対とする構成にすることが好ましい。   In Embodiments 1 and 2 described above, one induction heating coil 3 is used. However, the present invention is not limited to this, and a plurality of induction heating coils 3 may be provided. Further, a plurality of temperature distribution acquisition units 2 may be provided to acquire the temperature distribution information D2. In this case, it is preferable that the induction heating coils 3 and the temperature distribution acquisition units 2 are paired.

また、上述した実施の形態では、誘導加熱コイル3のコイル径、コイル巻き数、ピッチ間隔などが固定された円状のコイルであることを前提として説明している。しかし、誘導加熱コイル3は、種々の形状、材質などを用いて入熱特性の異なるものを用いることができる。   Moreover, in embodiment mentioned above, it demonstrates on the assumption that it is a circular coil to which the coil diameter of the induction heating coil 3, the number of coil turns, the pitch interval, etc. were fixed. However, the induction heating coil 3 may have different heat input characteristics using various shapes and materials.

1 制御部
1a 位置検出部
1b 温度検出部
1c,1d 温度制御部
2 温度分布取得部
3 誘導加熱コイル
4 誘導加熱部
5 記憶部
6 表示部
7 操作部
10 被塗装物
11 床
12 コンベア
13 天井
31,36 演算部
32 比例制御定数算出部
33 比例制御定数設定部
34 誘導加熱コイル電源
35 比例制御定数補償設定部
D1 3次元形状情報
D2 温度分布情報
D3 3次元比例制御定数情報
D4 3次元温度偏差積分値
P,P´,P´´ 比例制御定数
Pα 補償値
RT 3次元移動経路
Δt 偏差
DESCRIPTION OF SYMBOLS 1 Control part 1a Position detection part 1b Temperature detection part 1c, 1d Temperature control part 2 Temperature distribution acquisition part 3 Induction heating coil 4 Induction heating part 5 Memory | storage part 6 Display part 7 Operation part 10 To-be-painted object 11 Floor 12 Conveyor 13 Ceiling 31 , 36 Calculation unit 32 Proportional control constant calculation unit 33 Proportional control constant setting unit 34 Induction heating coil power supply 35 Proportional control constant compensation setting unit D1 Three-dimensional shape information D2 Temperature distribution information D3 Three-dimensional proportional control constant information D4 Three-dimensional temperature deviation integration Value P, P ′, P ″ Proportional control constant Pα Compensation value RT 3D movement path Δt Deviation

Claims (4)

被塗装物の周囲に誘導加熱コイルを移動させ、該塗装物に塗布された塗料を乾燥する塗装乾燥装置であって、
前記被塗装物の3次元熱容量情報をもとに設定される3次元比例制御定数情報を保持する3次元比例制御定数情報保持部と、
前記誘導加熱コイルによる前記被塗装物の加熱対象位置である3次元位置を検出する位置検出部と、
前記位置検出部が検出した3次元位置に対応する前記被塗装物の温度を検出する温度検出部と、
前記位置検出部が検出した3次元位置に対応する前記被塗装物の3次元比例制御定数情報に基づき、3次元位置における前記温度検出部が検出した前記被塗装物の温度が設定温度となるように比例制御定数を設定して前記誘導加熱コイルへの通電電力の比例制御を行う温度制御部と、
を備えたことを特徴とする塗装乾燥装置。
A coating drying apparatus that moves an induction heating coil around a workpiece and dries the coating applied to the coating,
A three-dimensional proportional control constant information holding unit for holding three-dimensional proportional control constant information set based on the three-dimensional heat capacity information of the object to be coated;
A position detection unit that detects a three-dimensional position that is a position to be heated of the object to be coated by the induction heating coil;
A temperature detector that detects the temperature of the object to be coated corresponding to the three-dimensional position detected by the position detector;
Based on the three-dimensional proportional control constant information of the object corresponding to the three-dimensional position detected by the position detector, the temperature of the object detected by the temperature detector at the three-dimensional position becomes a set temperature. A temperature control unit that sets a proportional control constant to perform proportional control of the energization power to the induction heating coil;
A paint drying apparatus characterized by comprising:
前記誘導加熱コイルが繰り返して移動加熱する同一3次元位置における3次元温度偏差積分値を保持する3次元温度偏差積分値保持部を備え、
前記温度制御部は、前記位置検出部が検出した3次元位置に対応する前記3次元温度偏差積分値に基づき、設定された前記比例制御定数を積分補償することを特徴とする請求項1に記載の塗装乾燥装置。
A three-dimensional temperature deviation integral value holding unit for holding a three-dimensional temperature deviation integral value at the same three-dimensional position where the induction heating coil repeatedly moves and heats;
The said temperature control part carries out integral compensation of the set said proportional control constant based on the said three-dimensional temperature deviation integrated value corresponding to the three-dimensional position which the said position detection part detected. Paint drying equipment.
被塗装物の周囲に誘導加熱コイルを移動させ、該塗装物に塗布された塗料を乾燥する塗装乾燥方法であって、
前記誘導加熱コイルの3次元位置に対応する前記被塗装物の設定温度と、該3次元位置において検出された検出温度との偏差をもとに比例制御定数を算出し、
前記算出された比例制御定数に対し、前記被塗装物の3次元熱容量情報をもとに設定された3次元比例制御定数情報をもとに該3次元位置に対応する比例制御定数を設定し、
前記設定された比例制御定数を用いて前記3次元位置における温度が設定温度となるように前記誘導加熱コイルへの通電電力の比例制御を行うことを特徴とする塗装乾燥方法。
A coating drying method for moving an induction heating coil around the object to be coated and drying the paint applied to the object to be coated,
Calculating a proportional control constant based on a deviation between a set temperature of the object to be coated corresponding to the three-dimensional position of the induction heating coil and a detected temperature detected at the three-dimensional position;
For the calculated proportional control constant, set a proportional control constant corresponding to the three-dimensional position based on the three-dimensional proportional control constant information set based on the three-dimensional heat capacity information of the object to be coated,
A paint drying method characterized by performing proportional control of the electric power supplied to the induction heating coil so that the temperature at the three-dimensional position becomes a set temperature using the set proportional control constant.
前記誘導加熱コイルが繰り返して移動加熱する同一3次元位置における3次元温度偏差積分値を更新可能に保持し、前記3次元位置における現在の3次元温度偏差積分値を用いて、前記設定された比例制御定数を積分補償することを特徴とする請求項3に記載の塗装乾燥方法。   The three-dimensional temperature deviation integral value at the same three-dimensional position where the induction heating coil repeatedly moves and heats is maintained in an updatable manner, and the set proportionality is determined using the current three-dimensional temperature deviation integral value at the three-dimensional position. 4. The coating drying method according to claim 3, wherein the control constant is integrated and compensated.
JP2014120328A 2014-06-11 2014-06-11 Paint drying apparatus and paint drying method Expired - Fee Related JP6330495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014120328A JP6330495B2 (en) 2014-06-11 2014-06-11 Paint drying apparatus and paint drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014120328A JP6330495B2 (en) 2014-06-11 2014-06-11 Paint drying apparatus and paint drying method

