JP2015533201A - Hydraulic hybrid - Google Patents

Hydraulic hybrid Download PDF

Info

Publication number
JP2015533201A
JP2015533201A JP2015507397A JP2015507397A JP2015533201A JP 2015533201 A JP2015533201 A JP 2015533201A JP 2015507397 A JP2015507397 A JP 2015507397A JP 2015507397 A JP2015507397 A JP 2015507397A JP 2015533201 A JP2015533201 A JP 2015533201A
Authority
JP
Japan
Prior art keywords
hydraulic
engine
hybrid system
load
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015507397A
Other languages
Japanese (ja)
Other versions
JP6346168B2 (en
Inventor
コッハン,ラルフ
アクバリアン,タグヒ
Original Assignee
ドイツ アクチェンゲゼルシャフト
ドイツ アクチェンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ドイツ アクチェンゲゼルシャフト, ドイツ アクチェンゲゼルシャフト filed Critical ドイツ アクチェンゲゼルシャフト
Publication of JP2015533201A publication Critical patent/JP2015533201A/en
Application granted granted Critical
Publication of JP6346168B2 publication Critical patent/JP6346168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/103Infinitely variable gearings of fluid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4078Fluid exchange between hydrostatic circuits and external sources or consumers
    • F16H61/4096Fluid exchange between hydrostatic circuits and external sources or consumers with pressure accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • B60K2006/126Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator the hydraulic accumulator starts the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

負荷(5)および/または駆動ユニット(12)へ油圧を供給するための取付け型および/または組込み型の油圧ポンプ(2)を有する内燃機関(1)と、エンジン制御および/または噴射制御用の少なくとも1つの電子エンジン制御装置(3)と、上記油圧負荷(5)の少なくとも1つを制御するための少なくとも1つの油圧制御装置(4)と、少なくとも1つの圧力保持弁(6)と、少なくとも1つの切替弁(7)と、少なくとも1つの油圧貯蔵器(8)とを有するハイブリッドシステム。An internal combustion engine (1) having a mounted and / or built-in hydraulic pump (2) for supplying hydraulic pressure to a load (5) and / or drive unit (12), and for engine control and / or injection control At least one electronic engine controller (3), at least one hydraulic controller (4) for controlling at least one of the hydraulic loads (5), at least one pressure holding valve (6), and at least A hybrid system comprising one switching valve (7) and at least one hydraulic reservoir (8).

Description

本発明は油圧ハイブリッドに関するものである。   The present invention relates to a hydraulic hybrid.

油圧駆動装置を備えた作業機械は内燃機関と、複数の油圧ポンプと、油圧導管と、油圧弁と、制御部材と、モータと、油圧シリンダとを有している。この種のシステムは例えば特許文献1(独国特許第DE102009824B4号公報)で公知であり、余剰エネルギはバッテリに電気として貯蔵される。   A work machine including a hydraulic drive device includes an internal combustion engine, a plurality of hydraulic pumps, a hydraulic conduit, a hydraulic valve, a control member, a motor, and a hydraulic cylinder. This type of system is known, for example, from US Pat. No. 6,096,028 (German Patent DE 10200 024 B4), and surplus energy is stored as electricity in a battery.

上記システムの欠点は、余剰エネルギを利用するために補助バッテリと、別の電気モータとを必要とする点にある。このシステムのさらに他の欠点は油圧側しか考慮していない点にある。   The disadvantage of the system is that it requires an auxiliary battery and a separate electric motor to utilize the surplus energy. Yet another disadvantage of this system is that only the hydraulic side is considered.

独国特許第DE102009824B4号公報German Patent No. DE102009824B4

本発明が解決しようとする課題は上記の欠点の無いハイブリッドシステムを提供することにある。本発明は特に、燃料消費、エンジンの動的挙動、騒音レベルおよび磨耗を考慮に入れながら、投入エネルギーと存在しているストックとを効果的に利用してエンジンの作業点を最適化するハイブリッドシステムを提供することにある。   The problem to be solved by the present invention is to provide a hybrid system without the above-mentioned drawbacks. In particular, the present invention is a hybrid system that optimizes engine working points by effectively using input energy and existing stock while taking into account fuel consumption, engine dynamic behavior, noise levels and wear. Is to provide.

上記課題は請求項1に記載のハイブリッドシステムおよび請求項10に記載の方法によって解決される。   The object is solved by a hybrid system according to claim 1 and a method according to claim 10.

本発明の油圧ハイブリッドシステムを示すブロック回路図。The block circuit diagram which shows the hydraulic hybrid system of this invention. 貯蔵器の充填(ローディング)を示すフローチャート。The flowchart which shows filling (loading) of a storage device. 貯蔵器の放出(ブースト)を示すフローチャート。The flowchart which shows discharge | release (boost) of a storage device. 油圧回路内の負荷ピークを補償するためのブースト機能を示すフローチャート。The flowchart which shows the boost function for compensating the load peak in a hydraulic circuit. システム全体でエンジンの負荷を除き、負荷ピークを補償するためのブースト機能を示すフローチャート。The flowchart which shows the boost function for removing a load of an engine in the whole system, and compensating a load peak. 負荷衝撃に備えるために充填圧を上げることを示すフローチャート。The flowchart which shows raising filling pressure in order to prepare for load impact.

本発明では上記機械を最適化するために、内燃機関の負荷が弱いフェーズ(オフピーク期)の余剰エネルギまたはエンジン出力を油圧貯蔵器内に貯蔵して、出力需要が高い時または出力需要が過度に高いフェーズ(ハイピーク期)に放出または提供可能なシステム性能を大きく増加させる。   In the present invention, in order to optimize the above machine, the excess energy or engine output of the phase (off-peak period) in which the load of the internal combustion engine is weak is stored in the hydraulic reservoir, and the output demand is excessive or excessive. Significantly increases system performance that can be released or delivered during high phases (high peak periods).

この場合の最適化は、現在の作業時点で内燃機関が供給できる出力をより多くシステム内で短時間に提供することで行なわれる。それによってシステム性能が向上し、負荷が変化した場合の挙動がよりダイナミックになる。それと同時に、制動エネルギを回収することによってシステムまたはエンジンの制動出力を増加させてエンジン回転数の上昇を回避または減少させることができる。その結果、内燃機関に生じる最大回転数を大きく減少させることができる。この場合、負荷が弱いフェーズ(オフピーク期)に自由なエンジン出力が貯蔵器充填のために提供される   The optimization in this case is performed by providing more output that can be supplied by the internal combustion engine at the time of the current work in the system in a short time. This improves system performance and makes the behavior more dynamic when the load changes. At the same time, by recovering the braking energy, the braking output of the system or engine can be increased to avoid or decrease the increase in engine speed. As a result, the maximum rotational speed generated in the internal combustion engine can be greatly reduced. In this case, free engine power is provided for reservoir filling in the lightly loaded phase (off-peak period)

本発明ではエンジン出力とブレーキ作用を最適化するためのサブシステムが設けられている。このサブシステムはエンジン、油圧および機器の状態または状態値を検出するためのシステムと、油圧エネルギ貯蔵器、例えばバブルアキュムレータ、メンブレンアキュムレータまたはピストンアキュムレータの形式をした圧力貯蔵器とを用いる。   In the present invention, a subsystem is provided for optimizing engine power and braking action. This subsystem uses a system for detecting engine or oil pressure and equipment status or condition values and a pressure energy reservoir in the form of a hydraulic energy reservoir, for example a bubble accumulator, membrane accumulator or piston accumulator.

このサブシステムは、作業回路および/または走行回路に取付けられた(または組込まれた)油圧ポンプを備えた内燃機関と、エンジンと燃料噴射を電子的に制御するエンジン制御装置と、油圧負荷を制御する油圧制御装置と、油圧制御モジュールと、操作部材および弁と、圧力保持弁と、少なくとも1つの切替え弁と、少なくとも1つの油圧貯蔵器とを有している。   The subsystem includes an internal combustion engine with a hydraulic pump attached to (or integrated with) the work circuit and / or the driving circuit, an engine controller that electronically controls the engine and fuel injection, and a hydraulic load control. A hydraulic control device, a hydraulic control module, an operation member and a valve, a pressure holding valve, at least one switching valve, and at least one hydraulic reservoir.

上記エンジン制御装置は、エンジン固有の測定値を検出する。このエンジン固有の測定値には冷却剤温度、過給空気圧、荷重モーメント、噴射量、回転数、レイル圧、燃料前圧および回転数目標値が含まれる。これらの測定値を用い、制御装置内のパラメータ、特性曲線およびマップを用いて、エンジン制御用操作量を求める。エンジンの各作業点でこれらを求めて、調節する。   The engine control device detects engine-specific measurement values. The engine-specific measured values include coolant temperature, supercharging air pressure, load moment, injection amount, rotational speed, rail pressure, fuel pre-pressure, and rotational speed target value. Using these measured values, the engine control manipulated variable is obtained using parameters, characteristic curves and maps in the control device. Find and adjust these at each engine working point.

以下、図面を用いて本発明の実施形態を詳細に説明する。
[図1]に示すシステムでは、油圧貯蔵器内の油圧力と、作業回路の油圧力および温度と、走行駆動装置の油圧力および温度と、作業ポンプおよび走行ポンプの揺動角度等の他の測定値とがエンジン制御装置に供給される。この油圧制御装置からは各油圧コンポーネントの状態、例えば作業点の状態やコンポーネントによって要求される負荷に関する情報がエンジン制御装置へ供給される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the system shown in FIG. 1, the oil pressure in the hydraulic reservoir, the oil pressure and temperature of the work circuit, the oil pressure and temperature of the travel drive, the swing angle of the work pump and the travel pump, etc. Measurement values are supplied to the engine controller. From this hydraulic control device, information on the state of each hydraulic component, for example, the state of the work point and the load required by the component is supplied to the engine control device.

エンジン制御装置は上記データに従って圧力貯蔵器の充填および放出プロセスを制御することができる。   The engine controller can control the filling and discharging process of the pressure reservoir according to the above data.

上記油圧貯蔵器の充填(ローディング、[図2])は、作業回路内の弁Aおよび/または走行回路内の弁Bを開放することで行われる。その制御は[図2]に示すように油圧力PSpeicherに対するPSpeise、トルクMistに対するMverfugbarの比と、エンジン温度TKおよび油圧温度TSpeiseに従って行われる。 Filling (loading, FIG. 2) of the hydraulic reservoir is performed by opening the valve A in the working circuit and / or the valve B in the traveling circuit. P Speise for oil pressure P Speicher as shown in the control [2], the ratio of M Verfugbar for the torque M ist, performed according to the engine temperature T K and the hydraulic temperature T Speise.

所定条件が満たされたときに、エンジン制御装置は他の特性値を用いて充填([図2])が有意義であるか否かを調べる。   When the predetermined condition is satisfied, the engine control device checks whether the filling ([FIG. 2]) is significant using other characteristic values.

制動エネルギの回収
エンジンが引きずられている場合、すなわちMistが負の場合には、制動出力に加えてエンジンの全ての出力が充填([図2])のために提供される。弁Aおよび/または弁Bは、貯蔵器が充填されるまで、あるいは、前提の1つが満たされなくなるまで開放される。
When the braking energy recovery engine is being dragged, i.e., Mist is negative, all engine output in addition to braking output is provided for filling ([FIG. 2]). Valve A and / or valve B are opened until the reservoir is filled or until one of the premise is no longer met.

エンジン回転数が目標回転数より高い場合、すなわちnsoll<nistの場合には、提供可能な全出力(Mverfugbar−Mist)が、充填([図2])のために提供される。弁Aおよび/または弁Bは、油圧貯蔵器が充填されるまで、あるいは、前提の1つが満たされなくなるまで開放される。 If the engine speed is higher than the target speed, i.e., n soll <n ist , the full power available (M verfugbar −M ist ) is provided for filling ([FIG. 2]). Valve A and / or valve B are opened until the hydraulic reservoir is filled or until one of the premise is no longer met.

エンジンがアイドリング状態で、冷却剤温度が最低温度より上にある、nist=nleerおよびTK>Tminの場合には、提供可能な全出力(Mverfugbar−Mist)が充填([図2])のために提供される。弁Aおよび/または弁Bは、油圧貯蔵器が充填され、あるいは、前提の1つがもはや満たされなくなるまで、開放される。 If the engine is idling and the coolant temperature is above the minimum temperature, n ist = n leer and T K > T min , the full power available (M verfugbar -M ist ) is charged (see figure 2]). Valve A and / or valve B are opened until the hydraulic reservoir is filled or until one of the premises is no longer met.

エンジンが負荷の弱い相にあって、提供可能なトルクがMistよりもずっと高い場合には、充填が行われる([図2])。 If the engine is in a lightly loaded phase and the available torque is much higher than Mist , filling takes place ([FIG. 2]).

付加的に、エンジンが例えば燃料消費効率、放出挙動、過給圧、騒音水準および油圧制御装置の測定値および情報に関して、好ましくない駆動点にあって、機能の切替えによってより適切な駆動点が達成できる場合には、充填([図2])をエンジン制御装置によって作動あるいは非作動にすることができる。   In addition, the engine is at an unfavorable drive point, for example with regard to fuel consumption efficiency, discharge behavior, supercharging pressure, noise level and hydraulic control unit measurements and information, and a more appropriate drive point is achieved by switching functions. If possible, filling ([FIG. 2]) can be activated or deactivated by the engine controller.

あるいは、エンジン負荷をよりソフトにオン/オフするために、充填([図2])を制御弁を介して無段階に制御することもできる。   Alternatively, the charging ([FIG. 2]) can be controlled steplessly via a control valve in order to turn on / off the engine load more softly.

油圧貯蔵器の放出(ブースト、[図3])は、作業回路の弁Aおよび/または走行回路内の弁Bの開放によって行う。この制御は油圧力PSpeicherに対するPSpeiseの比、トルクMistに対するMverfugbarの比と、エンジン温度TKおよび油圧温度TSpeiseに従って行われる。 The release of the hydraulic reservoir (boost, [FIG. 3]) takes place by opening valve A in the working circuit and / or valve B in the running circuit. This control is the ratio of P Speise for oil pressure P Speicher, the ratio of M Verfugbar for the torque M ist, performed according to the engine temperature T K and the hydraulic temperature T Speise.

所定条件が満たされた場合には、エンジン制御装置が他の特性値を用いて、ブースト([図3])が有意義であるか否かを調べる。   If the predetermined condition is satisfied, the engine control device uses other characteristic values to check whether the boost ([FIG. 3]) is significant.

現在の作業点でエンジンがそれ以上の出力を放出できず(すなわちMverfugbar=f・Mistである場合には(f=安全ファクター、例えば0.9)、油圧貯蔵器を放出し、あるいは、前提の1つがもはや満たされなくなるまで、弁Aおよび/または弁Bを開放する。 If the engine cannot release any more power at the current working point (ie if M verfugbar = f · M ist (f = safety factor, eg 0.9), release the hydraulic reservoir, or Open valve A and / or valve B until one of the assumptions is no longer met.

エンジンがスモーク制限または他の出力制限内にある場合(すなわちMverfugbar=f・Mistである場合には(f=安全ファクター、例えば0.9)、油圧貯蔵器が放出され、あるいは、前提の1つがもはや満たされなくなるまで、弁Aおよび/または弁Bが開放される。 If the engine is within smoke limits or other power limits (ie M verfugbar = f · M ist (f = safety factor, eg 0.9), the hydraulic reservoir is released or Valve A and / or valve B are opened until one is no longer satisfied.

エンジン(1)が著しく加速された場合(すなわちnGradient>N(調節可能なファクター、回転数勾配)の場合には、貯蔵器が放出され、あるいは、前提の1つがもはや満たされなくなるまで、弁Aおよび/または弁Bが開放される。 If the engine (1) is significantly accelerated (ie n Gradient > N (adjustable factor, speed gradient)), the valve is released until one of the assumptions is no longer fulfilled or the reservoir is released. A and / or valve B are opened.

油圧作業回路に急速な負荷が接続されて供給圧力の圧力降下が高くてった場合(すなわちPGradient>P(調節可能なファクター、供給圧力勾配)になった場合)には、油圧貯蔵器が放出され、あるいは、前提の1つがもはや満たされなくなるまで、弁Aおよび/または弁Bが開放される。 When a rapid load is connected to the hydraulic work circuit and the pressure drop of the supply pressure is high (ie P Gradient > P (adjustable factor, supply pressure gradient)), the hydraulic reservoir is Valve A and / or valve B are opened until released or until one of the assumptions is no longer met.

付加的に、(例えば、燃料消費効率、放出挙動、過給圧、騒音水準、油圧制御装置の測定値および情報等のパラメータに関して)エンジンが好ましくない駆動点内にあって、機能の切り替えによってより適切な駆動点が達成できる場合には、エンジン制御装置によってブースト([図3])を作動/非作動にすることができる。   In addition, the engine is within an unfavorable driving point (for example, with respect to parameters such as fuel consumption efficiency, release behavior, supercharging pressure, noise level, hydraulic controller measurements and information) and more by switching functions If the appropriate drive point can be achieved, the boost ([FIG. 3]) can be activated / deactivated by the engine controller.

作業回転数を減少させて燃料消費を最適化する例を[図4]に示してある。   An example of optimizing fuel consumption by reducing the working speed is shown in FIG.

動的なニーズが高い場合には、不可避的に回転数急落が生じた場合に十分なトルクリザーブを提供するために、エンジン出力最大値に近い約1800−2300l/minのレンジ内のエンジン回転数が必要である。その結果、このレンジの回転数が低下した場合にトルクカーブが上昇する。さらに、内燃機関のエンストを阻止する、煩雑な限界負荷制御が設けられなければならない。   When dynamic needs are high, in order to provide sufficient torque reserve in the event of a sudden decrease in engine speed, the engine speed within a range of about 1800-2300 l / min, which is close to the engine output maximum value. is necessary. As a result, the torque curve increases when the rotational speed of this range decreases. Furthermore, complicated limit load control must be provided to prevent engine stalls.

作業回転数を約1400−1600l/minの公称モーメントのレンジ内へ減少させる場合、突然生じる動的な負荷ピークはブースト([図4])によって最適に吸収することができる。   When the working speed is reduced to within a range of nominal moments of about 1400-1600 l / min, sudden dynamic load peaks can be optimally absorbed by boost ([FIG. 4]).

騒音減少のための作業回転数の減少が[図4]に示されている。   The reduction in the working speed for reducing noise is shown in FIG.

動的な要請が高い場合には、不可避的に回転数急落が生じた場合に十分なトルクリザーブを提供するために、エンジン出力最大に近い約1800−2300l/minのレンジ内のエンジン回転数が必要である。   If the dynamic demand is high, the engine speed in the range of about 1800-2300 l / min, which is close to the maximum engine output, is provided in order to provide sufficient torque reserve in the event of a sudden drop in speed. is necessary.

その結果、この回転数領域で回転数が低下した場合、トルクカーブが上昇する。さらに、内燃機関のエンストを阻止する、煩雑な限界負荷制御が設けられなければならない。   As a result, when the rotational speed decreases in this rotational speed region, the torque curve increases. Furthermore, complicated limit load control must be provided to prevent engine stalls.

作業回転数が、約1400−1600l/minのエンジンの公称モーメントの領域へ減少される場合に、突然発生する動的な負荷ピークは、ブースト([図4])によって吸収することができる。   When the working speed is reduced to an engine nominal moment range of about 1400-1600 l / min, the sudden dynamic load peaks can be absorbed by the boost ([FIG. 4]).

[図6]は過給圧の上昇を示している。エンジンの動的挙動を改良するために、トルク水準が極めて低い相で、放出されるトルクとそれに伴って過給圧を上昇させるために、ローディング機能([図6])が能動化される。これは典型的に、油圧装置によって大きなトルク要請がなされる直前に、行われる。それと結びついた過給圧の上昇によって、油圧負荷が接続された場合にターボチャージャが良好に応答する。   [FIG. 6] shows an increase in supercharging pressure. In order to improve the dynamic behavior of the engine, the loading function ([FIG. 6]) is activated in order to increase the released torque and the corresponding boost pressure at a very low torque level. This is typically done just before a large torque request is made by the hydraulic system. The turbocharger responds well when a hydraulic load is connected due to the associated increase in supercharging pressure.

エンジンの負荷を軽減ために、ブースト機能([図1][図5])が作動されて切り替え弁7が同時に開放される。その後、油圧ポンプ2がモータとして作用して、内燃機関1のクランク軸または弾み車に設けられたリムを介して、貯蔵されているエネルギを油圧貯蔵器8から内燃機関1へ導入することによって、システム全体の動的挙動を著しく改良することができる。   In order to reduce the load on the engine, the boost function ([FIG. 1] [FIG. 5]) is activated and the switching valve 7 is simultaneously opened. Thereafter, the hydraulic pump 2 acts as a motor, and the stored energy is introduced from the hydraulic reservoir 8 to the internal combustion engine 1 via a rim provided on the crankshaft or the flywheel of the internal combustion engine 1, thereby The overall dynamic behavior can be significantly improved.

代替的形態においては、エンジン負荷のよりソフトなオン/オフを実現するために、制御弁を介してブーストを無段階に制御することもできる。   In an alternative form, the boost can be controlled steplessly via a control valve in order to achieve a softer on / off of the engine load.

同様に、油圧貯蔵器(8)内に貯蔵されているエネルギを介して油圧ポンプ(2)によってスタータ支援(スターティング)を行うことができる。   Similarly, starter assistance (starting) can be performed by the hydraulic pump (2) via the energy stored in the hydraulic reservoir (8).

油圧貯蔵器の放出は、作業回路内の弁Aおよび/または走行回路内の弁Bの開放を介して導入される。   The release of the hydraulic reservoir is introduced through the opening of valve A in the working circuit and / or valve B in the traveling circuit.

この制御は、油圧力PSpeicherに対するPSpeise、トルクMistに対するMverfugbarの比と、エンジン温度TKと油圧温度TSpeizeに従って行われる。 This control, P Speise for oil pressure P Speicher, the ratio of M Verfugbar for the torque M ist, performed according to the engine temperature T K and the hydraulic temperature T Speize.

エンジン回転数がゼロに等しい場合、弁Aおよび/または弁Bおよび切替え弁が操作されて、油圧ポンプが内燃機関用の始動モータとして利用される。   When the engine speed is equal to zero, the valve A and / or the valve B and the switching valve are operated and the hydraulic pump is used as a starter motor for the internal combustion engine.

高い基礎負荷を有する用途では、内燃機関の回転数がアイドリング回転数よりも小さい間(nist<nLeer)、内燃機関の回転数を上げる際のスタータを支援するために、同様な形式で貯蔵器(8)からエネルギを供給することができる。 In applications with a high basic load, while the engine speed is lower than the idling engine speed (n ist <n Leer ), it is stored in a similar format to assist the starter in increasing the engine speed. Energy can be supplied from the vessel (8).

スターティング支援は、自動的なスタート/ストップ機能を引き継ぐことができる。   Starting support can take over the automatic start / stop function.

エンジンがパラメータ化することのできる時間tの間アイドリングにおいて回転する場合に、エンジンはそれに続いて自動的に停止される。エンジン回転数がゼロに等しく、機器の運転者/操作者がアクセルペダルを踏み込んだ場合に、自動的に弁Aおよび/または弁Bおよび切替え弁7が操作されて、油圧ポンプが内燃機関1のためのスタータモータとして利用される。それによって、燃料消費における高い節約効果がもたらされる。さらに、エンジンの電気スタータに負荷をかけることなく、エンジン1の始動が行われる。耐用期間における油圧貯蔵器の装填/放出サイクルの数は、通常、電気スタータにおいて可能な始動プロセスの数よりも大きい。   If the engine rotates at idling for a time t that can be parameterized, the engine is then automatically stopped. When the engine speed is equal to zero and the driver / operator of the device depresses the accelerator pedal, the valve A and / or the valve B and the switching valve 7 are automatically operated, and the hydraulic pump is connected to the internal combustion engine 1. Is used as a starter motor. Thereby, a high saving effect in fuel consumption is brought about. Furthermore, the engine 1 is started without applying a load to the electric starter of the engine. The number of hydraulic reservoir load / release cycles during the lifetime is usually greater than the number of start-up processes possible in an electric starter.

周囲温度が低く、かつエンジン能力の活用が極めて低い場合に、エンジンをより急速に駆動温度にすると、内燃機関は本来の駆動温度まで極めてゆっくりとしか暖まらず、この冷間相においてエンジンの磨耗は極めて高くなり、燃焼消費は最適にはならない。本発明では油圧ポンプを多数回装填/放出することによって、動的な負荷を発生させることができ、それがエンジンをより急速に駆動温度にする。   If the ambient temperature is low and the utilization of the engine capacity is very low, if the engine is brought to drive temperature more quickly, the internal combustion engine will only warm up to the original drive temperature very slowly and in this cold phase the engine wear will Extremely high and combustion consumption is not optimal. In the present invention, a dynamic load can be generated by loading / discharging the hydraulic pump multiple times, which causes the engine to reach operating temperature more rapidly.

上記の機能を適用することによって、作業機械のパフォーマンスを効果的に向上でき、燃料消費とエンジンの磨耗を減少でき、エンジン能力を最適に活用できる。一時的な出力増によって、ダウンサイジングで駆動でき、ストローク空間がより小さいエンジンを使用でき、それによってエネルギ的により好ましくなる等の多くの利点が得られる。   By applying the above functions, work machine performance can be effectively improved, fuel consumption and engine wear can be reduced, and engine capacity can be optimally utilized. The temporary increase in power provides many advantages, such as being able to drive downsizing and using an engine with a smaller stroke space, which makes it more energy efficient.

本発明の適用原理は、油圧負荷および油圧駆動装置と組み合わせて、内燃機関またはガスエンジンを有するすべてのシステムで使用できる。   The application principle of the present invention can be used in any system having an internal combustion engine or a gas engine in combination with a hydraulic load and a hydraulic drive.

1 内燃機関
2 油圧ポンプ
3 負荷
4 油圧制御装置
5 負荷
6 圧力保持弁
7 切り替え弁
8 圧力貯蔵器
9 制御モジュール
10 操作部材
11 弁
12 駆動ユニット
13 温度センサ
14 圧力センサ
15 圧力センサ
16 圧力センサ
Speise 油圧供給回路内の圧力
Speicher 油圧貯蔵器内の圧力
Speise 油圧供給回路内の温度
max 油圧貯蔵器内の最大許容される温度
min 油圧貯蔵器内の最小許容される温度
ist 内燃機関の現在の回転数
soll 内燃機関の現在の目標回転数
Leer 内燃機関のアイドリング回転数
verfugbar 内燃機関の現在提供可能な最大のトルク
ist 内燃機関の現在放出されるトルク
K 内燃機関の冷却剤温度
max 機能のために最大許容される温度
min 機能のために最小許容される温度
Gradient 回転数勾配
Gradient 供給圧力の勾配
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Hydraulic pump 3 Load 4 Hydraulic control apparatus 5 Load 6 Pressure holding valve 7 Switching valve 8 Pressure reservoir 9 Control module 10 Operation member 11 Valve 12 Drive unit 13 Temperature sensor 14 Pressure sensor 15 Pressure sensor 16 Pressure sensor P Speise minimum acceptable temperature n ist an internal combustion engine of the maximum acceptable temperature inside T min hydraulic reservoirs within the temperature T max hydraulic reservoirs within the pressure T Speise hydraulic supply circuit in the pressure P Speicher hydraulic reservoir in the hydraulic supply circuit current rotational speed n soll engine of the current of the current emitted torque T K engine currently providing maximum possible torque M ist internal combustion engine idling speed M Verfugbar engine target rotational speed n Leer internal combustion engine Coolant temperature Maximum allowable temperature for T max function Minimum allowable temperature for T min function n Gradient speed gradient P Gradient supply Pressure gradient

Claims (11)

負荷(5)および/または駆動ユニット(12)へ油圧を供給するための取付け型および/または組込み型の油圧ポンプ(2)を有する内燃機関(1)と、エンジン制御および/または噴射制御用の少なくとも1つの電子エンジン制御装置(3)と、上記油圧負荷(5)の少なくとも1つを制御するための少なくとも1つの油圧制御装置(4)と、少なくとも1つの圧力保持弁(6)と、少なくとも1つの切替弁(7)と、少なくとも1つの油圧貯蔵器(8)とを有することを特徴とするハイブリッドシステム。   An internal combustion engine (1) having a mounted and / or built-in hydraulic pump (2) for supplying hydraulic pressure to a load (5) and / or drive unit (12), and for engine control and / or injection control At least one electronic engine controller (3), at least one hydraulic controller (4) for controlling at least one of the hydraulic loads (5), at least one pressure holding valve (6), and at least A hybrid system comprising one switching valve (7) and at least one hydraulic reservoir (8). 油圧負荷(5)が制御モジュール(9)によって駆動可能である請求項1に記載のハイブリッドシステム。   2. The hybrid system according to claim 1, wherein the hydraulic load (5) can be driven by a control module (9). 駆動ユニット(12)が操作部材(10)によって通信可能に形成されている請求項1または2に記載のハイブリッドシステム。   The hybrid system according to claim 1 or 2, wherein the drive unit (12) is configured to be communicable by the operation member (10). 操作部材(10)が油圧制御装置(4)によって通信可能に形成されている請求項1〜3のいずれか一項に記載のハイブリッドシステム。   The hybrid system according to any one of claims 1 to 3, wherein the operation member (10) is configured to be communicable by a hydraulic control device (4). 油圧貯蔵器(8)が、少なくとも1つの圧力センサ(14)を有している請求項1〜4のいずれか一項に記載のハイブリッドシステム。   The hybrid system according to any one of claims 1 to 4, wherein the hydraulic reservoir (8) comprises at least one pressure sensor (14). 制御モジュール(9)と切替え弁(7)の間に圧力センサが配置されている請求項1〜5のいずれか一項に記載のハイブリッドシステム。   The hybrid system according to any one of claims 1 to 5, wherein a pressure sensor is arranged between the control module (9) and the switching valve (7). 操作部材(10)と油圧ポンプ(2)の間に圧力センサ(16)が配置されている請求項1〜6のいずれか一項に記載のハイブリッドシステム。   The hybrid system according to any one of claims 1 to 6, wherein a pressure sensor (16) is arranged between the operating member (10) and the hydraulic pump (2). 温度センサ(13)、圧力センサ(14)、圧力センサ(15)および圧力センサ(16)がエンジン制御装置(3)と通信可能に配置されている請求項1〜7のいずれか一項に記載のハイブリッドシステム。   A temperature sensor (13), a pressure sensor (14), a pressure sensor (15), and a pressure sensor (16) are arranged so that communication with an engine control device (3) is possible. Hybrid system. 請求項1〜8のいずれか一項に記載の油圧システムを使用することを特徴とするハイブリッドシステムの駆動方法。   A method for driving a hybrid system, wherein the hydraulic system according to any one of claims 1 to 8 is used. 前記センサを用いてエンジンの状態と機械状態を常に監視し、エンジン/機械の動特性および/または負荷挙動を最適化するために油圧貯蔵器の充填と放出を制御する請求項9に記載の方法。   10. The method of claim 9, wherein the sensors are used to constantly monitor engine and machine conditions and control filling and discharging of a hydraulic reservoir to optimize engine / machine dynamics and / or load behavior. . 前記センサを用いてエンジンの状態と機械状態を常に監視し、かつ、エンジンの放出挙動に注意しながら、エンジン/機械の動特性および/または負荷挙動を最適化するために油圧貯蔵器の充填と放出を制御する請求項9に記載の方法。   Using the sensors to constantly monitor engine and machine conditions and to pay attention to engine discharge behavior, and to fill hydraulic reservoirs to optimize engine / machine dynamics and / or load behavior The method of claim 9, wherein the release is controlled.
JP2015507397A 2012-04-26 2013-03-02 Hydraulic hybrid Active JP6346168B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012008192.8 2012-04-26
DE201210008192 DE102012008192A1 (en) 2012-04-26 2012-04-26 hydraulic hybrid
PCT/EP2013/000626 WO2013159851A1 (en) 2012-04-26 2013-03-02 Hydraulic hybrid

Publications (2)

Publication Number Publication Date
JP2015533201A true JP2015533201A (en) 2015-11-19
JP6346168B2 JP6346168B2 (en) 2018-06-20

Family

ID=47891582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015507397A Active JP6346168B2 (en) 2012-04-26 2013-03-02 Hydraulic hybrid

Country Status (5)

Country Link
US (1) US10040343B2 (en)
EP (1) EP2841290A1 (en)
JP (1) JP6346168B2 (en)
DE (1) DE102012008192A1 (en)
WO (1) WO2013159851A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013213588B4 (en) * 2013-07-11 2019-03-07 Deere & Company Agricultural working machine with pneumatic pressure accumulator for buffering short-term peak loads
DE102013227035A1 (en) * 2013-12-20 2015-06-25 Hamm Ag Drive system, in particular for a self-propelled construction machine, in particular soil compactor
DE102013227032A1 (en) 2013-12-20 2015-06-25 Hamm Ag Drive system, in particular for a self-propelled construction machine, in particular soil compactor
DE102014001369B4 (en) * 2014-02-03 2021-07-01 Liebherr-Hydraulikbagger Gmbh Mobile hydraulic construction machine
EP3102835B1 (en) 2014-02-04 2018-11-14 DANA ITALIA S.p.A Method of charging a hydro-pneumatic energy storage system
AU2015215028B2 (en) 2014-02-04 2018-07-12 Dana Italia Spa Series parallel hydraulic hybrid architecture
CN105980185B (en) 2014-02-04 2019-01-08 意大利德纳股份有限公司 Controller for tandem hydraulic hybrid power transmission
US10220697B2 (en) 2014-02-04 2019-03-05 Dana Italia Spa Powerboost hub
CN105960362B (en) * 2014-02-04 2019-03-26 意大利德纳股份有限公司 The hybrid mode mixed using tandem type
CN106133332B (en) 2014-02-04 2018-05-25 意大利德纳股份有限公司 The traveling being integrated into hydraulic hybrid system and operation function
EP3002147A1 (en) 2014-10-02 2016-04-06 Dana Italia S.p.A. Dual drive driveline
SE542526C2 (en) * 2015-10-19 2020-06-02 Husqvarna Ab Energy buffer arrangement and method for remote controlled demolition robot
SE539241C2 (en) 2015-10-19 2017-05-23 Husqvarna Ab Adaptive control of hydraulic tool on remote demolition robot
SE542525C2 (en) 2015-10-19 2020-06-02 Husqvarna Ab Automatic tuning of valve for remote controlled demolition robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287774A (en) * 1992-04-09 1993-11-02 Komatsu Ltd Energy regenerator of hydraulic excavator
JP2008045309A (en) * 2006-08-11 2008-02-28 Shin Caterpillar Mitsubishi Ltd Control system for working machine
WO2009073128A2 (en) * 2007-11-30 2009-06-11 Caterpillar Inc. Torque distribution system and method
US20090241534A1 (en) * 2006-09-28 2009-10-01 Robert Bosch Gmbh Energy accumulator unit
JP2011505292A (en) * 2007-11-30 2011-02-24 キャタピラー インコーポレイテッド Apparatus and method for integrated power control

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2239134C (en) 1996-12-03 2002-10-22 Shin Caterpillar Mitsubishi Ltd. Control apparatus for construction machine
KR100325222B1 (en) * 1999-07-28 2002-03-04 이계안 A device and the method for piston stroke detects automatic transmission of vehicle
JP4560919B2 (en) * 2000-08-30 2010-10-13 株式会社アドヴィックス Hydraulic brake device for vehicle
JP4512283B2 (en) * 2001-03-12 2010-07-28 株式会社小松製作所 Hybrid construction machine
US20070227802A1 (en) 2004-04-09 2007-10-04 O'brien James A Ii Hybrid earthmover
US7322800B2 (en) * 2004-04-16 2008-01-29 Borgwarner Inc. System and method of providing hydraulic pressure for mechanical work from an engine lubricating system
DE102006019672B4 (en) * 2006-04-27 2013-11-14 Robert Bosch Gmbh Hydraulic fluid accumulator with integrated high pressure and low pressure chamber
US8387386B2 (en) * 2006-11-14 2013-03-05 Ford Global Technologies, Llc Combination rankine cycle system and hydraulic accumulator system
US7908852B2 (en) * 2008-02-28 2011-03-22 Caterpillar Inc. Control system for recovering swing motor kinetic energy
US20130206533A1 (en) * 2010-02-05 2013-08-15 Ricardo, Inc. Hydraulic control system for a dual clutch transmission
EP2795002B1 (en) * 2011-12-23 2022-03-30 J.C. Bamford Excavators Limited A hydraulic system including a kinetic energy storage device
US9863293B2 (en) * 2012-08-01 2018-01-09 GM Global Technology Operations LLC Variable valve actuation system including an accumulator and a method for controlling the variable valve actuation system
US20140379241A1 (en) * 2013-06-20 2014-12-25 GM Global Technology Operations LLC Hydraulic accumulator temperature estimation for controlling automatic engine stop/start

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287774A (en) * 1992-04-09 1993-11-02 Komatsu Ltd Energy regenerator of hydraulic excavator
JP2008045309A (en) * 2006-08-11 2008-02-28 Shin Caterpillar Mitsubishi Ltd Control system for working machine
US20090241534A1 (en) * 2006-09-28 2009-10-01 Robert Bosch Gmbh Energy accumulator unit
WO2009073128A2 (en) * 2007-11-30 2009-06-11 Caterpillar Inc. Torque distribution system and method
JP2011505292A (en) * 2007-11-30 2011-02-24 キャタピラー インコーポレイテッド Apparatus and method for integrated power control

Also Published As

Publication number Publication date
DE102012008192A1 (en) 2013-10-31
EP2841290A1 (en) 2015-03-04
JP6346168B2 (en) 2018-06-20
US10040343B2 (en) 2018-08-07
WO2013159851A1 (en) 2013-10-31
US20150113969A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6346168B2 (en) Hydraulic hybrid
JP6018255B2 (en) Boost assist system
US8209975B2 (en) Arrangement for operating a hydraulic device
US7434640B2 (en) Method for reducing torque required to crank engine in hybrid vehicle
JP6002380B2 (en) Hybrid electric vehicle and control method thereof
RU2017110658A (en) SYSTEM AND METHOD FOR INCREASING FUEL ECONOMY
EP1937530B1 (en) Method and system for shutting down an engine in a hybrid vehicle
US10112600B2 (en) Self-propelling work machine and method for braking such a work machine
CN103703191A (en) System for managing power in machine having electric and/or hydraulic devices
US8649927B2 (en) Energy system for a hybrid vehicle
JP5277260B2 (en) Dual pump design for hybrid electric automatic transmission
US20150176575A1 (en) Compressed Air System for a Motor Vehicle
JP6374431B2 (en) Drive control mechanism and drive control device
KR20070012313A (en) Methods of operating a series hybrid vehicle
JP2010524751A (en) Hybrid drive train
JP6394111B2 (en) Vehicle control device
US7436081B2 (en) System for controlling a hybrid energy system
RU2010134534A (en) METHOD AND CONTROLLER FOR CONTROL OF OIL SUPPLY
CN107107736B (en) Hybrid drive train
CN103231642B (en) The hydraulic efficiency gear of oil-liquid hybrid electric passenger vehicle band Pneumatic booster fuel tank
KR20140035030A (en) Electric oil pump control method and device thereof in hybrid automatic transmission
US20140080660A1 (en) Using an integrated starter/generator to replicate impeller clutch functionality
US20090062059A1 (en) Boosting assist hydraulic hybrid combination
US20140200754A1 (en) Methods of Operating a Series Hybrid Vehicle
US20210254575A1 (en) System for controlling the powertrain of a hybrid vehicle with management of excess pressure in the fuel rail

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180524

R150 Certificate of patent or registration of utility model

Ref document number: 6346168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250