JP2016000958A - Construction method of earthquake resistant tide prevention dike by banking reinforcement soil wall construction method - Google Patents

Construction method of earthquake resistant tide prevention dike by banking reinforcement soil wall construction method Download PDF

Info

Publication number
JP2016000958A
JP2016000958A JP2015168961A JP2015168961A JP2016000958A JP 2016000958 A JP2016000958 A JP 2016000958A JP 2015168961 A JP2015168961 A JP 2015168961A JP 2015168961 A JP2015168961 A JP 2015168961A JP 2016000958 A JP2016000958 A JP 2016000958A
Authority
JP
Japan
Prior art keywords
embankment
work
wave
construction method
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015168961A
Other languages
Japanese (ja)
Other versions
JP6234973B2 (en
Inventor
舘山 勝
Masaru Tateyama
勝 舘山
神田 政幸
Masayuki Kanda
政幸 神田
小島 謙一
Kenichi Kojima
謙一 小島
文夫 龍岡
Fumio Tatsuoka
文夫 龍岡
正広 岡本
Masahiro Okamoto
正広 岡本
田村 幸彦
Yukihiko Tamura
幸彦 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Integrated Geotechnology Institute Ltd
Original Assignee
Railway Technical Research Institute
Integrated Geotechnology Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Integrated Geotechnology Institute Ltd filed Critical Railway Technical Research Institute
Priority to JP2015168961A priority Critical patent/JP6234973B2/en
Publication of JP2016000958A publication Critical patent/JP2016000958A/en
Application granted granted Critical
Publication of JP6234973B2 publication Critical patent/JP6234973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a construction method of an earthquake resistant tide prevention dike by a banking reinforcement soil wall construction method of high rigidity, for breaking only a wave-return work so that the whole tide embankment does not reach crushing breakage, by integrating a dike body banking and three-sided sticking concrete works of a surface slope face covering work having a wave-return work, a top end covering work and a reverse slope face covering work.SOLUTION: A construction method of a tide prevention dike by a banking reinforcement soil wall construction method, is provided for constructing an earthquake resistant tide prevention dike by a banking reinforcement sol wall construction method of high rigidity, by integrally sticking the connection with a tensile reinforcement material laid in a dike body banking 62 and three-sided sticking concrete works 64, 65 and 66 of a surface slope face covering work 64 having a wave-return work 63, a top end covering work 65 and a reverse slope face covering work 66, by placing concrete without using a reverse form, and is formed as a structure for breaking only the wave-return work 63 constructed in an upper part of the surface slope face covering work 64 so that the whole tide prevention dike does not reach crushing breakage to a backwash caused after a Huge Tsunami overflows.

Description

本発明は、盛土補強土壁工法による耐震性防潮堤防の構築方法に係り、特に、津波防御施設(防波堤・防潮堤・海岸堤防・河口近くの河川堤防など)に用いるための剛な一体の壁面工を持つジオシンセティック補強擁壁工による、堤体盛土補強土壁工法による高耐震性防潮堤防の構築方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for constructing an earthquake-resistant seawall by embankment-reinforced earth walls, and in particular, a rigid integral wall for use in a tsunami defense facility (breakwater, seawall, coastal bank, river bank near a river mouth, etc.). It is related to the construction method of high earthquake-resistant tide embankment by embankment embankment reinforced earth wall construction method with geosynthetic reinforced retaining wall construction.

鉄道・道路、宅地造成地などで構築されている盛土補強土壁工法の中の「剛な一体壁面を活用したジオシンセティック補強土擁壁」(通称RRR−B工法)は、ジオシンセティック補強盛土の施工後に場所打ちコンクリートを打設して、剛で一体な壁面工を構築している。このRRR−B工法による剛で一体の壁面工を持つジオシンセティック補強土擁壁は、既に1995年の阪神淡路大震災で耐震性が高いことが証明されていた。加えて、剛で一体の壁面工を持つジオシンセティック補強土擁壁、およびこれを橋台とした補強土橋台が仙台付近、一ノ関付近、および盛岡付近で少なからず構築されていたが、2011年東日本大震災においてもすべて無被害であり、改めて高い耐震性を有することが再び証明された。また、東日本大震災においては、巨大津波により多数の防波堤・防潮堤・海岸堤防・河口近くの河川堤防等が壊滅的に破壊した。   “Geosynthetic reinforced earth retaining wall using rigid integrated wall surface” (commonly called RRR-B method) in the embankment reinforced earth wall construction method constructed in railways, roads, residential land development sites, etc. After construction, cast-in-place concrete is cast to build a rigid and integral wall work. The geosynthetic reinforced earth retaining wall with rigid and integral wall construction by this RRR-B method has already been proved to have high earthquake resistance in the 1995 Great Hanshin-Awaji Earthquake. In addition, geosynthetic reinforced soil retaining walls with rigid and integral wall construction, and reinforced soil abutments using this as the abutment were built not only in Sendai, Ichinoseki and Morioka, but the 2011 Great East Japan Earthquake It was once again proved to be harmless and to have high earthquake resistance. In the Great East Japan Earthquake, a number of breakwaters, seawalls, coastal dikes, river dikes near river mouths, etc. were destroyed devastatingly by the huge tsunami.

本発明は、この剛な一体壁面工を有するジオシンセティック補強土擁壁を盛土形式の津波防御施設(防潮堤・海岸堤防・河口近くの河川堤防等)として構築する方法に関するものである。   The present invention relates to a method of constructing a geosynthetic reinforced soil retaining wall having a rigid integral wall surface construction as a tsunami defense facility of a banking type (such as a seawall, a coastal bank, a river bank near an estuary, etc.).

2011年東日本大震災での甚大な被害の多くは、従来の内陸型地震とは異なり東日本の太平洋沿岸部を襲った巨大津波によるものであった。この巨大津波に対して、従来の津波防御施設(防波堤・防潮堤・海岸堤防・河口近くの河川堤防等)は、津波高さが想定高さを超える程度までは機能していたが、その多くは、巨大津波として押し寄せてきた津波の高さがこれらの施設高さを遥かに超えてから、越流・侵食・洗掘等によって基礎地盤とともに崩壊してしまっている。   Unlike the conventional inland earthquakes, much of the damage caused by the 2011 Great East Japan Earthquake was caused by a huge tsunami that hit the Pacific coast of East Japan. Conventional tsunami protection facilities (breakwaters, seawalls, coastal dikes, river embankments near river mouths, etc.) functioned against this huge tsunami until the tsunami height exceeded the expected height, Since the height of the tsunami that has rushed as a huge tsunami far exceeded the height of these facilities, it collapsed with the foundation ground due to overflow, erosion, and scouring.

従来の盛土形式の防潮堤(下記非特許文献4参照)は、図8に示すように、基礎地盤101に構築された堤体盛土102に対して、波返工104を有する表のり面被覆工103、天端被覆工105、裏のり面被覆工106による三面張りのコンクリート工が構成されている。   As shown in FIG. 8, a conventional embankment type seawall (see Non-Patent Document 4 below) is a surface slope surface covering structure 103 having a wave reversing structure 104 with respect to a bank embankment 102 constructed on a foundation ground 101. The three-sided concrete work is constituted by the top end covering 105 and the back surface covering 106.

しかしながら、このような防潮堤では、図9に示すように、越流した津波A1 〜A4 が下流側(陸側)の裏のり面被覆工106を急速に流下する際に生じる強烈な揚力Fにより〔津波は、裏のり面被覆工106の近くを流れる津波A1 ほど、その上側を流れる津波A2 〜A4 より流速Vが早くなり(V1 >V2 >V3 >V4 )強烈な揚力Fを生じる〕、堤体盛土102に固定されていない天端被覆工105と下流側裏のり面被覆工106の最上段の被覆工がまず剥ぎ取られ、そこから堤体盛土102の侵食が開始されて、下流側基礎地盤101の洗掘も生じて下流側のり面が崩壊し、やがて引き波等によって全断面が喪失したと思われる例が多かった。 However, in such a tide embankment, as shown in FIG. 9, the strong lift generated when the overflowed tsunamis A 1 to A 4 rapidly flow down the downstream (land side) back surface covering work 106. the F [tsunami, as tsunami a 1 flowing nearby back sizing surface covering Engineering 106, the flow velocity V becomes faster than a tsunami a 2 to a 4 flowing through the upper (V 1> V 2> V 3> V 4) The strongest lifting force F is generated, and the topmost covering work of the top edge covering work 105 and the downstream side reverse face covering work 106 that is not fixed to the embankment embankment 102 is peeled off first, and then the embankment embankment 102 In many cases, erosion started , scouring of the downstream foundation ground 101 also occurred, the downstream slope collapsed, and eventually the entire cross section was lost due to pulling waves or the like.

龍岡文夫:「2011年東日本大震災からの復旧・復興での補強土構造物」,RRR工法協会だより,No.13,2011年08月Fumio Tatsuoka: “Reinforced soil structure for restoration / reconstruction from the 2011 Great East Japan Earthquake”, News from RRR Method Association 13, 2011, August 地盤工学会:「地震時における地盤災害の課題と対策−2011年東日本大震災の教訓と提言(第1次)」,2011年7月Geotechnical Society: “Problems and Countermeasures for Ground Disasters during Earthquakes: Lessons and Recommendations for the 2011 Great East Japan Earthquake (1st)”, July 2011 日経コンストラクション,pp.34〜43,2011.10.24Nikkei Construction, pp. 34-43, 2011.10.20 海岸保全施設技術研究会編:「海岸保全施設の技術上の基準・同解説」,平成16年6月Coastal Conservation Facility Technical Study Group: “Technical Standards and Explanations for Coastal Conservation Facilities”, June 2004

図10及び図11には、2011年東日本大震災での従来の盛土形式防潮堤の被害の例が示されている。   10 and 11 show examples of damage of a conventional embankment type seawall due to the 2011 Great East Japan Earthquake.

図10には、天端被覆工のコンクリートスラブと下流側裏のり面の最上段のコンクリート工が剥ぎ取られた防潮堤(大船渡市三陸町越喜来漁港付近)が示されており、図11には、天端被覆工のコンクリートスラブが移動し下流側裏のり面最上段の被覆工のコンクリート工が剥ぎ取られた防潮堤(宮古南津軽石付近)が示されている。これらの箇所の延長上では全断面が消失した箇所があった。   Fig. 10 shows the seawall (near Ogurai fishing port in Sanriku-cho, Ofunato City) where the top slab concrete slab and the concrete work at the uppermost stage on the downstream side are stripped. Shows the seawall (near Miyako Minamitsu Pumice) where the top slab concrete slab has moved and the concrete work of the uppermost layer on the downstream side is stripped. On the extension of these locations, there were locations where the entire cross section disappeared.

このように、従来の盛土形式の防潮堤の構造上の最大の欠点は、三面張りコンクリート工が固定されていないことと、堤体盛土が無補強であるコンクリート工の喪失後に越流による侵食に対する抵抗力が小さいことである。   In this way, the biggest disadvantages of the conventional embankment type seawall are the fact that the three-sided concrete work is not fixed and the erosion due to overflow after the loss of the concrete work where the embankment is unreinforced. The resistance is small.

災復興の過程で、海岸保全施設で防ぐ津波の高さの設定方法等は見直され、海岸堤防の高さを決める際に必要な『設計津波』の水位の設定方法は変わり、場所によっては大幅に高くなり、また、設計津波を超える高さの津波に襲われても直ちに全壊しないような『ねばり強い構造』を目指す方針が示されている。 Shin in the process of disaster reconstruction, the height of the setting method and the like of the tsunami to prevent in the coastal conservation facilities are reviewed, change the water level setting method of "design tsunami" required in determining the height of coastal dikes, depending on the location There is a policy of aiming for a “sticky structure” that will be significantly higher and that will not be destroyed immediately even if it is hit by a tsunami that exceeds the design tsunami.

その方法として、以下に示すような方法が提案されている。1953年の台風13号によって、三重県や愛知県の伊勢湾沿岸では土堤が崩れ甚大な被害が発生したのを契機にコンクリート工の三面張りを採用したところ、1959年の伊勢湾台風では、この三面張りは壊れなかったという事実を根拠として、津波が越流しても堤体が流出せず、のり尻が洗掘されないようにするために、
(1)図12に示すように、裏のり面206のり尻にコンクリートなどによる被覆207を施す
(2)図13に示すように、裏のり面206に盛土208を施す
(3)図14に示すように、表のり面204に消波工209や根固め工210を設置する
(4)図15に示すように、裏のり面への被覆211によって天端幅212を拡大する
等の対策が提案されている。なお、これらの図12〜図15では、基礎地盤201に構築された堤体盛土202に対して、波返工203を有する表のり面被覆工204、天端被覆工205、裏のり面被覆工206による三面張りのコンクリート工が構成されている。
As such a method, the following method has been proposed. Typhoon No. 13 in 1953 adopted a three-sided concrete construction triggered by the collapse of the earthen wall on the coast of Ise Bay in Mie and Aichi prefectures. In 1959 Isewan Typhoon, Based on the fact that this three-sided surface was not broken, in order to prevent the levee body from flowing out even if the tsunami overflows,
(1) As shown in FIG. 12, a cover 207 made of concrete or the like is applied to the bottom edge of the back surface 206. (2) As shown in FIG. 13, a bank 208 is applied to the back surface 206. (3) As shown in FIG. (4) As shown in FIG. 15, countermeasures such as enlarging the top end width 212 with the cover 211 on the back surface are proposed. Has been. In addition, in these FIGS. 12-15, with respect to the embankment embankment 202 constructed | assembled in the foundation ground 201, the front slope surface coating work 204, the top edge coating work 205, and the back slope surface coating work 206 which have the wave turning work 203 are shown. A three-sided concrete work is constructed.

図9に示したように、越流した津波が下流側(陸側)の裏のり面を急速に流下する際に生じる強烈な揚力により、堤体盛土101に固定されていない天端被覆工104と下流側裏のり面の最上段の被覆工がまず剥ぎ取られ、そこから補強されていないため抵抗力が弱い堤体盛土101の侵食が開始されて、やがて引き波等によって全断面が喪失したと想定されるため、これらの対策だけでは効果的に機能しない。   As shown in FIG. 9, the top cover 104 that is not fixed to the embankment embankment 101 due to the strong lift generated when the tsunami that has overflowed flows down the back slope of the downstream side (land side) rapidly. And the uppermost covering work on the downstream side back surface was peeled off first, and since it was not reinforced there, the erosion of the embankment embankment 101 with weak resistance was started and eventually the entire cross section was lost due to pulling waves etc. Therefore, these measures alone do not function effectively.

また、堤体盛土101は補強されていないため、必要な耐震性を確保するのが難しい。さらに、長期にわたる波浪・豪雨等による堤体盛土101内からの浸透流のため、堤体盛土101の盛土材が吸い出される可能性があるといった問題があった。 Moreover, since the embankment embankment 101 is not reinforced, it is difficult to ensure required earthquake resistance. Furthermore, there has been a problem that the embankment material of the embankment embankment 101 may be sucked out due to the seepage flow from the embankment embankment 101 due to waves and heavy rain for a long time.

本発明は、上記状況に鑑みて、堤体盛土と、波返工を有する表のり面被覆工と天端被覆工と裏のり面被覆工の三面張りコンクリート工とを一体化するとともに、防潮堤全体が壊滅的な破壊に至ることがないように、波返工のみが破壊する、剛性の高い盛土補強土壁工法による耐震性防潮堤防の構築方法を提供することを目的とする。 In view of the above situation, the present invention integrates a levee body embankment, a front sloped surface covering work having a wave-returning work, a top edge covering work, and a three-sided concrete work of a back facing surface covering work, and the entire tide bank. The purpose is to provide a method for constructing a seismic tide embankment using a high-strength embankment reinforced earth wall construction method that can be destroyed only by wave return so that it will not cause catastrophic failure .

本発明は、上記目的を達成するために、
〔1〕堤体盛土内に敷設した引っ張り補強材との連結、および波返工を有する表のり面被覆工と天端被覆工と裏のり面被覆工の三面張りコンクリート工とを裏型枠を用いることなくコンクリートを打設することによって付着させて一体化して剛性の高い盛土補強土壁工法による耐震性防潮堤防の構築を行う、盛土補強土壁工法による耐震性防潮堤防の構築方法において、巨大津波が越流した後に生じる引き波に対して防潮堤全体が壊滅的な破壊に至ることがないように、前記表のり面被覆工の上部に構築されている波返工のみが破壊する構造としたことを特徴とする。
In order to achieve the above object, the present invention provides
[1] Use the back formwork to connect the tension reinforcements laid in the embankment embankment, and use the three-sided concrete construction of the top slope covering work, top edge covering work and back slope covering work with wave reversing work and integrated by adhering by pouring concrete without, performing the construction of earthquake resistance tide embankment by rigid embankment mechanically stabilized earth, in the method the construction of earthquake resistance tide embankment by embankments mechanically stabilized earth, giant In order to prevent catastrophic destruction of the entire tide embankment against the tsunami that occurs after the tsunami overflows, only the wave return constructed at the top of the front slope cover construction will be destroyed. It is characterized by that.

〕上記〔〕記載の盛土補強土壁工法による耐震性防潮堤防の構築方法において、前記表のり面被覆工の上部に設置される前記返工の構造鉄筋の配筋方法として上流側のみに主鉄筋を配置し、下流側には乾燥収縮・ひび割れ防止用の用心鉄筋のみを配置し、前記引き波によって前記返工のみが破壊する構造としたことを特徴とする。 [2] The method for constructing a shockproof tide embankment by embankments mechanically stabilized earth described in [1], only the upstream side as reinforcement method for structural reinforcement of the wave Kaeko installed on top of the table glue surface covering Engineering the main reinforcement arranged, on the downstream side is disposed only precaution reinforcing bars for drying shrinkage-preventing cracks, only the wave Kaeko is characterized in that the structure to break by the pulling wave.

本発明によれば、次のような効果を奏することができる。   According to the present invention, the following effects can be achieved.

(1)ジオグリッドなどの引っ張り補強材で補強された堤体盛土と、波返工を有する表のり面被覆工と天端被覆工と裏のり面被覆工の三面張りのコンクリート工とを一体化することによって、巨大津波等が防潮堤を越流したとしても、前記天端被覆工と上下流側のり面の被覆工が剥ぎ取られるのを防ぐことができる。   (1) Integrate the embankment embankment reinforced with a tensile reinforcement such as geogrid, and the three-sided concrete work of the top slope covering work, top edge covering work and back slope covering work with wave reversing work. Thus, even if a huge tsunami or the like overflows the seawall, it is possible to prevent the top cover and the upstream and downstream slopes from being stripped.

(2)そのため、堤体盛土の盛土材が流出しない。また、仮にコンクリート被覆工が破損した場合でも、堤体盛土は多層面状補強材で補強されているので侵食に対して抵抗力がある。このため、防潮堤の機能が失われない。   (2) Therefore, the embankment material for embankment embankment does not flow out. Even if the concrete coating work is damaged, the embankment embankment is reinforced with a multilayer planar reinforcing material and is resistant to erosion. For this reason, the function of the seawall is not lost.

(3)引き波のエネルギーは巨大であり、そのため防潮堤の上部の波返工が破壊される。本発明の波返工の構造にすると、引き波の際には波返工のみが破壊されるため、防潮堤全体として壊滅的な破壊に至ることがない。よって、復旧工事が容易になる。   (3) The energy of the pulling wave is enormous, and the wave return work at the top of the seawall is destroyed. In the wave-returning structure of the present invention, only the wave-returning work is destroyed at the time of the pulling wave, so that the tide embankment as a whole does not cause a catastrophic destruction. Therefore, the restoration work is facilitated.

本発明の第1参考例を示す上流側ならびに下流側ともに防潮堤のり面が緩勾配である場合の耐震性防潮堤防の構築方法を説明する断面図である。It is sectional drawing explaining the construction method of a seismic-proof seawater levee in case the slope surface of a seawall is a gentle slope both upstream and downstream which show the 1st reference example of this invention. 本発明の第2参考例を示す上流側ならびに下流側ともに防潮堤のり面が急勾配である場合の耐震性防潮堤防の構築方法を説明する断面図である。It is sectional drawing explaining the construction method of a seismic-proof seawater levee in case the slope surface of a seawall is steep on both the upstream and downstream sides which show the 2nd reference example of this invention. 本発明の第3参考例を示す防潮堤のり面の上流側は急勾配で下流側は緩勾配である場合の耐震性防潮堤防の構築方法を説明する断面図である。It is sectional drawing explaining the construction method of a seismic-proof tide embankment when the upstream of the slope surface of a tide embankment which shows the 3rd reference example of this invention is a steep slope, and a downstream is a gentle slope. 本発明の第4参考例を示す耐震性防潮堤の構造例を示す断面図である。It is sectional drawing which shows the structural example of the earthquake-resistant seawall which shows the 4th reference example of this invention. 本発明の第5参考例を示す防潮堤のり面が緩勾配である場合の耐震性防潮堤防の構築における面状補強材と壁面工との一体化方法を説明する上面図である。It is a top view explaining the integration method of the planar reinforcement material and wall surface construction in construction of an earthquake-resistant tide embankment when the slope surface of a tide embankment which shows the 5th reference example of the present invention is a gentle slope. 本発明の第6参考例を示す防潮堤のり面が緩勾配である場合の耐震性防潮堤防の構築における面状補強材と壁面工との一体化方法を説明する上面図である。It is a top view explaining the integration method of the planar reinforcement material and wall surface construction in construction of an earthquake-resistant tide embankment when the slope surface of the tide embankment which shows the 6th reference example of this invention is a gentle slope. 本発明の実施例を示す津波の引き波の際に波返工のみを破壊させる耐震性防潮堤防の構築方法を説明する断面図である。It is a cross-sectional view illustrating the construction method of the earthquake resistance tide embankment disrupt only waves Kaeko upon undertow tsunami indicating the actual施例of the present invention. 従来の盛土形式の防潮堤の模式図である。It is a schematic diagram of a conventional embankment type seawall. 越流した津波による防潮堤の破壊の説明図である。It is explanatory drawing of destruction of a seawall by the tsunami which overflowed. 従来の盛土形式防潮堤の被害の例を示す図面代用写真(その1)である。Conventional drawing-substituting photograph showing an example of the damage embankment shaped Shikibo Shiotsutsumi; FIG. 従来の盛土形式防潮堤の被害の例を示す図面代用写真(その2)である。Conventional drawing-substituting photograph showing an example of the damage embankment shaped Shikibo Shiotsutsumi; FIG. 従来の提案例(その1)を示す模式図である。It is a schematic diagram which shows the conventional proposal example (the 1). 従来の提案例(その2)を示す模式図である。It is a schematic diagram which shows the conventional proposal example (the 2). 従来の提案例(その3)を示す模式図である。It is a schematic diagram which shows the conventional proposal example (the 3). 従来の提案例(その4)を示す模式図である。It is a schematic diagram which shows the conventional proposal example (the 4).

本発明の盛土補強土壁工法による耐震性防潮堤防の構築方法は、堤体盛土内に敷設した引っ張り補強材との連結、および波返工を有する表のり面被覆工と天端被覆工と裏のり面被覆工の三面張りコンクリート工とを裏型枠を用いることなくコンクリートを打設することによって付着させて一体化して剛性の高い盛土補強土壁工法による耐震性防潮堤防の構築を行う、盛土補強土壁工法による耐震性防潮堤防の構築方法において、巨大津波が越流した後に生じる引き波に対して防潮堤全体が壊滅的な破壊に至ることがないように、前記表のり面被覆工の上部に構築されている波返工のみが破壊する構造としたことを特徴とする。 The construction method of the seismic tide embankment by the embankment reinforced earth wall construction method of the present invention includes the connection with the tensile reinforcement laid in the embankment embankment, and the surface slope covering work, the top edge covering work and the back cover having wave return work. performing construction of earthquake resistance tide embankment due to the high fill mechanically stabilized earth rigid and integrated by adhering by pouring concrete without a three-sided clad concrete factory surface coating Engineering using the back mold, embankment reinforcement In the construction method of earthquake-resistant seawalls by the earth wall construction method, the upper part of the above-mentioned slope surface covering works will be prevented so that the entire seawall will not be devastated by the pulling waves that occur after the huge tsunami overflows. It is characterized by the structure that only the wave-returning construction constructed in the above is destroyed .

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

最初に、具体的な盛土補強土壁工法による防潮堤防の構築方法について詳細に説明する。   First, the construction method of the tide embankment by the concrete embankment reinforcement earth wall construction method is explained in detail.

図1は本発明の第1参考例を示す上流側ならびに下流側ともに防潮堤のり面が緩勾配である場合の耐震性防潮堤防の構築方法を説明する断面図である。 FIG. 1 is a cross-sectional view for explaining a construction method of an earthquake-resistant tide embankment when the slope surface of the tide embankment has a gentle slope on both the upstream side and the downstream side according to the first reference example of the present invention.

この図において、1は基礎地盤、2は堤体盛土、4は波返工3を有する表のり面被覆工、5は天端被覆工、6は裏のり面被覆工、7は面状補強材(ジオグリッド等)である。ここでは、表のり面被覆工4、天端被覆工5及び裏のり面被覆工6(いずれもコンクリート工)を剛結合した三面張りコンクリート工を構成している。そして、剛な一体のり面工4,5,6と面状補強材(ジオグリッド等)7とを一体化して、堤体盛土2の盛土材が流出しない構造としている。   In this figure, 1 is the foundation ground, 2 is the embankment embankment, 4 is the front slope surface covering work with the wave reversing 3, 5 is the top edge covering work, 6 is the back slope surface covering work, 7 is the surface reinforcing material ( Geogrid etc.). Here, a three-sided concrete work is formed by rigidly joining the front slope surface coating work 4, the top edge coating work 5 and the back slope surface coating work 6 (all of which are concrete works). And the rigid integral slope work 4,5,6 and the planar reinforcing material (Geogrid etc.) 7 are integrated, and it is set as the structure where the embankment material of the bank body embankment 2 does not flow out.

この例のように、緩勾配の堤体盛土を構築する場合には施工中の安全性を確保するための仮抑え材が不要となるため、コンクリート工を施工する際に、引っ張り補強材と剛な一体のり面工4,5,6とを直接一体化する。一方、後述のように、急勾配の堤体盛土を構築する場合、RRR−B工法で採用している仮抑え材に土のうや溶接金網をL型に加工したL型溶接金網を用いて裏型枠を使用しないでコンクリートを打設して躯体〔剛な一体のり面工14,15,16〕(図2参照)とジオグリッドなどの引っ張り補強材と一体化する。なお、ここで引っ張り補強材の例として、面状補強材(ジオグリッド等)を例示しているが、補強不織布や溶接金網、エキスパンドメタルなどであってもかまわない。また、補強効果は低下するものの、上記の引っ張り補強材を面状に敷きつめるのではなく、部分的に配置することを除外するものでもない。堤体盛土を反力として、壁面工が揚力によって引き剥がされる際に引っ張り補強効果が得られるものであればよい。 As in this example, since the temporary restraining member for ensuring safety during construction it is not required in the case of building a dam body embankment gentle gradient, when applying a concrete factory, a tensile reinforcement The rigid integral slopes 4, 5, 6 are directly integrated. On the other hand, as will be described later, when constructing a steep bank embankment, the back mold using an L-shaped welded wire mesh that has been processed into an L-shape for a temporary restraining material adopted in the RRR-B method. Concrete is cast without using a frame and is integrated with a frame [rigid integral slopework 14, 15, 16] (see FIG. 2) and a tensile reinforcement such as a geogrid. As an example here tensile reinforcement that although the planar reinforcing member (geogrid, etc.), reinforcing nonwoven or welded wire mesh, may be an expanded metal. In addition, although the reinforcing effect is reduced, it is not excluded that the tensile reinforcing material is not arranged in a plane but is partially arranged. What is necessary is just to obtain a tensile reinforcement effect when the wall work is peeled off by lift by using the embankment embankment as a reaction force.

図2は本発明の第2参考例を示す上流側ならびに下流側ともに防潮堤のり面が急勾配の場合の耐震性防潮堤防の構築方法を説明する断面図である。 FIG. 2 is a cross-sectional view for explaining a construction method of an earthquake-resistant seawall when the slope surface of the seawall is steep on both the upstream side and the downstream side according to a second reference example of the present invention.

この図において、11は基礎地盤、12は堤体盛土、14は波返工を有する表のり面被覆工、15は天端被覆工、16は裏のり面被覆工、17は土のう、18は面状補強材(ジオグリッド等)であり、やはり、表のり面被覆工14、天端被覆工15及び裏のり面被覆工16(いずれもコンクリート工)を剛結合した三面張りコンクリート工を構成している。   In this figure, 11 is a foundation ground, 12 is a bank embankment, 14 is a front slope covering work with wave reversal, 15 is a top edge covering work, 16 is a back slope covering work, 17 is a sandbag, and 18 is a surface shape. It is a reinforcing material (Geogrid etc.), and it also constitutes a three-sided concrete work that is rigidly connected to the front slope surface covering work 14, the top edge covering work 15 and the back slope covering work 16 (all are concrete works). .

ここでは、現在のRRR−B工法を基本的に採用し、表のり面被覆工14と裏のり面被覆工16が土のう17を巻き込むようにしており、特に、天端幅が広い場合には上部も土のう17を巻き込む構造とする。一方、表のり面被覆工14と裏のり面被覆工16を面状補強材(ジオグリッド等)18と一体化して剛な壁面を構築し、堤体盛土12の盛土材が流出しない構造としている。   Here, the current RRR-B construction method is basically adopted so that the front slope surface coating work 14 and the back slope surface coating work 16 involve the sandbag 17, especially when the top edge width is wide. Also, a structure that includes a sandbag 17 is adopted. On the other hand, the front slope surface coating work 14 and the back slope surface coating work 16 are integrated with the planar reinforcing material (geogrid or the like) 18 to construct a rigid wall surface so that the banking material of the bank embankment bank 12 does not flow out. .

図3は本発明の第3参考例を示す防潮堤のり面の上流側は急勾配で下流側は緩勾配である場合の耐震性防潮堤防の構築方法を説明する断面図である。 FIG. 3 is a cross-sectional view for explaining a construction method of an earthquake-resistant tide embankment in a case where the upstream side of the slope surface of the tide embankment has a steep slope and the downstream side has a gentle slope, showing a third reference example of the present invention.

この図において、21は基礎地盤、22は堤体盛土、24は波返工23を有する表のり面被覆工、25は天端被覆工、26は裏のり面被覆工、27は土のう、28は面状補強材(ジオグリッド等)であり、やはり、表のり面被覆工24、天端被覆工25及び裏のり面被覆工26(いずれもコンクリート工)を剛結合した三面張りコンクリート工を構成している。   In this figure, 21 is a foundation ground, 22 is a bank embankment, 24 is a front slope covering work having a wave reversing work 23, 25 is a top edge covering work, 26 is a back slope covering work, 27 is a sandbag, and 28 is a face. A three-sided concrete work that is rigidly connected to the front slope face covering work 24, the top edge covering work 25, and the back slope face covering work 26 (all of which are concrete works). Yes.

ここでは、急勾配である表のり面被覆工24が土のう27を巻き込むようにしており、天端幅が広い場合には上部も土のう27を巻き込む構造とする一方、表のり面被覆工24と裏のり面被覆工26を面状補強材(ジオグリッド等)28と一体化して、剛な壁面工を構築し、堤体盛土22の盛土材が流出しないように構造としている。   Here, the front slope surface coating work 24 having a steep slope encloses the sandbag 27. When the top width is wide, the top slope surface 27 is also taken up. The slope surface covering work 26 is integrated with a planar reinforcing material (such as Geogrid) 28 to construct a rigid wall surface work so that the embankment material of the embankment embankment 22 does not flow out.

なお、図1〜図3の例示以外でも状況に応じて表のり面被覆工と裏のり面工の組み合わせは多々存在するが、それらについても除外するものではない。   In addition to the examples shown in FIGS. 1 to 3, there are many combinations of front and rear surface coverings depending on the situation, but these are not excluded.

また、防潮堤の天端を鉄道などに用いる場合には、天端被覆工がアスファルト路盤であったり、土路盤であったりするが、それらについても除外するものではない。In addition, when the top of the seawall is used for a railway or the like, the top cover is an asphalt roadbed or a soil roadbed, but these are not excluded.

図4は本発明の第4参考例を示す耐震性防潮堤の構造例を示す断面図であり、図4(a)はその全体図、図4(b)は図4のA部拡大図である。 FIG. 4 is a cross-sectional view showing a structural example of an earthquake-resistant seawall according to a fourth reference example of the present invention, FIG. 4 (a) is an overall view thereof, and FIG. 4 (b) is an enlarged view of a portion A in FIG. is there.

これらの図において、31は堤体盛土、32は面状補強材(ジオグリッド等)、33は表のり面被覆工、33Aは躯体コンクリート、34は裏のり被覆工、35は防錆鉄筋、36は盛土押圧用プレート、36Aはそのナット、37は躯体鉄筋連結用プレート、37Aはそのナットである。 In these drawings, 31 is a bank embankment, 32 is a planar reinforcing material ( geogrid, etc.) , 33 is a front slope surface coating work, 33A is a reinforced concrete, 34 is a back slope surface coating work, 35 is a rust-proof reinforcing bar, 36 is an embankment pressing plate, 36A is its nut, 37 is a frame reinforcing bar connecting plate, and 37A is its nut.

このように、堤体盛土31の表のり面被覆工33と裏のり面被覆工34との間に面状補強材(ジオグリッド)32と防錆処理をした防錆鉄筋35、または防錆鉄筋35と複数枚の盛土押圧用プレート36を締結することによって高剛性プレートを構築し、盛土堤体31と表のり面被覆工33および裏のり面被覆工34を一体化して配置するようにした。 Thus, between the front slope surface covering work 33 and the back slope surface covering work 34 of the bank embankment 31, the surface reinforcing material (Geogrid or the like ) 32 and the rust prevention reinforcing bar 35 subjected to the rust prevention treatment, or the rust prevention. A high-rigidity plate is constructed by fastening the reinforcing bar 35 and a plurality of embankment pressing plates 36, and the embankment dam body 31, the front slope surface covering work 33, and the back slope surface covering work 34 are integrally arranged. .

図5は本発明の第5参考例を示す耐震性防潮堤のり面が緩勾配である場合の耐震性防潮堤防の構築における面状補強材と壁面工との一体化方法を説明する上面図である。 FIG. 5 is a top view for explaining a method of integrating the planar reinforcing material and the wall work in the construction of the seismic seawater levee when the slope surface of the seismic seawater levee according to the fifth reference example of the present invention has a gentle slope. is there.

この図において、41は堤体盛土、42はのり面被覆工の躯体コンクリート、43は防錆鉄筋、44は面状補強材(ジオグリッド材)、45は防錆処理した溶接金網(フラット)であり、この実施例では、防錆鉄筋43に防錆加工を施した溶接金網(フラット)45を結束して構成する。46はその結束部である。このように構成された防錆鉄筋43および溶接金網45と、これに重ねた面状補強材44を防錆鉄筋43と結束部46、および面状補強材44の端部を巻き込むように躯体コンクリート42を施工することで一体化することができる。   In this figure, reference numeral 41 is a bank embankment, 42 is a reinforced concrete for a slope covering, 43 is a rust-proof reinforcing bar, 44 is a planar reinforcing material (geogrid material), and 45 is a rust-proof welded wire mesh (flat). In this embodiment, the anticorrosive reinforcing bar 43 is bonded to a welded wire mesh (flat) 45 subjected to antirust processing. 46 is the binding part. The rust-proof reinforcing bar 43 and the welded wire mesh 45 configured as described above, and the planar reinforcing material 44 stacked on the rust-proofing reinforcing bar 43, the binding portion 46, and the end portion of the planar reinforcing material 44 are encased in the concrete. It can be integrated by constructing 42.

図6は本発明の第6参考例を示す耐震性防潮堤のり面が緩勾配である場合の耐震性防潮堤防の構築における面状補強材と壁面工との一体化方法を説明する上面図である。 FIG. 6 is a top view for explaining an integration method of the planar reinforcing material and the wall work in the construction of the seismic tide embankment when the slope surface of the seismic tide embankment has a gentle slope according to the sixth reference example of the present invention. is there.

この図において、51は堤体盛土、52は躯体コンクリート、53は面状補強材(ジオグリッド等)、54は面状補強材(ジオグリッド等)53の耳部分(躯体コンクリート52内に配置される)、55はこの耳部分54の長手方向に形成される補強穴(ハトメ)であり、この実施例では、補強穴(ハトメ)55に防錆鉄筋(図示なし)を通すようにするか、あるいは、結束線等で防錆鉄筋(図示なし)と固定する。なお、面状補強材(ジオグリッド等)53の補強穴(ハトメ)55を設ける耳部分54とは反対の側は、補強穴(ハトメ)55を設けずに切り落とす。このように構成された耳部分54を巻き込むように躯体コンクリート52を施工することで一体化することができる。 In this figure, 51 is embankment embankment, 52 is reinforced concrete, 53 is planar reinforcing material ( geogrid etc.) , 54 is planar reinforcing material ( geogrid etc.) , 55 is a reinforcing hole (eyelet) formed in the longitudinal direction of the ear portion 54. In this embodiment, a rust-proof reinforcing bar (not shown) is passed through the reinforcing hole (eyelet) 55, or Alternatively, it is fixed to a rust prevention reinforcing bar (not shown) with a binding wire or the like. It should be noted that the side of the planar reinforcing material ( geogrid or the like) 53 opposite to the ear portion 54 where the reinforcing hole (eyelet) 55 is provided is cut off without providing the reinforcing hole (eyelet) 55. It can integrate by constructing the frame concrete 52 so that the ear | edge part 54 comprised in this way may be wound.

上記参考例によれば、面状補強材(ジオグリッド)と躯体コンクリートを一体に施工するので、堤体盛土と躯体コンクリートは剛に結合され、剛性の高い一体壁面工を用いた浸食に対して抵抗力を高めた耐震性防潮堤を構築することができる。 According to the above reference example, the surface reinforcement (geogrid, etc. ) and the reinforced concrete are constructed in one piece, so the embankment embankment and the reinforced concrete are rigidly coupled, and against erosion using a highly rigid integral wall construction. It is possible to construct an earthquake-resistant seawall with increased resistance.

図7は本発明の実施例を示す津波の引き波の際に波返工のみを破壊させる耐震性防潮堤防の構築方法を説明する断面図であり、図7(a)はその全体の断面図、図7(b)は表のり面被覆工の波返工の部分を示す図である。 Figure 7 is a sectional view for explaining how to build earthquake resistance tide embankment disrupt only waves Kaeko upon undertow tsunami indicating the actual施例of the present invention, FIGS. 7 (a) is a cross-sectional view of the entire FIG. 7 (b) is a diagram showing a wave-returning portion of the front slope surface coating work.

これらの図において、61は基礎地盤、62は堤体盛土、64は波返工63を有する表のり面被覆工、65は天端被覆工、66は裏のり面被覆工、67は土のう、68は面状補強材(ジオグリッド材等)であり、やはり、表のり面被覆工64、天端被覆工65及び裏のり面被覆工66(いずれもコンクリート工)を剛結合した三面張りコンクリート工を構成している。   In these figures, 61 is the foundation ground, 62 is a bank embankment, 64 is a front slope covering with a wave reversing 63, 65 is a top edge covering, 66 is a back slope covering, 67 is a soil covering, and 68 is a soil covering. It is a surface reinforcing material (geogrid material, etc.), and it also constitutes a three-sided concrete work that is rigidly connected to the front slope face covering work 64, the top edge covering work 65, and the back face covering work 66 (all are concrete works). doing.

この実施例では、波返工63に対する津波の引き波の衝撃によって、表のり面被覆工(コンクリート工)64全体が破壊されるのを避けるため、表のり面被覆工64の内部において、引き波の引っ張り側の(上流側)主筋63Aは波返工63内部まで延在するように配筋するが、逆側(下流側)の主筋63Bは波返工63内部まで延在せず、波返工63内には乾燥収縮・ひび割れ防止用の用心鉄筋63Cを配筋する程度にすることにより、津波の引き波の際に積極的に波返工63のみを破壊させるようにして、表のり面被覆工64全体の破壊を回避するように構成した。この際に、波返工63と表のり面被覆工64との境界面にコンクリートの打ち継ぎ面を設けることによりその効果が明確となる。これにより、引き波のエネルギーは巨大であるが、防潮堤の上部の波返工63に引き波が衝突する際に表のり面被覆工64全体ではなく波返工63のみが破壊されるため、防潮堤全体として壊滅的な破壊に至ることがなく、よって、復旧工事が容易になる。 In this embodiment, in order to avoid damaging the entire surface slope surface covering work (concrete work) 64 due to the impact of the tsunami wave against the wave returning structure 63, the surface of the surface facing surface covering work 64 has a The main reinforcing bar 63A on the pulling side (upstream side) 63A is arranged so as to extend to the inside of the wave returning work 63, but the main reinforcing bar 63B on the opposite side (downstream side) does not extend to the inside of the wave returning work 63. In this case, only the wave returning work 63 is actively destroyed at the time of the tsunami wave pulling by arranging the reinforcing bar 63C for preventing dry shrinkage and cracking . Configured to avoid destruction. At this time, the effect is clarified by providing a concrete joint surface at the boundary surface between the wave return 63 and the front surface covering work 64. As a result, the energy of the pulling wave is enormous, but when the pulling wave collides with the wave returning work 63 at the upper part of the seawall, only the wave returning work 63 is destroyed rather than the entire surface covering work 64, so the seawater breakwater is destroyed. Overall, it does not lead to catastrophic destruction, and therefore the restoration work is facilitated.

上記したように
(1)堤体盛土を超流した津波が下流側(陸側)の裏のり面を急速に流下する際に生じる強烈な揚力により、堤体盛土に固定されていない天端被覆工と下流側裏のり面の被覆工が剥ぎ取られないように堤体盛土と天端被覆工と下流側裏のり面の被覆工とを一体化した。
(2)堤体盛土に配置される補強材と三面張りの壁面工を一体化させることによって堤体盛土の盛土材が流出しない構造とする。また、堤体盛土を多層面状補強材によって補強することにより、耐震性を高めると同時に、長期にわたる堤体盛土の盛土材の吸い出しと仮にコンクリート被覆工が破損した場合も越流による侵食に対して抵抗できるようにした。
As mentioned above ,
(1) The top cover and the downstream side that are not fixed to the bank embankment due to the strong lift generated when the tsunami that has flowed through the bank embankment rapidly flows down the backside (land side). The embankment embankment, the top cover and the downstream back cover were integrated so that the back cover would not be peeled off.
(2) A structure in which the embankment material of the embankment embankment does not flow out by integrating the reinforcing material arranged on the embankment embankment and the three-side wall work. In addition, the embankment embankment is reinforced with multi-layered surface reinforcements to improve earthquake resistance, and at the same time, the embankment embankment material is sucked out from the embankment embankment for a long time and the concrete cladding is damaged against erosion due to overflow. To resist.

(3)三面張りのコンクリートと堤体盛土とを一体化する方法としては、壁面工が急勾配の場合には、現在、RRR−B工法で採用している仮抑え材に「土のう」や溶接金網をL型に加工した「L型溶接金網」を用いて裏型枠を使用しないでコンクリートを打設して躯体とジオグリッド材を一体化するようにした。   (3) As a method of integrating the three-sided concrete and the embankment embankment, when the wall construction is steep, the “earth clay” or welding is used as the temporary restraining material currently used in the RRR-B construction method. The “L-shaped welded wire mesh” obtained by processing the wire mesh into an L shape was used to cast the concrete without using the back formwork so that the frame and the geogrid material were integrated.

また、仮抑え材を用いない場合には図5や図6の例示により一体化するようにした。   Further, in the case where the temporary holding material is not used, it is integrated as illustrated in FIG. 5 and FIG.

(4)巨大津波を想定する場合、越流後に生じる引き波の際のエネルギーが極めて大きくなる。このような場合でも防潮堤全体を壊滅的な破壊に至らしめないように、また、復旧が容易なように、引き波の際に、特に、護岸上部の波返工のみを破壊させるような構造にした。   (4) When a huge tsunami is assumed, the energy at the time of the pulling wave that occurs after overflowing becomes extremely large. In such a case, in order not to cause the catastrophic destruction of the entire seawall, and to facilitate recovery, the structure is such that only the wave return work at the top of the revetment is destroyed, especially during the pulling. did.

(5)そのため、上部の波返工の配筋方法として、波返工の上流側のみ主鉄筋とし、波返工の下流側は乾燥収縮(ひび割れ)防止用の用心筋のみとし、引き波によってこの部分のみを破壊させるように構成した。   (5) For this reason, the upper barbing method is the main reinforcing bar only on the upstream side of the wave returning work, and the downstream side of the wave returning work is only the myocardium for preventing dry shrinkage (cracking). Configured to destroy.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の盛土補強土壁工法による耐震性防潮堤防の構築方法は、堤体盛土と三面張りコンクリート工とを一体化して剛性の高い盛土補強土壁工法による耐震性防潮堤防の構築方法において、防潮堤全体が壊滅的な破壊に至ることがないように、波返工のみが破壊する耐震性防潮堤防として利用可能である。 Construction method of earthquake resistance tide embankment by embankments mechanically stabilized earth of the present invention is a method for constructing a shockproof tide embankment by integrating the dam embankment and orthographic clad concrete factory by high embankments mechanically stabilized earth rigidity, tide It can be used as an anti-seismic tide embankment where only the wave rehabilitation works so that the entire bank will not be destroyed .

1,11,21,61 基礎地盤
2,12,22,31,41,51,62 堤体盛土
3,13,23,63 波返工
4,14,24,33,64 表のり面被覆工(コンクリート工)
5,15,25,65 天端被覆工(コンクリート工)
6,16,26,34,66 裏のり面被覆工(コンクリート工)
7,18,28,32,44,53,68 面状補強材(ジオグリッド材等)
17,27,67 土のう
33A,42,52 躯体コンクリート
35,43 防錆鉄筋
36 盛土押圧用プレート
36A 盛土押圧用プレート用ナット
37 躯体鉄筋連結用プレート
37A 躯体鉄筋連結用プレート用ナット
45 防錆処理した溶接金網(フラット)
46 結束部
54 面状補強材の耳部分
55 補強穴(ハトメ)
63A,63B 主筋
63C 用心鉄筋
1,11, 21, 61 foundation ground 2,12,22,31,41,51,62 dam embankment 3,13,23,63 Namikaeko 4,14,24,33,64 Table slopes covered Engineering (Concrete Mechanic)
5,15,25,65 Top cover work (concrete work)
6, 16, 26, 34, 66 Back surface covering work (concrete work)
7, 18, 28, 32, 44, 53, 68 Planar reinforcement (Geogrid material, etc.)
17, 27, 67
33A, 42, 52 Frame concrete 35, 43 Anticorrosion reinforcing bar 36 Filling press plate 36A Filling press plate nut 37 Frame reinforcing bar connection plate 37A Frame reinforcement connecting plate nut 45 Anticorrosive welded wire mesh (flat)
46 Bundling part 54 Ear part of planar reinforcing material 55 Reinforcing hole (eyelet)
63A, 63B Main bar 63C Heart rebar

Claims (2)

堤体盛土内に敷設した引っ張り補強材との連結、および波返工を有する表のり面被覆工と天端被覆工と裏のり面被覆工の三面張りコンクリート工とを裏型枠を用いることなくコンクリートを打設することによって付着させて一体化して剛性の高い盛土補強土壁工法による耐震性防潮堤防の構築を行う、盛土補強土壁工法による耐震性防潮堤防の構築方法において、巨大津波が越流した後に生じる引き波に対して防潮堤全体が壊滅的な破壊に至ることがないように、前記表のり面被覆工の上部に構築されている波返工のみが破壊する構造としたことを特徴とする盛土補強土壁工法による耐震性防潮堤防の構築方法。 Concrete without using a back formwork to connect with the tension reinforcements laid in the embankment embankment, and to apply the three-sided concrete construction of the top slope covering work, top edge covering work and back slope covering work with wave reversal work the integrated by adhering by pouring, performs the construction of earthquake resistance tide embankment due to the high fill mechanically stabilized earth rigidity, in the method the construction of earthquake resistance tide embankment by embankments mechanically stabilized earth, giant tsunami Yue In order not to cause the catastrophic destruction of the entire seawall due to the pulling waves that occur after flowing, the structure is such that only the wave return constructed at the upper part of the front slope covering construction breaks. The construction method of earthquake-resistant seawall by the embankment reinforced earth wall construction method. 請求項記載の盛土補強土壁工法による耐震性防潮堤防の構築方法において、前記表のり面被覆工の上部に設置される前記返工の構造鉄筋の配筋方法として上流側のみに主鉄筋を配置し、下流側には乾燥収縮・ひび割れ防止用の用心鉄筋のみを配置し、前記引き波によって前記返工のみが破壊する構造としたことを特徴とする盛土補強土壁工法による耐震性防潮堤防の構築方法。 In the method the construction of earthquake resistance tide embankment by embankments mechanically stabilized earth according to claim 1, wherein the main reinforcement only on the upstream side as reinforcement method for structural reinforcement of the wave Kaeko installed on top of the table glue surface covering Engineering arrangement and, on the downstream side is disposed only precaution reinforcing bars for drying shrinkage-preventing cracks, shockproof tide by embankment mechanically stabilized earth, characterized in that it has a structure in which only the wave Kaeko is broken by the pulling-wave How to build a dike.
JP2015168961A 2015-08-28 2015-08-28 Construction method of earthquake-resistant seawall by embankment reinforced earth wall method Active JP6234973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015168961A JP6234973B2 (en) 2015-08-28 2015-08-28 Construction method of earthquake-resistant seawall by embankment reinforced earth wall method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015168961A JP6234973B2 (en) 2015-08-28 2015-08-28 Construction method of earthquake-resistant seawall by embankment reinforced earth wall method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012114323A Division JP2013241745A (en) 2012-05-18 2012-05-18 Method of constructing earthquake-resistant tide embankment according to embankment reinforced earth

Publications (2)

Publication Number Publication Date
JP2016000958A true JP2016000958A (en) 2016-01-07
JP6234973B2 JP6234973B2 (en) 2017-11-22

Family

ID=55076678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015168961A Active JP6234973B2 (en) 2015-08-28 2015-08-28 Construction method of earthquake-resistant seawall by embankment reinforced earth wall method

Country Status (1)

Country Link
JP (1) JP6234973B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110396992A (en) * 2019-07-23 2019-11-01 中国电建集团贵阳勘测设计研究院有限公司 A kind of Face Slab of Concrete-faced Rockfill anti-crack construction technique

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108916A (en) * 1990-08-28 1992-04-09 Tokyu Constr Co Ltd Construction method for reinforced banking body
JPH10121455A (en) * 1996-10-17 1998-05-12 Nippon Wide Cloth Kk Sheet member for construction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108916A (en) * 1990-08-28 1992-04-09 Tokyu Constr Co Ltd Construction method for reinforced banking body
JPH10121455A (en) * 1996-10-17 1998-05-12 Nippon Wide Cloth Kk Sheet member for construction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
龍岡文夫, RRR工法協会だより, vol. No.30, JPN7015001621, August 2011 (2011-08-01) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110396992A (en) * 2019-07-23 2019-11-01 中国电建集团贵阳勘测设计研究院有限公司 A kind of Face Slab of Concrete-faced Rockfill anti-crack construction technique
CN110396992B (en) * 2019-07-23 2024-03-19 中国电建集团贵阳勘测设计研究院有限公司 Concrete face rockfill dam face anti-cracking construction process

Also Published As

Publication number Publication date
JP6234973B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP5939635B2 (en) Construction method of tide embankment by embankment reinforced earth method using honeycomb structure and planar reinforcement
JP2013241745A (en) Method of constructing earthquake-resistant tide embankment according to embankment reinforced earth
JP5157710B2 (en) Embankment reinforcement structure
JP6171569B2 (en) Embankment reinforcement structure
JP5817272B2 (en) Embankment reinforcement structure
JP6370295B2 (en) Embankment reinforcement structure and its construction method
JP6049382B2 (en) Seismic / overflow structure
CN111270698A (en) Protective structure for exposed diseases of bridge pile foundation in sand-mining river channel in mountainous area and construction method of protective structure
JP2001295245A (en) Protecting method for structure
JP6234973B2 (en) Construction method of earthquake-resistant seawall by embankment reinforced earth wall method
JP5846150B2 (en) Construction method of river revetment structure
JP6511671B2 (en) Construction method of coastal soil structure against huge tsunami by high-rigidity geosynthetic reinforced soil retaining wall with rigid integrated wall work
JP6333597B2 (en) Waterbed structure with scour resistance
JP2018154997A (en) Wall body structure with filling material
JP2725273B2 (en) Seismic structure of river embankment
JP4927355B2 (en) How to build a sloping bank
JP6338837B2 (en) Coastal dike
JPH0913343A (en) Revetment structure and its construction method
JP2002004240A (en) Double sheet pile type port civil engineering structure
JP2008081960A (en) Ocean wave protection structure
KR100227536B1 (en) Bell type caisson foundation method
JP7240667B2 (en) Reinforced soil structure and soil structure reinforcement method
JP2810374B2 (en) Non-concrete flexible structural member and method of constructing seaside facility using this flexible structural member
JP3658625B2 (en) Embankment sinking prevention structure and banking sinking prevention method
JP3884270B2 (en) Slit sabo dam

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170417

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171025

R150 Certificate of patent or registration of utility model

Ref document number: 6234973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250