Publications (2)

Publication Number Publication Date
JP2016001519A true JP2016001519A (en) 2016-01-07
JP6330495B2 JP6330495B2 (en) 2018-05-30

Family

ID=55077035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014120328A Expired - Fee Related JP6330495B2 (en) 2014-06-11 2014-06-11 Paint drying apparatus and paint drying method

Country Status (1)

Country Link
JP (1) JP6330495B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113579478A (en) * 2021-08-18 2021-11-02 江南造船(集团)有限责任公司 Laser welding magnetic induction preheating self-adaptive system and working method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343544A (en) * 2001-05-11 2002-11-29 Denki Kogyo Co Ltd High frequency moving heating method
JP2010281490A (en) * 2009-06-03 2010-12-16 Nissan Motor Co Ltd Coating drying device and coating drying method
JP2011181217A (en) * 2010-02-26 2011-09-15 Mitsui Eng & Shipbuild Co Ltd Method and device for induction heating
JP2011198730A (en) * 2010-03-24 2011-10-06 Tokyo Electric Power Co Inc:The Movable heating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343544A (en) * 2001-05-11 2002-11-29 Denki Kogyo Co Ltd High frequency moving heating method
JP2010281490A (en) * 2009-06-03 2010-12-16 Nissan Motor Co Ltd Coating drying device and coating drying method
JP2011181217A (en) * 2010-02-26 2011-09-15 Mitsui Eng & Shipbuild Co Ltd Method and device for induction heating
JP2011198730A (en) * 2010-03-24 2011-10-06 Tokyo Electric Power Co Inc:The Movable heating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113579478A (en) * 2021-08-18 2021-11-02 江南造船(集团)有限责任公司 Laser welding magnetic induction preheating self-adaptive system and working method thereof

Also Published As

Publication number Publication date
JP6330495B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6213265B2 (en) Paint drying apparatus and paint drying method
JP6055051B2 (en) Apparatus for providing transient thermal profile processing on a movable substrate
EP3332905A1 (en) Metal additive system
US20190030791A1 (en) Generative Manufacturing of Components with a Heatable Building Platform and Apparatus for Implementing this Method
CN105336562A (en) Heat treatment cavity, heat treatment method and coating equipment
JP6468038B2 (en) Paint drying apparatus and paint drying method
JP6330495B2 (en) Paint drying apparatus and paint drying method
JP2021507121A5 (en)
MX2017006501A (en) Coat drying device and coat drying method.
JP2011198730A (en) Movable heating system
JP5526608B2 (en) Paint drying apparatus and paint drying method
JP2012109040A (en) High-frequency induction heating method and apparatus thereof
JP2010045290A (en) Air-core coil winding device and control method therefor
JP7196068B2 (en) Method for heating reactor for epitaxial deposition and reactor for epitaxial deposition
JP2011237479A5 (en)
JP6369109B2 (en) Paint drying apparatus and paint drying method
KR102026964B1 (en) Substrate processing apparatus and temperature controling method of substrate processing apparatus
JP6243252B2 (en) Induction heating method
JP2018045908A (en) Coating drying device
JP6987601B2 (en) Induction heating device
CN113894166B (en) Device for induction heating of strip steel
JP2012109075A (en) High-frequency induction heating method and apparatus thereof
JP7128358B2 (en) Plating layer control device and method in PVD plating process
US11130261B2 (en) Steerable heat source
JP2010190526A (en) Method of operating heat treatment furnace and control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6330495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees